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ABSTRACT

In the context of lung ultrasound, the identification of B-
lines, which serve as indicators of interstitial lung disease
and pulmonary edema, holds immense significance in clini-
cal diagnosis. Presently, although vision-based automatic B-
line detection techniques have emerged, their performance re-
mains suboptimal. This paper introduces a novel approach,
framing B-line detection as an inverse problem through the
deep unfolding of the Alternating Direction Method of Mul-
tipliers. By leveraging the capabilities of deep neural net-
works and model-based methods, this methodology addresses
the challenges associated with data labeling and model train-
ing in lung ultrasound image analysis. Our primary aim is
to significantly augment diagnostic precision while maintain-
ing efficient real-time capabilities. The experiment on 34 pa-
tients demonstrates that the proposed method outperforms tra-
ditional model-based approaches, achieving a 10.6% higher
F score and running over 90 times faster, underscoring its
potential for real-time clinical utility.

Index Terms— deep unfolding, ADMM, lung ultra-
sound, line detection, inverse problem

1. INTRODUCTION

Lung ultrasound has emerged as an effective diagnostic tool
for various pulmonary conditions. Techniques for analysing
lung ultrasound images have been blooming in recent years
[1]. One key finding in lung ultrasound (LUS) is the presence
of B-lines, which appear as laser-like vertical hyperechoic re-
verberation artefacts originating from the pleural line. B-lines
are indicators of the interstitial syndrome and are useful for
the diagnosis of conditions like pneumonia and pulmonary
edema, and have also been shown to correlate with the vol-
ume of extravascular lung water [2]. Thus, accurate detec-
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tion of B-lines allows non-invasive evaluation of pulmonary
edema and other conditions involving interstitial syndromes.

In previous efforts to automatically detect B-lines, var-
ious techniques were employed. Hand-crafted image pro-
cessing techniques, like polar reformatting and thresholding,
were used by Brattain et al. [3]. Anantrasirichai et. al. first
posed line detection as an inverse problem [4, 5], where a B-
mode LUS image is converted to a representation of radius
and orientation in the Radon domain. The inverse problem is
then solved using the alternating direction method of multi-
pliers [6]. The method was further developed for evaluating
COVID-19 patients by Karakus et. al. [7], whereby improved
performance was achieved by regularising the solution using
the Cauchy proximal splitting algorithm [8].

With the advent of deep learning, convolutional neu-
ral networks (CNN) have been applied for robust B-line
detection. Van Sloun and Demi [9] applied a CNN with
gradient-based class activation mapping [10] for B-line de-
tection in single LUS frames. Alternatively, Baloescu et.
al. [11] used a relatively shallow custom-made model archi-
tecture with 3-D filters for B-line assessment in a supervised
manner. To extract better features across the video, Kerdegari
et. al. [12] combined the long-short-term memory network
and spatiotemporal attention mechanism to achieve B-line
localisation. Our own work in [13] employed contrastive
learning to investigate the representation of B-lines in an un-
supervised manner. This was followed by fine-tuning on a
limited labelled dataset, resulting in a significant reduction in
the need for manual annotations.

In this paper, we propose a novel framework for B-line
detection that leverages the advantages of model-based meth-
ods, eliminating the need for labelled data, and the fast infer-
ence capabilities of deep learning to enable real-time opera-
tion. Specifically, we adopt deep unfolding [14] to achieve
rapid convergence by training a feedforward neural network
to approximate iterative algorithms, namely the Alternating
Direction Method of Multipliers (ADMM), speeding up the
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Fig. 1. Diagrammatic representation of DUBLINE. Trainable parameters are coloured in green.

optimisation for real-time applications. The design of the
deep unfolded network (DUBLINE) for B-line detection in
lung ultrasound was inspired by [4], and the architecture is
shown in Fig.1, where a CNN is used to replace the complex
Radon transform computations in the variable update steps.

2. METHODOLOGY

2.1. Line artefact model

The line artefact in the noisy ultrasound images can be mod-
elled in terms of its inverse Radon transform as

y=R"lz+n, (D)
where y is the observed ultrasound image, x is the line repre-
sented by a distance r from the centre of y and a orientation
w from the horizontal axis of the image. R and R~! repre-
sent the Radon transform and its inverse, respectively whilst
n refers to the additive noise. In a general formulation with-

out the noise, the Radon transform is described as in Eq.2,
where J(e) is the delta function.

T = / y(,7)0(r — icosw — jsinw)didj. )
R2

Using [, regularisation for sparsity, the estimation of lines can
be found by solving the following optimisation problem with
« being the regularisation constant:

1
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where discrete operators R and R~1.

2.2. Optimisation problem

The problem in Eq.3 can be solved by employing ADMM
[6], which is a variant of the augmented Lagrangian scheme
that uses partial updates for the dual variables, so that Eq.3 is
equivalent to

1 2
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subject to x —u =0.
Then the augmented Lagrangian for Eq.4 is
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where z is the Lagrange multiplier, and z7 indicates the
transpose of z. For penalty parameter v > 0, the optimisation
problem in Eq.4 can be solved by the iterative scheme of
ADMM as stated in Eq.6 to 9.
Neural network formulation: The three-step iteration in
Eq.6 to 9 can be formulated as a neural network, where the
number of layers corresponds to the iteration counter in the
traditional ADMM algorithm.
For updating «, the problem is solved as
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(6)
where £ is an internal iteration counter, / denotes the iden-
tity matrix, Wy denotes a CNN with 3 convolutional layers
and LeakyReLu being the activation function. 6 represents
its parameters. In this paper, we use radon_transformation



functions' to construct R and R~!. (R™1)T serves as the
forward Radon projection.
For updating u, we have
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where Sy () is a soft thresholding described in Eq.8 with a
threshold of A

Sx(a) = sign(a)max(|a] — A, 0), 8)

In this work, we take the maximum absolute row sum as the
threshold. Lastly, each iteration for updating z follows

Loss function: We train the network to maximise the struc-
tural similarity index measure (SSIM) between the recon-
structed line structures and the input image, and therefore the
loss function is

L= (1-SSIM(R '%,y)). (10)

Considering the nature of our problem, instead of other
practical loss functions like MSE (regression), or cross-
entropy (classification), we choose to promote SSIM thanks
to its (i) artefact reduction capabilities, and (ii) robustness
to common image degradations such as noise, or blurring.
Ultrasound imagery and B-line detection are both suitable for
the utilisation of SSIM due to aforementioned reasons and we
leave the exploration of other loss functions for future work.

2.3. B-line detection

The B-line detection procedure in this paper aligns with [5],
which detects the lines in the Radon domain using the local
maxima technique. To reduce the influence of skin and mus-
cle, the top part of the image is dimmed. The procedure starts
with detecting the pleural line in the restored z within the
angle ©;, € [90° £ 5°] (0° starts from the x axis). Then,
the A-lines - physiological horizontal lines below the pleural
line - are detected by using the same range of angles. The
B-lines are detected at ©, € [£15°]. Any vertical artefacts
over-passed by an A-line are removed and all detected ver-
tical lines that originate from the same pleural line point are
counted as a single B-line.

3. EXPERIMENTAL RESULTS

Dataset and pre-processing: The data was obtained from
the Nephrology, Dialysis and Transplantation, Careggi Uni-
versity Hospital, Florence, Italy. We trained the network on
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unlabeled lung ultrasound images. We used 1000 images
as our training set and 122 images as the test set, from 34
patients. In the test set, there are 34 images with 0 B-lines,
43 with 1, 21 with 2, 20 with 3, and 4 with 4. LUS eval-
uations were performed whilst patients attended for regular
haemodialysis, using an ultrasound machine (MyLab Class
C-Esaote®, Genoa, Italy) with a 6-18 MHz linear probe.
The ground truth was provided by a physician with long-term
expertise in LUS. All the images were resized to 256 x 256
pixels.

Experimental setup: As we are specifically interested in the
line structures in the lung ultrasound images, in DUBLINE,
we implemented the Radon transform with the angle ©,, and
Oy, as stated in the previous section. We set o and v equal
to 1 and the initial learning rate to 10~ after a trial-error
step. The learning rate decays every 10 epochs. The output
of the network is acquired by comparing the reconstructed
images and taking the maximum value of each pixel. We
also evaluated DUBLINE for the number of layers of the
unfolded network ranging from 2 to 10. The networks are all
trained for 20 epochs. The training procedure is depicted in
Fig.2. The network is implemented in PyTorch and trained on
Nvidia Geforce RTX 3090. The method in [5] is reproduced
using 12th Gen Intel® Core™ i7-12700 2.10 GHz.

Results Analysis: We compare the performance with the
method in [5] following the same detection process and ad-
justed the parameters accordingly to improve the detection
performance. Our assessment focused on various perfor-
mance metrics, including true positives (TP), false positives
(FP), false negatives (FN), precision, recall, and the F} score.
The results of this comparison are summarized in Table
1, where “DU” denotes our proposed DUBLINE method
and the best result obtained is in bold. When assessing the
model’s performance across different numbers of iterations,
it becomes evident that training DUBLINE with more than
2 layers consistently outperforms the baseline method [5]
across all the metrics. This can be attributed to the tradi-
tional method typically requiring more than 2 iterations in the
ADMM algorithm to meet the stopping criteria. As a result,
the deep unfolded network necessitates at least 3 layers to
achieve equal or superior performance to the method outlined
in [5]. Further examination of layer numbers 3 through 10
reveals that DUBLINE exhibits higher TP rates and lower FN
rates, leading to a significant improvement of at least 10.5%
in recall for the detection task. The best-performing is ob-
served at layer8, which yields the highest TP count (100) and
the lowest FN count (61), resulting in a notable 10.6% en-
hancement in the F} score. Across the board, the number of
FPs is reduced, with the most substantial reduction being 13
when compared to the baseline. While there are exceptions at
layer3 and layer9, the precision scores are still improved by
4.9% and 6.4%, respectively.

Fig.3 shows some examples of B-line detection results.
When the green lines fall within half of the ground truth box
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Fig. 2. Training procedure of DUBLINE.

width centring at the centre line of the ground truth box, they
are counted as TP. If the green lines fall outside of this range,
they are counted as FP. When there is no green line within
the yellow box, it is counted as an FN. As shown in the ex-
amples, compared to the method described in [5], the pro-
posed method detects more correct B-lines and significantly
improves the accuracy of their detected positions. However,
the proposed method exhibits relatively poor differentiation
between the true B-lines and the bright vertical lines that only
look similar to B-lines, causing FPs to often occur at the posi-
tions of bright vertical artefacts. In cases when the pleural line
is darker than the horizontal artefacts above it, the detected
position of the pleural line is likely to be biased, resulting in
the starting point of the B-lines being higher than the actual
position.

We highlight the time efficiency of the DUBLINE by
comparing it with that of the method in [5]. The execu-
tion time per image of the DUBLINE is only 0.0186 seconds,
whereas the average speed of the traditional ADMM is 1.6803
seconds per image. The unfolded algorithm significantly im-
proves the speed by more than 90 times with less than 0.5
seconds to process 24 frames in a real-time video.

4. CONCLUSION

In this paper, we propose a fast and lightweight method based
on a deep unfolded ADMM algorithm to tackle B-line detec-
tion in lung ultrasound as an inverse problem, with the ul-
timate goal of achieving completely unsupervised real-time
B-line detection. Compared to the traditional model-based
method, the proposed approach shows an improvement in pre-
cision, recall, accuracy, F} score, and time efficiency. How-

Table 1. Detection results from different settings

TP FP | FN | Precision | Recall F1

[5] 74 | 166 | 87 0.308 0.46 0.369
layer2 61 154 | 100 0.284 0.379 | 0.324
layer3 94 | 169 | 67 0.357 0.584 | 0.443
layer4 93 158 | 68 0.371 0.578 | 0.451
layerS 91 157 | 70 0.367 0.565 | 0.445
DU | layer6 97 | 158 | 64 0.38 0.602 | 0.466
layer7 93 | 153 | 68 0.378 0.578 | 0.457
layer8 | 100 | 160 | 61 0.385 0.621 | 0.475
layer9 99 | 167 | 62 0.372 0.615 | 0.464
layer10 | 98 162 | 63 0.377 0.609 | 0.466

ever, the limitation still exists in the detection procedure. Fu-
ture works will explore possible unsupervised approaches that
can further enhance the accuracy and robustness of B-line de-
tection.
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