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c AtkinsRéalis, The Hub, 500 Park Avenue, Aztec West, Bristol BS32 4RZ, UK
d School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
e UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
f School of Humanities, Social Sciences and Law, University of Dundee, Nethergate, Dundee DD1 4HN, UK
g UNESCO Centre for Water Law, Policy and Science, University of Dundee, Perth Road, Dundee DD1 4HN, UK

H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Measurement timing and frequency
influenced water quality data
interpretation.

• Four-hourly monitoring was the lowest
frequency that captured data variation.

• Diurnal data patterns alter the median,
response to extreme weather alters the
range.

• Sampling at specific times of day can
introduce bias, due to intra-daily
variation.

• Identify catchment characteristics and
required data resolution for optimised
monitoring
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A B S T R A C T

Water quality monitoring at high temporal frequency provides a detailed picture of environmental stressors and
ecosystem response, which is essential to protect and restore lake and river health. An effective monitoring
network requires knowledge on optimal monitoring frequency and data variability. Here, high-frequency
hydrochemical datasets (dissolved oxygen, pH, electrical conductivity, turbidity, water temperature, total
reactive phosphorus, total phosphorus and nitrate) from six UK catchments were analysed to 1) understand the
lowest measurement frequency needed to fully capture the variation in the datasets; and 2) investigate bias
caused by sampling at different times of the day. The study found that reducing the measurement frequency
increasingly changed the interpretation of the data by altering the calculated median and data range. From 45
individual parameter-catchment combinations (six to eight parameters in six catchments), four-hourly data
captured most of the hourly range (>90 %) for 37 combinations, whilst 41 had limited impact on the median
(<0.5 % change). Twelve-hourly and daily data captured >90 % of the range with limited impact on the median
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in approximately half of the combinations, whereas weekly and monthly data captured this in <6 combinations.
Generally, reducing sampling frequency had most impact on the median for parameters showing strong diurnal
cycles, whilst parameters showing rapid responses to extreme flow conditions had most impact on the range.
Diurnal cycles resulted in year-round intra-daily variation in most of the parameters, apart from nutrient con-
centrations, where daily variation depended on both seasonal flow patterns and anthropogenic influences. To
design an optimised monitoring programme, key catchment characteristics and required data resolution for the
monitoring purpose should be considered. Ideally a pilot study with high-frequency monitoring, at least four-
hourly, should be used to determine the minimum frequency regime needed to capture temporal behaviours
in the intended focus water quality parameters by revealing their biogeochemical response patterns.

1. Introduction

Water quality monitoring programmes must strike a balance be-
tween resource efficiency (cost) and representation of changes in water
conditions required to fulfil the monitoring purpose. Traditional water
quality sampling relies on periodic sample collection and subsequent
laboratory analysis but such manual sampling regimes cannot capture
all events, and indeed biases in data can be caused by changing day and
time of the week (Johnes, 2007; Skeffington et al., 2015), weather
conditions (Rand et al., 2022) and extreme high or low flow conditions
(Lloyd et al., 2015). Rand et al. (2022) compared manual and automated
sensor data from the Belgrade Lakes, USA, where they found that
manual lake sampling showed a significant likelihood to take place
during “fair weather”, with lower windspeeds and rainfall intensity and
higher air temperature than the mean. Infrequent manual sampling of
water chemistry, which most likely occurs during standard working
hours at regular intervals (weekly, monthly etc.), can bias the calcula-
tion of annual average concentration, annual nutrient load and envi-
ronmental quality standards (Cassidy and Jordan, 2011; Halliday et al.,
2015; Johnes, 2007; Jordan et al., 2007; Skeffington et al., 2015).
Extreme high or low flow conditions are important for nutrient trans-
port; they can contribute to most of the total nutrient load in rivers with
a flashy hydrology (Cassidy and Jordan, 2011). These conditions are
often short-lived, only occur infrequently (Johnes, 2007; Lloyd et al.,
2014) and will not be captured fully by infrequent manual sampling.
High flows can promote transport of sediment-bound nutrient fractions
from land to water or via in-channel remobilisation, whilst low flow
conditions are dominated by nutrient inputs from sewage effluent, due
to low dilution capacity (Halliday et al., 2015), as well as nutrient de-
livery along throughflow pathways including from waterlogged soils
when there is drizzle (Collins et al., 2010; Durand et al., 2011; Evans and
Johnes, 2004; Lloyd et al., 2014; Yates and Johnes, 2013). Thus, sam-
pling regimes that capture such conditions are critical to reflect nutrient
transport processes and estimate nutrient loads accurately.

Advances in in situ sensing technologies have the potential to reduce
bias associated with sampling periodicity. Continuous or high temporal
resolution hydrochemical sampling therefore can enable an enhanced
understanding of catchment processes (Bieroza et al., 2023; Blaen et al.,
2017; Bowes et al., 2015b; Kirchner et al., 2004; Lloyd et al., 2015; Rode
et al., 2016). This is especially relevant for transient events and short-
term biogeochemical dynamics, including diurnal or other cyclic pat-
terns that are closely linked to hydrological and biological processes
(Khalil and Ouarda, 2009) such as pollutant load estimates (Johnes,
2007) and response to storm events (Chappell et al., 2017; Jordan et al.,
2007), as they are based on representative measured concentrations and
the discharge rate. In the UK, increased interest in high-resolution water
quality monitoring is partly driven by the recent implementation (April
2023) of Section 82 of the Environment Act 2021, which requires water
companies to deploy continuous water quality monitoring up and down
stream of all sewage effluent discharges to a water course (DEFRA, 2023;
Hanson, 2023). Simultaneously, drinking water production is moving
towards smart catchment monitoring and management with high-
resolution sensor technologies in source waters; for example for
anoxia (Wentzky et al., 2019), iron and manganese concentrations

(Hammond et al., 2023) and algal bloom related issues (Carey et al.,
2021; Painter et al., 2023; Zamyadi et al., 2016).

An important consideration in monitoring, however, is that more
data are not always better (Coraggio et al., 2022). The optimal sampling
regime must balance the minimum frequency needed to capture fluc-
tuations, particularly in flashy streams, and the maximum frequency
that can be collected sustainably (considering power demands and data
costs) without returning redundant information and increasing potential
noise in the data that masks the information required (Coraggio et al.,
2022; Khalil and Ouarda, 2009). The objectives of the monitoring
network, for example meeting certain environmental quality standards,
detecting sources of pollution or measuring a change before or after a
mitigation, will determine the required data analysis, which in turn sets
requirements for the temporal resolution of the data. Determining the
temporal frequency of measurement is not a static process. Measurement
intervals can be optimised over time or in response to external stressors
(Coraggio et al., 2022), for example adaptive monitoring (Blaen et al.,
2016) aims to optimise the intervals in real-time when a threshold is
met, like an extreme event. This study provides a systematic assessment
of high resolution hydrochemical data from six different UK catchments
to: 1) understand the lowest measurement frequency that can fully
capture variation in different parameters; and 2) investigate bias
induced by manual sampling at different times of the day.

2. Materials and methods

2.1. Catchment characteristics

High-frequency water quality data were collected at least every hour
using in situ sensors, in six different UK rivers (Fig. 1): the Wylye
(Hampshire Avon catchment), Enborne (Kennet catchment), Blackwater
drain (Wensum catchment), Thames (Thames catchment), Hiraethlyn
(Conwy catchment) and Newby Beck (Eden catchment).

The monitoring stations in the Hampshire Avon (Lloyd et al., 2015;
Lloyd et al., 2019; Outram et al., 2014), Wensum (Cooper et al., 2018;
Outram et al., 2014) and Eden (Outram et al., 2014; Owen et al., 2012;
Perks et al., 2015) catchments were part of the DEFRA funded Demon-
stration Test Catchments (DTC). The Enborne monitoring station was
part of the LIMPIDS programme and UKCEH Thames Initiative (Bowes
et al., 2018; Bowes et al., 2015a; Halliday et al., 2014; Wade et al., 2012)
and the Conwy catchment was monitored as part of the DOMAINE
programme (supplied by Chris Yates and Penny Johnes, University of
Bristol, Bristol, UK; underpinning data set as referenced by Mackay et al.
(2020) and Yates et al. (2023)). The Thames monitoring station at
Goring-on-Thames was part of UKCEH Thames Initiative monitoring
(unpublished data, supplied by Mike Bowes, UK Centre for Ecology &
Hydrology, Wallingford, UK, and the UK Environment Agency; refer-
enced in Rode et al. (2016) and Moorhouse et al. (2018)). The studied
catchments cover a wide range of catchment characteristics related to
geology and climate, like the base flow index (BFI) and mean flow
(Table 1). Moreover, they vary significantly from 13 to 4634 km2 in
area, and there is a marked difference in land use (Table 1). Further
details about the catchments can be found in the papers referenced in
Table 1. The list of monitored parameters varied slightly per site, but all
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included temperature, water level or discharge, pH, electrical conduc-
tivity (EC), dissolved oxygen (DO), turbidity, chlorophyll-a (Chl-a), ni-
trate (as N) and total reactive phosphorus (TRP). At some sites, total
phosphorus (TP) and ammonium (as N) were also measured. Full details
of all equipment and sampling regimes, including monitoring frequency
(Table S1 in Supplementary materials), as well as details on required
data conversions can be found in the Supplementary materials.

2.2. Analysis

2.2.1. Data manipulation – artificial decimation
At each site, the sensors logged data at time intervals ranging from

15 min to 1 h (Table S1). The high-resolution datasets were sub-sampled
at predefined intervals to create a subset of smaller datasets. This arti-
ficial decimation (Johnes, 2007) process was executed in two different
ways, to test a) the influence of reduced sampling frequency on median
and range, and b) the influence of intra-daily variation. Methods are
described below:

2.2.2. Temporal frequency effects (a)
Some data in this study were collected every 15-min, but for con-

sistency the lowest available frequency in all catchments was used for
this comparison, which was hourly data. Artificial decimation was used
to create one version of an hourly (every day at every whole hour), four-
hourly (every day at 00:00, 04:00, 08:00, 12:00, 16:00 and 20:00),
twelve-hourly (every day at 00:00 and 12:00), daily (every day at 12:00),
weekly (every Wednesday at 12:00), and monthly dataset (every second
week of the month, onWednesday at 12:00). Artificially created datasets
with four-hourly, twelve-hourly, daily, weekly, and monthly data were
compared to the hourly data, to assess the influence of a reduced fre-
quency on the percentage of the total hourly range captured in the data
set and the percentage change in the median.

Percentage of the total range captured was calculated for each
parameter accordingly (Eq. (1)):

MAX(x) − MIN(x)
MAX(hourly) − MIN(hourly)

*100 (1)

where x is the artificially created datasets e.g. four-hourly, twelve-
hourly, daily, weekly and monthly data. Parameter behaviour is deter-
mined by the median, 25 % and 75 % interval and data distribution,
which can be visualised by the width of a violin boxplot (the width of the
boxplot depends on the number of datapoints at each value).

Percentage change in the median was calculated for each parameter
accordingly (Eq. (2)):

Median (x) − Median (hourly)
Median (hourly)

*100 (2)

where x is the artificially created datasets e.g. four-hourly, twelve-
hourly, daily, weekly and monthly data.

2.2.3. Intra-daily variation (b)
Artificial decimation was repeated for multiple initial conditions to

create different versions of a daily dataset (Halliday et al., 2015; Johnes,
2007); Daily with different times of the day: every day at 00:00, 04:00,
08:00, 12:00, 16:00, 20:00, resulting in six different daily datasets.

To determine intra-daily variation, for each of these timeframes a
new dataset was created which included the median for each day. The
difference between the median and the corresponding datapoints in the
six artificially decimated daily datasets was calculated and compiled in
one dataset (Fig. 2). For example, the intra-daily variation data consisted
of a calculated difference for each of the six times of day (00:00, 04:00,
08:00, 12:00, 16:00, 20:00) for every day in the multi-year dataset. The
outcome was tested for significant differences using Kruskall-Wallis
analysis of variance and Dunn's post-hoc test (Rstudio version
2023.06.2 + 561, R version 4.2.1 (2022-06-23 ucrt)). Each dataset was
then banded by significance, with data that showed no significant dif-
ferences grouped together (denoted by the same colour). Variation for
the multi-year datasets was plotted as boxplots (with significant outliers
removed to enable better visualization on the y-axis).

Fig. 1. Catchments in the UK that were used for this study.
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3. Results

3.1. Seasonality

Variation in all parameters recorded in the full datasets from each
site prior to artificial decimation (Fig. 3) indicated a considerable tem-
poral and spatial difference in range, median as well as 25 % and 75 %
interval. The seasonal effect depended on the catchment and varied by
parameter (Fig. 3). Median nitrate, total phosphorus and total reactive
phosphorus concentrations calculated per month (in multi-year data-
sets) highlight important biogeochemical processes and dominant
transport mechanisms that occur throughout the year, which are
catchment dependent (Fig. S2 in Supplementary materials).

3.2. Temporal frequency effects

Reducing the temporal frequency had a different impact on the
captured range (Table 2), median (Table 2) and data distribution (his-
togram; the width of the violin boxplot visualises the number of data-
points at that value, Fig. S3 in Supplementary materials), depending on
the parameter and catchment. Reduced frequency showed the largest
percentage change in median for turbidity, dissolved oxygen, tempera-
ture, TP and TRP, and had the largest overall impact on total range of
turbidity captured (Table 2), but there are many nuances dependent on
the catchment. Monthly frequency impacted dissolved oxygen concen-
trations in the Wylye and turbidity in Blackwater Drain, changing the
median by >13 % whilst capturing 53 % and 8 % of total range,
respectively (Table 2). In general, reducing frequency had the least

impact on median and range for nitrate and electrical conductivity,
followed by dissolved oxygen, temperature, and pH, although this was
largely catchment dependent. Reducing to monthly frequency had a
relatively small impact on nitrate concentration observations in Newby
Beck and electrical conductivity in the Hiraethlyn, where the median
changed by <2 % whilst 88 % and 90 % of the total range was recorded,
respectively (Table 2).

The percentage of the total range captured and percentage change in
the median were not always similarly affected by a reduction in fre-
quency. For example, daily data for dissolved oxygen in the Wylye
almost captured the total range of the hourly data variation (99 %) but
had a large impact (>10 % change) on the calculated median (Table 2).
The opposite pattern, with a large impact on total range captured and
relatively small impact on median, was also present in some catchments
(Table 2), for example in weekly observations of EC in Blackwater Drain
(28 % of total range captured, 0 % change in median).

In the six catchments, the change in median for turbidity was most
consistent, decreasing (negative) at monthly compared to hourly data,
but this was not the case for every temporal frequency studied (Table 2).
There was no consistent direction (increase or decrease) of change in the
median with reduced temporal frequency for any of the studied catch-
ments (Table 2).

Four-hourly data captured most of the parameter behaviour (Fig. S3,
Supplementary materials), as well as the percentage of total range
captured and percentage change in median compared to hourly data
(Table 2). From all 45 individual parameter-catchment combinations
(six to eight parameters in six catchments), four-hourly data captured
most of the hourly range (>90 %) for 37 combinations, and 41 had

Table 1
Catchment characteristics of the six UK catchments studied and the exact period of high-frequency monitoring.

River Hiraethlyn Enborne Wylye Thames Blackwater Drain Newby Beck

Catchment Conwy Kennet Hampshire Avon Thames Wensum Eden
Monitored location Bodnant Brimpton Brixton Deverill Goring-on-Thames Kiosk F - Park Farm Newby
Latitude 53.2260 51.3803 51.1600 51.5235 52.7771 54.5853
Longitude − 3.7990 − 1.1838 − 2.1901 − 1.1435 1.1491 − 2.6202
Size of catchment (km2) 20.5g 148.0 50.2 4633.7h 19.7 12.5b,e,j,k

Elevation of sampling point
(m a.s.l.)

11f 62 189a 30 43a 233i

Annual average rainfall
(mm)

1200f 810d 967d 680d 655a 1167a

Baseflow Index (BFI) 0.46f 0.54d 0.93a 0.64d 0.66c 0.39a

Mean flow (m3/s) 0.54l 1.06l 0.47l 23.0l 0.094c 0.33l

Dominant land use Improved
grasslandg

Arable and
grassland

Livestock and
cereals

Arable/horticulture, improved
grasslandh

Intensive arable
cultivation

Livestock (dairy and
meat)

% Urban 0.3g 6.5 7.0 7.3 1.0 2.0d

Land use distribution

Monitoring start date 19/06/2015 01/11/2009 13/03/2012 29/12/2013 08/03/2011 14/09/2011
Monitoring end date 30/09/2017 29/02/2012 05/03/2014 13/10/2015 31/12/2014 01/01/2016

Legend for land use distribution pie-charts:

a Robson and Reed (1999).
b https://www.landis.org.uk/soilscapes/ (accessed: 24/06/2021).
c Cooper et al. (2018).
d Marsh and Hannaford (2008).
e https://en-gb.topographic-map.com/maps/iu/United-Kingdom/ (accessed: 24/06/2021).
f Estimate based on Yates et al. (2023) and Marsh and Hannaford (2008).
g Yates et al. (2019a).
h Gauging station Thames at Reading https://nrfa.ceh.ac.uk/ (accessed: 24/06/2021).
i Outram et al. (2014).
j Lloyd et al. (2019).
k Bowes et al. (2015b).
l Calculated from dataset.
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limited impact on the median (<0.5 % change). The Wylye and Black-
water Drain four-hourly datasets captured 92%–100% of the total range
for all parameters in the hourly data, which is a higher overall range
captured than the other four catchments at four-hourly frequency
(Table 2). The Newby Beck four-hourly dataset captured 95–100 % of
the total range apart from for DO, where only 59 % was recorded
(Table 2). The other catchments captured >90 % for most parameters at
four-hourly measurement frequency, except for DO and nitrate at the
Hiraethlyn; turbidity and EC at the Enborne; and turbidity, TP and TRP
at the Thames (Table 2). Twelve-hourly and daily data represented >90
% of the range with limited impact on the median (<0.5 % change) in
approximately half of the combinations. Daily measurements captured
>90 % of total range for certain parameters; nitrate (4 of 6 catchments),
pH (3 of 6 catchments), EC (2 of 6 catchments) and DO (2 of 6 catch-
ments). Most parameters at weekly frequency did not cover >90 % of
total range, except for the pH and EC at the Hiraethlyn; EC and tem-
perature at the Thames; nitrate at the Blackwater Drain and nitrate at
Newby Beck (Table 2), which all had <1 % change in median. Monthly
data frequency resulted in generally low percentages of range captured
for all catchments, with some exceptions (Table 2). Monthly data from
the Hiraethlyn revealed the lowest percentage of range captured; 1 % of
the hourly range in turbidity, but also the highest percentage of range
captured; 90 % of the hourly range in EC (Table 2).

3.3. Intra-daily variation

Most parameters and catchments displayed significant differences in
variation between the six different times of day (denoted by differing

colour bands in Fig. 4).

3.3.1. Physico-chemical parameters
The intra-daily variation in water temperature can be used to inter-

rogate the patterns of significance shown, as this parameter has a pre-
dictable cyclic pattern throughout the day, with cooler temperatures at
night and warming throughout daylight hours. This physical process
persists throughout different seasons and is expected to reveal a strongly
significant intra-daily variation pattern for this multi-year analysis. The
variation is calculated as the parameter value at one of the six selected
times of day minus the parameter median of the whole day, collated for
each day in the dataset. The outcome plotted for the six selected times of
day allows a comparison of variation within a day (intra-daily).
Throughout the dataset there are cooler temperatures at night-time,
which result in a more negative variation value (for all days in the
dataset, the value at that time is lower than the daily median), and
warmer temperatures at daytime which cause a more positive variation
(higher values than the daily median) (Fig. 4). The variation for the
water temperature was significantly different for every time of day in
almost all catchments, which means the described pattern was consis-
tent throughout the whole dataset and all seasons (denoted by differing
colours in Fig. 4). Relative to the median temperature each day, 04:00 or
08:00 was the coldest and 16:00 was the warmest in every catchment.
The Thames had the smallest range in variation, followed by the
Enborne.

A cyclical day-night pattern for DO and pH was also visible in all
catchments, albeit more pronounced in some, such as the River Wylye
and Newby Beck (Fig. 4). In most of the catchments there was a strong

Fig. 2. Artificial decimation process to calculate intra-daily variation. Daily median and six new daily datasets from six selected times of day were created to
calculate intra-daily variation for the whole dataset.
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connection between DO and pH, where they both followed the same
day-night trend. However, in the Blackwater Drain and Hiraethlyn, DO
had maximum positive variation 4 h earlier than pH. Electrical con-
ductivity (EC) revealed a significant diurnal trend in most catchments,
apart from the Enborne and Thames. The variation in EC followed the
opposite trend of pH and DO in the Wylye and Newby Beck, DO in the
Hiraethlyn and pH in the Blackwater Drain. Intra-daily variation for

turbidity in the Enborne, Thames, Blackwater Drain and Newby Beck
showed significantly more positive variation at night and significantly
more negative variation during the day (Fig. 4), whilst the Hiraethlyn
and Wylye didn't show any trends.

3.3.2. Total reactive phosphorus, total phosphorus and nitrate
Intra-daily variation in nutrients revealed less clear significant

Fig. 3. Boxplots (without outliers) for water quality data from the six study catchments. Bl. Drain = Blackwater Drain. Seasons are defined as follows; spring: March,
April, May; summer: June, July, Augustus; autumn: September, October, November; winter: December, January, February.
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patterns than the physico-chemical parameters, and these patterns were
catchment dependent (Fig. 4). Nitrate had significant intra-daily varia-
tion in most catchments, apart from the Thames, with the clearest
diurnal cycle (most significant differences between the timesteps) in the
Blackwater Drain. There was a general trend towards more positive
variation (higher values compared to the median for each day) from
early morning until mid-day and more negative variation (lower values
compared to the daily median) from late afternoon until midnight
(Fig. 4), except for the Hiraethlyn in which this pattern seemed to be
reversed. Total reactive phosphorus (TRP) and total phosphorus (TP)
showed significant intra-daily variation in some catchments, but there

was often no clear diurnal trend. The Enborne showed the clearest
diurnal cycle in TRP with most positive variation in early morning and
most negative variation in the afternoon. Newby Beck and the Black-
water Drain had similar patterns for TRP and TP and revealed a general
tendency for more negative variation in the morning. TRP in the
Enborne and TP in the Blackwater Drain followed similar intra-daily
variation patterns to turbidity (Fig. 4).

Differences in intra-daily variation depending on the season will not
be visible in Fig. 4, as the datasets consisted of multiple whole years
which would even out any intra-daily variation pattern that only existed
seasonally. Examples for the Enborne and Newby Beck are presented

Table 2
Percentage of total range captured and percent median change, comparing reduced frequencies to hourly data. Reduced temporal frequency datasets were arti-
ficially created at: four-hourly, twelve-hourly, daily, weekly and monthly frequency. Fig. S3 violin boxplots visualise this data and the data distribution. Colours in
the percentage of total range table are added to clarify the trend, with a continuous green-yellow-red scale to indicate 100-50-0 percent of total range captured by
the reduced frequency datasets.

% Total range captured Median % change

River Parameter
4 Hourly 
(%)

12 Hourly 
(%)

Daily 
(%)

Weekly 
(%)

Monthly 
(%)

4 Hourly 
(%)

12 Hourly 
(%)

Daily 
(%)

Weekly 
(%)

Monthly 
(%)

Hiraethlyn

Temperature 100 88 82 74 62 0.00 -0.18 -0.18 -0.26 -0.62

DO (mg/L) 80 73 64 44 38 0.11 0.43 2.46 1.98 4.98

pH 94 94 94 92 54 -0.15 0.00 0.31 0.62 -0.77

EC 98 98 96 95 90 0.00 0.00 0.00 -0.73 -0.97

Turbidity 100 19 19 3 1 33.33 100.00 200.00 0.00 -33.33

NO3-N 82 80 79 59 36 0.00 0.31 -0.62 -2.15 0.31

TRP NA NA NA NA NA NA NA NA NA NA

TP NA NA NA NA NA NA NA NA NA NA

Enborne

Temperature 97 93 93 87 74 0.00 0.97 0.97 -4.85 -7.28

DO (mg/L) 99 81 80 74 65 0.06 2.02 5.03 9.74 10.60

pH 100 88 74 65 47 0.00 0.13 0.25 0.13 0.13

EC 83 83 75 52 48 0.00 0.00 0.63 0.95 0.95

Turbidity 83 48 48 8 6 0.85 1.69 -1.69 -6.78 -0.85

NO3-N 93 90 79 67 54 0.00 0.18 0.18 0.55 -0.36

TRP 97 85 80 80 53 0.61 0.00 -5.32 1.23 -9.20

TP NA NA NA NA NA NA NA NA NA NA

Wylye

Temperature 100 81 80 69 64 0.00 1.28 7.95 7.70 5.99

DO (mg/L) 99 99 99 88 53 0.00 1.49 10.55 10.18 14.38

pH 99 96 95 83 73 0.00 0.13 1.29 1.23 1.94

EC 98 85 85 58 11 0.00 0.00 -0.32 -0.16 0.32

Turbidity 100 52 51 33 3 0.00 -3.13 -9.38 -6.25 -12.50

NO3-N 95 95 95 55 17 -0.06 -0.05 0.12 -0.10 1.43

TRP 93 84 52 48 11 0.00 0.00 0.00 0.00 -3.92

TP 98 60 42 38 9 0.21 0.00 0.00 -0.22 -7.29

Thames

Temperature 99 97 97 95 78 0.07 0.07 0.59 0.63 3.97

DO (mg/L) 97 96 75 74 68 0.00 0.27 0.27 2.71 -2.58

pH 100 67 67 65 59 0.00 0.00 0.12 -0.12 -0.49

EC 100 96 94 94 84 0.00 -0.04 -0.03 -0.34 -0.94

Turbidity 68 68 68 12 12 -0.57 0.85 1.70 6.75 -12.00

NO3-N 99 99 99 39 31 0.00 -0.11 -0.11 -0.79 -0.07

TRP 87 85 82 82 71 0.00 1.46 1.46 1.46 -6.58

TP 71 69 66 59 48 0.00 0.00 1.88 1.61 -0.27

Blackwater 
Drain

Temperature 98 89 88 80 57 -0.19 0.84 6.00 2.44 3.61

DO (mg/L) 98 95 91 80 73 0.00 0.60 2.05 3.50 6.70

pH 98 77 77 55 41 0.00 0.00 0.26 0.26 0.26

EC 100 67 66 28 19 0.00 0.00 0.00 0.00 -0.13

Turbidity 100 89 89 15 8 0.00 -1.64 -9.84 -11.48 -13.11

NO3-N 99 98 98 90 39 0.00 0.21 0.64 0.64 4.06

TRP 92 89 87 29 18 0.00 0.00 0.00 0.00 0.00

TP 96 57 57 17 11 0.00 0.00 0.00 0.00 -12.50

Newby 
Beck

Temperature 99 89 87 85 71 -0.11 -0.21 0.96 0.53 0.85

DO (mg/L) 59 59 59 43 23 0.09 0.83 4.86 4.95 6.42

pH 97 92 92 87 73 0.00 0.12 0.87 1.00 1.06

EC 98 96 73 72 51 0.00 0.20 0.39 0.39 -0.99

Turbidity 100 100 100 36 11 0.00 0.00 -4.17 -6.25 -12.50

NO3-N 98 97 97 91 88 -0.11 0.11 0.11 0.44 -1.31

TRP 100 82 56 44 43 0.00 0.90 1.74 -0.41 1.74

TP 100 100 99 67 42 0.00 2.86 4.57 0.56 4.01
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Fig. 4. Intra-daily variation for all study catchments based on six versions of a daily dataset. Datapoints were selected from different times of day; 00:00, 04:00,
08:00, 12:00, 16:00, 20:00. Significance bands bar colours indicate for each individual plot (each catchment within each parameter) the significance between the six
different times of day from the Kruskall-Wallis analysis of variance and Dunn's post-hoc test; bars with the same colour are not significantly different from each other,
whilst different colours denote significant difference.
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here to show intra-daily variations by season (Fig. 5), whilst all other
results are visualised in Supplementary materials, Fig. S4. Nitrate and
TRP concentrations for the Enborne and Newby Beck, with intra-daily
variation separated by season (Fig. 5), illustrate the influence of sea-
son on intra-daily variation patterns in nutrients. Nitrate concentrations
in the Enborne didn't show an impact of season on intra-daily variation,
but Newby Beck had a much clearer diurnal cycle in spring, summer and
autumn compared to winter (Fig. 5). TRP concentrations in the Enborne
had clear diurnal cycle in spring, summer, and autumn but not in winter,
whereas Newby Beck had only minor diurnal fluctuations in summer
(Fig. 5).

4. Discussion

Catchment characteristics such as size, land use (urban and agri-
culture) and dominant flow paths (groundwater, throughflow or over-
land flow) which are primarily controlled by catchment geology, are a
first order control of variation in these datasets. Previous assessments
have demonstrated that monthly sampling cannot capture the full
variation of physical and biogeochemical parameters, and even that
monitoring at less than daily frequency can alter nutrient load

assessments (Wade et al., 2012). Infrequent sampling and random
sampling effects may result in the same water body being misclassified
under legislation such as theWater Framework Directive (Halliday et al.,
2015; Skeffington et al., 2015), with multiple classes possible depending
on sampling frequency for the determinand of interest. However,
different parameters display different patterns in different catchments,
seasons and times of the day, so exploring high-resolution data and
signposting when, where and what frequency observation is necessary is
critical for optimising sampling regimes.

4.1. Reduced temporal frequency effects

Reducing temporal frequency creates the risk that the data will not
capture the “real” median and range, a phenomenon termed ‘aliasing’
(Chappell et al., 2017). Reducing measurement frequency from hourly
to four-hourly, twelve-hourly, daily, weekly, and monthly in this study
increasingly changed the interpretation of the data by altering data
distribution, median and range, with catchment- and parameter-specific
effects. In general, turbidity, dissolved oxygen, temperature, TP and TRP
showed the largest percentage change in median with reduced fre-
quency of observation, whilst the greatest overall impact on total range

Fig. 5. Nitrate (as N) and total reactive phosphorus (TRP) intra-daily variation separated by season for the Enborne and Newby Beck. Datapoints were selected from
different times of the day; 00:00, 04:00, 08:00, 12:00, 16:00, 20:00, which are indicated by different colours.
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was for turbidity, although this effect was catchment dependent. These
parameters, where reduced frequency has the largest impact, are ex-
pected to have a large data variability due to rapid rainfall response
(turbidity which is controlled by sediment mobilisation and transport,
and overland flow-generated phosphorus transfers such as for TP) or
strong diurnal cycles (temperature and dissolved oxygen).

Reduced temporal frequency did not always affect the captured
range and the median simultaneously, since the range could be impacted
without any changes in the median and vice versa. Data variability for
each parameter in every catchment can be influenced by some or all of;
time of day (diurnal cycle), season (seasonal cycle) and extreme weather
(rainfall-response and flow pathway activation and separation) (Fig. 6).
Parameters which are less strongly controlled by the latter, and in
particularly with overland flow or near-surface throughflow pathways,
such as nitrate and electrical conductivity in some study catchments, can
potentially be measured at lower temporal frequencies without
compromising the median and range, but this depends on the moni-
toring purpose and the catchment flow activation regime.

Variability caused by time of day has the largest impact on the me-
dian, as diurnal cycles cause intra-daily variation in some parameters,
which won't be fully represented in the data set (Fig. 6). Variability
caused by seasonality alone will have relatively little effect on median
and range at reduced frequency. However, in nutrient load calculations
by Williams et al. (2015), the summer season was more biased and less
precise for nitrate (as N) and dissolved reactive phosphorus (DRP).
Moreover, seasonality can influence the diurnal cycle, illustrated by the
nitrate and total reactive phosphorus concentration presented in this
study (Fig. 5). Variability caused by extreme weather responses will
have the largest impact on range, because reduced frequency will not
fully capture high concentration flux responses to short-term extreme
events (Fig. 6), unless the sample happens to accidentally capture the
peak of such an event, which can then positively bias annual load esti-
mates (Johnes, 2007; Jordan et al., 2007). Variability caused by all three
factors will have an impact on data distribution (histogram), by not
capturing the full width of the data variation.

Reducing the measurement frequency not only impacts the range and
variability of the data, but also the distribution (Fig. S3 in Supplemen-
tary materials), as demonstrated by Cassidy and Jordan (2011) for TP,
Johnes (2007) for total dissolved phosphorus (TDP) and TP and Lloyd
et al. (2014) for these same fractions plus for nitrate. This result in-
dicates that monthly or weekly sampling fails to capture important
extreme events, and potentially underestimate (or overestimate) median
and subsequent annual load calculations (Johnes, 2007). Whilst the
median did change in this study, our data showed no consistent under-
or over-estimation. This can be partially attributed to the nature of the
analysis, as sub-sampling was done at only one selected time of day
(daily), day of the week (weekly) and week of the month (monthly),
based on common manual sampling regimes. These conditions, how-
ever, would have had an impact on the direction of percentage change in

the median, as the time of day would have skewed the results, especially
for parameters with strong diurnal cycles like dissolved oxygen (Rand
et al., 2022).

4.2. Optimal frequency

From all 45 analysed parameter-catchment combinations (six to
eight parameters in six catchments), four-hourly data captured most of
the hourly range (>90 %) for 37 combinations, and 41 out of 45 had
limited impact on the median (<0.5 % change). Twelve-hourly and daily
data captured >90 % of the range in 17 and 15 combinations respec-
tively, with limited impact on the median in 30 and 19 combinations,
respectively. Weekly data captured >90 % of the hourly range in 6
combinations and 16 had limited impact on the median. Monthly data
didn't capture >90 % of the hourly range in any combination, whilst 10
had limited impact on the median. The individual parameters that were
most affected by reducing frequency depended on the catchment.

Mathematical methods can define an optimum sampling frequency
for any water quality parameter by calculating the point at which an
increase in frequency does not provide an increase in information.
Coraggio et al. (2022), for example, used high-frequency monitoring
data from Bristol Harbour and mathematically determined the optimum
sampling frequency for water temperature, electrical conductivity, dis-
solved oxygen, and turbidity as 9 h, 6 h, 5 h, and 3 h, respectively. Pa-
rameters with a rapid response to extreme events, such as turbidity and
total or particulate phosphorus fractions, need to be monitored at a
higher frequency to capture full data variability. Parameters with a
diurnal cycle, like pH, dissolved oxygen and electrical conductivity need
to be monitored frequently enough to capture these cycles or could be
monitored at an appropriate, but standardised time on each day to
calculate an average, depending on the monitoring purpose. Changing
the time of day at which observations are captured, within any moni-
toring programme could bias the resulting data sets.

To determine the optimal monitoring frequency for a parameter,
which captures sufficient data without using excess resources, the
following factors need to be considered; (I) Parameter & catchment and
(II) Monitoring purpose.

4.2.1. Parameter & catchment (I)
Parameter and catchment interaction determined the effect of

reduced temporal frequency on the range, median and data distribution.
No parameter in this study was found to behave consistently for the six
different catchments, hence parameter behaviour was largely dependent
on catchment specific characteristics that define its response to
biogeochemical cycling processes and hydrological regime (Fig. 6).

4.2.1.1. Catchment characteristics. As observed in previous work on P
fractions alone (Johnes, 2007; Jordan et al., 2007) catchment charac-
teristics such as the contribution of groundwater to river flow (base flow

Fig. 6. Processes that can impact data variability and their effect on median, range and data distribution.
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index), land use (urban and agriculture) and size have a strong impact
on water quality data variability (Table 1). Catchment size can strongly
influence data distribution, with biogeochemical changes damped or
subject to lag times (Creed et al., 2015). Year-round high flows in the
Thames (Table 1) were found to mask local biogeochemical effects,
which is possibly a result of the large catchment size and subsequently
large river flow volume (Williams et al., 2000). Diurnal biogeochemical
patterns in rivers are often stronger during stable, non-turbid, low flow
conditions as riverine biological processes are more prominent (Bowes
et al., 2016; Scholefield et al., 2005).

Catchments with a high base flow index (BFI) have notable
groundwater contributions which influence temperature and nutrient
concentrations. This is illustrated in the Wylye, where groundwater ni-
trate inputs vary inversely with overland flow inputs (Outram et al.,
2014; Yates and Johnes, 2013). Nutrient concentrations are also
strongly influenced by agriculture and urban land use (Salvia-Castellví
et al., 2005). Intensive livestock farming and urban wastewater dis-
charges cause a similar biogeochemical reaction as their effluents are
both rich in ammonium (Donald et al., 2011). Rivers with a more
urbanised catchment will receive a larger proportion of wastewater
discharges, from sewage treatment works (STW) or septic tanks, espe-
cially during low flow conditions (Macintosh et al., 2011; Yates et al.,
2019b). STW discharges are often related to increased turbidity, EC,
temperature and ammonium and phosphorus, whilst triggering micro-
bial activity; nitrification (production of nitrate) and the decomposition
of organic material, which can in turn reduce dissolved oxygen (Halliday
et al., 2015) and change the composition of the nutrient pool instream
(Yates et al., 2019b).

4.2.1.2. Dominant impact on data variability. Our analyses show that all
catchments had a clear intra-daily water temperature pattern, coldest in
the early morning and warmest late afternoon. Dissolved oxygen and pH
also showed intra-daily variation in every catchment, positive in the
afternoon and negative in the early morning as a result of
photosynthesis-respiration cycles. Driven by diurnal water temperature
and solar energy cycles, daytime photosynthesis removes (acidic) car-
bon fractions and produces oxygen, whilst night-time respiration does
the opposite (House, 2003; Scholefield et al., 2005). The amplitude of
this biological diurnal cycling depends on the temperature, light avail-
ability, and the relative contribution of autotrophic and heterotrophic
organisms (Nimick et al., 2011). More abundant submergent plant
communities in certain catchments, particularly chalk streams like the
Wylye (Evans and Johnes, 2004; Lloyd et al., 2019; Yates and Johnes,
2013), would explain its more prominent diurnal cycle for DO and pH.
Electrical conductivity had intra-daily variation, negative in the after-
noon and positive in the early morning, in most catchments apart from
urbanised rivers Enborne and Thames, which is most likely due to up-
take and release (or lack of uptake) of free ions with diurnal biological
activity. Intra-daily variation for turbidity, negative (lower values than
the daily median) in the afternoon and positive (higher values than the
daily median) in the early morning, occurred in most catchments apart
from the Wylye and Hiraethlyn, which might be a result of night-time
bioturbation: sediment resuspension caused by the feeding and move-
ment of fish and invertebrates like crayfish (Cooper et al., 2020; Cooper
et al., 2016; Halliday et al., 2015). These natural biogeochemical pat-
terns can be masked by, for example, the volume of flow, shading from
bankside growth, a large groundwater influx with lower temperatures or
a large influx of non-natural water such as sewage outflows.

Nitrate as (N), total reactive phosphorus and total phosphorus can
also follow diurnal cycles as a response to nutrient uptake by biological
activity in the river, which results in a typical diurnal cycle of lowest
concentrations in the late afternoon and highest in the early morning
(Cooper et al., 2020; Nimick et al., 2011; Palmer-Felgate et al., 2008;
Scholefield et al., 2005). However, in most rivers, this is not the domi-
nant process all year round, because of minimal biological activity in the

winter months and the alteration of natural cycles by anthropogenic
influences (agriculture or wastewater discharges) (Jordan et al., 2007;
Nimick et al., 2011; Pellerin et al., 2009). In urbanised catchments,
electrical conductivity, turbidity, nitrate (as N) and phosphorus frac-
tions (TRP, TP) can also exhibit diurnal cycles because of consistent
daily patterns in wastewater effluent discharges to these rivers (Halliday
et al., 2014; Palmer-Felgate et al., 2008; Withers and Jarvie, 2008).
High-frequency data from the River Cut, of which 36 %–90 % of flow
consists of STW effluent, revealed a double-peak daily EC signal, during
midday and late evening, a delayed response to peak domestic water
usage in the morning and evening (Palmer-Felgate et al., 2008; Withers
and Jarvie, 2008), though such effects will become less evident in larger
rivers with greater dilution capacity. The same parameters can exhibit
diurnal signals in agricultural catchments because of consistent daily
discharges from dairy farm operations (milking) (Foy and Kirk, 1995),
which might also have a delayed response.

Diurnal cycles can also be influenced by seasons, so although sea-
sonal cycles themselves will most likely be captured with a reduced
temporal monitoring frequency (monthly), it is critical to understand the
influence of seasonal signals on daily, and sub-daily (for example,
extreme weather) events. In certain catchments, episodic short-lived
extreme events can play a major role in biogeochemical processes, and
it is important to fully capture their data variability.

4.2.2. Monitoring purpose (II)
Optimal temporal frequency depends on the purpose of monitoring;

long-term trend analysis, load calculations and storm-induced solute
transport modelling require different inputs and therefore have unique
data frequency demands (Coraggio et al., 2022). Sub-sampling high-
frequency data to pre-determined lower frequencies can be done itera-
tively to contain multiple initial conditions, and determine the optimal
monitoring frequency for specific purposes (Chappell et al., 2017; Cor-
aggio et al., 2022; Crockford et al., 2017; Johnes, 2007; Reynolds et al.,
2016; Skeffington et al., 2015; Williams et al., 2015). Previous analyses
have suggested that seasonal variation or long-term trends can be
captured with monthly or up to half-yearly frequency (Coraggio et al.,
2022). For basic statistical calculations, for example to assign Water
Framework Directive classifications, for phosphorus fractions, dissolved
oxygen, pH and temperature (Skeffington et al., 2015), or to detect
trends in nitrate data such as mean concentration, peak concentration,
drinking water standard exceedance and flux (Reynolds et al., 2016),
weekly or daily sampling is recommended. In annual load estimates
(Bowes et al., 2009; Crockford et al., 2017; Johnes, 2007; Williams et al.,
2015) daily sampling gives the more robust and reliable results but
weekly is also acceptable provided the uncertainties associated with
load estimates are also reported (Lloyd et al., 2014). This largely de-
pends on the nutrient fraction, the season and catchment characteristics
as those influence reaction time and variability. Williams et al. (2015)
found optimal frequency for dissolved reactive phosphorus (DRP) was
every 13–26 h and nitrate (as N) every 2.7–17.5 days. When modelling
biogeochemical response during storm events (Chappell et al., 2017;
Lloyd et al., 2015; Outram et al., 2014), a higher measurement fre-
quency is required to capture this accurately, with Chappell et al. (2017)
arguing for sampling rates of <120 min to >600 min. However, these
studies, and our data demonstrate that minimum temporal frequency
can change over time, and between catchments and parameters, with a
higher frequency needed when there is more variation and depending on
the variable of interest and its environmental behaviour in each
catchment.

4.3. Sensor uncertainty implications for monitoring design

The data variability captured by any monitoring campaign is subject
to the limitations of the equipment used for measurement. Where data
fluctuations are within the uncertainty bounds of a technique, or when
measurements are subject to bias, limiting the availability of data points
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by reducing measurement frequency can be problematic. It is therefore
critical that uncertainty bounds are known to ensure relevant fluctua-
tions can be captured. The uncertainty of the sensor measurements used
in this study is well-quantified, by comparison between laboratory
samples for TP and nitrate (as N) and the sensor data at Brixton Deverill
on the Wylye (Lloyd et al., 2015). The headline uncertainty bounds of
±0.15 mg/L for TP and ± 0.75 mg/L for nitrate (as N) calculated by
Lloyd et al. (2015) suggest that the daily variation patterns that we have
identified could fall within the range of uncertainty. The maximum daily
variation without outliers that we identified in the six studied catch-
ments is ±0.05 mg/L for TP and ±0.5 mg/L for nitrate (as N). However,
where the sensor data display daily variation, the uncertainty bounds of
the data also vary according to the antecedent conditions, so the signal is
unlikely to fluctuate between the highest and lowest bounds at adjacent
time points. This temporal autocorrelation effect means that the varia-
tions revealed in our data are likely to be a real signal, even if they fall
within the overall sensor uncertainty. It is therefore imperative that data
users have a strong understanding of the measurement capabilities of
the chosen device.

4.4. Recommendations

Reliance on weekly or monthly data means the likelihood of
capturing total data variability (range and median) is small for most
catchments. A balance is therefore required to determine the most cost-
effective yet representative sampling regimes for different catchments.
High-frequency sensor data cannot be captured everywhere, so instru-
mentation should be selected and deployed for the target chemistries of
interest. It is also important to note that sensors cannot currently mea-
sure all parameters of interest, so optimal sampling programmes are
likely to combine both high resolution sensor networks with manual or
automated sample collection paired with laboratory analyses where
tighter quality assurance and quality control can reduce uncertainties,
albeit at a lower temporal sampling resolution. Jordan and Cassidy
(2022) created an overview with important considerations to select a fit-
for-purpose monitoring strategy, for example stakeholder engagement
and evidence for policy or land-use management changes.

Our analysis of sensor datasets here shows that the size of the
catchment, land use, baseflow index and the degree of urbanisation with
associated sewage discharges to rivers will determine the most impor-
tant biogeochemical cycles for each parameter in each season, and hence
the required sampling frequency when relying on sensor-derived ob-
servations. An additional challenge is that the minimum temporal fre-
quency is not static but can vary per season and per year. This variability
might also increase in the future, with warmer, wetter years and a
greater frequency of sudden, intense rainfall are predicted (Ockenden
et al., 2016). Optimising the measurement frequency over time or in
real-time as a response to external stressors (extreme events) with
adaptive monitoring strategies (Blaen et al., 2016; Coraggio et al.,
2022), can improve data collection for extreme weather driven param-
eters. For parameters affected by diurnal cycles, possible methods to
prevent bias are to sample at standardised times of the day or taking 24
samples every seven hours (the 24/7 sampling approach), which sam-
ples every hour of the day over the course of a week (Halliday et al.,
2012). The 24/7 approach was designed for the use of auto-samplers
which require samples to be returned to the lab for analysis, but has
the potential to be a cost-effective measurement frequency regime for
sensor optimisation to capture dynamic river conditions (Halliday et al.,
2012; Jordan and Cassidy, 2022).

In general, when deciding a minimum measurement frequency for a
sensor suite, the median, 25 % and 75 % intervals and the data distri-
bution as well as the range should be investigated relative to hourly
data. The minimum required sampling frequency can only be deter-
mined with high-frequency observations at that location, which are
often unavailable when a monitoring programme is designed. As a
result, sampling frequency recommendations are typically done

retrospectively, as with our analyses that suggested a minimum of four-
hourly frequency. We therefore recommend flexible high-frequency
monitoring installations, including sensors or autosamplers, that can
be deployed for trial periods to understand the behaviour of the catch-
ment before the long-term sampling regime commences, so this can be
optimised to reduce resource expenditure which capturing representa-
tive environmental behaviours for the determinands of interest. We also
caution that the data should be captured with a clear focus on under-
standing what questions will be asked, whether the sensors selected
have uncertainty bounds beyond the expected variability, and whether
capturing the full range of behaviour of all parameters is indeed
necessary.

5. Conclusions

Variation in water quality data is strongly controlled by measure-
ment frequency, but also time of day and time of year. Different catch-
ments have different responses to biogeochemical and hydrological
events, thus the measurement regime required to capture the true range
of variation will itself be variable. Nutrient concentrations, flow regimes
and temperature drive much of the in-stream biological activity and
their temporal variations can in turn affect variability in other water
quality parameters, such as DO and pH. Most catchments included in
this study showed significant intra-daily trends in physico-chemical
parameters, often clearly defined diurnal cycles, highlighting the
importance of considering which time of day to monitor. If the data
variation is small, fluctuations are harder to capture with a sensor that
has a large uncertainty, hence an understanding of the sensor response is
required before deployment for data capture. All catchments in this
study showed that for almost every parameter, a four-hourly data fre-
quency was required to capture most of the variation across all deter-
minands monitored, although for some parameters most variation could
be captured with twelve-hourly or daily frequency. In many cases,
particularly in routine national monitoring programmes, manual sample
collection cannot physically be done more than weekly or monthly,
unless increased resources are made available. For these situations
calculating, reporting, and minimising sampling bias is critical, whilst
reporting data with resultant uncertainty bands is essential, to inform
the user of the uncertainties in the evidence base thus generated. Before
a monitoring regime is established, the purpose must be truly considered
to effectively direct resource. In research-driven research, or where
greater certainty is required to produce a robust and reliable evidence
base to support a programme of action, pre-monitoring optimisation
periods are recommended. These will allow researchers to understand
how an individual catchment responds and should include high-
frequency (<twelve-hourly, ideally four-hourly) measurements, and a
combination of periodic (same time every day) and random samples to
assess the frequency required to capture the necessary information.
Lastly, it is crucial to re-assess the monitoring network periodically in
case of changes in the catchment and the environment as well as changes
in sensor performance, and differences in management priorities as they
emerge.
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