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A B S T R A C T

We introduce the Embedded Computational Framework of Memory (eCFM), a model that integrates structured
semantic word representations with an instance-based memory model to account for the influence of semantic
information in verbal short-term memory. The eCFM combines principles from the episodic MINERVA 2 model
and the semantic Latent Semantic Analysis model. After reviewing how semantic information impacts verbal
short-term memory performance, we demonstrate eCFM’s ability to reconcile various phenomena within a
common computational framework. Our model captures key findings, such as the influence of semantic infor-
mation in serial recall, its reduction in serial reconstruction, and the impact of task difficulty on semantic in-
formation. In five experiments, we tested predictions derived from the eCFM. Experiments 1 and 2 manipulated
list organization, with Experiment 1 using alternating lists of related or unrelated words and Experiment 2 using
blocked lists. Experiment 3 varied presentation rates, Experiment 4 revisited the detrimental effect of semantic
information on order information, and Experiment 5 explored false recall. We found that semantic information
interacts with list composition, presentation rate affects the magnitude of its influence, and semantic information
impacts order information contrary to the dominant view. Additionally, increasing the number of related study
words to a non-studied semantic lure boosts false recall. The eCFM captured these findings as well as memory at
the item level. Our demonstration provides insight into the cognitive mechanisms underlying verbal short-term
memory and the interplay of semantic and episodic memory processes in recall.

Introduction

In verbal short-term memory tasks, participants encode and recall a
series of words in the order they were studied. Much prior research in-
dicates that participants’ prior linguistic experience influences perfor-
mance in this task (see Oberauer et al., 2018 for a review). One
significant demonstration of this influence is the effect of semantic in-
formation. Semantic information refers to knowledge about verbal in-
formation accumulated over the lifespan, enabling people to understand
word meaning, make associations, and categorize information. The in-
fluence of semantic information on verbal short-term memory perfor-
mance has yielded a large number of robust findings that have been
challenging to reconcile under a common framework (Kowialiewski
et al., 2023; Poirier & Saint-Aubin, 1995; Neath et al., 2022; Neale &
Tehan, 2007; Tehan, 2010; Saint-Aubin & Poirier, 1999a,b; Saint-Aubin

et al., 2005; 2014). In this investigation, we address this challenge by
accounting for the influence of semantic information on verbal short-
term memory using a new computational model called the Embedded
Computational Framework of Memory (eCFM).

The eCFM is a memory model with a large lexicon (50,000+ words)
that bridges the gap between episodic and semantic memory models by
integrating word representations from the Latent Semantic Analysis
(LSA; Landauer & Dumais, 1997) model of semantic memory into the
MINERVA 2 (Hintzman, 1986) model of episodic memory. The aim of
this study is to demonstrate that by combining these models, we can
explain a range of key phenomena concerning how semantic informa-
tion influences verbal memory at both the overall and item levels—a
challenge that has eluded traditional computational memory theories,
which often rely on arbitrary vectors to represent words. Additionally,
we used eCFM to make novel, testable predictions that are evaluated via
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empirical investigation.

Semantic relatedness

In recent years, semantic information has played an important role in
understanding the interactions between people’s lexicon (i.e., the corpus
of word representations) and short-term memory performance (e.g.,
Ishiguro & Saito, 2021; Kowialiewski & Majerus, 2020; Kowialiewski
et al., 2021, 2023; Neath et al., 2022). A classic empirical benchmark on
the influence of semantic information on verbal short-term memory
performance is the semantic relatedness effect, that is, superior imme-
diate serial recall for lists of related words compared to unrelated words.
For example, when participants are tasked with recalling a sequence of
words in their presentation order, they remember those words better
when they are related (e.g., STEEL, COPPER, BRASS…) than when they
are unrelated (e.g., STEEL, MAGAZINE, SERGEANT…). The findings are
robust and have been observed across both laboratories and languages
(e.g., Kowialiewski & Majerus, 2020) with both young and older adults
(Neale & Tehan, 2007), providing a critical basis for evaluating and
constraining models of memory.

Operationalization. Over the years, semantic relatedness has been
operationalized differently: (a) category membership (e.g., fruits: apple,
orange, banana; Murdock & Vom Saal, 1967), (b) association based on
co-occurrence in language corpora (e.g., APPLE, TREE; Tse, 2009), (c)
meaning (e.g., GOOD, NICE; Crowder, 1979), and (d) introspective
empirical judgments of word properties like valence, arousal, and
dominance (Ishiguro & Saito, 2021, 2024). Despite the diverse oper-
ationalizations, a recent study by Neath et al. (2022) revealed a strong
and consistent pattern of serial recall performance for semantically
related over semantically unrelated word lists, whether semantic relat-
edness was defined by category membership, association, or meaning. In
another innovative study, Ishiguro and Saito (2021) defined semantic
relatedness based on people’s judgments of word valence, arousal, and
dominance, using a variant of the method for deriving meaning in a
high-dimensional vector space for word representations inspired by
Osgood et al. (1957). However, empirical evidence has accumulated that
challenges the predictive validity of this operationalization for word
relatedness (see Kowialiewski et al., 2023; Ishiguro & Saito, 2024;
Sonier et al., 2024). Therefore, at the current moment, it appears that a
successful computational model is needed to explain the influence of
semantic relatedness across these three well-established operationali-
zations (i.e., category, association, and meaning) in immediate serial
recall.

Across these various operationalizations, the influence of semantic
information has produced a rich set of empirical findings that are
challenging to reconcile under a common framework. In the following
sections, we briefly review these key findings that we attempt to
reconcile with our model.

Semantic relatedness affects immediate serial recall but not immediate
serial reconstruction of order

It is well established that participants’ immediate serial recall per-
formance is superior for semantically related relative to semantically
unrelated lists of words. However, when faced with a serial recon-
struction task, where participants study a list of words and then are
tested on their ability to put them back in order at test, participants
perform equally well at reconstructing the presentation order of words
from semantically related as semantically unrelated lists (see Neath
et al., 2022, for a review). Consistent with that fact, Neath et al. (2022)
demonstrated the difference across three experiments when semantic
relatedness was defined by category membership (Experiment 1), as-
sociation (Experiment 2), or meaning (Experiment 3); a difference to
results where stimulus similarity is based on appearance and phonology
that typically hinders rather than benefits recall (Guitard & Cowan,
2020; Logie et al., 2016; Poirier et al., 2007; Conrad & Hull, 1964;

Roodenrys et al., 2022). Naturally, this puzzling dissociation between
the influence of semantic similarity in serial recall and serial recon-
struction has been of great interest to the research community and has
provided important insights into the impact of semantic information on
verbal short-term memory.

Redintegration hypothesis. The redintegration hypothesis provides a
key account on the influence of semantic similarity in verbal short-term
memory (e.g., Lewandowsky, 1999; Neath et al., 2022; Neale & Tehan,
2007; Saint-Aubin & Poirier, 1999a,b; Saint-Aubin et al., 2005). This
hypothesis, originally derived from Crowder’s (1979) sophisticated
guessing hypothesis, suggests that at recall, phonological representa-
tions are degraded and must undergo a reconstruction process based on
long-term knowledge of the memoranda (Hulme et al., 1991;
Schweickert, 1993). By corollary, semantic relatedness increases the
availability of the appropriate long-term representations in the indi-
vidual lexicon by activating recall candidates differentially in memory,
thus restricting the pool of recall candidates (e.g., APPLE, BANANA, and
so forth for a list of fruits). With a pool of activated and thus accessible
recall candidates, the probability of a successful recall is higher and
performance at the immediate serial recall task improves. However, in a
serial reconstruction task, semantic relatedness does not provide a recall
advantage because the items are already provided to the participant at
test, alleviating the need to recall the words but requiring them to put
the words back into studied order. Although the redintegration hy-
pothesis provides a useful overarching framework for understanding
why there is a serial recall advantage for related over unrelated word
lists without a corresponding advantage in serial reconstruction, it
leaves the mechanistic details ambiguous. In the description of our
model, we will address this issue and provide a clear computational
expression to resolve these ambiguities.

Present Study. In the present study, to explore the intriguing
dissociation between immediate serial recall and immediate serial
reconstruction, we simulated the results of Neath et al. (2022) across the
three different operationalizations of semantic relatedness using their
materials (see Demonstration 1).

Semantic relatedness and intralist error

In this section, we focus on the impact of semantic similarity on order
recall. To do so, we define order information as the serial position that a
word was presented so we can measure intralist errors where a studied
word is recalled but in the wrong serial position (e.g., a word studied in
serial position 5 but recalled in serial position 3). Understanding what
constrains order information is often challenging. Therefore, we will
divide this section into two parts, focusing on the influence of seman-
tically related information on intralist errors in immediate serial recall
and examining how semantically related information can affect specific
patterns of migration errors (e.g., a word in position 5 being recalled in
error as having appeared earlier rather than later in the list).

Serial Recall and Intralist Error. The prevailing view in the short-
term memory literature is that semantically related information pri-
marily affects item information (the ability to recall which words were
presented) with limited influence on order information (the ability to
recall when each word was presented). This partially explains why the
influence of semantic relatedness is limited in serial reconstruction tasks
that alleviate participants’ responsibility to recall the items themselves
(e.g., Neath, 1997; Guitard et al., 2021, 2022; Guitard & Cowan, 2023).
However, serial recall tasks that necessitate both item (information
about the words) and order information (information about the position
of the words in the list) for optimal performance have yield mixed
findings (Neath et al., 2022; Saint-Aubin et al., 2005; Tse, 2009; Tse
et al., 2011). A recent review by Neath et al. (2022) suggests that most
experimental results favor a beneficial effect on item information, with a
small or null effect on order information. Despite the elegance of Neath
et al.’s work, there are notable exceptions that are difficult to dismiss.
For example, Saint-Aubin et al. (2005) conducted one of the largest
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experiments on semantic relatedness defined by category membership in
French (n = 252) and observed a detrimental effect of semantic relat-
edness on order memory, despite controlling for the number of items
recalled between related and unrelated lists. In Saint-Aubin et al.’s
(2005) experiment, semantic relatedness was manipulated between
participants. Additionally, the same detrimental effect on order was
observed in participants performing concurrent articulation (repeating
aloud the word “mathématiques” at a rate of about three repetitions
every 2 s). Echoing their results, Tse (2009; Tse et al., 2011) found a
detrimental effect on order information in two studies using different
manipulations of semantic relatedness (i.e., category membership and
association) despite controlling for the number of items recalled. It is
also worth highlighting that previous studies with fewer participants
have often also found a trend for a small detrimental effect on order (e.
g., Guérard & Saint-Aubin, 2012; Neale & Tehan, 2007; Murdock, 1976;
Saint-Aubin & Poirier, 1999a,b). This mixed evidence makes the situa-
tion suboptimal for evaluating the models and leaves it unclear whether
these phenomena are based on specific stimulus characteristics; thus,
requiring further empirical evidence.

Migration Error. Another important phenomenon concerning the
influence of semantic relatedness is that semantic information can exert
an influence on order recall by affecting the pattern of order errors (i.e.,
the pattern serial recall position errors in which a specific word is most
likely to be incorrectly recalled). For example, in their landmark study,
Poirier et al. (2015) strategically positioned semantically related words
in the first three serial positions of a study list (e.g., CANARY,
MUSTARD, BANANA) and a word in the 5th serial position related to the
initial triplet (e.g., YELLOW) in experimental lists or another unrelated
word (e.g., JUNGLE) in control lists. They found that participants were
more likely to recall the 5th word earlier in the sequence compared to its
counterpart in the control list, indicating an important influence of se-
mantic association on memory retrieval. This pattern of “semantic
migration” has been of interest in recent computational investigations
(see Kowialiewski et al., 2021 for a review and model) because it rep-
resents one of the most important finding on the influence of semantic
information on order information. The results have been reinforced and
extended with different list organizations, including alternate and mixed
lists by Kowialiewski et al. (2024).

Summary.Overall, in most studies, semantic information has a more
significant influence on item information relative to order information.
However, semantic information has affected order information in serial
recall (e.g., Tse, 2009; Tse et al., 2011), notably in Saint-Aubin et al.
(2005) with a between-participants design using a large sample size.
Also, order information can be constrained by semantic information,
affecting the serial position in which related words are erroneously
recalled (e.g., Kowialiewski et al., 2021, 2024; Poirier et al., 2015).

Present Study. In the present study, we simulate Saint-Aubin et al.’s
(2005) results (see Demonstration 2). Given that our eCFM model in-
cludes a lexicon, we demonstrate that it can track people’s performance.
This approach allows us to determine whether the model accurately
reflects the patterns observed in Saint-Aubin et al.’s specific memoranda
and experimental design. We will also illustrate how different lexicons
derived from different models of semantic memory can be interchanged
within the model. Regarding migration error, we will simulate the
benchmark findings of Poirier et al. (2015) that have already been
subject to computational investigation (Kowialiewski et al., 2021) to
investigate and understand the impact of semantic information on order
information (see Demonstration 3). Empirically, to further contribute to
this important debate, in Experiment 4, we will reassess the influence of
semantic information on intralist error patterns in serial recall with a
large sample of 160 participants and a new set of stimuli (see Experi-
ment 4 and Demonstration 7).

Semantic relatedness and task difficulty

Manipulating task difficulty is of great interest in relation to the

redintegration hypothesis, as it allows testing of key predictions. For
example, the hypothesis suggests that the magnitude of the semantic
relatedness effect—the difference in memory performance between
related and unrelated lists—should be more pronounced when encoding
is poor. This is because the more degraded representations have a
greater opportunity to benefit from redintegration due to semantic in-
formation, compared to when encoding is nearly perfect and redinte-
gration is less crucial (Schweickert, 1993).

Consistent with the redintegration hypothesis, challenging people’s
encoding of study words by concurrent articulation (i.e., participants
repeating an irrelevant word like ’mathematic’ during study), the in-
fluence of semantic relatedness increases (Neale & Tehan, 2007; Poirier
& Saint-Aubin, 1995; Saint-Aubin & Poirier, 1999a,b; Saint-Aubin et al.,
2005). Similarly, Neale and Tehan (2007) demonstrated that manipu-
lating list length and the delay between study and recall yields a me-
morial advantage for words from related compared to unrelated word
lists increases linearly with task difficulty. These insightful findings
underscore the importance of redintegration when memoranda are
poorly encoded.

Present Study. To address these facts, we report simulations that
apply the eCFM to the materials and conditions in Saint-Aubin et al.
(2005), both with and without concurrent articulation (see Demon-
stration 2). To ensure that our results are not confined to a specific
simulation, we conducted another test in Experiment 3 (see Experiment
3 and Demonstration 6) by manipulating the presentation rate—a factor
well-established to affect task difficulty (e.g., Coltheart & Langdon,
1998; Dauphinee et al., 2024; Guitard & Cowan, 2023).

Semantic relatedness and list structure

It is becoming increasingly clear that a range of factors influence
semantic relatedness. One such factor, which has received growing in-
terest, is the influence of list structure and organization—how we
arrange related and unrelated information within a list. List organization
is a crucial experimental manipulation in the study of short-term
memory (e.g., Saint-Aubin et al., 2021). Specifically, when semanti-
cally related information is presented in adjacent serial positions (e.g.,
words in positions 3 and 4), memory performance is typically superior
compared to when that information is spaced apart. This phenomenon
was first reported by Saint-Aubin et al. (2014), who observed improved
recall performance for pairs of related and unrelated words presented
either at adjacent positions or separated by one or two unrelated items,
with better recall noted when the paired members were adjacent (see
also Brooks & Watkins, 1990).

These findings were further replicated and expanded upon by
Kowialiewski and Majerus (2020; Kowialiewski, et al., 2021, 2022,
2024) who explored list organization with two semantic categories
either blocked together (e.g., AAABBB, where ’A’ represents one se-
mantic category, and ’B’ represents a different semantic category) or
interleaved (e.g., ABABAB, where ’A’ and ’B’ are different semantic
categories). They also tested configurations with related and unrelated
triads (RRRUUU, UUURRR; where ’U’ = unrelated and ’R’ = related),
reporting results consistent with Saint-Aubin et al. (2014).

Present Study. Given the importance of list organization, in our
study we aimed to expand on these findings using word lists that
incorporate words from related and unrelated categories either inter-
leaved in Experiment 1 or blocked in Experiment 2. This approach will
serve as the empirical basis to test our model’s capability of capturing
the influence of list organization on the influence of semantic informa-
tion (see Experiments 1 and 2 and Demonstrations 4 and 5).

Semantic relatedness and false memory

The last empirical finding we will examine is the influence of se-
mantic information on false memory. Human memory is reconstructive
by nature, and therefore, inherently flawed. One of the most compelling

D. Guitard et al. Journal of Memory and Language 140 (2025) 104573 

3 



demonstrations of the impact of semantic information on verbal short-
term memory is the phenomenon of false memory, where individuals
erroneously recall or recognize un-studied yet semantically related
verbal information. Researchers often investigate this type of memory
error using the Deese-Roediger-McDermott (DRM) paradigm (Deese,
1959; Roediger & McDermott, 1995). In this paradigm, participants
study a list of words such as BED, NAP, SNORE, AWAKE, SNOOZE,
TIRED, WAKE, REST, BLANKET, and DREAM that are all semantically
related to an unpresented but implied critical lure such as SLEEP. Par-
ticipants are then asked to recognize or recall, or both, the presented
items. False memory is particularly intriguing in this context because it
allows us to directly evaluate, at the item level, if the model can predict
specific recalls of an unstudied item in the participants’ lexicon, an
analysis that is impossible without word-specific lexical representations.

One of the first studies to investigate the influence of false recall in
immediate and delayed serial recall was conducted by Tehan (2010).
Using the DRM paradigm, they found that participants recalled critical
related lures even after just a few seconds. This phenomenon and the
ability to make item-level predictions are of great interest for compu-
tational models such as the generative model of memory construction
and consolidation by Spens and Burgess (2024) that initially succeeded
in accounting for one of the classic finding in false memory literature in
recognition and free recall: the likelihood of recalling the critical lure
increases with the number of related study words (Robinson& Roediger,
1997). However, this classical finding has not received the same level of
attention in serial recall. We aimed to overcome this limitation with a
new demonstration of false recall of critical lures in serial recall.

Present Study. To investigate the issue, we conducted an experi-
ment to measure false recall of a critical lure in the context of serial
recall. Mirroring Spens and Burgess (2024; see also Robinson& Roediger
(1997), we manipulated the number of related words associated with a
specific non-presented critical lure and tracked the serial position in
which the critical lure was falsely recalled. This experimental and
computational demonstration provides a different look at the classic
DRM phenomena and will serve as an articulate basis for model evalu-
ation (see Experiment 5 and Demonstration 8).

Summary semantic relatedness

In this section, we briefly summarize the key empirical findings that
we focus on throughout the remainder of this manuscript and lay the
groundwork for evaluating the eCFM model, highlighting the value of
combining episodic and semantic models of memory. The primary goal
of this manuscript is to demonstrate how the influence of semantic in-
formation on verbal memory performance can be explained. To achieve
this, we systematically investigated several key phenomena: 1) the se-
mantic relatedness paradox, which highlights the beneficial effect of
semantically related words in serial recall and its absence in serial
reconstruction; 2) the impact of semantic relatedness on intralist error,
whether semantic relatedness has a detrimental effect on order infor-
mation; 3) the influence of semantic relatedness on migration errors; 4)
the effect of task difficulty on the magnitude of the semantic relatedness;
5) the role of list organization on the semantic relatedness effect; and, 6)
the influence of semantic relatedness on false memory in serial recall.

Modelling background

Over the years, numerous models have been developed to enhance
our understanding of recall (e.g., Brown et al., 2007; Burgess & Hitch,
1999, 2006; Farrell & Lewandowsky, 2002; Franklin & Mewhort, 2002,
2015; Henson, 1998; Hurlstone et al., 2014; Kowialiewski, et al., 2021;
Nairne, 1988; Murdock, 1974, 1982, 1993; Oberauer et al., 2012;
Oberauer & Lewandowsky, 2011; Page & Norris, 1998; Raaijmakers &
Shiffrin, 1980, 1981; Saint-Aubin et al., 2021). These models have
provided clear theoretical frameworks and successfully captured key
processes linked to specific human behaviors. A common technique in

these models involves using randomly generated vectors to represent
studied items to simulate a lexicon and tame the volatility of predictions
conditional on specific memoranda presented in a target experiment.
However, while this method provides a convenient basis for knowledge
representation in semantic memory, it falls short of representing the
semantic relationships people share (Johns & Jones, 2010; Osth et al.,
2020). To address the issue, we represent words in a structured mental
lexicon, derived from LSA (Landauer & Dumais, 1997), an established
theory of semantic memory. To simulate recall with those representa-
tions, we embed those representations within an established model of
episodic and memory. Naturally, we are not the first to adopt structured
representations in a computational model of cognition and so this work
extends on a larger disciplinary effort (Chang & Johns, 2023; Criss &
Shiffrin, 2004, 2005; Franklin & Mewhort, 2002, 2015; Johns et al.,
2012; Kimball et al. 2007; Nosofsky et al., 2018a, 2018b; Mewhort et al.,
2018; Lewandowsky&Murdock, 1989; Osth et al., 2020; Osth& Zhang,
2023; Reid & Jamieson, 2023; Reid et al., 2023; Sirotin et al., 2005).

For example, Sirotin et al. (2005) and Kimball et al. (2007) have
represented pre-experimental, pairwise semantic associations by incor-
porating similarity scores obtained from latent semantic analysis (LSA;
Landauer & Dumais, 1997) and word association space (WAS; Steyvers,
Shiffrin, & Nelson, 2005) into Raaijmakers and Shiffrin’s eSAM and
fSAM models (1980, 1981). In those demonstrations, the mental lexicon
was artificially constrained to suit the characteristics of the task, rather
than having a complete lexicon (e.g., representations for a subset of 750
words). Nevertheless, even with a small lexicon, those models accounted
for an impressive range of phenomena in free recall. Overcoming some
of those limitations, Mewhort et al. (2018) used a large lexicon equipped
with 39,076 words with BEAGLE vectors representing word meanings
within a holographic model for recall to account for the Hebb effect, the
von Restorff effect, and the release of proactive interference.

To build on this tradition, we developed the eCFM by linking a classic
instance-based model of episodic memory, MINERVA 2 (Hintzman,
1986), that provides a sound and articulate account of the redintegra-
tion hypothesis that has served as an excellent but informal account of
how semantic information influences performance in verbal short-term
memory and that, if successful, would link our account to a wider range
of work in which MINERVA 2 has already been successfully applied to
problems including frequency judgement, recognition, categorization,
cued recall, implicit learning, associative learning, and heuristic deci-
sion making (e.g., see Jamieson et al., 2022).

Embedded Computational Framework of Memory

The eCFM is a memory model with a large embedded lexicon of
vector-based word representations derived from the LSA model of se-
mantic memory (50,797 words in the simulations reported here). This
model is an extension of Cowan’s embedded processes model of infor-
mation processing, in which short-term memory consists of an activated
subset of long-termmemory (Cowan, 1988, 2019; Cowan et al., 2024). It
bridges the gap between models of episodic memory (MINERVA 2:
Hintzman, 1986) and semantic memory (LSA: Landauer & Dumais,
1997).

By integrating word representations derived from a LSA, eCFM offers
a clear definition of semantic relations grounded in well-established
semantic memory theory. This specificity is an important step forward
frommodels that rely on randomly generated vectors to represent words
that often lack the nuanced understanding of semantic relationships
(Johns & Jones, 2010). This approach allows us to progress towards a
more comprehensive model of memory that integrates advances from
the research siloes of semantic and episodic memory and that supports
memory modelling for the same word lists presented in experiments and
for the words that people recall, correctly or incorrectly, in those
experiments.

Lexical Representations. A key aspect in our model is the lexicon
(or semantic memory). Accounting for the precise impact of semantic

D. Guitard et al. Journal of Memory and Language 140 (2025) 104573 

4 



relatedness in serial recall requires a memorial representation of the
study list in which words are represented both in terms of their meaning
and the order in which they are studied. To accomplish that goal, we
represented a lexicon within the eCFM by borrowing Landauer and
Dumais’ (1997) theory of Latent Semantic Analysis (LSA), one of several
established Distributional Semantic Models (DSMs). We chose to use
LSA in the simulation work that follows because it represents a familiar
framework for readers, but we could have used other models (e.g.,
Bojanowski et al., 2017; Jamieson et al., 2018; Jones &Mewhort, 2007;
Mikolov et al., 2013; Mitchell & Lapata, 2010) or methods (e.g., De
Deyne et al., 2019; Just et al., 2010; McRae et al., 2005).

DSMs construct representations of word meaning by “reading” a
record of language (i.e., a corpus) and deriving vector-based word rep-
resentations based on how those words are used (Jones, 2019; Lenci,
2018; Reid& Katz, 2018). Because DSMs represent word meaning based
on howwords are used, they implement Firth’s (1957) dictum that, “You
shall know the meaning of a word by the company it keeps” (see also
Harris, 1954, and Rubenstein & Goodenough, 1965).

LSA is a benchmark DSM that derives vector-based word represen-
tations by counting the number of times that words appear in different
documents over a large corpus of language. The counts are recorded in a
word-by-document matrix and both local and global weighting pro-
cedures are applied to the counts. For the local weighting, each element
in the matrix (i.e., each word-by-document frequency count) is con-
verted to its natural logarithm. For the global weighting, each row of the
matrix is weighted according to the word’s entropy across the docu-
ments (see Berry & Browne, 1999; Martin & Berry, 2007). This is
referred to as a “global weight” because the sameweight is applied to the
entire row in the word-by-document matrix (i.e., each of the word’s
frequency counts is weighted in the same way). Entropy is an
information-theoretic measure that can assess the informativeness of a
word’s occurrence. For instance, a common word such as BANK occurs
in many different contexts, whereas a word such as COGNITION is
specific to a few contexts (this word likely appears in documents about
psychology but not in documents about sports or fashion). Therefore, a
low-entropy word like COGNITION is a more informative word than a
high-entropy word like BANK. Ultimately, the entropy weighting em-
phasizes more informative words in the word-by-document matrix and
lessens the influence of less informative words.

After the weighting procedures are applied to the word-by-document
matrix, its dimensionality is then reduced using the statistical technique
of singular value decomposition. This results in a matrix where each row
represents a word’s meaning as a vector defined by its weight on each
principal component that encodes a latent statistical dimension of word
meaning. Although the dimensions of word meaning are psychologically
undefined (though see Hollis & Westbury, 2016), this transformation
captures the latent structure of word associations and significantly im-
proves the signal-to-noise ratio in the resulting word representations.
For example, the initial untreated word-by-document frequency matrix
achieves only 15.7 % correct on a synonym judgement test whereas the
final matrix after weighting and singular value decomposition improved
performance to 52.7 % correct (Landauer, Foltz, & Laham, 1998).

Importantly, the dimension reduction step allows for some words
that do not directly co-occur in the same documents (such as synonyms)
to become more similar based on their common patterns of use across
different documents in the corpus (Landauer & Dumais, 1997). For
example, BEAGLE and DOG may become more similar because they are
interchangeable in natural language use, even if BEAGLE and DOG
themselves do not co-occur in the same document. In this way, the
model captures higher-order association that signals semantic corre-
spondence. Once singular value decomposition has been performed, the
word vectors stand in as numerical analogues for word representations.
Note that the values in the vectors are difficult to interpret on their own
(Kintsch, 2000), but when these values are compared to the values in
other word vectors, semantic structure of words in the full lexicon
emerges, with similar words having correlated patterns of values over

the latent dimensions (see Hollis & Westbury, 2016).
Despite the simplicity of the method, LSA vectors predict a range of

lexical behaviour including rate of language learning, judgements about
word meaning, and lexical judgement (Landauer & Dumais, 1997;
Landauer, Foltz, & Laham, 1998). Furthermore, using these represen-
tations within computational models can account for more complex
language phenomena such as causal inferences, homonym disambigu-
ation, metaphor interpretation (Kintsch, 2000), false memory (Reid &
Jamieson, 2023), and implicit learning of semantic categories (Chubala
et al., 2016). A more complete description and analysis of LSA can be
found in the model’s flagship theoretical paper (Landauer & Dumais,
1997).

In the following simulations, we use 300-dimension LSA word rep-
resentations derived from the Touchstone Applied Science Associates
Inc. (TASA) corpus as reported in Günther et al.’s 2015 article. However,
in one last step we filter Günther et al.’s set of vectors to include only the
items that also appear in the SUBTLEXus database (Brysbaert, New, &
Keuleers, 2012). Our assumption is that this final lexicon is represen-
tative of a typical person’s lexicon who participates in the memory ex-
periments that we model in the remainder of this manuscript.

Serial position representation. To model serial recall, we assume
that participants encode words at their studied serial positions and then
use these positions as cues to recall corresponding words at test (for a
related idea, see Nairne, 1990; Saint-Aubin et al., 2021). Serial position
information is a critical feature of serial recall that must be incorporated
to extend the capabilities of MINERVA 2 (Hintzman, 1986) and bridge
the gap between recognition and recall.

Currently, our efforts are focused on demonstrating the importance
of embedding a lexicon, which necessitates a method for representing
serial positions to effectively account for serial recall performance. To
this end, we have adopted methodologies well-established in item-
independent context models (e.g., see Logan & Cox, 2023; Osth &
Hurlstone, 2023; reviews and models). More exactly, to represent serial
positions in a study list we, first, generate a random vector of dimen-
sionality n for the first position. That representation stores an n-
dimensional vector of random deviates sampled from a Normal distri-
bution with mean 0 and standard deviation 1/

̅̅̅
n

√
(see Jones&Mewhort,

2007, and Murdock, 1982, for precedence on that decision). Second, we
generate a new vector for each successive serial position by iteratively
copying the representation from the preceding serial position and
sampling a new random deviate from the same normal distribution to
each dimension with probability d. Thus, d denotes the degree of simi-
larity/dissimilarity of successive serial position representations in
memory of a study list.

The scheme generates an ordered sequence of vector-based serial
position representations whose similarities vary as a function of serial
distance. To illustrate, refer to the 4 bottom panels of Fig. 1 that plots the
cosine similarity between representations at all serial positions in a six-
item list. When d = 0, the representation of serial position p is identical
to itself, but it is also identical to the representations for all other serial
positions, meaning that position information is perfectly confusable,
leading to inevitable order errors (retrieving an item in the wrong serial
position). Conversely, when d = 1, the representation of serial position p
is orthogonal, resulting in no order errors. In cases where 0 < d < 1, the
representation of serial position p remains identical to itself but varies in
similarity to the representations of other serial positions. The degree of
similarity changes in a graded manner as a function of distance. This
scheme aligns with the representation of serial positions in other models;
however, our computational method for developing the similarity
structure of serial position representations differs from the approaches
used in these other models (e.g., Brown et al., 2000; Howard & Kahana,
2002).

In sum, when 0< d < 1, this representational scheme implements the
idea that serial position representations are identical to themselves and
vary in similarity (i.e., confusability) with others as a function of dis-
tance. As will become apparent from the description for the model of

D. Guitard et al. Journal of Memory and Language 140 (2025) 104573 

5 



retrieval that follows, this means that the model will suffer from
retrieval interference of events encoded at immediately adjacent serial
positions most and suffer from retrieval interference from events at
distant serial positions least with the value of d determining the degree
of retrieval interference as a function of serial distance.

Study. We assume that people encode a list of to-be-remembered
words as a series of traces in memory, where each trace encodes both
the relevant serial position representation and the word that was pre-
sented at that serial position. To represent that assumption computa-
tionally, we represent memory as a two-dimensional matrix, M. Each

row in memory is a 600-dimensional vector. The first 300 dimensions
encode the serial position information and the last 300 dimensions
encode the word’s lexical representation (i.e., the word’s LSA vector).
Because the LSA representations for words have dimensionality 300, we
define serial position representations at the same dimensionality. Thus,
for a six-item study list,M is a 6 × 600 dimensional matrix. In the model
and in line with recent findings on the relationship between item and
order information (Guitard et al., 2021, 2022; Guitard & Cowan, 2023;
Majerus, 2019), item and order information are independent traits
essential to represent items-in-order.

Fig. 1. Illustration of the free parameters of the models. L represents the learning base rate, g is the slope at which encoding declines as a function of serial position,
and d indicates the similarity/dissimilarity of successive serial positions for memory of a study list. The top left panel illustrates the effect of L, the learning base rate,
when g is fixed at 0 for each position. The top right panel illustrates the effect of g when L is fixed at 1. The four bottom panels show the cosine similarity of serial
position representations as a function of d. The four bottom panels of the figure can be interpreted by cross-referencing the numbers in the body of the graph with the
serial positions on the x-axis. For example, the profile of cosine similarities at serial position 1 within each graph, represented by the red line with points labelled “1″,
shows the similarity of each serial position representation from 1 through 6 to the representation of the first serial position.
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We assume that memory for a studied word and its corresponding
order information is imperfect and that items in earlier serial positions
are encoded better than items at later serial positions, with the exception
that items in the last two serial positions are encoded equally well. The
assumption represents the fact that people have more opportunities to
rehearse items earlier in the list (e.g., Bhatarah et al., 2009; Rundus,
1971) and later items are protected from interference (e.g., Nairne,
1990). To represent that assumption in the model, we copy each feature
in a trace at serial position p with probability Lp,

Lp =

{
L − (p − 1)g , p < LL
L − (p − 2)g , p = LL (1)

where L is the learning base rate (i.e., how well the item in the first
position is encoded), p is the serial position, g is the slope at which
encoding declines as a function of serial position, and LL is the number of
items in the studied list. As indicated, each item is encoded less well than
its predecessor at rate g with the exception that the last item in the list is
encoded as well as the second last item in the list, similar to other
implementation (e.g., Nairne, 1990).1 To facilitate reader comprehen-
sion regarding the impact of various parameters in the model, we
illustrate in the top left panel of Fig. 1 how the parameter L affects the
encoding probability when g if fixed at 0. Conversely, in the top right
panel in Fig. 1 we demonstrate the impact of changing the parameter g
when L is fixed at 1. It is evident that as L increases, the likelihood of
encoding information also rises. Inversely, an increase in g results in a
lower encoding probability as a function of serial position. In our sim-
ulations, the parameter g is set relatively low and by itself, cannot fully
explain the recency effect observed in serial recall. In the current model,
the classic primacy effect, better memory for earlier presented items,
and recency effect, small benefit for last present item, of the serial po-
sition function arises due to the interaction between encoding and dif-
ferences in retrieval interference due to edge effects; edge effects refer to
the fact that items first and last serial positions suffer less retrieval
interference than items between those extremes because the first and
last items have only one immediately adjacent trace whereas items in
between have two (see Brown et al., 2007).

Serial recall. In this section, we described how we simulate serial
recall. Readers are encouraged to refer to Fig. 2, which demonstrates
how serial recall and serial reconstruction retrieve specific words from
the lexicon for both related and unrelated lists while following the
description of model.

To simulate recall of words at each of the LL serial positions in a
study list, we present the representation for the relevant serial position
to memory as a cue, q, and retrieve a corresponding echo from memory,
e, that represents the information retrieved about the word that
occurred at that serial position,

e =
∑i=m

i=1

⎛

⎜
⎜
⎜
⎜
⎝

∑j=n/2
j=1 qj × Mij

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑j=n/2

j=1
q2

j

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑j=n/2

j=1
M2

ij

√

⎞

⎟
⎟
⎟
⎟
⎠

3

× Mi• (2)

where qj is feature j in the cue, Mij is feature j in trace i in memory, n/2 is
the dimensionality of the serial position cue, and m is the number of
traces in memory (i.e., the length of the study list in the simulations that
follow). In psycholinguistics, the echo is a mental representation and
would be referred to as a lexeme that represents the thought that un-
derlies a language expression. Typically, the echo, e, resembles the word
at the cued serial position but by virtue of related studied words in the
list having a similar representation to the presented word (as well as

unstudied words that are also related to the studied word), the infor-
mation retrieved from memory has potential to introduce an intralist
(recalling an item from the list in the wrong position) or extralist
(recalling an item not presented in the studied list) error. By the same
token, and probably in contradiction to intuition, weak retrieval of
studied items over the entire list into the echo can also help retrieval of
the word at position p when studied words are related. This occurs
because the word at serial position p shares semantic features with its
competitors and the information retrieved about semantically related
neighbours serves to reinforce and/or substitute for features unavailable
in the word that the memory system is trying to retrieve (see the
redintegration hypothesis; Neath et al., 2022; Saint-Aubin & Poirier,
1999a,b; Saint-Aubin et al., 2005).

Second, we compute the similarity of the information retrieved into
the last 300 dimensions of the echo (i.e., the dimensions that encode
word’s lexical information) to each word in the lexicon (see Fig. 2 panels
A and B). If the most similar word in the lexicon is greater than a report
threshold, T, that word is reported (see Fig. 2 panels C and D). If no word
in the lexicon has a similarity greater than T, no word is reported (an
omission). Critically, and because the lexicon includes both words
appearing both in and not in the study list, a reported word has op-
portunity to be the recall target (i.e., strict correct), a different word
from the study list (i.e., an intralist intrusion), or a word from outside the
study list (i.e., an extralist intrusion). In cases of false recall, like in the
DRM False Recall procedure, the model can also falsely recall a critical
lure.

Finally, we score the model’s recall to match the way that people’s
recall is typically scored. If the word reported at serial position p
matches the word presented at serial position p, the trial is scored as
correct (strict scoring). If the word reported at serial position p does not
match the word presented at serial position p but the word was in the
list, the trial is scored as an intralist error (also known as an order error).
If the word reported for serial position p does not match the word pre-
sented at serial position p and the word was not presented in the study
list, the trial is scored as an extralist error. If no word is reported at serial
position p because no word in the lexicon was similar enough to the
echo, the trial is scored as an omission error.

For the simulations reported in this manuscript, we simulated
fictional participants completing recall tasks for lists within each con-
dition (i.e., each type of list and task). We then reported averaged per-
formance over those simulated participants. This approach allows us to
present averaged serial position functions and associated 95 % credible
intervals, as well as the average proportions of recall errors: omissions,
intralist errors, and extralist errors. Thus, the results of our simulations
are presented for simulated participants in the same manner as experi-
mental results are presented for real participants.

Serial reconstruction. We simulate serial reconstruction in nearly
the same way that we simulate serial recall. However, the experimental
procedure in a serial reconstruction task differs in two ways. First,
participants in a serial reconstruction task are presented with the studied
words for report at test; thus, participants do not need to compare to all
the words in their lexicon only a lexical subset including the studied
words (see Fig. 2 panels E and F). To simulate that difference to serial
recall, the information retrieved into the echo is compared to the
response list composed of just the words in the studied list for report.
Second, because all words from the studied list are presented at recall,
people select the best fitting word from the presented list; thus, omission
errors in experimental performance are rare if committed at all. To
match those facts, we force the model to select the best fitting word from
the studied list at each serial position. That means that in serial recon-
struction, the model can make correct recalls and intralist intrusion er-
rors but cannot make omission or extralist intrusion errors. To prevent
the repeated retrieval of a word once it has been recalled (known as a
repetition error), the model suppresses the reporting of an already re-
ported word at a rate s. The suppression parameter, s, was set to 1 during
reconstruction, reflecting the task’s characteristics where repetition

1 This is a simplifying assumption in our current implementation of the
model, and we will investigate the best form for this learning rate function in
the future.
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errors are not possible and 0.01 for all other simulation unless otherwise
specified. To ensure understanding of this simple implementation,
consider the following example where the word CAT has a similarity
score of 0.40 for the first position and 0.38 for the second position. In

serial reconstruction, if the word CAT is selected, its value will be
adjusted to 0.38 – 1 = -0.62, making it functionally impossible to be
selected again. In contrast, in serial recall, its value will be adjusted to
0.38 – 0.01 = 0.37, making it still possible to be selected but less likely.

Fig. 2. This illustration shows the influence of semantic information on semantically related words (ASTRONOMY, BIOLOGY, BOTANY, CHEMISTRY, GEOLOGY,
PHYSICS, ZOOLOGY) and unrelated words (CIRCLE, EMERALD, JUICE, NOVEL, PHYSICS, SUBMARINE, YEAR) in serial recall (Panels A to D) and serial recon-
struction (Panels E and F). All figures were generated from 100 simulations of the model. Panels A and B display the similarity for each studied word (x-axis) between
the echo and all words in the lexicon. Words that show the highest level of activation are highlighted in red, representing words considered to be in activated long-
term memory according to Cowan’s model (1988, 2019; Cowan et al., 2024). Words with the lowest level of activation are shown in blue. It is evident that related
words exhibit a higher level of similarity compared to unrelated words. In Panels C and D, overlapping words have been removed to enhance visibility, and a
horizontal red line indicates the report threshold. Words above this line in red are those likely to be recalled; the word higher on the y-axis is the one that will be
recalled at that position. Words below the threshold (T) will not be recalled. If no red words are present for a given position (suggesting insufficient level of similarity
between the echo and the words in the lexicon), this would result in an omission. If a word different from the one at a specific position is higher, it would be an
extralist error if the word is not from the presented list, and an intralist error if it was a word from that list but not in that position. For order reconstruction, similarity
is compared to the words in the list (subset lexicon), and the one with the highest level of activation will be reported regardless of similarity, as no omissions are
possible in order reconstruction. See the text for more details.
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In summary, the eCFM assumes that people encode words-in-position
at study to varying degrees of fidelity. At test, they use a serial position
to cue memory and retrieve an echo (i.e., a lexeme). In serial recall, the
echo is compared to all words in the lexicon and the best matching word
is reported. In serial reconstruction, the echo is compared to just the
words in the study list. Each reported word is then compared to the
studied list to be scored as a correct or incorrect recall. Because the
model reports words, the words it recalls can be scored in the same way
as the words people recall in experiments: omissions, intralist errors,
extralist errors, and even false recall of critical lures in the DRM pro-
tocol. In serial recall, the echo is compared to all the words in the lexicon
and the word with the greatest similarity to the echo, above threshold, is
reported. In serial reconstruction, the process is the same but only the
words in the study list are available for report. Thus, any difference that
arises in the two cases are due to that difference alone.

Demonstration 1: Simulation of semantic relatedness in
immediate serial recall and immediate serial reconstruction of
order

In our first demonstration, we applied the eCFM to Neath et al.’s
(2022) design that documents the serial recall advantage for semanti-
cally related word lists coupled with the absence of that effect in serial
reconstruction. Our decision to apply the model to Neath et al.’s study
was driven by the comprehensive nature of their research: they provided
the specific word lists they used so we could implement them in the
eCFM simulations, made their data and detailed methodologies avail-
able, and were the first to systematically investigate the semantic
relatedness paradox across three dimensions of word relationships using
the same experimental procedure (category membership, associations,
meaning). Thus, this set of experiments represents a hallmark collection
of findings and an excellent empirical target. Of particular interest to us,
it also allows us to investigate the model’s ability to capture the phe-
nomenon across different materials. The literature is full of demon-
strations for phenomena driven by idiosyncratic stimulus properties (e.
g., Guitard et al., 2018, 2019; Bireta et al., 2021, 2023), and Neath
et al.’s experiments present an opportunity to test the eCFM in a set of
internal replications using different materials.

In Neath et al.’s (2022) three experiments, participants performed
serial recall and serial reconstruction for lists of six related or six unrelated
words. On each serial recall trial, participants studied six successively
presented words and then attempted to report the words in studied order.
On each serial reconstruction trial, participants studied six successively
presented words and then selected words presented on the screen to
reproduce the order in which they were studied. As per common practice,
participants in Neath et al.’s (2022) study were allowed to produce an
omission error by choosing to “skip” recall of the word. The nature of the
word relationships was varied across the three experiments. In Experi-
ment 1, words in related lists were related by category membership (e.g.,
DIAMOND, RUBY, EMERALD, SAPPHIRE, PEARL, OPAL). In Experiment
2, words in related lists were related by association (e.g., MAD, FEAR,
HATE, RAGE, TEMPER, FURY). In Experiment 3, words in related lists
were related by meaning (e.g., AFFABLE, AMIABLE, GENIAL, CORDIAL,
AGREEABLE, CIVIL). The reader can refer to Neath et al. for other details
of their experimental procedure.

Method

To simulate Neath et al.’s (2022) experiments, we conducted simu-
lations for 500 participants in each experiment, each completing 32 lists:
8 randomly sampled lists of each list type (i.e., Related and Unrelated)
and for each recall task (i.e., serial recall and serial reconstruction) in
each experiment. Because our model has a lexicon of 50,797 words, we

were able to present the model with almost the identical lists that Neath
et al.2 presented to their participants and, in the context of serial recall,
allowed the model to respond with any of those 50,797 words. To match
their design, we constructed a related list on each recall trial by sampling
one of Neath et al.’s related lists and presented the words in a ran-
domized serial position order. When simulating performance for an
unrelated list, we sampled six words from the full stimulus set (across
lists) and presented those words in a randomized order.

On each simulated serial recall or serial reconstruction trial, we
encoded each word of the list to memory in its presented serial position
and then performed either serial recall or serial reconstruction for the
list (depending on the task condition). On serial recall trials, the echo is
compared to all words in the lexicon and then it reported a word at each
successive serial position (see Fig. 2 panels A to D for illustration). On
serial reconstruction trials, the echo was compared to the lexicon subset
(i.e., just the six words in the studied list).

For all demonstrations, we fit the model by assessing its performance
across a range of values in the model’s joint parameter space, which
included the rate at which each word in a list was encoded as a function
of serial position, L and g, the threshold for issuing a response rather
than ’skipping’ or omitting to report a word during a serial recall trial, T,
and the rate at which serial position representations differ over the six
serial positions, d. We used successive grid searches to fit the model
against Neath et al.’s data seeking the best overall fit across the three
experiments (e.g., L = .15 to .40, g = .01 to .04, d = .10 to .40, T = .20 to
.40).

Our parameters for this, and subsequent demonstration are reported
in Table 1. As mentioned, s, the suppression mechanism, was set to 1 in
simulations of serial reconstruction to reflect the task’s characteristics
where repetition errors are not possible, and to 0.01 for serial recall to
reduce the number of repetition errors (i.e., the model reporting the
same word at multiple serial positions).

Scoring. In these simulations and all experiments, we used the
following scoring procedure. Strict scoring: A response was deemed
correct if the identical word was recalled in its originally presented
position only (e.g., word A presented in position 1 and word A recalled
in position 1). Free scoring: A response was deemed correct if the
identical word was recalled, regardless of its presented position (e.g.,
word A presented in position 1 and word A recalled in any position).
Intralist error: An intralist error was scored based on each recalled po-
sition. It occurred when the word recalled at a position was not identical
to the word presented at that position, was not an omission (a “skip”),
and was a word presented in that list (e.g., the first word recalled was
not equal to the word presented in position 1, was not an omission, but
was a word from the list). Extralist error: An extralist error was scored
when the recalled word was not one of the words presented in the list.
For both intralist and extralist errors, if a word was repeated (e.g., CAT,
TABLE, CAT in the same list), only the first occurrence was considered.
Omission: An omission occurred when a word was not recalled or when
the participant skipped as instructed. For fit between model and data
across all demonstrations we reported R2.

Availability. The simulations codes and materials for this and all
subsequent demonstration are available on the OSF (Open Science
Framework) page associated with the manuscript (OSF).

Results

To assess the model’s performance as a function of task (i.e., serial

2 Unfortunately, some words in Neath et al.’s (2002) lists were not available
in the LSA semantic memory vectors. In those cases, we deleted the lists from
our simulations resulting in five fewer lists in Experiment 1 and one fewer list in
Experiment 3. All stimuli were available for Experiment 2. For details on the
specific stimuli used in our simulations, please refer to the OSF page associated
with the manuscript.
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recall versus serial reconstruction), word relatedness (i.e., related versus
unrelated word list), serial position (1 to 6), and Experiment (1 to 3), we
computed the mean performance and associated 95 % credible intervals
(e.g., see Saint-Aubin et al. 2021 for similar method) over all 500
simulated participants and report the averaged serial position functions.
In the case of serial recall, we also report the rates of omission, intralist,
and extralist intrusions errors. To facilitate a quick comparison of Neath
et al.’s (2022) empirical results to our simulations, we present the
empirical results one row above each simulation for each experiment. As
shown, and despite the differences in how word relatedness was defined
in each the three experiments (i.e., category membership in Experiment
1, association in Experiment 2, and meaning in Experiment 3), Neath
et al. reported the same overall outcomes. Participants exhibited better
memory of related than unrelated lists in serial recall with no such dif-
ference in serial reconstruction. The serial recall error patterns for
related versus unrelated lists also remained generally consistent across
the three experiments. We now report on our model’s capacity to track
participants’ performance across the three experiments.

Overall. Fig. 3 shows the model’s performance in each of Neath
et al.’s (2022) three experiments where the relatedness of word lists was
defined by category membership in Experiment 1, word association in
Experiment 2, and word meaning in Experiment 3. The top panel shows
the results averaged over all three experiments, independent of how
word relatedness was defined. Overall, as shown in Fig. 3, the model had
a good overall fit to the data and captures many of key features of the
data with only minor discrepancy, R2 = 0.90.

More exactly, first and foremost, when collapsed across all experi-
ments, the model exhibited better memory for related than unrelated
lists in serial recall along with absent or a small reversed difference in
serial reconstruction. Based on that distinction, the model predicts the
dissociation that motivated Neath et al.’s (2022) study and that moti-
vated our interest in explaining that difference. Second, the results are
relatively consistent over the three experiments independent of how
word relatedness was defined (i.e., category membership, association, or
meaning in Experiments 1, 2, and 3, respectively). Third, the model
predicts the general form of the empirically observed serial position
functions. Both serial recall and serial reconstruction is best for words in
serial position one (i.e., the primacy effect), declines over the middle
serial positions, and exhibits a recency effect in the last serial position (i.
e., better memory for words that end a studied list). Fourth, the model
predicts a steeper negative serial position function in serial recall than in
serial reconstruction. All these features in the model’s performance
match the corresponding features from Neath et al.’s empirical data;
notably, with fits in each of the three experiments handicapped by using
the same model parameters to fit performance over all three. Fifth, the
model produces a reasonable facsimile of the distribution of error types
on serial recall trials with a higher omission error rate for unrelated than
related study lists, a modestly higher intralist intrusion error rate for
related than unrelated study lists, but it does not capture the very

modest difference in the extralist intrusion rate for related versus un-
related study lists. Although the model captures the major differences
observed in Neath et al.’s experiment, there are some minor differences
to the experimental data. For example, the slopes of the serial recall
position functions of the related and unrelated lists in all three experi-
ments are not so strikingly parallel as in the empirical data and serial
reconstructions of words from unrelated lists is slightly better than serial
reconstruction of words from related list intralist errors. In some in-
stances, there is a small detrimental difference for related over unrelated
(e.g., Experiment 1). However, those differences are minor relative to
the overwhelming similarity between the model’s and participants’
performance overall.

Lexicon Size. In this section, we examined whether the size of the
lexicon in serial recall (50,797 words) and in serial reconstruction (6
studied items plus distractors: unstudied items based on the lexicon size)
affects the results. To explore this question, we conducted 500 simula-
tions of Experiment 2 (in which all the words were available) and
explored the effects of various lexicon sizes from 0 (only the studied
words) to 40,000 randomly chosen words for all scoring procedures for
both serial recall and serial reconstruction. As shown in Fig. 4, in serial
recall, the pattern of results is stable across lexicon sizes for all measures
except extralist intrusions which increased with the number of words in
the lexicon. In contrast, as lexicon size increases in serial reconstruction,
an interaction emerges from small detrimental effects of relatedness at
very small lexicon sizes to a small beneficial effect of relatedness arising
with a lexicon of 100 words or more. As expected, there is an increase in
extralist errors more important for unrelated that related, a decrease in
intralist errors and no omission because they are not possible without a
recall threshold. This analysis of serial reconstruction provided valuable
insight into the influence of semantic relatedness in our model. Unlike
serial recall where we have a recall threshold in serial reconstruction,
the model is forced to recall the word with the highest level of similarity
between the echo and the word in the lexicon. This shows that when the
lexicon is small it is often slightly harder to retrieve the specific words
giving the similarity while when the lexicon is larger it is the opposite,
similarity help retrieve the specific words consistent with the redinte-
gration hypothesis. In sum, the advantage of related words relative to
unrelated words in serial recall is consistent across all lexicon sizes but
without a lexicon the model cannot produce extralist intrusions. The
results of serial reconstruction shed light on the apparent dissociation
between the tasks andmight suggest that even without a recall threshold
we can observe an advantage if participants on each trial have activated
words in their lexicon of approximately 100 to 1000 words which is
sufficient to produce an advantage on strict scoring, free scoring, and
extralist errors, but would not produce omission errors, which occurs
with recall threshold.

Table 1
Parameters and vectors used for each demonstration.

Demonstration Study Task Vectors L d g T s

0 Fig. 2 Serial Recall LSA English 0.16 0.35 0.018 0.27 −

0 Fig. 2 Serial Reconstruction LSA English 0.16 0.35 0.018 − −

1 Neath et al. (2022) Serial Recall LSA English 0.16 0.35 0.018 0.27 0.01
1 Neath et al. (2022) Serial Reconstruction LSA English 0.16 0.35 0.018 − 1
2 Saint-Aubin et al. (2005) Serial Recall Control LSA French 0.21 0.25 0.018 0.27 0.01
2 Saint-Aubin et al. (2005) Serial Recall Concurrent articulation LSA French 0.16 0.25 0.018 0.27 0.01
3 Poirier et al. (2015) Serial Recall LSA English 0.19 0.3 0.018 0.27 0.01
4 Experiment 1 Serial Recall LSA English 0.16 0.35 0.018 0.27 0.01
5 Experiment 2 Serial Recall LSA English 0.16 0.35 0.018 0.27 0.01
6 Experiment 3 Serial Recall 114 ms LSA English 0.125 0.3 0.014 0.27 0.01
6 Experiment 3 Serial Recall 500 ms LSA English 0.165 0.3 0.014 0.27 0.01
7 Experiment 4 Serial Recall LSA English 0.165 0.3 0.014 0.27 0.01
8 Experiment 5 Serial Recall LSA English 0.18 0.3 0.018 0.27 0.10
8 Experiment 5 Serial Recall fastText 0.18 0.3 0.018 0.27 0.10
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Discussion

Taken together, we conclude that the model successfully accounts for
the semantic similarity paradox by capturing the dissociation observed
by Neath et al. (2022): a relatedness advantage in serial recall but not in
serial reconstruction. The model also replicates key characteristics of
serial position functions (i.e., primacy and recency), although, as
mentioned, further work is needed to understand the underlying
mechanisms.

While the model is not without flaws, with some minor discrepancies
between serial recall and serial reconstruction noted in the first dem-
onstration—such as small detrimental effects in certain instances—these
are generally minor. In the supplementary analysis, we examined the

proportion of times each participant and each simulation exhibited a
semantic relatedness effect. This effect could be beneficial (related >

unrelated), detrimental (related < unrelated), or show no difference
(related = unrelated) across experiments. The distribution of these ef-
fects (beneficial, detrimental, no difference) is captured with only minor
discrepancies (see Figure S1).

More importantly, in our model, the relatedness difference as a
function of task does not reflect a difference in how encoding and recall
proceed in those two tasks. Rather, the difference reflects an interaction
between how memory functions, according to the model, and the
different constraints imposed by these two tasks at test. Serial recall
requires the retrieval of a word from the lexicon, whereas serial recon-
struction only requires the retrieval and recognition of a word from the

Fig. 3. The model’s serial recall and serial reconstruction performance (identified by model) for related and unrelated lists for each of Neath et al.’s (2022) three
experiments (identified by data). Error based corresponds to 95% credible intervals. Panel A corresponds performance across serial positions according to strict
scoring criterion, and Panel B corresponds to performance collapsed across serial position for related and unrelated intralist, extralist and omission error.
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studied list. We also show in Fig. 4, that by increasing the number of
words in the lexicon it does not affect serial recall other than extralist
errors suggesting that the results were stable across lexicon sizes. In fact,
the benefit emerges from the similarity between the echo and these
related words in the lexicon that are easier to retrieve because they are
more similar. However, unlike previous accounts, similarity is not
arbitrarily defined. Instead, here similarity is defined by a well-
established model of semantic memory (LSA, Landauer & Dumais,
1997). In addition, by manipulating the size of the lexicon in serial
reconstruction we show that when the lexicon size increased the likeli-
hood of retrieving the specific words also increased showing how the
effect of relatedness in serial reconstruction goes from small or negative
to positive. Importantly, we also note that the results emerge from
simulations that not only assume a lexicon of word representations in
which memory is embedded but also where almost the identical word
lists presented to the model were also presented to experimental par-
ticipants. Thus, our model not only predicts recall as a function of word
relatedness in general but also predicts recall as a function of word
relatedness in particular. Our integration of similarity and vector-based
representations for words into a model for memory represents a degree
of computational specificity that is relatively rare at present, albeit
increasingly common in the field (Chang& Johns, 2023; Criss& Shiffrin,
2004, 2005; Franklin & Mewhort, 2002, 2015; Johns et al., 2012;
Kimball et al. 2007; Nosofsky et al., 2018a, 2018b; Mewhort et al., 2018;
Lewandowsky &Murdock, 1989; Osth et al., 2020; Osth & Zhang, 2023;
Reid & Jamieson, 2023; Reid et al., 2023; Sirotin et al., 2005).

Demonstration 2: Simulation of the detrimental effect of
semantic relatedness on order information in immediate serial
recall

In our second demonstration, we aimed to investigate the detri-
mental effects of semantic relatedness on order information. As dis-
cussed in the introduction, the consensus is that semantic information
does not affect order information. However, there has been opposing
evidence that are often disregarded (Saint-Aubin et al., 2005; Tse, 2009;
Tse et al., 2011). In this demonstration, we will investigate the influence
on order information by simulating the results of Saint-Aubin et al.
(2005). As previously mentioned, Saint-Aubin et al. (2005) conducted

one of the largest experiments on semantic relatedness defined by
category membership in French with 252 participants. Two groups of
participants (one studying related lists and another studying unrelated
lists) performed the task under concurrent articulation (repeating aloud
the word ’mathématiques’ at a rate of about three repetitions every 2 s).
Additionally, two other groups (one studying related lists and another
studying unrelated lists) performed the task without concurrent articu-
lation. The effect of semantic relatedness (the difference between related
and unrelated lists) was slightly larger when the task was more difficult
(i.e., under concurrent articulation than in the control condition). More
importantly, there was a detrimental effect on order.

Method

To simulate the experiment conducted by Saint-Aubin et al. (2005),
we conducted simulations for 500 participants in each condition, each
completing 14 lists in the same fixed order that Saint-Aubin et al. used
for each group of participants (related control, unrelated control, related
concurrent articulation, unrelated concurrent articulation). Since the
participants and the studied lists were in French, we developed new
French LSA vectors using the same techniques employed in the previous
simulation. To derive the French LSA representations, we randomly
selected 40,000 articles from French Wikipedia with the contingency
that each article contained 250 words or more. From each article, we
then randomly selected a 250-word section. We then built the word-by-
document matrix by counting word occurrences across these 40,000
snippets of 250 words each. The vectors are available on the OSF page
associated with this manuscript.

In the subsequent simulations, we used 300-dimension French LSA
word representations derived from these 40,000 articles from French
Wikipedia. However, similar to our approach with the English lexicon,
in a final step, we filtered the vectors to include only items that appear in
the Lexique database (New et al., 2004). The final lexicon included
40,862 words. This lexicon enabled us to present the model with almost

Fig. 4. The model’s performance in serial recall and serial reconstruction with distractors (unstudied words from the lexicon) for related and unrelated lists in
Experiment 2 of Neath et al. (2022) with various lexicon sizes (0 to 40,000 words) is presented. Error bars correspond to the 95% credible intervals. The top row
corresponds to serial recall, and the bottom row corresponds to performance in serial reconstruction with distractors. Each panel corresponds to a different scoring
method: strict scoring, free scoring, intralist errors, extralist errors, and omission errors. The x-axis represents the lexicon size (number of words in the lexicon), and
the y-axis represents the mean proportion.
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identical words to those used by Saint-Aubin et al.3 The parameters we
used are presented in Table 1. To simulate the influence of participants
under concurrent articulation, we provided them with a lower encoding
probability (L = 0.16) relative to participants in the control group (L =

0.21).
Scoring. Due to the limited availability of the original data, we

focused on strict scoring, free scoring, and conditional order error. The
latter corresponds to the number of intralist errors for a given list
divided by the number of words recalled according to a free scoring
procedure. We applied this latter procedure because it was used by
Saint-Aubin et al. (2005).

Results

To facilitate the reader’s comparison to our simulations, we have
redrawn the results of Saint-Aubin et al. (2005) next to our data in Fig. 5.
As shown in Fig. 5, the model accurately tracks all key characteristics of
the results from Saint-Aubin et al. (2005). Specifically, performance was
superior in the control condition compared to the concurrent articula-
tion condition. The semantic relatedness (the difference between the
related and unrelated conditions) was more pronounced when the task
was more difficult under concurrent articulation compared to the con-
trol condition. More importantly, there was a detrimental effect on order
information for related lists compared to unrelated lists for both the
concurrent articulation and control groups simulations. Overall, the
model demonstrated a good fit to the data and captured many of the key
features, with an R2 = 0.80.

Discussion

The results of Saint-Aubin et al. (2005) have often been disregarded
in the literature and have received little computational effort to examine
their ability to track these important findings. Here, we have shown that
by changing the lexicon to reflect that of the participants (from English
to French) and using their materials to simulate the results, the model
captures all main features. More importantly, it demonstrates a slightly
larger effect of semantic relatedness when the task was more difficult,
and a consistent detrimental effect on order. Many studies have dis-
missed these results by suggesting that this was a between-participants
manipulation and the results might not be reproducible under
different experimental conditions (e.g., Neath et al., 2022). It is always
possible that their results are due to the particularity of their stimuli (e.
g., Guitard et al., 2018, 2019; Bireta et al., 2021, 2023), the use of fixed-
order lists (e.g., Guitard et al., 2023), or a combination of both. How-
ever, we believe that additional efforts are warranted to understand the
exceptions rather than dismissing them. The evidence from our simu-
lation appears to suggest that both empirically and computationally,
with their particular design and almost identical lists, the results are
consistent. In Experiment 4, we investigated further the influence of
semantic of information on order information with a design that
addressed the methodological concerns of Saint-Aubin et al. (2005).

Demonstration 3: Simulating the impact of semantic relatedness
on migration errors

In our third demonstration, we aimed to investigate the influence of
semantic relatedness on the pattern of order errors—specifically, where
a specific word is most likely to be incorrectly recalled—by simulating
the results of Poirier et al. (2015). In their study, they positioned three

semantically related words in the first three positions (e.g., CANARY,
MUSTARD, BANANA). In the control condition, the subsequent words
were unrelated, whereas in the experimental condition the 5th word
(YELLOW) was strongly associated with the initial trio. They found that
participants were more likely to recall the 5th word earlier in the
sequence compared to its counterpart in the control list, indicating a
significant influence of semantic association on memory retrieval. This
pattern of results was captured at the qualitative level by Kowialiewski
et al. (2021) with randomly generated vectors. Here, we demonstrate
the model’s ability to capture the pattern of migration error and also the
ability of the model to assess item level performance across a series of
measures.

Method

Due to the availability of materials of the experiment conducted by
Poirier et al. (2015) we were able to simulate the exact same 40 par-
ticipants with their exact words in their same presentation position. We
concluded 400 simulations (10 simulations of each of the 40 partici-
pants) with the English LSA representation as was done in Demonstra-
tion 1. The simulations parameters are presented in Table 1.

Scoring. Due availability of the original data we were able to
compute all scorings for both the overall and item level performance.

Results

Overall. To facilitate the reader’s comparison to our simulations, we
have reanalyzed the results of Poirier et al. (2015) and plotted the results
alongside our data in Figs. 6, 7, and 8. As shown in Fig. 6, at the overall
level, the model, like the simulations of Kowialiewski et al. (2021),
misses some unusual features of Poirier et al.’s results, such as the lack of
a recency effect. However, it tracks many features, such as relatively
equivalent performance between the control and experimental condi-
tions across all scoring methods, except for fewer omissions of the target
item in position 5 than the experimental data. It captures the small
detrimental effects at position 4 and the slight advantage for the item in
position 5, more apparent with free scoring. Overall, the fit of the results
presented in Fig. 7 is relatively good, with R2 = 0.92.

Migration. In Fig. 7, we explored the pattern of migration errors of
the target item studied in position 5 and show that the model tracks
many features of Poirier et al.’s (2015) results. Like Poirier et al., par-
ticipants, when they made an error, were more likely to recall the target
item in earlier positions compared to the control condition (e.g., posi-
tions 4 and 3). However, there are some minor discrepancies; the model
made slightly fewer order errors, and performance in position 5 was
slightly better in the model. Overall, the fit of the results presented in
Fig. 7 is relatively consistent with the initial results, with R2 = 0.97.

Items Level. In Fig. 8, due to the embedded representation and the
availability of all the words in the lexicon, the model was able to directly
compare the proportion of times each studied word was accurate or
inaccurate. Specifically, we show the proportion of times each studied
word was scored as strict scoring, free scoring, intralist error, extralist
error, and omission. This demonstration is not possible without repre-
sentations and allows an additional level of specificity. Overall, as
shown in Fig. 8, across all scoring methods, the model provides a rela-
tively good account of the results, with R2 = 0.85. However, for intralist
and extralist errors, the model has more difficulty, mostly due to the
very small number of these errors in the experiment and some over-
prediction in instances where words were more likely to be replaced by
another word in the lexicon (e.g., “music”), likely attributed to the high
level of similarity with other words in the lexicon.

Discussion

In this demonstration, we have shown that the model captured many
important features of the classic migration pattern of errors established

3 Unfortunately, the following 4 words were not available in our lexicon,
(céleri, yogourt, bicycle, muffin) and we replaced by the following 4 semanti-
cally related words (radis, mousse, vélo, brioche). For further details on the
specific stimuli used in our simulations, please refer to the OSF page associated
with the manuscript.
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by Poirier et al. (2015). Similar to Kowialiewski et al. (2021) without an
embedded lexicon as defined here, the pattern shows some deviations
but captures key elements, such as the migration of the target item to-
wards the other similar items presented in earlier positions. Unlike
previous computational demonstrations, we show that the model can
account for memory performance with a higher degree of specificity
than previous accounts of serial recall. Specifically, because the model
includes a lexicon, we were able to compare the degree of overlap be-
tween the model and the data at the word level while capturing the exact
relationship at the list level which have been shown to be critical in
serial recall (e.g., Guitard et al., 2023). This allows us to evaluate the
model at both macro and micro levels without any additional

assumptions. This demonstration opens interesting avenues beyond
veridical recall. For example, in Experiment 5, we will demonstrate how
themodel can track performance to produce words that were not studied
by investigating false recall.

Present empirical study

Overall, our computational model successfully accounted for a range
of important findings with a novel level of specificity that provides both
empirical and theoretical insights. Specifically, the model captured the
differential influence of semantic relatedness in serial recall and
reconstruction reported by Neath et al. (2022) across different

Fig. 5. The model’s serial recall performance (identified by model) for related and unrelated lists for the control and concurrent articulation groups of Saint-Aubin
et al. (2005) (identified by data). Error bars correspond to the 95% credible intervals (not available for the data). The top row shows performance across serial
positions according to strict scoring criteria, while the bottom rows display performance collapsed across serial positions for related and unrelated lists under
conditional order error, free scoring, and strict scoring.
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operationalizations of semantic relatedness in the experimental lists (i.
e., category membership, association, or meaning).

The results were stable across different lexicon sizes, but a careful
analysis of serial reconstruction with distractors (studied and unstudied
words) shows that lexicon size is an important factor in explaining how
semantic relatedness becomes better than unrelated lists in our model.
The model also successfully accounted for the detrimental effect of se-
mantic information on order information observed by Saint-Aubin et al.
(2005), which has often been dismissed. Using almost identical mate-
rials, the model predicted the pattern of results and captured the effect of
task difficulty. In the third demonstration, we showed that the model
was able to capture the pattern of migration errors identified by Poirier
et al. (2015) with some success, a benchmark finding of the influence of

semantic information on verbal memory performance. Furthermore, the
model could evaluate at the item level, which has eluded previous
models of serial recall without meaningful representations.

Beyond accounting for previous results, the model also makes pre-
dictions for serial recall of mixed semantic lists. In the following studies,
we test these predictions in two experiments. In Experiment 1, seman-
tically related words are presented in alternating serial positions within
the list (e.g., HOUR, GENERAL, MINUTE, JOURNAL, DAY, JADE),
while in Experiment 2, semantically related words are presented in
blocked positions within the list (e.g., HOUR, MINUTE, DAY, GEN-
ERAL, JOURNAL, JADE). This design was engineered to evaluate
whether the model can capture details on how semantic relatedness
affects serial recall performance with better precision.

Fig. 6. The model’s serial recall performance (identified by model) for control and experimental lists of Poirier et al. (2015) (identified by data). Error bars
correspond to the 95% credible intervals The top two rows show performance across serial positions according to strict scoring, free scoring, intralist error, extralist
error, and omission error, while the bottom rows display performance collapsed across serial positions.
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In addition to investigating the influence of list organization, we
revisited the influence of task difficulty on semantic relatedness in
Experiment 3 by manipulating presentation rate. In Experiment 4, based
on the results from our simulations of Saint-Aubin et al. (2005), we re-
evaluated the influence of semantic relatedness on order information
using 160 participants and a new set of stimuli. Lastly, in Experiment 5,
we assessed whether the model could track specific extralist errors by
manipulating the number of words related to a target word, leveraging
the lexicon’s capability to predict such errors.

Demonstration 4: Simulation of serial recall for pure and
alternating mixed lists of related and unrelated words

We have, thus far, demonstrated that our model postdicts numerous
key phenomena of semantic information on verbal short-term memory
performance. This is a meaningful success demonstrating that a
computational model of recall equipped with a lexicon can capture at
least some aspects of human memory performance by presenting similar
lists to the model. However, readers might be underwhelmed as we
reverse-engineered our model to explain the results, albeit in a way that
follows directly from cued recall in MINERVA 2 (Hintzman, 1986). In
the work that follows, we put serial reconstruction aside and focus in on
demonstrations that our model can track details of serial recall
performance.

A cornerstone experimental manipulation in the study of short-term
memory is mixed list recall. In mixed list designs, half of the words in a
list are related in some way (e.g., low arousal words) and the other half
are related in another (e.g., high arousal words; Landry et al., 2022).
One benchmark example of differential recall for word types is the word

frequency effect: memory is better for high-frequency than low-
frequency words (e.g., Guérard & Saint-Aubin, 2012; Hulme et al.,
1997; Roodenrys et al., 1994). However, whereas that difference holds
true in pure list designs (i.e., where all words are of the same kind), the
word-frequency effect is abolished in mixed lists designs (e.g., Hulme
et al., 2003; Morin et al., 2006). These results have been central to
advancing the field’s understanding of how long-term memory factors
interact with short-term memory performance.

As reviewed in the introduction, list organization is an important
phenomenon on the influence of semantic relatedness. There are some
demonstrations of the issue. For example, Brooks and Watkins (1990)
provide an important investigation of list organization in a memory span
task where lists are composed of both digits and words (Experiment 1) or
just words from the same or different semantic domain (Experiment 2).
Unfortunately, only overall memory span was reported in their study.
Therefore, the pattern of results as a function of serial position remains
unknown. Saint-Aubin et al. (2014) proposed one of the first attempts to
investigate the influence of mixed list organization in serial recall. More
exactly, they presented a pair of related and unrelated words within a
list either at adjacent serial positions or separated by one or two unre-
lated items. They found better recall performance when the pair mem-
bers were presented in adjacent serial positions. Kowialiewski and
Majerus (2020) also investigated list organization; however, they used
two categories of related words (e.g., LEAF, TREE, BRANCH, CLOUD,
SKY, RAIN). In subsequent works, they examined related and unrelated
words similar to our interest but omitted important control conditions
for pure lists (e.g., all related words) (Kowialiewski et al., 2021, 2022).

Despite the importance of their work, none of Brooks and Watkins
(1990), Saint-Aubin et al. (2014), or Kowialiewski and Majerus (2020;

Fig. 7. The mean proportion of time the target word presented in position 5 was recalled at each serial position. The model’s serial recall performance (identified by
model) for control and experimental lists of Poirier et al. (2015) (identified by data). Error bars correspond to the 95% credible intervals.
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Kowialiewski et al., 2021, 2022) provided clear predictions or empirical
assessments to establish precise expectations of serial recall for seman-
tically related and unrelated words in a mixed list design; at least not in
the same way that Hulme et al. (2003) did for word frequency. Here we
bridge this gap by, first, establishing predictions for mixed list serial
recall of related and unrelated words with the eCFM and then testing
those predictions in a corresponding experimental procedure.

In a first test, we applied the model to performance in serial recall for
pure-related (i.e., RRRRRR) and pure-unrelated (i.e., UUUUUU) word
lists, like in the Neath et al. (2022) study. However, we also tested the
model’s serial recall for otherwise equivalent alternating mixed-list
conditions. In an RURURU mixed-list condition, lists were composed
of three related words and three unrelated words, where three related
words appeared in odd numbered serial positions and three unrelated

words appeared in even numbered serial positions (e.g., HOUR, GEN-
ERAL, MINUTE, JOURNAL, DAY, JADE). To complement that, we also
tested serial recall for words in a URURUR mixed-list condition where
three related words appeared in even numbered serial positions and
three unrelated words appeared in odd numbered serial positions (e.g.,
HOUSE, ARM, SWORD, ELBOW, PEACH, KNEE). Our predictions of
interest were focused on measuring a benefit for related over unrelated
words in both pure and mixed lists and also asking how the shape of the
serial position functions would differ over the RRRRRR, UUUUUU,
RURURU, and URURUR list structures.

To bring some precision to our empirical test, we generated specific
word lists for all four of the wordlist test conditions: 24 RRRRRR pure
lists, 24 UUUUUU pure lists, 24 RURURU mixed lists, and 24 URURUR
mixed lists. For completeness, our word lists in all four test conditions

Fig. 8. The mean proportion of time each word was scored as strictly correct, freely correct, intralist error, extralist error, and omission, along with the overall fit for
each scoring procedure. The model’s performance is on the y-axis, and the results from Poirier et al. (2015) are presented on the x-axis.
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are presented in Appendix A. In conformity with good experimental
design, the same 144 words have equal probability of occurring in all
conditions and only the list-wise arrangement of words differs between
test conditions.

The parameters for our simulation are presented in Table 1. To
simulate performance, we conducted simulations for 100 simulations of
24 serial recall trials for each of the RRRRRR, UUUUUU, RURURU, and
URURUR list structures which is equivalent to 400 fictional participants.
Then, we averaged performance over those simulated participants to
report the serial position curves based on all scoring methods. Our
predictions of interest are on strict serial scoring (i.e., words had to be
recalled in their presented position to be correct) and free scoring (i.e.,
words were scored as correct if they were recalled in either their pre-
sented position or any other), but for transparency we reported all of
them. Mean simulated performance for RRRRRR, UUUUUU, RURURU,
and URURUR lists is presented in Fig. 9.

The five leftmost columns show serial position functions for recall of
words in RRRRRR, UUUUUU, RURURU, and URURUR lists according to
strict scoring, free scoring, intralist error, extralist error and omission.
The five rightmost columns show average recall of R and U words in the
pure list conditions (RRRRRR and UUUUUU lists) and in the mixed list
conditions (RURURU and URURUR lists). For clarity, the R recall esti-
mate in the mixed list conditions is equal to mean recall of R words from
the odd numbered serial positions in RURURU mixed lists and the even
numbered serial positions of URURUR lists with the U recall estimate
equal to mean recall of U words from the even numbered serial positions
in RURURU lists and the odd numbered serial positions ofURURUR lists.

The model made two key predictions that lend themselves to
empirical evaluation. First, the model predicts a memorial advantage for
R over U words in both pure and mixed lists, with the size of that
advantage being slightly larger for pure over mixed lists. Second, and
although a very high precision prediction, the model predicts comple-
mentary sawtooth patterns in the two mixed list conditions (i.e.,

RURURU and URURUR) with recall not only being better for R over U
items in aggregate but also being better (generally) for R over U items at
each serial position. We now turn to an experimental test of the model
predictions.

Experiment 1

In Experiment 1, we examined the influence of semantic relatedness
in a serial recall task while manipulating list composition to test the
predictions derived from the model. More exactly, we tested people’s
serial recall of related and unrelated words in pure related lists
(RRRRRR), pure unrelated lists (UUUUUU), and alternating mixed lists
(RURURU and URURUR).

Method

Participants
In the absence of prior demonstrations examining the semantic

relatedness effect in serial recall with mixed lists like we are investi-
gating, we based our calculation on the effect size of Experiment 1 of
Neath et al. (2022) with pure lists. This study was chosen because our
experiment was modeled after their experiment and our stimuli were
drawn from their set of words. In their experiment, the size of the se-
mantic relatedness effect between related and unrelated lists was d =

0.805. We used their effect size to estimate the sample size via G*Power
3.1.9.7 (Faul et al., 2007). An a priori bidirectional paired-sample t-test
power analysis with the effect size of Neath et al. and default parameters
revealed that with 23 participants we would have at least a power of
0.95 to detect an effect comparable to Neath et al. However, and because
we are expecting a reduced effect for mixed lists, we computed a
sensitivity analysis. Results from the sensitivity analysis with default
parameters revealed that 80 participants would allow us to detect a
smaller effect d = 0.41.

Fig. 9. Model simulations of Experiment 1. Although we present these simulations as predictions, the predictions are shown from simulations using parameters
selected after running the experiment. Error bars correspond to the 95% credible intervals.
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Eighty participants took part in this experiment. All participants
were recruited via Prolific (https://www.prolific.co/) and received
£9.00 per hour (pro-rated) for their participation. To participate in this
experiment, participants had to (a) be a native speaker of English, (b)
have American nationality, (c) have normal or corrected-to-normal
vision, (d) have no cognitive impairment or dementia, (e) have no
language-related disorders, (f) be between 18 and 30 years of age, and
(g) have an approval rating of at least 90 % on prior submissions at
Prolific. All inclusion criteria were self-reported by the participants
except for the approval rating which is computed by Prolific. Partici-
pants in the study had a mean age of 24.79 years (SD = 3.50, range
18–30) and 28 self-identified as female, 47 self-identified as male, and 5
preferred to not specify their gender.

Materials

The stimuli were drawn from Neath et al.’s (2022) Experiment 1 in
which semantic relatedness was operationalized by category member-
ship. More exactly, 24 lists of six semantically related words were bor-
rowed from Neath et al. The stimuli were then rearranged to create 24
lists of semantically unrelated words and 48 lists of semantically mixed
words: 24 RURURU lists and 24 URURUR lists. The stimulus lists are
presented in Appendix A. Across participants, the words were presented
equally often in each of the four possible list compositions (i.e.,
RRRRRR, UUUUUU, RURURU, URURUR) and a word was never
repeated for any given participant. The order of the words within a list
was fixed but the order of the lists was randomized for each participant.

Design

The experiment was a 2 (pure lists vs. mixed lists) × 2 (related vs.
unrelated) × 6 (serial position 1 to 6) repeated-measures factorial
design. There were 24 experimental trials (i.e., 6 RRRRRR lists, 6
UUUUUU lists, 6 RURURU lists, and 6 URURUR lists) each corre-
sponding to a list composition. The order of list composition was indi-
vidually randomized for each participant. Participants completed two
practice trials before beginning the experiment.

Ethic

These and subsequent methods were approved by the School of
Psychology Ethics Committee at Cardiff University, and all participants
provided informed consent before the experimental session.

Procedure

The experiment was programmed with PsyToolKit (Stoet, 2010,
2017) and took participants approximately 20 min to complete. The
progression of the experiment was controlled by the participant who
initiated each trial by pressing the space bar within 60 s after finishing
the preceding trial. If the participant did not initiate the next trial before
the 60 s window had passed, the next trial was presented to ensure the
procedure would be completed within the expected time. Once the trial
was initiated, the six to-be-remembered words were presented sequen-
tially at a rate of one word every second (1000 ms on 0 ms off) at the
centre of the computer screen. The words were presented on a black
background in white uppercase 30 points Times New Roman font.
Immediately, after the presentation of the last word, a recall cue (“Type
the first word”) was presented in red at the top of the computer screen.
Participants were instructed to type the words in their presentation
order by pressing the return key after each word. Once participants
registered their response by pressing the return key, the typed word
disappeared, and the message was updated, “Type the second word”.
This was repeated until all responses were typed. If participants were
unable to remember a given word, they were instructed to type the word
“Skip”. Participants were not allowed to backtrack to change a response

once they registered an answer.

Data analysis

The experimental data are available on the OSF page associated with
this project. In this study, a strict spelling criterion was adopted. Thus,
recalled words were only scored as correct if they were spelled correctly.
Analyses in this study were conducted on performance scored with a
strict serial recall criterion (serial scoring) in which a word had to be
recalled in its presented serial position to be scored correct and with a
free recall criterion (free scoring) in which recall of a word was scored
correct whether it was recalled in the correct or a different serial
position.

For statistical analyses, we conduced both Frequentist and Bayes
factors (BF) analyses via the statistical software R (R Core Team, 2022).
Frequentist analyses are presented as descriptive information and BF
analyses are presented to guide our inferences. The BF analyses were
computed with the “BayesFactor” R package with the default parameters
(Version 0.9.12–4.2; see Morey & Rouder, 2018; Rouder et al., 2009)
and the frequentist analyses were computed with the R package “ez”
(Version 4.4–0; Lawrence, 2016). For BF analyses, we report the
strength of evidence in favour of the alternative hypothesis indicated by
BF10 or the corresponding strength of evidence in favour of the null
hypothesis indicated by BF01 (BF01 = 1/BF10).

Results

In all experiments, analyses of variance were conducted separately
for the strict serial recall scoring and the free recall scoring criteria. The
results of Experiment 1 are displayed in Fig. 10 for all scoring procedures
for transparency, but we focus on strict serial recall scoring and the free
recall scoring criteria as we had no prior hypotheses for the other
scoring.

Strict Scoring. Overall, as predicted, participants’ performance was
superior for semantically related words (M = 0.70, SD = 0.15) relative to
semantically unrelated words (M = 0.64, SD = 0.18). Participants’
overall performance was also nearly identical between mixed lists (M =

0.67, SD = 0.17) and pure lists (M = 0.67, SD = 0.16).
A 2 (related vs. unrelated) x 2 (pure vs. mixed) x 6 (serial position 1

to 6) ANOVA was conducted to confirm these trends. The results from
the analysis of variance revealed a main effect of semantic relatedness, F
(1,79) = 31.00, η2p = .28, BF10 > 1000, and a main effect of serial po-
sition, F(5,395) = 157.30, η2p = .67, BF10 > 1000, but no main effect of
list composition, F < 1, η2p = .00, BF01 = 42.08. The results from the
analyses revealed that there was a credible interaction between se-
mantic relatedness and list composition, F(1, 79) = 9.59, η2p = .11, BF10
= 30.77. This interaction reflects the larger semantic relatedness effect
for pure lists compared to mixed lists.

The latter interaction was further investigated via separate paired-
sample t-tests. For pure lists, participants recalled related words (M =

0.71, SD = 0.16) better than unrelated words (M = 0.63, SD = 0.19), t
(79) = 4.97, Cohen’s d = .56, BF10 > 1000. The same pattern was
observed for mixed list albeit reduced in magnitude. More exactly, for
mixed list, participants recalled related words (M = 0.68, SD = 0.17)
slightly but reliably better than unrelated words (M = 0.66, SD = 0.18), t
(79) = 2.93, Cohen’s d = .33, BF10 = 6.33.

Returning to the main analysis, there was no credible interaction
between semantic relatedness and serial position, F(5, 395) = 3.05, η2p =

.04, BF01 = 86.96, no interaction between list composition and serial
position, F(5, 395) = 1.78, η2p = .02, BF01 > 1000, and no three-way
interactions, F(5, 395) = 3.45, η2p = .04, BF01 = 23.13.

Free Scoring. With free recall scoring, participants recalled seman-
tically related words (M = 0.79, SD = 0.11) better than semantically
unrelated words (M = 0.71, SD = 0.15). Participants’ memory
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performance was also better with pure lists (M = 0.76, SD = 0.12) than
mixed lists (M = 0.74, SD = 0.14).

The results from the analysis of variance confirmed the presence of
all main effects. More exactly, there was a main effect of semantic
relatedness, F(1,79) = 65.08, η2p = .45, BF10 > 1000, a main effect of
serial position, F(5,395) = 97.01, η2p = .55, BF10 > 1000, and a main
effect of list composition, F(1,79) = 12.07, η2p = .13, BF10 = 27.69. As
observed with the strict recall scoring, the results with the free recall
scoring revealed the presence of an interaction between semantic
relatedness and list composition, F(1,79) = 24.29, η2p = .23, BF10 >

1000. This interaction reflects the larger semantic relatedness effect for
pure lists relative to mixed lists as shown in Fig. 10.

Once again, we further analysed this interaction. Echoing the results
with strict serial scoring, better recall of related words over unrelated
words was larger in pure compared to mixed lists. More exactly, for pure
lists, participants’ performance was superior for related words (M =

0.82, SD = 0.10) relative to unrelated words (M = 0.71, SD = 0.16), t
(79) = 7.97, Cohen’s d = .89, BF10 > 1000. Again, the same pattern was
observed for mixed lists, albeit reduced in magnitude. For mixed lists,
participants recalled related words (M = 0.76, SD = 0.13) better than
unrelated words (M = 0.72, SD = 0.16), t(79) = 4.20, Cohen’s d = .47,
BF10 = 276.77.

Returning back to the main analyses, there was also a three-way
interaction, F(5, 395) = 6.30, η2p = .07, BF10 = 64.32, that reflects the
increasing larger semantic relatedness effect as one moves from early to
late serial positions for pure but not mixed lists. There was no interaction
between semantic relatedness and serial position, F(5, 395) = 4.03, η2p =

.05, BF01 = 8.06, or between list composition and serial position, F(5,
395) = 1.94, η2p = .02, BF01 > 1000.

Modelling Assessment. In this section, we briefly highlight the
experimental results in relation to the model predictions. As mentioned,
model simulations of Experiment 1 are presented in Fig. 9. The overall

model fit across all scoring methods was relatively good (R2 = 0.91). As
shown, the model tracks several key features in the empirical data,
including some unexpected and more exploratory aspects. For example,
for omissions, the model accurately tracks the higher omission rate in
unrelated than in related lists with a pure list design, and its important
reduction in mixed lists. The model captures, to some extent, the rela-
tively similar number of extralist errors between related and unrelated
lists in mixed lists, although it slightly underpredicts the number of
extralist errors in unrelated pure lists.

The model tracks relatively well, albeit to a lower magnitude, the
higher number of intralist errors for related lists compared to unrelated
lists in pure lists and their reduction in mixed lists. This aligns well with
recent evidence suggesting that mixed lists might constrain order errors
(Kowialiewski et al., 2024). Returning to the main point of interest, the
model tracks the noisy but visible sawtooth recall pattern for RURURU
and URURUR lists in early serial positions but overpredicts the persis-
tence of the sawtooth recall functions at later serial positions; this mis-
prediction is particularly true when performance is measured by a strict
scoring method. More critically, the model predicts the semantic relat-
edness effect: better recall of related (R) over unrelated (U) items in all
cases, with the size of the advantage being slightly greater in pure lists
compared to mixed lists.

Discussion

A beneficial effect of semantic relatedness was observed in pure lists
that was greatly reduced in mixed lists. The serial position functions for
mixed-list conditions show some signs of a sawtooth pattern, though
that holds more strongly at early than late serial positions, unsurprising
given the increase in variance and thus precision of the means from
serial positions 1 through 6. This pattern of results echoes the results of
Saint-Aubin et al. (2014) in which the influence of semantically related
pairs was reduced when they were separated by an unrelated item. We

Fig. 10. Mean proportion of response as a function of list composition (pure lists, mixed lists), semantic relatedness (related, unrelated), serial positions (1 to 6) and
scoring procedures (strict scoring, free scoring, intralist error, extralist error, omission) in Experiment 1. Error bars correspond to the 95% credible intervals.
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also show that the model tracks many of the critical features in our
participants’ serial recall performance for both pure and mixed lists;
acknowledging that the model’s behaviour is much more stereotyped
from simulated participant to participant than our experimental par-
ticipants’ behaviour was consistent from human participant to partici-
pant (e.g., the model predicts a stronger and more reliable sawtooth
serial position functions in the mixed list conditions). In Experiment 2,
we carry our analysis forward to investigate serial recall of blocked
instead of alternating mixed lists.

Demonstration 5: Serial recall for pure and blocked mixed lists of
related and unrelated words

Serial recall in Experiment 1 provided a reasonable match to pre-
dictions from our model. We now turn to additional predictions to
evaluate if our model tracks the details of people’s serial recall perfor-
mance in blocked mixed lists. Here like Kowialiewski et al. (2021, 2022)
we used one block of semantically related words and one block of un-
related words (e.g., HOUR, MINUTE, DAY, JADE, GENERAL, JOUR-
NAL). However, as our interest was to examine the influence of list
organization on the semantic relatedness, we also added a pure condi-
tion with all related or all unrelated words. This is an important test for
the model. As seen in Experiment 1, the sawtooth patterns for alter-
nating lists, where recall is better for related than unrelated items at
each serial position was attenuated. These results were consistent with
the finding of Saint-Aubin et al. (2014) in which a pair of semantically
related words were better remembered when presented in adjacent se-
rial positions. The remaining question is whether the model can predict
a more robust benefit when semantically related words are presented in
immediately adjacent serial positions and whether the empirical results
will support this prediction.

As in Experiment 1, we conducted simulations for serial recall of pure
related (RRRRRR) and pure unrelated (UUUUUU) word lists. However,

in difference to Experiment 1, we tested serial recall for blocked instead
of alternating mixed lists. In an RRRUUU blocked mixed list condition,
lists were composed of three related and three unrelated words (as in
Experiment 1) but with the three related words appearing in the first
three serial positions whereas the three unrelated words appeared in the
last three serial positions (e.g.,HOUR,MINUTE,DAY, JADE, GENERAL,
JOURNAL). In a UUURRR blocked mixed list condition, lists were
composed of three related and three unrelated words, with the three
related words appearing in the last three serial positions instead (e.g.,
JADE, GENERAL, JOURNAL, HOUR, MINUTE, DAY). To bring some
precision to our predictive exercise, we generated specific word lists for
all four test conditions: the same 24 pure related and 24 pure unrelated
word lists from Experiment 1, 24 blocked mixed lists with related words
appearing in the first three serial positions, and 24 blocked mixed lists
with related words appearing in the last three serial positions. For
completeness, the word lists in all six test conditions are presented in
Appendix B. Although the same 144 words occur once in each of the six
list conditions, the list-wise arrangement of words changes between
conditions.

The simulation parameters were identical to the previous demon-
stration and are presented in Table 1. To simulate performance, we
conducted simulations for 100 simulations of 24 serial recall trials for
each of the RRRRRR, UUUUUU, RRRUUU, and UUURRR lists structure,
which is equivalent to 400 fictional participants.

Simulation results are presented in Fig. 11. Again, the key pre-
dictions of interest are on strict serial scoring (i.e., words had to be
recalled in their presented position to be correct) and free scoring (i.e.,
words were scored as correct if they were recalled in either their pre-
sented position or any other), but for transparency we reported all of
them. Like in our simulations for Experiment 1, the model makes two
main predictions for empirical evaluation. First, the model predicts a
similar memorial advantage for R over U words in both the pure and
mixed list conditions. Second, and at the more fine-grained level of

Fig. 11. Model simulations of Experiment 2. Although we present these simulations as predictions, the predictions are shown from simulations using parameters
selected after running the experiment. Error bars correspond to the 95% credible intervals.

D. Guitard et al. Journal of Memory and Language 140 (2025) 104573 

21 



analysis, the model predicts better recall of R over U words at almost all
serial positions with a crossover interaction between the third and
fourth serial positions where R words shift to U words in RRRUUU lists
and where U words shift to R words in UUURRR lists (i.e., by analogy,
the blocked list equivalent of the sawtooth pattern in mixed lists). We
now turn to an experimental test of the model predictions.

Experiment 2

Experiment 2 was identical to Experiment 1, except that related and
unrelated words in mixed lists were presented in blocked (RRRUUU and
UUURRR) rather than alternating (RURURU and URURUR) serial posi-
tion order. This strategy was previously used by Brooks and Watkins
(1990) in a span task, where they found better recall for lists beginning
with related words (see also, Kowialiewski et al., 2021, 2022). Unfor-
tunately, they did not include the necessary pure lists as controls, nor did
they report serial position curves, which are key to testing the model.

Method

Participants
Eighty participants who did not take part in the previous experiment

were recruited via Prolific with the same inclusion criteria as in Exper-
iment 1. In Experiment 2, participants’ mean age was 24.83 years (SD =

2.98, range 18–30). A total of 24 participants self-identified as female,
54 as male, and 2 preferred not to specify their gender.

Materials, design, procedure, and data analysis
The materials, design, procedure, and data analysis procedure were

identical to Experiment 1 except for the list composition. As shown in
Appendix B, the mixed lists were rearranged to ensure that the seman-
tically related words were adjacent to each other (RRRUUU or
UUURRR).

Results

The results of Experiment 2 across all scoring procedures are pre-
sented in Fig. 12.

Strict Scoring. Like in Experiment 1, and according to a strict serial
recall scoring criterion, participants were better at recalling semanti-
cally related words (M = 0.70, SD = 0.16) relative to semantically un-
related words (M = 0.65, SD = 0.19). Overall recall performance was
equivalent for mixed lists (M = 0.67, SD = 0.18) and pure lists (M =

0.68, SD = 0.18).
A 2 (related vs. unrelated) x 2 (pure vs. mixed) x 6 (serial position)

ANOVA was conducted to confirm the descriptive results. The statistical
analyses revealed amain effect of semantic relatedness, F(1,79)= 27.12,
η2p = .27, BF10 > 1000, a main effect of serial position, F(5,395) =

119.46, η2p = .60, BF10 > 1000, and a three-way interaction between
semantic relatedness, list composition, and serial position, F(5,395) =
8.82, η2p = .10, BF10 = 631.72. The three-way interaction reflects the
increasing size of the semantic relatedness from serial position 1 to 6 in
pure but not in mixed lists. The results also revealed no main effect of list
composition, F < 1, η2p = .01, BF01 = 29.07. Furthermore, unlike in
Experiment 1, there was no interaction between semantic relatedness
and list composition, F < 1, η2p = .01, BF01 = 29.41. The absence of an
interaction supports the equivalent semantic relatedness effect in pure
and mixed lists. The results from the analyses also provide evidence
against the interactions between semantic relatedness and serial posi-
tion, F < 1, η2p = .01, BF01 > 1000, and between list composition and
serial position, F(5,395) = 4.02, η2p = .05, BF01 = 105.82.

Free Scoring. As shown in Fig. 12, the results based on free scoring
echo those based on strict serial scoring. Participants’ performance was
superior for semantically related words (M = 0.80, SD = 0.12) compared
to unrelated words (M = 0.71, SD = 0.16) and performance was once
again nearly identical for recall of words in pure lists (M = 0.76, SD =

Fig. 12. Mean proportion of response as a function of list composition (pure lists, mixed lists), semantic relatedness (related, unrelated), serial positions (1 to 6) and
scoring procedures (strict scoring, free scoring, intralist error, extralist error, omission) in Experiment 2. Error bars correspond to the 95% credible intervals.
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0.14) and mixed lists (M = 0.75, SD = 0.14).
The results from the statistical analyses were in line with those with

strict serial recall scoring. More exactly, there was a main effect of se-
mantic relatedness, F(1,79) = 69.54, η2p = .47, BF10 > 1000, a main
effect of serial position, F(5,395) = 81.82, η2p = .51, BF10 > 1000, and a
three-way interaction between semantic relatedness, list composition,
and serial position, F(5,395)= 8.95, η2p = .10, BF10 > 1000. Again, there
was no main effect of list composition, F(1,79) = 1.23, η2p = .02, BF01 =
19.74, no interaction between semantic relatedness and list composi-
tion, F(1,79) = 1.62, η2p = .02, BF01 = 13.26, anecdotal evidence in
favour of an interaction between semantic relatedness and serial posi-
tion, F(5,395)= 5.98, η2p = .07, BF10 = 1.38, and no interaction between
list composition and serial position, F(5,395) = 3.56, η2p = .04, BF01 =

53.13.
Modelling Assessment. In this section, we briefly highlight the

experimental results in relation to the model predictions presented in
Fig. 11. Overall, the model had a good fit to the data across all scoring
procedures (R2 = 0.90). As shown, the model captured the main features
of our empirical data with some minor differences. Before describing the
predictions of primary interest, we briefly summarize exploratory pre-
dictions in relation to the results for transparency.

The model successfully captured the interactions for omissions as a
function of RRRUUU versus UUURRR lists, showing more omissions for
R than U as a function of serial position. Additionally, the model accu-
rately predicted fewer omissions in related lists compared to unrelated
lists in pure lists. At the overall level, when isolating R and U, the model
predicted fewer intralist errors for related than unrelated lists in both
pure and mixed lists; however, this was not observed in the data for
mixed lists. At the serial position level, without isolating R and U, the
model predicted, albeit with a very small magnitude, more intralist er-
rors for unrelated than related items in mixed lists and the opposite in
pure lists. This pattern echoes the empirical results and suggests that list
organization can constrain order errors (e.g., Poirier et al., 2015;
Kowialiewski et al., 2024). For extralist errors, the model predicted
relatively similar or slightly higher levels of extralist errors for both pure
andmixed lists, whereas the data showed slightly more extralist errors in
related pure lists.

Regarding the prediction of interest, the model predicts that the
benefit for related over unrelated lists was about equal for pure and
mixed lists. The model predicts better recall of R over U items at almost
all serial positions, with a reduced difference at the first serial position.
This pattern is highlighted by the crossover interaction of the serial
position functions for RRRUUU and UUURRR lists at or near the tran-
sition from serial positions 3 to 4. While the crossover is clearly visible in
the free scoring data, it is strongly suggested by the difference in slopes
of the serial position functions for the RRRUUU and UUURRR lists,
although not immediately crossing over at the gap between serial po-
sitions 3 and 4 in the strict scoring data.

Discussion

Unlike Experiment 1, participants were better at recalling lists of
semantically related words in both pure and mixed lists and the effect
was not attenuated. In effect, unlike Experiment 1, there was no inter-
action between semantic condition and list composition, suggesting that
the semantic relatedness effect in mixed lists was comparable when
related items were presented in adjacent positions, an outcome consis-
tent with Saint-Aubin et al. (2014) and Kowialiewski et al. (2021, 2022).
However, unlike Kowialiewski et al. (2021, 2022), when carefully
examining across both mixed and pure lists, we found little proactive
effect of semantic relatedness. Specifically, in their study, there was an
advantage for unrelated lists that preceded related lists relative to un-
related lists, but this was not clear in both the experiment and the
simulations. This finding was not of particular theoretical interest, and

further work might be needed before concluding that this is an impor-
tant feature of memory. More importantly, for mixed lists, there was a
clearer interaction between the blocked mixed list conditions and serial
positions, as expected, especially in the free scoring analysis. Although
the crossover point was not precisely at the shift from serial position 3 to
4, the slopes of the mixed list serial position functions provide good
evidence for the predicted interaction. In summary, the key details of
participants’ performance were predicted by our model, and we
conclude that it captures the important details of serial recall perfor-
mance for pure and mixed lists of semantically related and unrelated
words.

Demonstration 6: Presentation rate and semantic relatedness in
serial recall

Our two previous experiments, combined with our simulations,
provide good evidence that the models can predict many important
features regarding the influence of list organization on how semantic
information interacts with list structure. With our better understanding
of list organization, we now focus on pure lists for further investigation
into the influence of semantic relatedness. In this demonstration, we
examine if the model can predict the influence of task difficulty on the
semantic relatedness effect by manipulating presentation rate. As
highlighted in the introduction, increasing task difficulty should in-
crease the magnitude of the semantic relatedness effect (e.g., Neale &
Tehan, 2007; Poirier& Saint-Aubin, 1995; Saint-Aubin et al., 2005). Our
simulations of Saint-Aubin et al. (2005) showed that the model can
postdict this pattern by reducing the learning base rate. However, we
could not fully evaluate the influence of task difficulty due to some
missing information in the materials and the data. Here, we address this
issue with additional simulations and experimental investigations.
Inspired by Coltheart and Langdon’s (1998) manipulation with phono-
logical similarity, we manipulated presentation rate, presenting words
either at a rate of one every 114 ms in one group or one every 500 ms in
another group. The influence of presentation rate on task difficulty is
well-known (see e.g., Guitard & Cowan, 2023; Dauphinee et al., 2024),
but the exact effects on semantic relatedness are not well documented.

As in previous experiments, we conducted simulations for serial
recall of pure related (RRRRRR) and pure unrelated (UUUUUU) word
lists using the same 24 pure related and 24 pure unrelated word lists
from Experiments 1 and 2 (see Appendix C). We simulated performance
by conducting 100 simulations of 24 serial recall trials for each of the
RRRRRR and UUUUUU list structures, equivalent to 400 fictional par-
ticipants. To simulate the influence of task difficulty, similar to our
approach for simulating Saint-Aubin et al. (2005), we set a lower
learning base rate (L = 0.125) for participants in the fast presentation
group (114 ms) compared to the slower presentation group (L = 0.165).
The other simulation parameters are available in Table 1.

Simulation results are shown in Fig. 13 for each scoring procedure.
Our main interest was the magnitude of the difference, so we focus on
the strict and free scoring procedures. The model predicts two key
outcomes: first, better performance for the 500 ms presentation rate
compared to the 114 ms rate; second, as expected based on prior
experimental demonstrations, a larger difference between related and
unrelated words at the faster presentation rate compared to the slower
rate, indicating a two-way interaction between semantic relatedness and
presentation rate. We now turn to an experimental test of the model
predictions.

Experiment 3

Experiment 3 was similar to our previous experiments, except that
participants studied only related and unrelated words in pure lists
(RRRRRR vs. UUUUUU). Additionally, one group of participants studied
the lists at a rate of one word every 114 ms, while another group studied
the lists at a rate of one word every 500 ms (see also, Coltheart &
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Fig. 13. Model simulations of Experiment 3. Although we present these simulations as predictions, the predictions are shown from simulations using parameters
selected after running the experiment. Error bars correspond to the 95% credible intervals.

Fig. 14. Mean proportion of response as a function of list composition (pure lists, mixed lists), semantic relatedness (related, unrelated), serial positions (1 to 6) and
scoring procedures (strict scoring, free scoring, intralist error, extralist error, omission) in Experiment 3. Error bars correspond to the 95% credible intervals.
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Langdon, 1998).

Method

Participants
A total of 160 participants, who had not taken part in the previous

experiments, were recruited via Prolific. Participants were divided
equally into two presentation rate groups: 80 participants for the 114ms
rate and 80 participants for the 500 ms rate. The same inclusion criteria
as in previous experiments were applied. In Experiment 3, the partici-
pants’ mean age was 24.03 years (SD = 3.01, range 18–31). Of these, 73
participants self-identified as female, 79 as male, and 8 preferred not to
specify their gender.

Materials, design, procedure, and data analysis
The materials, design, procedure, and data analysis were similar to

those in Experiment 1 and Experiment 2, except that the presentation
rate (114 ms, 500 ms) was manipulated instead of list composition.
Participants studied 12 lists of related words and 12 lists of unrelated
words (see Appendix C). As in previous experiments, each participant
saw each word once, either in the unrelated or related conditions, with
the conditions counterbalanced across participants.

Results

The results of Experiment 3 are presented in Fig. 14 for all scoring
procedures. As shown in Fig. 14, performance was superior at the slower
presentation rate (500 ms), and the difference between semantic related
and unrelated lists was much larger at the faster presentation rate (114
ms).

We conducted a 2 (related vs. unrelated) x 2 (114 ms vs. 500 ms) x 6
(serial position) ANOVA to evaluate the descriptive results presented in
Fig. 14. As in our previous experiments, our main focus was on strict
scoring and free scoring. However, data and analyses for all scoring
procedure can be found on the OSF page associated with the manuscript.

Strict Scoring. Of particular theoretical interest, the statistical an-
alyses revealed a main effect of semantic relatedness, F(1,158) = 60.89,
η2p = .28, BF10 > 1000, a main effect of presentation rate, F(1,158) =
60.89, η2p = .28, BF10 > 1000, and an interaction between semantic
relatedness and presentation rate, F(1,158) = 6.039, η2p = .04, BF10 =

3.54. These results confirm a larger difference between related and
unrelated words at the faster presentation rate compared to the slower
presentation rate. Of less theoretical interest, there was also a main ef-
fect of serial position, F(5,790) = 195.46, η2p = . 55, BF10 > 1000, an
interaction between serial position and presentation rate, F(5,790) =

24.35, η2p = . 13, BF10> 1000, an interaction between serial position and
semantic relatedness, F(5,790) = 17.57, η2p = . 10, BF10 = 148.79, and a
three-way interaction, F(5,790) = 13.15, η2p = . 07, BF10 > 1000.

Free Scoring. The results from the free scoring were comparable to
those with strict scoring. Again there was a main effect of semantic
relatedness, F(1,158) = 229.49, η2p = . 59, BF10 > 1000, a main effect of
presentation rate, F(1,158) = 118.20, η2p = .43, BF10 > 1000, and an
interaction between semantic relatedness and presentation rate, F
(1,158) = 30.70, η2p = .16, BF10 > 1000. There was also a main effect of
serial position, F(5,790)= 147.45, η2p = . 48, BF10> 1000, an interaction
between serial position and presentation rate, F(5,790) = 40.05, η2p =

..202, BF10 > 1000, an interaction between serial position and semantic
relatedness, F(5,790) = 18.67, η2p = . 11, BF10 > 1000, and a three-way
interaction, F(5,790) = 5.98, η2p = . 04, BF10 = 37.05.

Modelling Assessment. Here we examined the experimental results
in relation to the model predictions presented in Fig. 13. As can be seen
by comparing Figs. 13 and 14, the model had a relatively good fit to the
data across all scoring procedures (R2 = 0.83), with some minor

discrepancies. Before describing the predictions of primary interest, we
briefly summarize other exploratory predictions in relation to the results
for transparency.

For omissions, although the model overpredicted the difference be-
tween related and unrelated words, it captured the higher amount of
omissions for the faster presentation rate compared to the slower rate.
The model also captured the higher number of intralist errors for related
words compared to unrelated words for both presentation rates. How-
ever, it did not accurately capture the higher amount of intralist errors
for the faster presentation rate, which could likely be accounted for by
adjusting the parameter d, which was kept constant in these simulations.
The model predicted relatively no difference between related and un-
related words for extralist errors. However, in the data, there were
slightly more extralist errors in related lists compared to unrelated lists.
The model’s performance for free scoring and strict scoring was rela-
tively similar, while in the data, free scoring was much higher. This
discrepancy might reflect parameter choices rather than important dif-
ferences and is not of particular theoretical interest to the current study.

Regarding the prediction of interest, the model accurately predicted
the benefit for related over unrelated lists. More importantly, the model
captured the larger magnitude of the semantic relatedness effect at the
fast presentation rate, although with a slightly smaller magnitude than
observed in the experimental data. Overall, this provides clear evidence
that the model can track this key feature with only small adjustments to
the learning base rate.

Discussion

In Experiment 3, we demonstrated that presentation rate modulated
the influence of semantic information on verbal short-term memory as
expected based on our model. Specifically, in line with previous find-
ings, a faster presentation rate was associated with lower overall
memory performance (e.g., Guitard & Cowan, 2023; Dauphinee et al.,
2024). More importantly, consistent with prior research on task diffi-
culty, the magnitude of the semantic relatedness effect was larger at a
faster presentation rate when there was more opportunity to benefit
from the redintegration process (Neale & Tehan, 2007; Poirier & Saint-
Aubin, 1995; Saint-Aubin et al., 2005).

Demonstration 7: Revisiting the detrimental effect of semantic
relatedness on order information in immediate serial recall

The previous experiment showed that the model effectively captured
the key features of how task difficulty influences the semantic related-
ness in verbal short-term memory performance. Here, we aimed to
revisit whether semantic information also influences order information.
As reviewed in the introduction, a major contention is that semantic
information affects item information but not order information. How-
ever, notable exceptions, such as the studies by Saint-Aubin et al. (2005)
and Tse (2009, Tse et al., 2011), have found detrimental effects on order
information.

In the second demonstration, we showed that by using lists nearly
identical to those of Saint-Aubin et al. (2005), the model also predicted a
detrimental effect of semantic relatedness on order information. Because
of their theoretical question, Saint-Aubin et al. (2005) used a large
number of participants, but they also had to implement an unusual
between-participants manipulation of semantic relatedness and fixed-
order lists, which have been shown to lead to atypical results in some
cases (Guitard, Neath,& Saint-Aubin, 2023). Tse (2009, Tse et al., 2011)
addressed some of these issues, but it remains unclear if the phenome-
non is limited to particular stimuli or specific methodological choices, as
has been the case with the syllable word length effect, where words with
fewer syllables are better recalled (Guitard et al., 2018). For these rea-
sons, we decided to conduct an additional demonstration of this
important question.

In this study, the simulation procedures were similar to our approach
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for the study of Poirier et al. (2015), where we simulated each partici-
pant’s specific random list. After completing the experiment with 160
participants, we simulated their exact lists in the same order (see Table 1
for the simulation parameters). Therefore, we conducted simulations for
the serial recall of pure related (RRRRRRR) and pure unrelated
(UUUUUUU) word lists, using the 26 pure related and 26 pure unrelated
word lists that each participant studied. We simulated performance by
conducting 4 simulations of each participant’s specific list, equivalent to
640 fictional participants.

Simulation results are shown in Figs. 15, and 16, accompanied by the
experimental data. Our main interest was to examine the influence of
semantic information on order information. Like in previous experi-
ments, we report the strict and free scoring procedures and add condi-
tional order errors as in Saint-Aubin et al. (2005). As shown, the model
predicts better memory for related words than unrelated words, as
previously observed, and a higher number of order errors for related
words compared to unrelated words. We now turn to an experimental
test of the model predictions.

Experiment 4

In Experiment 4, we re-examined the influence of semantic infor-
mation on order information using a new set of stimuli and a large
number of participants.

Method

Participants
In this study, to ensure sufficient power to detect a credible differ-

ence between semantic related and unrelated words for order informa-
tion, we doubled our sample size from 80 participants to 160
participants. A non-directional paired-sample sensitivity analysis

conducted with G*Power 3.1.9.7 (Faul et al., 2007) and default pa-
rameters revealed that 160 participants would allow us to detect a small
effect size of d = 0.29.

Therefore, a total of 160 participants who had not taken part in the
previous experiments were recruited via Prolific, using the same inclu-
sion criteria as in the previous experiments. In Experiment 4, the par-
ticipants’ mean age was 26.03 years (SD = 3.22, range 18–31). Of these,
75 participants self-identified as female, 84 as male, and 1 preferred not
to specify their gender.

Materials, design, procedure, and data analysis
The materials, design, procedure, and data analysis were similar to

those in previous experiments, with the following changes. A new set of
52 semantically related words taken from Chubala et al. (2019) was used
(see Appendix D). Each participant completed 26 related lists of 7 words
and 26 lists of unrelated words. The list length was increased to reduce
the overall level of performance, as it is not possible to observe intralist
errors if performance is near perfection, which is more likely for related
than unrelated words with shorter list lengths. As in Neath et al. (2022),
the order of the words within a list for each participant was randomized,
and each participant saw each word only once in either the related or
unrelated conditions to prevent any compensatory strategy. For unre-
lated words, as done by Neath et al., the words were randomly chosen
from different categories. The other details were similar to our previous
experiments.

Results

The results of Experiment 4 are presented in Figs. 15 and 16. As
shown in Fig. 15, performance was superior for related words compared
to unrelated words as in previous experiments. However, more impor-
tantly, Fig. 16 highlights the detrimental effects on order information as

Fig. 15. The model’s serial recall performance (identified by model) for related and unrelated lists for Experiment 4 (identified by data). The left panels show
performance across serial positions according to each scoring procedures (strict scoring, free scoring, intralist error, extralist error, omission), while right panels
display performance collapsed across serial positions for related and unrelated lists. Error bars correspond to the 95% credible intervals.
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a function of each item recalled and the overall conditional order error,
indicating a small detrimental effect on order information.

We conducted a 2 (related vs. unrelated) x 7 (serial position) ANOVA
to evaluate the descriptive results presented in Fig. 15 and a simple
Bayesian paired-sample t-test for conditional order error presented in
Fig. 16. For consistency with previous experiments and to ensure that we
observed the standard beneficial effect, we report analyses for both strict
scoring and free scoring. Data and analyses for all scoring procedures
can be found on the OSF page associated with the manuscript.

Strict Scoring. As in previous experiments, there was a main effect
of semantic relatedness, F(1,159)= 153.25, η2p = .49, BF10> 1000, serial
position, F(6,954) = 348.54, η2p = .69, BF10 > 1000, but no interaction
between semantic relatedness and serial position, F(6,954) = 1.85, η2p =

.01, BF01 > 1000.
Free Scoring. The results of with free scoring echo the results with

strict scoring, there was a main effect of semantic relatedness, F(1,159)
= 291.59, η2p = .65, BF10 > 1000, serial position, F(6,954) = 174.68, η2p
= .52, BF10 > 1000. However, this time there was interaction between
semantic relatedness and serial position, F(6,954) = 11.59, η2p = .07,
BF10 > 1000. The latter interaction is not of theoretical interest to the
current study and reflects the slightly larger benefit of semantic related
information for items at the end of the lists.

Conditional Order. In this section, we investigated the influence of
semantic information on order information. To control for the different
opportunities for intralist errors, the number of order errors was divided
by the number of items recalled in any position. This was done by
dividing the number of intralist errors for each list by the number of
items recalled in any position (Murdock, 1976; Saint-Aubin & Poirier,
1999b). Similar to our previous simulations with Saint-Aubin et al.
(2005), when the number of items recalled was 0, the number of con-
ditional order errors was also 0. The results are presented in Fig. 16.

We also present the distribution of intralist errors as a function of the
number of studied items recalled based on the free scoring procedure. As
shown in Fig. 16, participants made more conditional order errors in

related lists (M = 0.25, SD = 0.16) than in unrelated lists (M = 0.22, SD
= 0.18). The difference was small, but these results were confirmed by a
simple non-directional Bayesian paired-sample t-test, BF10 = 122.90,
Cohen’s d = 0.31.

Modelling Assessment. In this section, we briefly review the model
predictions in relation to the experimental results. As shown in Fig. 15,
the model tracks almost all key features of memory performance across
all scoring procedures. It captures the better performance for related
lists compared to unrelated lists for both strict and free scoring. How-
ever, while the performance between strict and free scoring was rela-
tively similar in the model, the actual data showed superior performance
with free scoring. The model, like the data, produces more intralist er-
rors for both related and unrelated lists and fewer omissions for related
lists compared to unrelated lists. The model does not capture the higher
magnitude of extralist errors for unrelated lists compared to related lists.
Despite these minor discrepancies, the fit of the model was relatively
good, with an R2 = 0.90.

Discussion

One of the dominant conceptions of the influence of semantic in-
formation on verbal short-term memory performance is that semantic
information primarily affects item information with minimal influence
on order information. Here, contrary to this dominant view, but
consistent with the results of Saint-Aubin et al. (2005) and Tse (2009,
Tse et al., 2011), we have shownwith a large number of participants that
semantic information does affect order information, although the effect
was relatively small. Although further work is needed to investigate this
with different stimuli, it appears that semantic information does indeed
affect order information. This has been a point of contention in the
literature compared to other forms of similarity. For example, the
detrimental effect of semantic relatedness is smaller than what has been
observed with other shallow features (visual, orthographic, and
phonological). However, the difference might be more apparent than
real and could be related to the nature of feature space. As recently

Fig. 16. The model’s serial recall performance (identified by model) for related and unrelated lists for Experiment 4 (identified by data). The left panel show the
number of intralist error as function of the number of studied items recalled based on the free scoring procedure, while right panels display condition order per-
formance for related and unrelated lists.
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suggested by Caplan (2023) and Caplan and Guitard (2024a,b), ortho-
graphic and phonological information exist in a dense feature space due
to the limited number of features needed to represent letters and pho-
nemes which increase confusion, while semantic information exists in a
large, sparse vector space with reduce confusion. Directly testing this
idea is beyond the scope of this manuscript but would be of high
importance in subsequent work. Overall, we encourage researchers to
further evaluate the influence of semantic information on verbal short-
term memory. Researchers should use different stimulus sets and
include a larger number of participants to capture the small effect. In
summary, semantic information affects memory for items and has a
small detrimental effect on order information.

Demonstration 8: semantic relatedness and false memory

Across our previous demonstrations, we have shown that our model
successfully captures many key aspects of the influence of semantic in-
formation on veridical memory performance of the studied lists. How-
ever, a unique feature of our model is its ability to examine what
happens beyond the studied lists. As shown in Demonstration 3 with
Poirier et al. (2015), the model offers a unique opportunity to investi-
gate memory at the item level. By incorporating a lexicon based on a
well-established model of semantics, it also captures the relationship
between studied and unstudied words.

Therefore, to further highlight the value of our approach, this final
demonstration explores how semantic information affects false memory,
specifically extralist errors (e.g., recalling information that was not
studied). Here, we aim to determine whether the model can predict the
influence of semantic information on the likelihood of recalling a se-
mantic critical lure—a word that was not studied but is semantically
related to the studied words.

As briefly highlighted in the introduction, there is a rich history of

studying false memory in free recall and recognition tasks (see Chang &
Brainerd, 2021, for a review), but relatively limited research in serial
recall (e.g., Tehan, 2010). One key signature that has received recent
computational interest is the increased likelihood of producing a specific
critical lure when the number of related studied words associated with
the critical lure also increases (Spens & Burgess, 2024), a finding
initially demonstrated by Robinson and Roediger (1997) in recognition
and free recall. Inspired by their work, we aimed to conduct a simple
demonstration to evaluate if the model can also track this important
phenomenon in serial recall.

We conducted simulations for serial recall of 11 lists of 10 words
each, with each list varying in the number of words associated with the
critical non-presented lure “SLEEP.” Specifically, we systematically
constructed lists based on Robinson and Roediger’s material, in which
there were 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 related words associated with
the critical lure (see Appendix E).

We simulated performance by conducting 500 simulations of the 11
lists (see Table 1 for the simulation parameters). Additionally, we took
the opportunity to simulate the results with LSA and fastText, a more
recent DSM that also incorporates subword information (Bojanowski
et al., 2017; Petilli et al., 2024). Evaluating the model with represen-
tations from different DSMs is relatively simple and allows us to show
the flexibility of the model. Simulation results are shown in Fig. 17,
accompanied by the empirical results. The results from our simulation
are relatively straightforward: as the number of related words increases,
the likelihood of falsely recalling the word “SLEEP” (the critical lure)
also increases—a finding captured by both LSA and fastText. We now
turn to an experimental test of the model predictions.

Experiment 5

In Experiment 5, inspired by Robinson and Roediger (1997), we

Fig. 17. The mean proportion of participants recalling the critical word “SLEEP” in Experiment 5 is shown as a function of the number of related words in the studied
lists. The data are presented in red and simulations in grey. The simulation results using LSA are presented in the left panel, and those using fastText are presented in
the right panel. Error bars correspond to the 95% credible intervals.
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examined the likelihood of producing a specific critical lure based on the
number of studied associates. We systematically manipulated the num-
ber of related words associated with the critical lure in the lists, with
participants receiving lists containing 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10
related words.

Method

Participants
A total of 550 participants, with 50 participants per condition (0, 1,

2, 3, 4, 5, 6, 7, 8, 9, or 10 related words), who had not taken part in the
previous experiments, were recruited via Prolific using the same inclu-
sion criteria. The participants’ mean age was 25.53 years (SD = 3.29,
range 18–31). Of these, 199 participants self-identified as female, 340 as
male, and 11 preferred not to specify their gender. The total of 550
participants was used to ensure stable estimates for comparison with our
simulations.

Materials, Design, Procedure, and data analysis
The materials, design, procedure, and data analysis were similar to

the previous experiments, with the following changes. Each participant
was randomly allocated to one of the 11 conditions. All participants
completed a single trial to minimize strategy contamination between
conditions. They studied 10words presented sequentially at a rate of one
word per second and had to recall them in their presentation order, as in
the previous experiments. The experiment lasted approximately 2 min.

The stimuli were taken from Robinson and Roediger (1997), based
on Roediger and McDermott (1995). From these stimuli, we created 11
lists varying in the number of related words associated with the critical
lure “SLEEP,” which has been shown to produce reliable false memories.
We chose to focus on one critical lure for a systematic exploration, but
we believe the results should be stable across various critical lures and
materials, as shown in the original demonstration. Like in Experiments
1, 2, and 3, the order of the words within each list was fixed (see Ap-
pendix E).

For the analyses, we focused on the proportion of participants that
recalled the critical lure as a function of condition.

Results

The results of Experiment 5 are presented in Fig. 17, along with the
simulation results using both LSA and fastText. As shown, when the
number of words associated with the critical lure increases in the list, the
probability of recalling that critical word also increases.

Although the results are clear, we conducted a one-way ANOVA with
condition as the sole factor to confirm the descriptive results. As ex-
pected, there was a main effect of condition, F(10,539) = 12.09, η2p =

.18, BF10 > 1000.
Modelling Assessment. As illustrated in Fig. 17, the model had a

good fit to the data for both the simulation with LSA (R2 = 0.81) and the
simulation with fastText (R2 = 0.87). The model captured the key
feature of the data: an increase in the probability of recalling the critical
lure as a function of the number of related studied words. LSA slightly
overpredicted with larger number of related words (e.g., 7) and slightly
underpredicted for lower number of related words (e.g., 3, 4, 5), while
fastText slightly underpredicted with larger number of related words (e.
g., 8 and 10). However, the goal of this demonstration was not to decide
which semantic model is better, but to show that the model can integrate
different semantic models of memory and predict the false recall.

Discussion

In the false memory literature, it is well-established that increasing
the number of related words associated with a non-presented word in-
creases the likelihood of participants falsely recalling that word

(Robinson & Roediger, 1997). In our model, because we have a lexicon,
and memory is reconstructive, if all information is similar to a critical
lure, comparison between the echo and the critical lure in lexicon will be
more similar, increasing the likelihood of it being falsely retrieved above
presented words. Although this was a simple demonstration, it shows for
the first time to our knowledge that in serial recall, as in recognition and
free recall, the same empirical pattern emerges, and our simple model
can capture these results.

General discussion

Over the years, numerous empirical findings on the influence of se-
mantic information on verbal short-term memory performance have
emerged and painted a complex portrait (e.g., Crowder, 1979; Oberauer
et al., 2018). Reconciling these findings under a common model has
been challenging. Here, we presented an attempt to capture some of
these important findings by proposing a simple computational model of
memory, eCFM. This model was designed to bridge the gaps between
semantic and episodic memory models, moving toward a more holistic
understanding of memory. In the next section, we briefly summarized
the simulations and empirical work conducted in this manuscript.

Empirical and computational summary

In this manuscript, we have revisited a large number of phenomena
through computational, empirical, or combined investigations. We first
revisited the semantic relatedness paradox—a benefit of semantic
relatedness in serial recall, but not in serial reconstruction—by simu-
lating the results of Neath et al. (2022). Our simulations captured the
overall pattern of results. However, in some instances, the model pre-
dicted a small detrimental effect, leading to further exploration at the
participant level in our supplementary analysis. This revealed that
almost half the participants experienced a detrimental effect of semantic
information, aligning well with our model’s simulations. Additional
simulations revealed that the reduce beneficial influence of semantic
information in serial reconstruction, at least in our implementation, was
largely due to task characteristics and lexicon size. As the lexicon size
increased, the effect became positive, similar to serial recall.

We then re-examined the influence of semantic information on order
information by revisiting the study by Saint-Aubin et al. (2005), which
showed a detrimental effect of semantic information on order informa-
tion. Our simulations, using almost identical lists, also predicted this
detrimental effect. In Experiment 4, we conducted a study with 160
participants and a new set of stimuli, providing clear evidence of a
detrimental effect for related lists compared to unrelated lists. These
results warrant further consideration of the influence of semantic in-
formation on order information, highlighting the need for further
investigation of this important finding. Although the effect is much
smaller than that observed with phonological related information (e.g.,
Roodenrys et al., 2022), this difference might be due to the nature of
feature spaces. Orthographic and phonological features likely result in
dense representations of verbal information due to their limited number
of features (e.g., letters and phonemes), whereas semantic features
might create sparse representations of verbal information given their
near-infinite number of features to represent information semantically
(e.g., Buchanan et al., 2019; McRae et al., 2005). This suggests that
shallow features would yield larger detrimental effects, likely due to an
interaction between features encoded, features interference, feature
space, and feature retrieve, as recently suggested in recognition memory
(e.g., Caplan, 2023; Caplan & Guitard, 2024a,b). However, further
studies are needed to directly assess feature space interactions with well-
matched stimuli and larger participant numbers.

We revisited the pattern of migration errors, where an item is
recalled. The model provided a good fit to the results of Poirier et al.
(2015) and our investigation in Experiment 4. Overall, it seems clear
that semantic information can have a specific impact on how order
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information is recalled (e.g., see also Kowialiewski et al., 2021, 2024).
In our experimental investigations, we demonstrated how a recall

model that integrates a lexicon of vector-based representations for word
meanings was able to generate predictions for mixed lists, which we
tested in two experimental studies. The influence of semantic related-
ness was slightly diminished in mixed alternating lists (URURUR or
RURURU) in Experiment 1 compared to pure lists. In contrast, Experi-
ment 2 showed a similar effect with blocked mixed lists (RRRUUU or
UUURRR). The smaller sawtooth pattern observed in Experiment 1
aligns with the findings of Saint-Aubin et al. (2014), who reported a
reduced semantic relatedness effect with an increased number of words
presented between related words. This pattern differs from the word
frequency effect, which, unlike the semantic relatedness effect, was
eliminated in a mixed list design, as indicated by Hulme et al. (2003) and
Morin et al. (2006).

The models also made interesting predictions regarding presentation
rate as a proxy for task difficulty. The model and experimental results
show that the magnitude of the semantic relatedness effect was larger at
a faster presentation rate compared to a slower rate. This result is
consistent with previous demonstrations and adds new empirical sup-
port for the influence of presentation rate (Neale & Tehan, 2007; Poirier
& Saint-Aubin, 1995; Saint-Aubin et al., 2005).

Lastly, our models predicted that increasing the number of related
words in a studied list to a critical related word that was not presented
would make the latter more likely to be recalled. This simple prediction
was successfully tested in Experiment 5. These results provide growing
support for this classic finding obtained in free recall and recognition
(Robinson & Roediger, 1997), but this time, for the first time to our
knowledge, in serial recall. This opens interesting avenues, showing that
a model with a lexicon can make precise predictions for false recall,
demonstrating the value of embedding a lexicon to predict information
that was never presented. As we also demonstrated in our simulations of
Poirier et al. (2015) and the supplementary analysis of Experiment 4, the
model can be directly assessed at the item level and is affected by
different materials in a similar way humans are. This opens exciting
precision into memory research, moving beyond average curve fitting to
gain new insights into human cognitive processes.

In summary, we have shown or confirmed several key findings: the
influence of semantic related information was larger in serial recall
across almost all participants and small or slightly negative in serial
reconstruction for many participants; semantic information appears to
have a small detrimental effect on order information; list organization
modulated but did not abolish the influence of semantic information in
alternating or blocked lists; presentation rate, similar to previous dem-
onstrations of task difficulty, had a large effect on the size of the se-
mantic relatedness effect, with a larger effect observed with lower
memory performance; specific list organization, as shown by Poirier
et al. (2015), can affect the pattern of migration errors; and increasing
the number of related words associated with a non-presented word af-
fects the likelihood of recalling that critical lure in immediate serial
recall.

Overall, our numerous demonstrations and empirical studies
corroborated the general predictions of our model and represent a novel
contribution to our database on memory performance and our theoret-
ical understanding of the impact of participants’ lexicon on verbal short-
term memory performance. This work underscores the importance of
embedding a lexicon in memory models to predict both veridical and
false performance. It is short-sighted to explain performance in short-
term memory tasks without considering the influence of long-term
memory and unrealistic to have randomly generated vectors that are
artificially created without a theoretical justification. In that sense, our
account connects tightly to Cowan’s (1988, 2019; Cowan et al., 2024)
work on embedded memory systems and argues that including a well-
defined theoretically driven lexicon is a necessary next step in devel-
oping a complete model of cognition.

Theoretical implications

As mentioned in the introduction, the dominant account of semantic
information that inspired the integration of semantic and episodic
models of memory in this study is the redintegration hypothesis. The
redintegration hypothesis posits that memory retrieval is a reconstruc-
tive process based on the parallel retrieval of memory traces, signifi-
cantly influencing how memory researchers conceptualize recall
(Schweickert, 1993; Lewandowsky, 1999) and understand the impact of
semantic relatedness on memory performance (Poirier & Saint-Aubin,
1995; Saint-Aubin & Poirier, 1999ab). According to this hypothesis,
semantically related words facilitate the redintegration of degraded
memory representations during retrieval, thereby aiding recall. Specif-
ically, the redintegration process is thought to be particularly beneficial,
or perhaps only beneficial, in situations where item information is
critical, such as in serial recall or when the task is very difficult (e.g.,
Neale & Tehan, 2007), but not in serial reconstruction. This perspective
offers a compelling explanation for the positive influence of semanti-
cally related words on enhancing serial recall and the limited influence
in serial reconstruction. Our model provides a practical and effective
example of how this hypothesis can be operationalized and sheds new
light on the influence of semantic information, such as the small nega-
tive effect in order reconstruction observed for a large number of par-
ticipants. Therefore, our work has significant implications for this
dominant hypothesis, offering a formal implementation that bridges the
gap between a dominant theoretical narrative and a comprehensive
formal account of the phenomenon.

Interactive Activation Model. Recently, an alternative proposition
has been put forward to account for the influence of semantic infor-
mation, known as the interactive activation model (Kowialiewski et al.,
2021; Kowialiewski&Majerus, 2020). In this neural network model, the
beneficial influence of semantic relatedness is explained by the princi-
ples of spreading activation (e.g., Collins & Loftus, 1975). Specifically,
semantically related words, through a process of interactive activation
in the network, achieve stronger activation relative to semantically
unrelated words, which do not benefit from this iterative activation
process. This model represents a significant departure from traditional
verbal accounts of memory and provides important insights and novel
possibilities for understanding the influence of semantic relatedness. In
its current form, despite this significant advancement, it remains unclear
whether the model can account for all the findings presented here or
how it could generate item-level predictions, such as specific false
memories and accurate memory performance, without further
modifications.

However, rather than debating which model is the “best,” a more
constructive approach is to integrate key assumptions from different
models and evaluate them. For instance, one could incorporate the
iterative spreading activation function for retrieval proposed by Hintz-
man (1986) into our model (see Equation 5 on p. 422). The overall goal
is to advance the field by ensuring that initial good work also functions
within a more comprehensive system, allowing us to determine whether
the artificial processes created in a controlled environment remain valid.
Such integration would likely provide deeper insights and new pre-
dictions that were not previously conceivable.

Embedded Computational Framework of Memory. In this
manuscript, we present a simple theoretical alternative to previously
described accounts. Specifically, we propose one of the few recall
models that utilize vector-based representations for words. This vector-
based approach has been highly successful in accounting for complex
phenomena such as false recognition (e.g., Johns et al., 2012; Reid &
Jamieson, 2023), release from proactive interference (e.g., Mewhort
et al., 2018), free recall (e.g., Sirotin et al., 2005; Kimball et al., 2007),
and other benchmark memory phenomena (see Jamieson et al., 2022,
for a review).

By incorporating vector-based lexical representations, our model can
account for a wide range of phenomena in both serial recall and serial
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reconstruction while having a better account of the complexity and
richness of language experiences (Johns & Jones, 2010). This simple
model provides a crucial mechanistic explanation for the influence of
semantic information in verbal short-term memory. Although further
work is needed to refine the model, we believe that integrating a lexicon
of word representations into a mechanistic computational model of
storage and retrieval is a valuable method for advancing and more
precisely evaluating our understanding of human memory.

This approach allows us to analyze specific word lists and equips the
model to handle serial recall by including a semantic memory compo-
nent, not just a memory of the study list. This method offers a productive
way to understand the scaled-up interactions between knowledge and
memory, which have been under-investigated thus far. While we are not
the first to advocate for this integration, the work presented here re-
inforces a growing consensus that the field is ready to build increasingly
sophisticated models of memory and cognition (e.g., Chang & Johns,
2023; Chubala et al., 2016; Johns et al., 2012; Kimball et al., 2007;
Mewhort et al., 2018; Monaco et al., 2007; Morton & Polyn, 2016; Osth
et al., 2020; Osth & Zhang, 2023; Polyn et al., 2009; Reid & Jamieson,
2023; Steyvers, 2000).

Future directions

We have proposed a relatively simple model of memory that com-
bines assumptions from episodic memory models (MINERVA 2: Hintz-
man, 1986) and semantic models (LSA: Landauer & Dumais, 1997) to
account for the influence of semantic information in verbal short-term
memory. While we have demonstrated that the model effectively cap-
tures the influence of semantic information across many demonstra-
tions, it is clear that we are far from a complete theory of memory. Here,
we highlight several important future directions.

Representations. In the current study, we focused primarily on se-
mantic information to represent relationships within participants’ lexi-
cons. However, a comprehensive representation of verbal information
includes many more features, such as early visual features (e.g., lines
and shapes), orthographic features (e.g., letters), and phonological
features (e.g., phonemes), among others, to capture the complexity of
our verbal experience. Additionally, we assumed that each participant
has a static and equivalent lexicon. This is a simplification, as individual
experiences shape our lexicons. However, promising ongoing work is
currently being undertaken that can refine our representations andmake
novel dynamic predictions (see e.g., Aujla, 2021; Jamieson et al., 2018;
Johns & Jamieson, 2019). We have shown that the model can integrate
French and English lexicons; addressing the linguistic complexity of
bilingual individuals is a natural progression for enabling precise pre-
dictions, but will required further work. Overall, our ongoing work aims
to develop a comprehensive representation including orthographic,
phonological, and semantic information (see e.g., Guitard et al., 2024;
Reid et al., 2024), while also capturing the dynamic reconstructive na-
ture of individual linguistic experiences (e.g., Jamieson et al., 2018).

Integration. The eCFM exemplifies the benefits of embedding a
lexicon into a memory model, which could be extended to a wide range
of models (e.g., Brown et al., 2007; Nairne, 1988; Murdock, 1974; Saint-
Aubin et al., 2021). Adding such a comprehensive lexicon increases
computational complexity, but the tradeoff for enhanced precision and
knowledge is undeniable. While our eCFM can be based on different
combinations of memory and language models, a notable advantage of
using MINERVA 2 (Hintzman, 1986) is its successful extension across

various paradigms, including frequency judgement, recognition, cate-
gorization, cued recall, implicit learning, associative learning, and
heuristic decision making (see Jamieson et al., 2022 for review).
Although more work is needed to fully evaluate the integration across
paradigms, we believe this is an important future direction for bridging
memory paradigms with lexicon-based models.

We strongly believe that to move toward a general theory of mem-
ory, we need, as suggested by Hebb (1949), to break down silos within
our field and integrate mechanisms to achieve a complete and precise
understanding of human memory across phenomena and tasks (e.g.,
recognition, reconstruction, recall, cued recall, learning, etc.). Humans
do not need a new brain for every task, and neither should our memory
models.

Conclusion

Our overall goal was to account for the influence of semantic infor-
mation on short-term verbal performance. To do so, we presented a
computational model that integrates advances in human memory theory
and computational linguistics, demonstrating its ability to capture a
wide range of phenomena at the overall level while also providing
unique item-level assessments. We also showed that our simple model
can generate predictions for new studies and found empirical support for
the model’s general predictions. Overall, this study suggests that inte-
grating an existing vector-based approach for word knowledge into an
existing process model for memory can offer a fruitful and insightful tool
for understanding human memory performance.
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Appendix A

Stimuli lists used in Experiment 1

Related (RRRRRR) Lists

Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL IRON COPPER LEAD BRASS BRONZE
HOUR SECOND MINUTE YEAR DAY MONTH
UNCLE AUNT COUSIN MOTHER FATHER SISTER
MAGAZINE BOOK NEWSPAPER JOURNAL NOVEL TEXTBOOK
SERGEANT GENERAL CAPTAIN COLONEL ADMIRAL PRIVATE
DIAMOND RUBY EMERALD SAPPHIRE PEARL JADE

Set 02
COTTON SILK WOOL SATIN LINEN FLANNEL
BLUE RED GREEN YELLOW PURPLE BROWN
LEG ARM FINGER ELBOW ANKLE KNEE
APPLE BANANA GRAPE PEAR PEACH PLUM
GUN PISTOL SWORD RIFLE GRENADE MISSILE
HOUSE APARTMENT MANSION TENT CABIN HUT

Set 03
TORNADO HURRICANE LIGHTNING EARTHQUAKE TYPHOON BLIZZARD
SHIRT SOCKS HAT JACKET SWEATER JEANS
WINDOW DOOR FLOOR WALL ROOF STAIRS
DRUMS GUITAR FLUTE PIANO TRUMPET VIOLIN
EAGLE ROBIN HAWK CROW SEAGULL PIGEON
CAR BUS TRUCK TRAIN VAN TAXI

Set 04
CARROT PEAS CORN SPINACH BEANS CABBAGE
FLY ANT BEE MOSQUITO BUTTERFLY WASP
SALMON TROUT CATFISH TUNA SHARK COD
FRANCE MEXICO GERMANY SPAIN ITALY BRAZIL
RAP CLASSICAL JAZZ ROCK PUNK FOLK
JUICE COFFEE WATER TEA LEMONADE SODA

Unrelated (UUUUUU) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL HOUR UNCLE MAGAZINE SERGEANT DIAMOND
IRON SECOND AUNT BOOK GENERAL RUBY
COPPER MINUTE COUSIN NEWSPAPER CAPTAIN EMERALD
LEAD YEAR MOTHER JOURNAL COLONEL SAPPHIRE
BRASS DAY FATHER NOVEL ADMIRAL PEARL
BRONZE MONTH SISTER TEXTBOOK PRIVATE JADE

Set 02
COTTON BLUE LEG APPLE GUN HOUSE
SILK RED ARM BANANA PISTOL APARTMENT
WOOL GREEN FINGER GRAPE SWORD MANSION
SATIN YELLOW ELBOW PEAR RIFLE TENT
LINEN PURPLE ANKLE PEACH GRENADE CABIN
FLANNEL BROWN KNEE PLUM MISSILE HUT

Set 03
TORNADO SHIRT WINDOW DRUMS EAGLE CAR
HURRICANE SOCKS DOOR GUITAR ROBIN BUS
LIGHTNING HAT FLOOR FLUTE HAWK TRUCK
EARTHQUAKE JACKET WALL PIANO CROW TRAIN
TYPHOON SWEATER ROOF TRUMPET SEAGULL VAN
BLIZZARD JEANS STAIRS VIOLIN PIGEON TAXI

Set 04
CARROT FLY SALMON FRANCE RAP JUICE
PEAS ANT TROUT MEXICO CLASSICAL COFFEE
CORN BEE CATFISH GERMANY JAZZ WATER
SPINACH MOSQUITO TUNA SPAIN ROCK TEA
BEANS BUTTERFLY SHARK ITALY PUNK LEMONADE
CABBAGE WASP COD BRAZIL FOLK SODA
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Mixed (RURURU) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL BOOK COPPER SAPPHIRE BRASS PRIVATE
HOUR GENERAL MINUTE JOURNAL DAY JADE
UNCLE RUBY COUSIN COLONEL FATHER TEXTBOOK
MAGAZINE IRON NEWSPAPER MOTHER NOVEL MONTH
SERGEANT SECOND CAPTAIN LEAD ADMIRAL SISTER
DIAMOND AUNT EMERALD YEAR PEARL BRONZE

Set 02
COTTON BANANA WOOL TENT LINEN MISSILE
BLUE PISTOL GREEN PEAR PURPLE HUT
LEG APARTMENT FINGER RIFLE ANKLE PLUM
APPLE SILK GRAPE ELBOW PEACH BROWN
GUN RED SWORD SATIN GRENADE KNEE
HOUSE ARM MANSION YELLOW CABIN FLANNEL

Set 03
TORNADO GUITAR LIGHTNING TRAIN TYPHOON PIGEON
SHIRT ROBIN HAT PIANO SWEATER TAXI
WINDOW BUS FLOOR CROW ROOF VIOLIN
DRUMS HURRICANE FLUTE WALL TRUMPET JEANS
EAGLE SOCKS HAWK EARTHQUAKE SEAGULL STAIRS
CAR DOOR TRUCK JACKET VAN BLIZZARD

Set 04
CARROT MEXICO CORN TEA BEANS FOLK
FLY CLASSICAL BEE SPAIN BUTTERFLY SODA
SALMON COFFEE CATFISH ROCK SHARK BRAZIL
FRANCE PEAS GERMANY TUNA ITALY WASP
RAP ANT JAZZ SPINACH PUNK COD
JUICE TROUT WATER MOSQUITO LEMONADE CABBAGE

Mixed (URURUR) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
MAGAZINE IRON EMERALD LEAD ADMIRAL BRONZE
SERGEANT SECOND NEWSPAPER YEAR PEARL MONTH
DIAMOND AUNT CAPTAIN MOTHER NOVEL SISTER
STEEL BOOK COUSIN JOURNAL DAY TEXTBOOK
HOUR GENERAL COPPER COLONEL FATHER PRIVATE
UNCLE RUBY MINUTE SAPPHIRE BRASS JADE

Set 02
APPLE SILK MANSION SATIN GRENADE FLANNEL
GUN RED GRAPE YELLOW CABIN BROWN
HOUSE ARM SWORD ELBOW PEACH KNEE
COTTON BANANA FINGER PEAR PURPLE PLUM
BLUE PISTOL WOOL RIFLE ANKLE MISSILE
LEG APARTMENT GREEN TENT LINEN HUT

Set 03
DRUMS HURRICANE TRUCK EARTHQUAKE SEAGULL BLIZZARD
EAGLE SOCKS FLUTE JACKET VAN JEANS
CAR DOOR HAWK WALL TRUMPET STAIRS
TORNADO GUITAR FLOOR PIANO SWEATER VIOLIN
SHIRT ROBIN LIGHTNING CROW ROOF PIGEON
WINDOW BUS HAT TRAIN TYPHOON TAXI

Set 04
FRANCE PEAS WATER SPINACH PUNK CABBAGE
RAP ANT GERMANY MOSQUITO LEMONADE WASP
JUICE TROUT JAZZ TUNA ITALY COD
CARROT MEXICO CATFISH SPAIN BUTTERFLY BRAZIL
FLY CLASSICAL CORN ROCK SHARK FOLK
SALMON COFFEE BEE TEA BEANS SODA
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Appendix B

Stimuli lists used in Experiment 2.

Related (RRRRRR) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL COPPER BRASS IRON LEAD BRONZE
HOUR MINUTE DAY SECOND YEAR MONTH
UNCLE COUSIN FATHER AUNT MOTHER SISTER
MAGAZINE NEWSPAPER NOVEL BOOK JOURNAL TEXTBOOK
SERGEANT CAPTAIN ADMIRAL GENERAL COLONEL PRIVATE
DIAMOND EMERALD PEARL RUBY SAPPHIRE JADE

Set 02
COTTON WOOL LINEN SILK SATIN FLANNEL
BLUE GREEN PURPLE RED YELLOW BROWN
LEG FINGER ANKLE ARM ELBOW KNEE
APPLE GRAPE PEACH BANANA PEAR PLUM
GUN SWORD GRENADE PISTOL RIFLE MISSILE
HOUSE MANSION CABIN APARTMENT TENT HUT

Set 03
TORNADO LIGHTNING TYPHOON HURRICANE EARTHQUAKE BLIZZARD
SHIRT HAT SWEATER SOCKS JACKET JEANS
WINDOW FLOOR ROOF DOOR WALL STAIRS
DRUMS FLUTE TRUMPET GUITAR PIANO VIOLIN
EAGLE HAWK SEAGULL ROBIN CROW PIGEON
CAR TRUCK VAN BUS TRAIN TAXI

Set 04
CARROT CORN BEANS PEAS SPINACH CABBAGE
FLY BEE BUTTERFLY ANT MOSQUITO WASP
SALMON CATFISH SHARK TROUT TUNA COD
FRANCE GERMANY ITALY MEXICO SPAIN BRAZIL
RAP JAZZ PUNK CLASSICAL ROCK FOLK
JUICE WATER LEMONADE COFFEE TEA SODA

Unrelated (UUUUUU) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL HOUR UNCLE MAGAZINE SERGEANT DIAMOND
IRON SECOND AUNT BOOK GENERAL RUBY
COPPER MINUTE COUSIN NEWSPAPER CAPTAIN EMERALD
LEAD YEAR MOTHER JOURNAL COLONEL SAPPHIRE
BRASS DAY FATHER NOVEL ADMIRAL PEARL
BRONZE MONTH SISTER TEXTBOOK PRIVATE JADE

Set 02
COTTON BLUE LEG APPLE GUN HOUSE
SILK RED ARM BANANA PISTOL APARTMENT
WOOL GREEN FINGER GRAPE SWORD MANSION
SATIN YELLOW ELBOW PEAR RIFLE TENT
LINEN PURPLE ANKLE PEACH GRENADE CABIN
FLANNEL BROWN KNEE PLUM MISSILE HUT

Set 03
TORNADO SHIRT WINDOW DRUMS EAGLE CAR
HURRICANE SOCKS DOOR GUITAR ROBIN BUS
LIGHTNING HAT FLOOR FLUTE HAWK TRUCK
EARTHQUAKE JACKET WALL PIANO CROW TRAIN
TYPHOON SWEATER ROOF TRUMPET SEAGULL VAN
BLIZZARD JEANS STAIRS VIOLIN PIGEON TAXI

Set 04
CARROT FLY SALMON FRANCE RAP JUICE
PEAS ANT TROUT MEXICO CLASSICAL COFFEE
CORN BEE CATFISH GERMANY JAZZ WATER
SPINACH MOSQUITO TUNA SPAIN ROCK TEA
BEANS BUTTERFLY SHARK ITALY PUNK LEMONADE
CABBAGE WASP COD BRAZIL FOLK SODA
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Mixed (RRRUUU) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL COPPER BRASS SAPPHIRE BOOK PRIVATE
HOUR MINUTE DAY JOURNAL GENERAL JADE
UNCLE COUSIN FATHER COLONEL RUBY TEXTBOOK
MAGAZINE NEWSPAPER NOVEL MOTHER IRON MONTH
SERGEANT CAPTAIN ADMIRAL LEAD SECOND SISTER
DIAMOND EMERALD PEARL YEAR AUNT BRONZE

Set 02
COTTON WOOL LINEN TENT BANANA MISSILE
BLUE GREEN PURPLE PEAR PISTOL HUT
LEG FINGER ANKLE RIFLE APARTMENT PLUM
APPLE GRAPE PEACH ELBOW SILK BROWN
GUN SWORD GRENADE SATIN RED KNEE
HOUSE MANSION CABIN YELLOW ARM FLANNEL

Set 03
TORNADO LIGHTNING TYPHOON TRAIN GUITAR PIGEON
SHIRT HAT SWEATER PIANO ROBIN TAXI
WINDOW FLOOR ROOF CROW BUS VIOLIN
DRUMS FLUTE TRUMPET WALL HURRICANE JEANS
EAGLE HAWK SEAGULL EARTHQUAKE SOCKS STAIRS
CAR TRUCK VAN JACKET DOOR BLIZZARD

Set 04
CARROT CORN BEANS TEA MEXICO FOLK
FLY BEE BUTTERFLY SPAIN CLASSICAL SODA
SALMON CATFISH SHARK ROCK COFFEE BRAZIL
FRANCE GERMANY ITALY TUNA PEAS WASP
RAP JAZZ PUNK SPINACH ANT COD
JUICE WATER LEMONADE MOSQUITO TROUT CABBAGE

Mixed (UUURRR) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
MAGAZINE EMERALD ADMIRAL IRON LEAD BRONZE
SERGEANT NEWSPAPER PEARL SECOND YEAR MONTH
DIAMOND CAPTAIN NOVEL AUNT MOTHER SISTER
STEEL COUSIN DAY BOOK JOURNAL TEXTBOOK
HOUR COPPER FATHER GENERAL COLONEL PRIVATE
UNCLE MINUTE BRASS RUBY SAPPHIRE JADE

Set 02
APPLE MANSION GRENADE SILK SATIN FLANNEL
GUN GRAPE CABIN RED YELLOW BROWN
HOUSE SWORD PEACH ARM ELBOW KNEE
COTTON FINGER PURPLE BANANA PEAR PLUM
BLUE WOOL ANKLE PISTOL RIFLE MISSILE
LEG GREEN LINEN APARTMENT TENT HUT

Set 03
DRUMS TRUCK SEAGULL HURRICANE EARTHQUAKE BLIZZARD
EAGLE FLUTE VAN SOCKS JACKET JEANS
CAR HAWK TRUMPET DOOR WALL STAIRS
TORNADO FLOOR SWEATER GUITAR PIANO VIOLIN
SHIRT LIGHTNING ROOF ROBIN CROW PIGEON
WINDOW HAT TYPHOON BUS TRAIN TAXI

Set 04
FRANCE WATER PUNK PEAS SPINACH CABBAGE
RAP GERMANY LEMONADE ANT MOSQUITO WASP
JUICE JAZZ ITALY TROUT TUNA COD
CARROT CATFISH BUTTERFLY MEXICO SPAIN BRAZIL
FLY CORN SHARK CLASSICAL ROCK FOLK
SALMON BEE BEANS COFFEE TEA SODA
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Appendix C

Stimuli lists used in Experiment 3

Related (RRRRRR) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL COPPER BRASS IRON LEAD BRONZE
HOUR MINUTE DAY SECOND YEAR MONTH
UNCLE COUSIN FATHER AUNT MOTHER SISTER
MAGAZINE NEWSPAPER NOVEL BOOK JOURNAL TEXTBOOK
SERGEANT CAPTAIN ADMIRAL GENERAL COLONEL PRIVATE
DIAMOND EMERALD PEARL RUBY SAPPHIRE JADE
COTTON WOOL LINEN SILK SATIN FLANNEL
BLUE GREEN PURPLE RED YELLOW BROWN
LEG FINGER ANKLE ARM ELBOW KNEE
APPLE GRAPE PEACH BANANA PEAR PLUM
GUN SWORD GRENADE PISTOL RIFLE MISSILE
HOUSE MANSION CABIN APARTMENT TENT HUT

Set 02
TORNADO LIGHTNING TYPHOON HURRICANE EARTHQUAKE BLIZZARD
SHIRT HAT SWEATER SOCKS JACKET JEANS
WINDOW FLOOR ROOF DOOR WALL STAIRS
DRUMS FLUTE TRUMPET GUITAR PIANO VIOLIN
EAGLE HAWK SEAGULL ROBIN CROW PIGEON
CAR TRUCK VAN BUS TRAIN TAXI
CARROT CORN BEANS PEAS SPINACH CABBAGE
FLY BEE BUTTERFLY ANT MOSQUITO WASP
SALMON CATFISH SHARK TROUT TUNA COD
FRANCE GERMANY ITALY MEXICO SPAIN BRAZIL
RAP JAZZ PUNK CLASSICAL ROCK FOLK
JUICE WATER LEMONADE COFFEE TEA SODA

Unrelated (UUUUUU) Lists
Position 01 Position 02 Position 03 Position 04 Position 05 Position 06

Set 01
STEEL HOUR UNCLE MAGAZINE SERGEANT DIAMOND
IRON SECOND AUNT BOOK GENERAL RUBY
COPPER MINUTE COUSIN NEWSPAPER CAPTAIN EMERALD
LEAD YEAR MOTHER JOURNAL COLONEL SAPPHIRE
BRASS DAY FATHER NOVEL ADMIRAL PEARL
BRONZE MONTH SISTER TEXTBOOK PRIVATE JADE
COTTON BLUE LEG APPLE GUN HOUSE
SILK RED ARM BANANA PISTOL APARTMENT
WOOL GREEN FINGER GRAPE SWORD MANSION
SATIN YELLOW ELBOW PEAR RIFLE TENT
LINEN PURPLE ANKLE PEACH GRENADE CABIN
FLANNEL BROWN KNEE PLUM MISSILE HUT

Set 02
TORNADO SHIRT WINDOW DRUMS EAGLE CAR
HURRICANE SOCKS DOOR GUITAR ROBIN BUS
LIGHTNING HAT FLOOR FLUTE HAWK TRUCK
EARTHQUAKE JACKET WALL PIANO CROW TRAIN
TYPHOON SWEATER ROOF TRUMPET SEAGULL VAN
BLIZZARD JEANS STAIRS VIOLIN PIGEON TAXI
CARROT FLY SALMON FRANCE RAP JUICE
PEAS ANT TROUT MEXICO CLASSICAL COFFEE
CORN BEE CATFISH GERMANY JAZZ WATER
SPINACH MOSQUITO TUNA SPAIN ROCK TEA
BEANS BUTTERFLY SHARK ITALY PUNK LEMONADE
CABBAGE WASP COD BRAZIL FOLK SODA
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Appendix D

Stimuli used in Experiment 4

Related (RRRRRRR)
Set 01
OVEN MICROWAVE FRIDGE MIXER TOASTER BLENDER STOVE
RAP CLASSICAL JAZZ ROCK PUNK FOLK BLUES
TRIANGLE SQUARE CIRCLE CUBE HEXAGON RECTANGLE CYLINDER
OAK PINE MAPLE REDWOOD SPRUCE FIR ELM
MILE METER INCH KILOMETER CENTIMETER YARD MILLIMETER
CARROT PEAS CORN SPINACH BEANS CABBAGE TURNIP
COW PIG HORSE GOAT SHEEP DONKEY BULL
ROSE DAISY TULIP LILY DAFFODIL ORCHID DANDELION
APPLE ORANGE BANANA GRAPE PEAR PEACH PLUM
CHEMISTRY PHYSICS BIOLOGY ZOOLOGY BOTANY GEOLOGY ASTRONOMY
BULLDOG TERRIER POODLE BEAGLE SPANIEL DOBERMAN GREYHOUND
STEEL IRON COPPER TIN LEAD BRASS BRONZE
LOVE SADNESS HAPPINESS FEAR SORROW ANGER JOY
EYE EAR NOSE LIPS TONGUE CHIN CHEEK
SALT PEPPER GARLIC OREGANO BASIL MUSTARD PAPRIKA
SALMON TROUT CATFISH TUNA SHARK COD HALIBUT
SHOE BOOTS SANDALS SLIPPERS LOAFERS SNEAKERS CLOGS
CHAIR TABLE COUCH BED SOFA RECLINER OTTOMAN
MEASLES MUMPS FLU POLIO MALARIA HEPATITIS CANCER
YACHT CANOE SUBMARINE FERRY SPEEDBOAT BATTLESHIP BARGE
NOUN VERB ADJECTIVE ADVERB PRONOUN PREPOSITION PARTICIPLE
CAR BUS TRUCK TRAIN VAN TAXI MOTORCYCLE
RIVER OCEAN LAKE CREEK STREAM WATERFALL LAGOON
COTTON SILK WOOL SATIN DENIM LINEN FLANNEL
KING QUEEN PRINCE PRINCESS DUKE COUNT EARL
LEG ARM FINGER TOE ELBOW ANKLE KNEE

Related (RRRRRRR)
Set 02
KNIFE FORK SPOON SPATULA WHISK LADLE TONGS
HOUR SECOND MINUTE YEAR DAY MONTH WEEK
MILK JUICE COFFEE WATER TEA LEMONADE SODA
MOZART BEETHOVEN BACH BRAHMS VERDI WAGNER HANDEL
FOOTBALL BASKETBALL BASEBALL TENNIS HOCKEY GOLF RUGBY
PRIEST POPE BISHOP NUN CARDINAL RABBI PASTOR
TORNADO HURRICANE LIGHTNING EARTHQUAKE TYPHOON BLIZZARD MONSOON
DOCTOR TEACHER LAWYER NURSE DENTIST SECRETARY BANKER
BLUE RED GREEN YELLOW PURPLE BROWN PINK
HAMMER SCREWDRIVER CHISEL PLIERS NAILS DRILL SAW
SERGEANT GENERAL CAPTAIN COLONEL MAJOR ADMIRAL PRIVATE
OXYGEN HYDROGEN HELIUM NITROGEN CHLORINE ARGON RADON
HEART LIVER KIDNEY BRAIN LUNGS STOMACH INTESTINE
DRUMS GUITAR FLUTE PIANO TRUMPET VIOLIN BANJO
DIAMOND RUBY EMERALD SAPPHIRE PEARL OPAL JADE
BEER VODKA WINE RUM GIN SCOTCH MARTINI
SHIRT SOCKS HAT JACKET SWEATER JEANS COAT
LION TIGER ELEPHANT GIRAFFE ZEBRA CHEETAH WILDEBEEST
UNCLE AUNT COUSIN MOTHER FATHER SISTER BROTHER
BREAKFAST LUNCH DINNER SUPPER BARBECUE BRUNCH BANQUET
EAGLE ROBIN HAWK CROW SEAGULL PIGEON SPARROW
MAGAZINE BOOK NEWSPAPER JOURNAL NOVEL TEXTBOOK LETTER
GUN PISTOL SWORD RIFLE BAYONET GRENADE MISSILE
WINDOW DOOR FLOOR WALL ROOF STAIRS CELLAR
TRUNK BRANCH LIMB BARK LEAF ROOT SAP
CHURCH TEMPLE SYNAGOGUE MOSQUE CATHEDRAL CHAPEL MONASTERY
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Appendix E

Stimuli lists used in Experiment 5

Position
01

Position
02

Position
03

Position
04

Position
05

Position
06

Position
07

Position
08

Position
09

Position
10

Critical
Lure

Number of Related
words

BED NAP SNORE AWAKE SNOOZE TIRED WAKE REST BLANKET DREAM SLEEP 10
BED NAP SNORE AWAKE SNOOZE TIRED WAKE REST BLANKET GLASS SLEEP 9
BED NAP SNORE AWAKE SNOOZE TIRED WAKE REST WASTE GLASS SLEEP 8
BED NAP SNORE AWAKE SNOOZE TIRED WAKE CANDY WASTE GLASS SLEEP 7
BED NAP SNORE AWAKE SNOOZE TIRED SHARP CANDY WASTE GLASS SLEEP 6
BED NAP SNORE AWAKE SNOOZE STOP SHARP CANDY WASTE GLASS SLEEP 5
BED NAP SNORE AWAKE BUMPY STOP SHARP CANDY WASTE GLASS SLEEP 4
BED NAP SNORE PIN BUMPY STOP SHARP CANDY WASTE GLASS SLEEP 3
BED NAP VALLEY PIN BUMPY STOP SHARP CANDY WASTE GLASS SLEEP 2
BED HILL VALLEY PIN BUMPY STOP SHARP CANDY WASTE GLASS SLEEP 1
FEAR HILL VALLEY PIN BUMPY STOP SHARP CANDY WASTE GLASS SLEEP 0

Appendix F. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jml.2024.104573.
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