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Transformer-based Multi-scale Reconstruction
Network for Defect Detection of Infrared Images

Changyun Wei, Hui Han, Zhichao Wu, Yu Xia, and Ze Ji*

Abstract—Bottle packaging is extensively used in manufactur-
ing, and inspecting aluminum foil sealing during filling is crucial
for ensuring product quality. Traditional Machine vision methods
based on supervised learning require extensive annotated data,
but the scarcity of defective samples hampers the effectiveness of
these methods. To address this challenge, unsupervised learning
methods have emerged. Despite their potential, these methods
often struggle to accurately learn the distribution of normal sam-
ples, resulting in higher rates of false positives and negatives. This
paper proposes an unsupervised learning-based approach for
anomaly detection in infrared images. Specifically, we construct
a Transformer-based multi-scale image reconstruction network
(TMIRN) that includes a feature extraction module, a feature
fusion module, a reconstruction module, a discriminator network,
and an anomaly scoring module. By effectively combining Trans-
former and CNN techniques, the proposed network excels at
capturing both global and local semantic information. Its multi-
scale structure accurately localizes defects of varying sizes and
combines image-level and feature-level anomaly scores to mitigate
the impact of non-uniform distribution and noise. Experimental
results on the infrared image dataset for aluminum foil sealing
demonstrate high accuracy in anomaly detection and localization.
Furthermore, on the industrial MVTec AD dataset, our TMIRN
exhibits superior generalization and detection compared to state-
of-the-art reconstruction networks.

Index Terms—Industrial defect detection, infrared images,
unsupervised learning, vision transformer.

I. INTRODUCTION

IN the field of manufacturing, bottle packaging has
widespread adoption across various industries including

food, pharmaceuticals, cosmetics, and others. A critical aspect
of bottle packaging involves the utilization of aluminum foil
sealing technology, which holds significant importance in
upholding product quality [1]. Factors such as temperature
variations and the quality of the aluminum foil sheets directly
influence the efficacy of the sealing process, thereby impacting
the overall quality of the final product. However, with the rapid
advancements in industrial automation, traditional inspection
methods reliant on sampling, such as the water pressure and air
pressure methods, fall short in meeting the requisites of fully
automated mass production lines used in filling operations.
Consequently, there exists an urgent necessity for a swift and
efficient method capable of identifying defects in aluminum
foil sealing.
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With the rapid development of computer and imaging
technology, machine vision inspection methods have become
widely utilized in industrial defect detection. These methods
offer non-invasive, efficient, safe, and reliable means of assess-
ment [2]. Infrared imaging technology, known for its afford-
ability, simplicity, and broad scanning range, is particularly
suitable for detecting internal defects in industrial products
like materials and machinery [3], [4]. Fig. 1 showcases the
infrared images of aluminum foil sealing in various cases.
From a machine vision perspective, the infrared images can be
used to identify sealing defects after the aluminum foil sealing
process.

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Infrared images in aluminum foil sealing. (a) normal, (b) no aluminum
foil, (c) unsealed, (d) nicked, (e) reversed, (f) loose cap, (g) crooked cap.

The majority of conventional machine vision techniques
rely on extracting predefined artificial features from infrared
images or implementing threshold-based measures. These
methods include classical Principal Component Thermography
(PCT) and its extensions [5], [6], template matching, as
well as techniques such as wavelet integral alternating sparse
dictionary matrix decomposition [7], among others. While
these methods can efficiently detect defects under specific
conditions, they impose stringent demands on the operational
environment. Their effectiveness often hinges on the neces-
sity for targeted parameter adjustments, making them less
adaptable to diverse scenarios. Moreover, their generalizability
across varied conditions is limited. Additionally, employing
traditional methods necessitates a substantial reservoir of ex-
pert experience to yield reliable outcomes.

In recent years, the advancements in deep learning have
notably revolutionized image processing, allowing for the
acquisition of intricate semantic features from images with
enhanced robustness and generalizability [8]. This progress
has facilitated the integration of intelligent techniques into
industrial nondestructive testing based on infrared imaging.
Presently, deep learning methods utilized in industrial defect
detection are principally categorized into supervised and unsu-
pervised learning approaches. Within the domain of industrial
defect detection, supervised learning predominantly leverages



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2

convolutional neural networks such as YOLO, R-CNN, and
others to extract meaningful features from images [9], [10],
[11]. However, in authentic industrial settings, supervised
learning encounters the following inevitable limitations.

1) The continuous upgrading of industrial production lines
leads to the difficulty of obtaining defect samples.

2) The manual labeling of datasets incurs substantial labor
costs.

3) The collected defect samples may not comprehensively
cover all potential defect cases.

Hence, the adoption of unsupervised learning for anomaly
detection has garnered attention in defect detection processes.
Models trained solely on normal samples exhibit promise in
identifying and pinpointing defective instances within datasets.
To the best of our knowledge, anomaly detection models are
rarely developed to infrared image-based defect detection.

Presently, two primary approaches dominate anomaly de-
tection methodologies: image reconstruction-based and fea-
ture embedding-based methods. Image reconstruction-based
models, such as autoencoders and generative adversar-
ial networks (GANs), are trained on defect-free samples
to hinder the accurate reconstruction of defective sam-
ples [12], [13], [14], [15], [16], [17], [18], [19], [20]. When
an image with defects is input, the trained model recon-
structs the normal portions accurately but often fails to do
so for the anomalous portions, using pixel-by-pixel error as
the anomaly score. To enhance reconstruction quality, the
work [12] employs the structural similarity index (SSIM) [21]
as a loss function, and Samet et al. [15] present the Skip-
GANomaly network associated with skip connections inspired
by U-Net [22]. However, over-generalization can lead to a
decrease in detection accuracy due to the false reconstruction
of the anomalous features. Methods like memory storage [13]
and feature clustering [14] have been employed to address
this issue. Yang et al. [14] adopt feature clustering in the
MS-FCAE model to restrict spatial distribution, and Zavr-
tanik et al. [23] employ inpainting techniques to improve
local information reconstruction. Despite these advancements,
unstable local feature reconstruction and the neglect of deep
semantic features at the feature level still affect defect de-
tection accuracy. Additionally, these models are sensitive to
inhomogeneous backgrounds and noise in infrared images.

Feature embedding-based methods primarily use pre-trained
networks like ResNet18 and ResNet50 to extract general-
ized features from defect-free images. Techniques such as
normalized streaming, feature memory banks, and K-means
clustering are then used to model the normal distribution
of these features [24], [25], [26], [27], [28]. Anomalies are
identified by comparing extracted features with the normal
feature distribution. For instance, PaDiM [24] uses a pre-
trained ResNet to extract features and models their distribution
with a Gaussian distribution, calculating anomaly scores using
the Mahalanobis distance. PatchCore [26] uses features from
a pre-trained ResNet and builds a memory bank to calculate
anomaly scores through nearest neighbor search. However,
significant challenges arise in accurately extracting relevant
features using pre-trained models due to the category differ-

ences between industrial infrared images and natural images.
These disparities can lead to feature mismatches. To achieve
this, SimpleNet [28] combines synthetic and embedding-based
methods by employing a feature adapter to reduce domain
bias and introducing noise into the feature space to generate
anomalies, thereby producing in a more tightly bounded nor-
mal feature space. Moreover, the variable nature of contours
in infrared images complicates object localization, and CNN-
based networks struggle to capture global semantic features,
hindering precise segmentation for large or distant defects.

As an attention-based feature extraction network, the Trans-
former architecture, initially used in natural language process-
ing, has extended into computer vision. Dosovitskiy et al. [29]
introduce the Vision Transformer (ViT) for image classifica-
tion, showing robust learning across diverse datasets. Com-
pared to conventional CNNs, ViT excels at capturing extensive
global dependencies within images. However, Transformer-
based networks have limited applications in anomaly detec-
tion. Pirnay et al. [30] employ the Transformer module for
restoring masked image patches, focusing on normal image
reconstruction. Chen et al. [25] utilize a pre-trained ResNet18
for multi-scale fusion feature extraction, feeding these features
into the U-Transformer network for feature reconstruction
and defect detection based on reconstruction error. Similarly,
Tao et al. [31] use ViT for feature extraction, integrating
a hybrid structure of Transformer and pyramid architecture
with an anomaly estimation module for fine-grained defect
localization. While the Vision Transformer is popular in image
processing, it tends to prioritize global semantic information,
potentially overlooking local details during reconstruction.
Additionally, its high memory consumption and computational
cost pose practical challenges.

To address the aforementioned challenges, the paper pro-
poses a novel Transformer-based Multiscale Image Recon-
struction Network (TMIRN). The TMIRN consists of several
key modules: a multiscale Transformer feature extraction mod-
ule, a multiscale attention feature fusion module, a multiscale
Transformer reconstruction module, a discriminator network
and an anomaly score module. By adopting a GAN structure,
the model combines CNN and Transformer architectures for
encoding and decoding processes, incorporating an inductive
bias into the Transformer to effectively exploit both global and
local semantic information. Moreover, the model demonstrates
robust performance even with limited datasets. The approach
employs upsampling and convolutional structures to replace
traditional deconvolution layers, reducing reconstruction arti-
facts. To enable accurate defect localization at varying scales,
the model embraces a multi-scale design, integrating image-
level multi-scale anomaly scores with feature-level anomaly
scores. This strategy mitigates the impact of inhomogeneous
backgrounds and noise prevalent in infrared images. To fur-
ther enhance the network’s reconstruction capabilities, the
paper introduces a blend of skip connections and bottleneck
structures to effectively suppress anomalous features while
ensuring accurate reconstruction of normal images. The main
contributions of this paper are summarized as follows:

1) Introducing TMIRN with a GAN structure for unsuper-
vised learning, enhancing infrared image reconstruction
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and addressing sample scarcity and annotation costs in
aluminum foil sealing.

2) Developing multi-scale Transformer feature extraction
and reconstruction modules that leverage global and
local semantic information, enhancing model reconstruc-
tion capabilities.

3) Integrating image-level and feature-level multi-scale
anomaly scores for precise defect detection and localiza-
tion, achieving high precision on a self-collected infrared
image dataset and robust performance on the MVTec AD
dataset.

II. BACKGROUND

Aluminum foil sealing technology is a highly efficient
sealing method that operates on the principle of electro-
magnetic induction heating [32]. This technique involves the
sophisticated design of layered structures and is predominantly
utilized in the food, pharmaceutical, and cosmetic industries
to enhance the safety and shelf life of products. The core
component of this sealing process is the aluminum foil liner,
whose quality is crucial to the sealing performance. The
aluminum foil liner consists of several layers: a polymer layer,
an aluminum foil layer, a wax bond layer, and a pulp board, as
illustrated in Fig. 2. During the sealing process, the aluminum
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Fig. 2. Schematic diagram of the aluminum foil sealing technology.

foil liner is first embedded into the bottle cap, exposing
the aluminum foil layer. The cap is then screwed onto the
bottle. At this stage, the electromagnetic induction equipment
generates instant high heat on the aluminum foil layer, causing
the polymer and wax bond layers to melt. The polymer layer
bonds firmly with the container’s opening, while the wax
bond layer ensures that the aluminum foil layer separates
from the pulp board. Following the electromagnetic induction
sealing, the aluminum foil layer retains a high temperature,
conducting heat upwards. Due to the adhesive properties of
the polymer and the increased compressive force applied when
the cap is screwed on, the temperature at the bottle’s edge
is rapidly transmitted to the surface of the cap. As a result,
thermal imaging captured by an infrared camera shows a
continuous ring-shaped pattern. During the cooling process,
the polymer layer solidifies, forming a secure seal. This sealing
method effectively prevents the contents from leaking and
being exposed to moisture.

III. METHODS

The proposed network in this paper adopts the unsupervised
learning methodology, using only normal samples for training,
and it differs from the basic autoencoder architectures such as
AE-SSIM [12] and DRAEM [33]. To be specific, we enhance

the detail perception by combining transformer modules and
employing multiscale feature fusion. To address the com-
mon issue in reconstruction networks, the proposed Efficient
Channel Attention (ECA) module can suppress defect features
during information propagation. Additionally, the combination
of pixel-level and feature-level anomaly scores can effectively
mitigate noise impact during reconstruction, thereby improv-
ing the accuracy of anomaly detection and localization.

A. Main Structure of TMIRN

The core components of TMIRN include the multiscale
transformer feature extraction (MTFE) module, the multi-
scale attention feature fusion (MAFF) module, the multiscale
transformer decoder (MTD), a discriminator network, and
an anomaly score module. Together, the MTFE and MAFF
modules form the multiscale encoder within this framework.
The overall structure is shown in Fig. 3.

During the training phase, the enhanced multiscale images
Iin,x are fed into the MTFE module to extract local and global
semantic features. These features are then fused by the MAFF
module into a single representation Z. To enhance reconstruc-
tion details and improve information flow, Z is passed through
a bottleneck structure with skip connections before being input
into the MTD to reconstruct the corresponding multiscale
image Iout,x. To improve the quality and realism of the re-
constructed infrared images, a discriminator network, sharing
the same structure as the multiscale encoder, is incorporated to
work with the generator in adversarial training. This network
captures both global structures and fine details, enabling the
model to assess image granularity at multiple levels, thereby
improving the realism of the reconstructed images.

During the inference phase, residuals between the multiscale
inputs Iin,x and outputs Iout,x are computed to generate
residual maps. These maps are then fused and denoised to
create the image-level anomaly map Si. Meanwhile, features
from the intermediate layers of the encoder and decoder are
extracted, resized, and used to compute additional residuals.
These residuals are smoothed by the anomaly score smoothing
module, producing the feature-level anomaly map Sf . Finally,
the image-level and feature-level maps are combined to pro-
duce the overall anomaly score map S.

B. Multiscale Transformer Feature Extraction (MTFE)

To proficiently identify sealing defects across multiple
scales, the MTFE incorporates a diverse architecture, as de-
picted in Fig. 4. This structure is designed to address the
complexities of sealing defects, which can vary in size and
appearance across different scales. In order to extract varying
levels of feature information from input images at large,
medium, and small scales, the MTFE captures both global
contextual information and fine-grained details that are essen-
tial for accurate defect identification.

Specifically, the module integrates the Vision Transformer
to enhance the model’s emphasis on global contextual infor-
mation. This enables the network to understand the broader
context of the image, aiding in the detection of anomalies
spanning multiple scales. To preserve spatial details, edges,
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and fine-grained features during the feature extraction stage,
a residual convolution module is introduced before the Vision

Transformer module. This supplementary module facilitates
downsampling and local feature extraction, thereby improving

Random 

flipping and 

rotation

Resize

Multi-scale 

Input

Multi-scale 

Transformer 

Feature Extraction 

(MTFE)

Multi-scale 

Attention 

Feature Fusion

(MAFF)

3×224×224

3×112×112

3×56×56

512×7×7

ECA Block

Multi-scale 

Output

3×224×224

3×112×112

3×56×56Encoder
Generator

Discriminator

512×7×7

TMIRN

Fe Fd

Iin,x Iout,x

Z

Train

Test

Loss

Train

Test

Loss

LinearEncoder True/

False

Li

Ladv

Lf

Multi-scale 

Transformer 

Decoder

(MTD)

B
o

ttle N
eck

Training

3×224×224

3×112×112

3×56×56Iout,x

3×224×224

3×112×112

3×56×56Iin,x

Resize

S

Si

Sf
Feature Level

Image Level

Fe Fd

Resize

Abnormal 

score

Image Abnormal 

Score Fusion

Feature Abnormal 

Score Smoother

Generator

Inference

Normal

Abnormal

Fig. 3. The proposed TMIRN framework for defect detection and localization of infrared images. The generator includes an encoder, composed of the
Multiscale Transformer Feature Extraction (MTFE) module and the Multiscale Attention Feature Fusion (MAFF) module, and the Multiscale Transformer
Decoder (MTD). The discriminator shares the same structure as the encoder. The anomaly scoring module consists of both image-level and feature-level
components.

R
esN

et B
lo

ck

V
isio

n
 T

ran
sfo

rm
er B

lo
ck

R
esN

et B
lo

ck

V
isio

n
 T

ran
sfo

rm
er B

lo
ck

R
esN

et B
lo

ck

V
isio

n
 T

ran
sfo

rm
er B

lo
ck

R
esN

et B
lo

ck

V
isio

n
 T

ran
sfo

rm
er B

lo
ck

R
esN

et B
lo

ck

V
iT

 B
lo

ck

28×28 14×14 7×7

28×28 14×14 7×7

28×28 14×14 7×7

C
o
n
v

2
D

 3
×3

C
o
n
v

2
D

 3
×3

Conv2D 1×1

BatchNorm2D

LeakyReLu

BatchNorm2D

LeakyReLuBatchNorm2D

V
isio

n
 T

ran
sfo

rm
er

V
isio

n
 T

ran
sfo

rm
er

Multi-scale Transformer feature 

extraction module

Iin,x Zx

3×224×224

3×112×112

3×56×56

56×56

56×56112×112

Fig. 4. The structure of the Multiscale Transformer Feature Extraction (MTFE) module.



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 5

the model’s ability to discern subtle defects. Each layer of the
MTFE comprises a residual convolution module and a Vision
Transformer module. This structure, illustrated in Fig. 4, lever-
ages the strengths of both convolutional and transformer-based
architectures. The residual convolution module, consisting of
two 3 × 3 convolutions and a skip connection with a 1 × 1
convolution, helps in capturing detailed local features, while
the BatchNorm and LeakyReLU activations expedite model
convergence and enhance training stability.

Assume that we have the input feature map T ∈ RH×W×C ,
⌢

T = LR(Conv3×3(LR(Conv3×3(T ))) + Conv1×1(T )),
⌢

T ∈ R
H
2 ×W

2 ×2C , (1)

where LR(.) represents the LeakyRelu activation function, and
H , W , C denote the height, width and dimension of the
feature map, respectively. The number of output channels in
the convolutional layer is set to 2C.

The Vision Transformer module comprises two lightweight
transformers and a skip connection. The improved Vision
Transformer structure, inspired by PVTv2 [34], is depicted
in Fig. 5. This paper adopts a lightweight multi-head self-
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attention mechanism and an enhanced feed-forward structure
to effectively reduce the computational cost of the transformer.
The lightweight multi-head attention mechanism serves to
reduce computational overhead by employing downsampling
techniques on K and V using a k×k mean pooling operation
to obtain smaller features K ′ and V ′. This mechanism is
formulated as follows:

K ′ = AvgPool(K) ∈ R
n
k2 ×dk (2)

V ′ = AvgPool(V ) ∈ R
n
k2 ×dv (3)

LMSA = Softmax(
QK ′T
√
dk

)V ′, (4)

where Q,K ∈ Rn×dk , V ∈ Rn×dv , k denotes the kernel
size for mean pooling and n = H ×W means the number of
patches.

The output of the residual convolution module is ini-
tially mapped to sequence space before being fed into
the lightweight multi-head self-attention (LMSA) and feed-
forward network (FFD) for subsequent processing. This ap-
proach improves computational efficiency by using a 1 × 1
convolution instead of full connectivity, thereby reducing
complexity while maintaining effectiveness. Layer Norm and
skip connections are integrated to stabilize training and en-
hance gradient flow, contributing to the overall robustness and
performance of the model in anomaly detection tasks.

Zl
′ = LMSA(LN(Zl−1 + Epos)) + (Zl−1 + Epos) (5)

FFD = Conv(DWConv(Conv(X))) (6)

Zl = FFD(LN(Zl
′)) + Zl

′, (7)

where LN(.) indicates the layer normalization, Zl means the
embedding features of the l-th layer, and Epos as the positional
embedding is equal in dimension size to Zl−1.

The MTFE conducts feature extraction on input images of
various scales to obtain multiscale feature mappings of cor-
responding sizes. Specifically, if the input multiscale images
are represented as Iin,x (x=l,m, s), the resulting multiscale
features are denoted as Zx = {zx,low, zx,mid, zx,high}.

{zx,low, zx,mid, zx,high} = {fn,x(Iin,x), fn+1,x(Iin,x),

fn+2,x(Iin,x)}, x = l,m, s (8)

where fn,x(.) indicates the output of the n-th feature extraction
module.

C. Multiscale Attention Feature Fusion (MAFF)

As the multiscale feature mappings derived from MTFE
showcase notable disparities in spatial characteristics, semantic
information, and size, the MAFF module is utilized to execute
cross-scale fusion of this intricate information.

In order to enhance the feature representation capacity and
empower the model to concentrate on more pertinent channel
information during the fusion process while suppressing irrele-
vant feature channels, the ECA module is integrated within the
feature fusion module. A visual representation of this structure
is depicted in Fig. 6.
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Initially, the MTFE module generates multiscale features,
which are rearranged and concatenated to capture diverse
contextual information. This design enhances the model’s
ability to detect anomalies of varying sizes and complexities by
fusing local and global features effectively. The ECA module
assigns varying weights to channels based on their importance
in capturing relevant features. This adaptive channel weight-
ing mechanism improves anomaly detection performance by
focusing on discriminative features and reducing noise. The
structure of the ECA module is depicted in Fig. 6, where a
sequence of weights mirroring the dimensions of the features is
obtained through mean-pooling and one-dimensional convolu-
tional operations. This sequence of weights is multiplied with
the original features to obtain the channel-weighted feature
blocks. Subsequently, the feature blocks assigned with channel
weights are input into the feature fusion pyramid, and the
fusion of different semantic features is performed through
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downsampling and concatenation convolution operations to
obtain three different scales of fused features. The detailed
dimensions are listed in Table I.

TABLE I
THE FEATURE SIZES FOR MULTI-SCALE FUSION.

Feature maps Size
Low-level feature 128× 28× 28

Mid-level feature 256× 14× 14

High-level feature 512× 7× 7

The MTFE generates Zx = {zx,low, zx,mid, zx,high} repre-
senting multiscale features, while the MAFF module produces
Fout = {zlow, zmid, zhigh} indicating fusion features. The
CBL module, consisting of 1×1 convolution, BatchNorm, and
LeakyRelu, serves to reduce dimensionality, while the Down-
sample module, consisting of 3× 3 convolution, BatchNorm,
and LeakyRelu, performs downsampling of the features. The
overall calculation is presented as follows.

zlow = CBL(ECA(Concat(zx,low))) (9)

zmid = CBL(ECA(ECA(zx,mid)) + Down(zlow)) (10)

zhigh = CBL(ECA(Concat(zx,high)) + Down(zmid)), (11)

where Down(.) denotes the Downsample module, x = l,m, s,
and Concat(.) indicates the stitching operation.

D. Multi-scale Transformer Decoder (MTD)

The primary role of the MTD is to decode the encoded
feature vectors obtained from various layers, generating three
distinct scales of reconstructed images that match the size
of the original input image. To enhance the model’s overall
structure and its ability to reconstruct intricate details, each
layer of the decoder is intricately linked with both the Vision
Transformer module and the CNN up-sampling module, as
previously mentioned. The specific structure is depicted in
Fig. 7.
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The up-sampling module integrates a combination of bi-
linear interpolation and CNN techniques, departing from the
traditional inverse convolutional network approach. This novel
strategy is designed to effectively mitigate artifacts encoun-
tered during the image reconstruction process. Notably, the
final three layers of the MTD are dedicated to a CNN-
based dimensionality reduction branch, specifically tailored to

reconstruct the target images at varying scales. This design
choice enables efficient and accurate reconstruction of images
with diverse features and complexities.

E. Discriminator Networks, Bottleneck Structures, and Skip
Connections

The discriminator network shares the same basic structure
as the multiscale encoder, as depicted in Fig. 3. It includes a
multiscale transformer feature extraction module, a multiscale
feature fusion module, and a linear layer. The key role of
the discriminator network is to form a generative adversarial
network with the aforementioned generator module. This col-
laborative setup aims to elevate the quality and realism of the
reconstructed image. Fig. 8 illustrates the bottleneck structure
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Fig. 8. The architecture of bottleneck and skip connections.

along with the integrated skip connection. The bottleneck
structure initially transforms features into a one-dimensional
sequence by employing convolution and mean pooling oper-
ations. Subsequently, a compact fully connected self-encoder
disperses the feature information, aiming to diminish redun-
dancy and subdue atypical features. This process weakens
the network’s reconstruction ability to reconstruct anomalous
features. The skip connection, inspired by U-Net [22], estab-
lishes a link between the encoder and decoder, facilitating
the preservation of diverse levels of feature information and
retaining specific reconstruction details. However, we find
that an excessive number of skip connections can prompt the
network to reconstruct anomalies without improving detection
accuracy. Therefore, as depicted in Fig. 8, we have introduced
the ECA module and a simplified bottleneck structure into
the skip connections. This novel approach assigns weights to
feature channels, suppressing anomalous feature information.
The bottleneck structure compresses the feature dimension
by a factor of 1/4 via convolution before reinstating the
original feature dimension. Notably, skip connections are only
established between the lowest-level features.

F. Anomaly Score Module

The anomaly score map S consists of an image-level
anomaly score Si and a feature-level score Sf , S ∈ RH×W ,
as depicted in Fig. 3. The image-level anomaly score, denoted
as Si, is computed by applying weights to the Euclidean norm
between the multiscale input image Iin,x and the multiscale
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reconstructed image Iout,x at various scales, as indicated by
the following equation.

Si =
∑
x

λx∥Iin,x − Iout,x∥2, x = l,m, s, (12)

where x dignifies three distinct scales, λx represents the
corresponding weight, satisfying the condition

∑
x
λx = 1,

and ∥.∥2 denotes the Euclidean norm computed across the
channels.

The feature-level anomaly score, denoted as Sf , is derived
by computing the Euclidean norm of intermediate multiblock
features extracted from the encoder and decoder. Specifically,
the selected multiblock features, sized of 256 × 14 × 14,
128 × 28 × 28, and 64 × 56 × 56, are uniformly resized
to dimensions of 56 × 56 using linear interpolation. Due to
the potential discontinuity existing between different blocks
at the feature level, neighboring normal pixels may receive
higher anomaly scores. To mitigate this issue, an anomaly
score smoothing module is employed. This module executes
feature map smoothing through mean pooling utilizing three
distinct-sized kernels. Subsequently, the feature-level anomaly
scores are obtained by computing the mean after smoothing,
as illustrated in Fig. 9.

Sf = Up(Smooth(∥Fe − Fd∥2)), Sf ∈ RH×W (13)

,

S = Si ⊗ Sf , (14)

where Fe and Fd represent the feature maps after uniform
resizing, Smooth(.) means the smoothing process, and Up(.)
denotes the upsampling operation.

Abnormal 

Image

Score Map 

(before)

anomaly score 

smoothing module

Average 

Score Map

Ground 

Truth

Level 1

Level 2

Level 3

Fig. 9. The architecture of the anomaly score smoothing module.

G. Loss Functions

The core component of our proposed TMIRN is a GAN
comprising of a generator (G) and a discriminator (D).
Throughout the training process, specific measures are taken
to ensure model stability and prevent mode collapse. The
discriminator network’s loss function (LD) is optimized using
soft labels and gradient penalties, following the principles
outlined in the work [35]. Here, Iin,x represents the multiscale

input image, while Iout,x refers to the multiscale reconstructed
image. The explicit equations are outlined as follows.

LD =
1

2
(∥D(Iin,x)− 0.9∥2 + ∥D(Iout,x)− 0.1∥2)

+λ(∥∇x̂D(x̂)∥ − 1)2, (15)

x̂ = εIin,x + (1− ε)Iout,x, ε ∈ [0, 1] , (16)

where the values 0.9 and 0.1 represents the labels for true and
false samples, respectively. The constant coefficient for the
gradient penalization term, denoted by λ, is set at a specific
value, in this case, as 10. ∇x̂D(x̂) signifies the gradient of
the discriminator network to be computed.

The training loss of the generator G combines the content
loss with the adversarial loss(Ladv). Here, the content loss
includes the image reconstruction loss (Li) and the feature
reconstruction loss (Lf ). The former incorporates two distinct
loss functions: L2 loss and SSIM [21] loss. Meanwhile, the
feature reconstruction loss relies on the L2 loss, and can be
represented as follows.

Li =
∑
x

1− SSIM(Iin,x, Iout,x)

+
∑
x

∥Iin,x − Iout,x∥2, (17)

Lf = ∥Fe − Fd∥2, (18)

Ladv = ∥D(Iout,x)− 1∥2, (19)

LG = ω1Li + ω2Lf + ω3Ladv, (20)

where ω1, ω2, and ω3 denote the hyperparameters regulating
the effects of the three loss functions, which are empirically
set to 0.6, 0.3, and 0.1, respectively.

IV. EXPERIMENTS AND RESULTS

In this section, we will discuss the dataset, the evaluation
metrics, and the experimental setup. We will validate the
proposed approach by conducting comparison and ablation
experiments on the infrared image dataset for aluminum foil
sealing. Additionally, we will also demonstrate the general-
izability of the proposed approach by utilizing the publicly
accessible MVTec AD [36] dataset.

A. Datasets

This study focuses on the identification and localization of
defects occurring in aluminum foil seals within the context
of the bottling process. The experimental phase of this paper
utilizes a proprietary infrared image dataset specifically cre-
ated for the analysis of aluminum foil sealing. The dataset
is acquired from an authentic production setting, with the
procedural intricacies visually depicted in Fig. 10.

The infrared imaging process is facilitated by the online
thermal imager (MAG32MINI, Shanghai Magnity Technology
Co., Ltd., Shanghai), which continuously captures infrared
images through photoelectric signals, with a resolution of
384×288. To enhance detection efficiency, the sensing area
depicted in Fig. 10 is directly extracted in real-time during
the acquisition process by the industrial control all-in-one
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Fig. 10. The data acquisition process.

machine. The resultant dataset includes 400 training images
and 150 testing images. All 400 training images are normal,
collected in real-time from the production line. In the test set,
85 images exhibit defects and 65 are normal. Among the 85
defective images, only 9 are actual production defects, while
the rest are artificially created by damaging aluminum foils and
bottle caps. The defects span a spectrum including instances
such as absence of aluminum foil, misaligned or loosened
caps, notches, fractures, overheating, among others, with a
selection of representative images elucidated in Fig. 11.

A
b

n
o

rm
a

l 
Im

a
g

e

N
o

rm
a

l 
Im

a
g

e

Fig. 11. Selected infrared images for the aluminum foil sealing.

Additionally, this study also assesses the overall general-
izability of the proposed network by employing the MVTec
AD dataset [36], an established benchmark in the realm of
industrial anomaly detection. This dataset is comprised of 5354
high-resolution color images that encompass 5 diverse texture
types and 10 varied object types relevant to industrial settings.

Within this dataset, the training subset consists of approxi-
mately 200 unlabeled normal images, whereas the test subset
comprises a mixture of both normal and anomaly images,
featuring a total of 70 distinct industrial defects, including
instances such as staining, missing, and broken, among others.
These images have pixel sizes ranging between 700 and 1024.
A selection of these images is provided in Fig. 12.
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Fig. 12. Selected images from the MVTec AD dataset [36].

B. Evaluation Metrics

This paper adopts the area under the receiver operating
characteristic curve (AUROC) and the area under the per-
region-overlap curve (AUPRO) as primary evaluation metrics.
For anomaly detection, we employ image-level AUROC (I-
AUROC). For anomaly localization, we consider pixel-level

AUROC (P-AUROC) and AUPRO. The AUROC comprises
the True Positive Rate (TPR) and the False Positive Rate
(FPR), wherein its assessment of anomaly localization tends
to favor the detection of larger-area anomalies. Conversely,
The AUPRO assigns equal importance to anomalous regions
of varying sizes, thereby offering a more accurate assessment
of anomaly localization performance.

C. Implement Details

The proposed TMIRN model is implemented on a Python
3.8-based deep learning framework using PyTorch 2.0.0. All
experiments are conducted on a Windows system equipped
with a i9-12900H 2.50 GHz processor and an NVIDIA
GeForce GTX 3060 GPU graphics card. During the training
process, the model is trained solely on normal samples and
undergoes sample augmentation by randomly flipping and
rotating the image by 10 degrees, with an input image size
of 224× 224× 3. The model is trained for 200 epochs using
the Adam optimizer with a learning rate of 2e-4 and a Beta
parameter of (0.5,0.999). The detailed performance metrics
and resource requirements of the model are shown in Table II.
During testing, a mixture of normal and anomalous samples
is used as input for evaluation.

TABLE II
PERFORMANCE METRICS AND RESOURCE REQUIREMENTS OF THE

TMIRN MODEL.

Metric Model Size
(MB)

Maximum GPU Memory Usage
(GB)

Number of Parameters
(M)

Computational Cost
(GMac)

Result 301.88 4.97 84.9 7.91

D. Comparative Results

In order to evaluate the efficacy of the proposed frame-
work for detecting defects of infrared images, this study
conducts a comparative analysis against the state-of-the-art
methodologies. Given the limited availability of infrared im-
ages for defect detection in existing research, several un-
supervised learning methods suitable for anomaly detection
and localization on the MVTec AD dataset have been se-
lected for comparison. The selected methods include eight
baseline approaches: AnoGAN [17], f-AnoGAN [16], AE-
SSIM [12], Skip-GANomaly [15], DRAEM [33], InTra [30],
Patchcore [26], and RD++ [27] Methods.

The comparison experiments are conducted using three
evaluation metrics: I-AUROC, P-AUROC, and AUPRO, on the
infrared image dataset for aluminum foil sealing. Each model
has been trained five times, and the results are averaged for
robustness. A summary of the comparative results is presented
in Table III.

We can find that the proposed model in this paper demon-
strates a significant performance enhancement when applied
to the infrared image dataset for aluminum foil sealing,
outperforming the other eight baseline methods. In terms of
anomaly detection, our model surpasses the DRAEM network
by 0.85% and achieves a remarkable accuracy of 99.25%.
Concerning the anomaly localization task, the pixel-level AU-
ROC metric of our TMIRN achieves the highest segmentation
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Fig. 13. Evaluation of our proposed method on the infrared image dataset in comparison with AnoGAN [17], f-AnoGAN [16], AE-SSIM [12], Skip-
GANomaly [15], DRAEM [33], InTra [30], Patchcore [26], and RD++ [27].

TABLE III
RESULTS OF ANOMALY DETECTION AND LOCALIZATION ON THE

INFRARED IMAGE DATASET.

Model
Metrics Detection Localization

I-AUROC(%) P-AUROC(%) AUPRO(%)

AnoGAN 81.21±0.07 78.37±0.05 59.31±0.05

f-AnoGAN 92.92±0.06 92.02±0.04 74.16±0.04

AE-SSIM 97.90±0.05 91.83±0.06 77.90±0.06

Skip-GANomaly 79.33±0.06 92.52±0.07 72.41±0.04

DRAEM 98.40±0.07 72.17±0.05 71.29±0.07

InTra 88.72±0.05 82.63±0.07 74.54±0.09

Patchcore 91.83±0.03 88.71±0.04 75.85±0.05

RD++ 98.91±0.04 92.86±0.06 80.11±0.05

TMIRN(ours) 99.25±0.06 96.41±0.06 86.61±0.04

accuracy of 96.41%. Moreover, our model exhibits superior
performance compared to AE-SSIM, which holds the second-
highest accuracy, by 8.71% on the more strict AUPRO metric.
Moreover, Fig. 13 depicts the detailed results of anomaly
detection and localization for both the methods proposed in
this paper and the eight baseline methods. The figure includes
anomaly images displaying eight distinct scale defects, ground
truth images, anomaly segmentation heat maps obtained from
different networks, and anomaly score maps generated by the
networks proposed in this study. The results can clearly indi-
cate that our TMIRN exhibits superior accuracy in accurately
localizing the anomaly region for defects of varying scales and

shapes.
Based on the analysis of images (c), (e), and (f), it is clear

that image-level reconstruction networks such as AnoGAN and
f-AnoGAN tend to introduce a significant number of inter-
fering pixels. To address this issue, the method proposed in
this paper combines image-level anomaly scores with feature-
level anomaly scores to minimize the interference caused by
these pixels. Skip-GANomaly performs well in reconstructing
medium- and large-scale anomalous features, mainly due to
the excess of redundant information conveyed through multiple
skip connections. However, DRAEM struggles with segment-
ing large-scale features, particularly in types (b), (c), and
(h). InTra, which relies on patch-based anomaly localization,
shows noticeable boundary effects in its anomaly score map.
PatchCore, meanwhile, fails to accurately identify large-scale
defects that closely resemble the background, primarily due
to the patch-based approach’s lack of global semantic infor-
mation. Similarly, RD++ faces challenges in fully recognizing
large-scale defects. Therefore, we can claim that our method
outperforms the eight baseline methods when applied to the
infrared image dataset for aluminum foil sealing.

E. Ablation Study
In this subsection, we have conducted a series of abla-

tion experiments probing various facets of the proposed the
TMIRN framework, demonstrating its enhanced effectiveness.
We also provide a concise description of the methodology and
analytical procedures employed in this study.
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1) The Number of Skip Connections
In this paper, we implement feature information transfer by

establishing skip connections between the encoder and decoder
components at matching hierarchical levels. This augmentation
strategy supplies the model with finer-grained features for
image reconstruction. However, it is important to note that
an overabundance of transferred information may lead to a
decrease in detection accuracy due to the false reconstruction
of the anomalous features. Therefore, we empirically examine
the impact of the quantity of skip connections on the training
effectiveness of the model.

Fig. 14 shows the comparison of the detection accuracy of
the models with varying number of skip connections. The
incremental integration of skip connections, originating from
zero and progressing from the highest-level encoder feature, is
visually depicted in the accuracy curve. Notably, the utilization
of a singular skip connection demonstrates peak performance
across all three evaluation metrics. As the number of skip con-
nections increases, the model exhibits heightened proficiency
in reconstructing anomalous features, significantly impacting
the accuracy of image anomaly segmentation. Conversely, the
absence of skip connections impedes the reconstruction of
intricate image details, consequently leading to a notable de-
cline in image-level detection accuracy. Further insight into the
corresponding image reconstruction outcomes can be found in
Fig. 15.

Fig. 14. The impact of the quantity of skip connections on the model’s
performance. The number of skip connections refers to the total layers starting
from the deep features of the encoder that utilize skip connections.

2) Multi-scale Input and Feature Fusion Module
In this series of experiments, we investigate the impact of

the multi-scale input and multi-scale feature fusion module
on the efficacy of the proposed TMIRN. The experiments
assess the training outcomes of single-scale input (without
MAFF), multi-scale input (without MAFF), and multi-scale
input (with MAFF), respectively. The single-scale encoder
network consists of five layers, utilizing the residual block
and Vision Transformer block as the base modules, with
feature output sizes of 112, 56, 28, 14, and 7. A simple
direct fusion mode is employed in multi-scale input (without

(a)

(b)

0 1 2 3 4Input

Fig. 15. Alterations in image reconstruction are observable across varying
quantities of skip connections. The red boxed area corresponds to the intricate
reconstruction of image details, while the yellow boxed region represents the
reconstruction of anomalous regions.

MAFF). As shown in Fig. 3, features extracted from three
different sizes of images with a 7×7 output are concatenated
and fused using a simple convolution. Analysis of the results
are presented in Fig. 16 and Table IV. As shown in Table IV,

Fig. 16. Content loss of different scale inputs and feature fusion in the training
process.

TABLE IV
DEFECT DETECTION AND LOCALIZATION RESULTS WITH DIFFERENT

SCALE INPUTS AND FEATURE FUSION.

Methods
Metrics Detection Localization Runtime

(ms)I-AUROC(%) P-AUROC(%) AUPRO(%)

Single-scale input 98.12 92.31 81.22 21.3

Multi-scale input (without MAFF) 99.21 95.17 84.96 27.9
Multi-scale input (with MAFF) 99.25 96.41 86.61 29.1

multi-scale inputs significantly enhance detection accuracy by
enabling the model to focus on features at different scales. The
MAFF module further improves performance by effectively
integrating essential feature information, resulting in optimal
detection outcomes. The comparison between single-scale
input, multi-scale input (without MAFF), and multi-scale input
(with MAFF) highlights the advantages of the MAFF module.
Specifically, the I-AUROC improves by 1.13%, and the P-
AUROC improves by 4.10%. These results demonstrate the
MAFF module’s effectiveness in handling multi-scale features,
capturing complex characteristics, and enhancing the model’s
performance in detection and localization tasks. The addition
of the MAFF module results in only a 1ms increase in runtime,
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TABLE V
DEFECT DETECTION AND LOCALIZATION RESULTS FOR DIFFERENT

FEATURE EXTRACTION MODULES.

Residual
Convolution

Vision
Transformer

Detection Localization Runtime
(ms)I-AUROC(%) P-AUROC(%) AUPRO(%)

97.44 93.28 82.63 19.4
✓ 98.25 94.11 83.74 20.0

✓ 99.01 96.07 85.98 27.7
✓ ✓ 99.25 96.41 86.61 29.1

while the overall increase for multi-scale inputs compared
to single-scale inputs is approximately 7ms. The runtime for
single-scale input is 21.3ms, whereas for multi-scale input
(without MAFF) and multi-scale input (with MAFF), the
runtimes are 27.9ms and 29.1ms, respectively. This slight
increase in time is acceptable in industrial applications given
the significant performance gains.

Overall, the combination of multi-scale inputs and the
MAFF module not only enhances detection accuracy but
also improves feature extraction efficiency, making it highly
effective for practical applications.

3) Feature Extraction Module in MTFE
To enhance the model’s ability to capture global contextual

information and accurately identify critical fine-grained de-
fects, this paper integrates residual convolution blocks with the
Vision Transformer within the MTFE module. This specific ar-
chitecture aims to leverage the strengths of both convolutional
and transformer frameworks. To validate the effectiveness of
this module, we have also conducted detailed experimental
analyses.

As shown in Table V, the full MTFE module, which in-
cludes both residual convolution and Vision Transformer mod-
ules, achieves the highest performance, with an I-AUROC of
99.25% and an AUPRO of 86.61%. The residual convolution
module improves the performance to an I-AUROC of 98.25%
and an AUPRO of 83.74%, while the Vision Transformer alone
reaches an I-AUROC of 99.01% and an AUPRO of 85.98%.
The improvements indicate that residual convolutions capture
fine-grained details, while the Vision Transformer enhances
global context, and their combination effectively boosts defect
detection and localization. Despite a slight increase in runtime,
the accuracy gains justify this inclusion.

4) Abnormal Score Module
The model presented in this paper conducts defect detection

and segmentation via anomaly scores, employing a module
that combines image-level anomaly scores and feature-level
anomaly scores while applying feature-level anomaly score
smoothing. In this experiment, we validate the effectiveness
of the anomaly score module by comparing the detection
accuracy of various anomaly scores. The results, detailed in
Table VI, demonstrate that the combination of image-level
anomaly scores and pixel-level anomaly scores outperforms
the individual use of these scores in terms of accuracy.
Deriving image-level anomaly scores directly from pixel space
differentials restricts their capacity to filter out noise produced
during the reconstruction process. Conversely, feature-level
anomaly scores prioritize abnormal regions but sacrifice de-
tailed information.

Moreover, the incorporation of the smoothing module am-
plifies the overall impact of feature-level anomaly scores. This
optimization effect is notably illustrated in Fig. 17, where
the anomaly score module described this paper effectively
mitigates erroneous pixels resulting from image detail recon-
struction, concurrently enhancing the clarity of feature-level
anomaly scores at the fuzzy boundaries.

TABLE VI
DETECTION AND LOCALIZATION RESULTS OF DIFFERENT ANOMALY

SCORING METHODS.

Methods
Metrics Detection Localization

I-AUROC(%) P-AUROC(%) AUPRO(%)

Image-level 98.51 94.63 81.76
Feature-level 98.01 94.90 81.97

Feature-level + smoothing 99.03 95.50 83.95
Image-level + smoothed feature-level 99.25 96.41 86.61

(a) (b) (c) (d) (e) (f)

Fig. 17. Plot of anomaly scores for different methods: (a) the anomalous
image, (b) the ground truth, (c) the image-level, (d) the feature-level, (e) the
smoothed feature-level, and (f) the combination of the image-level and the
smoothed feature-level.

5) Soft Labelling and Gradient Penalties
The adversarial loss function of the discriminator in the

generative adversarial network incorporates soft labels and
gradient penalties. This subsection focuses on empirically
verifying their impact on the model’s stability during adver-
sarial training. As depicted in Fig. 18, the adversarial loss
curves of the generator and discriminator reveal significant
insights. When employing conventional training labels (0, 1),
the discriminator’s loss rapidly converges to 0, leading to an
imbalance in generator training and a common issue known as
model collapse with GAN training. Replacing these labels with
soft labels (0.1, 0.9) prevents the discriminator from quickly
converging to critical levels, thus effectively mitigating pattern
collapse. However, the training process remains unstable in
terms of adversarial loss, making it challenging to achieve
convergence. The introduction of the gradient penalty intro-
duces a gradual convergence of the training loss following
a transient disturbance, ultimately leading to the attainment
of the Nash equilibrium state. This observation highlights the
effectiveness of the gradient penalty in fostering stability and
facilitating convergence in the adversarial training process.

F. Generalizability Testing on The MVTec AD

In this experiment, we assess the generalizability of the
anomaly detection and localization performance of the pro-
posed TMIRN model using the MVTec AD [36], a comprehen-
sive industrial dataset comprising 5 texture types and 10 object
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(a) (0, 1) labeling. (b) (0.1, 0.9) Soft labeling. (c) Soft labeling and gradient penalties.

Fig. 18. Adversarial losses of different methods.

categories. The primary objective is to validate the model’s
general applicability as proposed in this paper. We compare the
results with three other image reconstruction-based networks,
AE-SSIM [12], GANomaly [18], and AnoViT [37]. The results
in Table VII clearly demonstrate that our TMIRN outperforms
the other three models in terms of overall anomaly detection
and localization. The TMIRN model consistently outperforms
across most categories, confirming its strong generalizability.
However, it’s worth noting that our TMIRN exhibits slightly
reduced effectiveness in detecting anomalies within complex
texture categories. Fig. 19 visually illustrates the results of the
TMIRN’s anomaly localization for all categories in the MVTec
AD dataset, showcasing its adaptability in detecting various
defect types of varying scales and complexities.

TABLE VII
ANOMALY DETECTION AND LOCALIZATION RESULTS ON THE MVTEC

AD [36] IN COMPARISON WITH AE-SSIM [12], GANOMALY [18] AND
ANOVIT [37], IN TERMS OF THE EVALUATION METRICS OF IMAGE-LEVEL

AUROC (%) / PIXEL-LEVEL AUROC (%).

Class/Model AE-SSIM GANomaly AnoViT TMIRN

Carpet 87.01/64.73 84.23/55.02 50.01/65.07 86.12/89.87
Grid 94.02/84.91 74.32/80.07 52.05/83.00 97.71/94.85

Leather 78.07/56.15 79.21/77.07 85.05/89.02 95.62/97.04
Tile 59.09/47.55 79.54/69.05 89.07/57.02 87.89/86.51

Wood 73.02/60.34 65.33/91.01 95.05/85.07 96.47/90.91
Bottle 93.06/83.47 89.21/82.02 83.02/86.06 99.41/97.04
Cable 82.02/47.81 73.25/83.07 74.01/89.06 92.99/94.10

Capsule 94.05/86.04 70.81/72.07 73.06/91.05 93.21/96.64
Hazelnut 97.01/91.67 79.44/86.05 88.01/94.05 98.07/99.09
Metal nut 89.08/60.35 74.57/69.01 86.09/88.05 92.12/94.50

Pill 91.05/83.01 75.77/76.06 72.01/86.03 91.05/95.63
Screw 96.05/88.79 69.98/72.04 100.00/92.07 99.06/97.82

Toothbrush 92.01/78.45 70.01/82.03 74.07/90.08 99.20/98.91
Transistor 90.02/72.50 74.63/79.04 83.07/80.01 92.72/94.10

Zipper 88.07/66.58 83.47/84.06 73.05/76.05 91.31/97.07

Average 86.93/69.41 76.24/77.12 78.56/83.41 94.20/94.94

V. CONCLUSIONS AND FUTURE WORK

In the domain of industrial infrared image anomaly detec-
tion, the challenges such as non-uniform backgrounds, noise
interference, and the absence of detailed semantic feature

information impede the efficacy of image reconstruction-
based models. Similarly, anomaly detection methods relying
on feature embedding may encounter issues related to cat-
egory bias, while the dynamic contours present in infrared
images pose difficulties in ensuring consistent object local-
ization. Addressing these challenges, this paper introduces a
novel approach called Transformer-based multi-scale image
reconstruction network (TMIRN), designed specifically for
the infrared images of aluminum foil sealing. The proposed
TMIRN innovatively combines elements from generative ad-
versarial networks, incorporating both CNN and Transformer
architectures to leverage both global and local semantic in-
formation effectively. To improve defect localization across
varying scales, the model adopts a multi-scale framework that
merges image-level multi-scale anomaly scores with feature-
level scores. This integration aims to diminish the influence
of background noise prevalent in infrared images.

Experimental results demonstrate the superior accuracy of
our TMIRN in both detection and localization on a proprietary
dataset. The validation of TMIRN’s generalization on the
MVTec AD dataset and its superior performance compared
to other image reconstruction networks highlight its potential
impact on the broader industrial anomaly detection field. Its
ability to achieve real-time detection, with a remarkable speed
of 0.029 seconds per image, is particularly noteworthy as it
meets the critical real-time requirements essential for industrial
applications. This capability positions TMIRN as a promising
solution for scenarios where immediate anomaly detection is
crucial, such as in manufacturing processes or quality control
environments.

However, despite these strengths, our TMIRN still faces
challenges in handling complex textures like Carpet and Tile
within the MVTec AD dataset. This limitation is attributed
to the trade-off between suppressing defect reconstruction
and accurately capturing intricate texture details. Improving
TMIRN’s ability to reconstruct heterogeneous texture features
effectively will not only enhance its performance on specific
datasets but also contribute to advancing anomaly detection
techniques for diverse industrial applications.

In future studies, we will explore potential distributions
for normal samples and investigate feature clustering method-
ologies to augment the TMIRN’s capacity. The objective is
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Fig. 19. Heatmap of the anomaly scores of the proposed TMIRN model on the MVTec AD [36] dataset.

to enhance its ability to reconstruct intricate textures while
maintaining anomaly detection accuracy, thereby broadening
its applicability across various industrial settings. Moreover, in
practical industrial implementations, the neural network-based
framework demonstrates efficacy but demands considerable
computational resources and memory allocation. Our future
work will also focus on model compression techniques. The
objective is to sustain operational efficiency while adhering to
existing resource constraints and computational prerequisites.
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