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Abstract

There is a growing interest in understanding arguments’
strength in Quantitative Bipolar Argumentation Frameworks
(QBAFs). Most existing studies focus on attribution-based
methods that explain an argument’s strength by assigning im-
portance scores to other arguments but fail to explain how to
change the current strength to a desired one. To solve this
issue, we introduce counterfactual explanations for QBAFs.
We discuss problem variants and propose an iterative algo-
rithm named Counterfactual Explanations for Quantitative
bipolar Argumentation frameworks (CE-QArg). CE-QArg
can identify valid and cost-effective counterfactual explana-
tions based on two core modules, polarity and priority, which
help determine the updating direction and magnitude for each
argument, respectively. We discuss some formal properties of
our counterfactual explanations and empirically evaluate CE-
QArg on randomly generated QBAFs.

1 Introduction
Explainable AI (XAI) aims to enhance the transparency
and trustworthiness of AI models by providing explana-
tions for their decision-making process (Adadi and Berrada
2018), which is crucial in high-stakes decision-making do-
mains such as healthcare, finance, and judiciary. Recently,
explaining the reasoning process of Quantitative Bipolar
Argumentation Frameworks (QBAFs) (Baroni et al. 2015)
has received increasing attention (Kampik and Čyras 2022;
Yin, Potyka, and Toni 2023; Kampik et al. 2024). QBAFs
consist of arguments, binary relations (of support and at-
tack), and a base score function that ascribes initial strengths
to each argument. QBAFs semantics typically determine
each argument’s (final) strength based on the strength of its
attackers and supporters (e.g. see (Leite and Martins 2011;
Baroni et al. 2015; Amgoud and Ben-Naim 2018)), which
allows quantitative reasoning among contradictory informa-
tion (Čyras et al. 2021; Potyka 2021; Ayoobi, Potyka, and
Toni 2023; Potyka, Yin, and Toni 2023). To explain argu-
ments’ final strength, often attribution-based methods are
applied (e.g. see (Kampik and Čyras 2022; Kampik et al.
2024; Yin, Potyka, and Toni 2023)). These methods assign
“importance scores” to arguments, showing how much they
contribute to the final strength of arguments of interest.

To illustrate the idea, Figure 1 shows a QBAF to decide
whether a person’s loan application will be approved. This

Figure 1: An example QBAF for loan application. (Solid and
dashed edges indicate attack and support, respectively; the num-
bers in brackets are the arguments’ base scores).

QBAF has a hierarchical structure, where at the top level
is the topic argument α, determining whether the loan will
be approved. Two other arguments influence α: (i) β (high
annual salary) supports α, but it is also attacked by ρ (high
risk of layoffs); (ii) γ (poor credit score) attacks α, and it is
supported by ζ (high number of late payments). The base
score of α is initially set to 0.5, while the base scores for
β, γ, ρ, and ζ are 0.3, 0.6, 0.7, and 0.4, respectively. We
apply the DF-QuAD semantics (Rago et al. 2016) (denoted
as σDF ) to evaluate this QBAF: the loan will be approved
if σDF (α) ≥ 0.5, and rejected otherwise. In this scenario,
the bank rejects the applicant because the final strength is
lower than the desired strength (σDF (α) = 0.165 < 0.5).
To explain such an outcome, for instance, the Shapley-based
attribution method (Kampik et al. 2024), finds that β has a
positive importance score of 0.0975 wrt. α, while γ, ζ, and ρ
all have negative importance scores of −0.34, −0.0525 and
−0.04, respectively1. Since the negative scores outweigh
the positive one, the final strength is lower than the desired
strength, resulting in an unsuccessful application.

While attribution explanations are intuitive, in this exam-
ple and more generally, they fail to offer guidance on how to
modify the topic argument’s strength, e.g., in the example,
to improve one’s chance of getting approved. In contrast,
counterfactual explanations (Wachter, Mittelstadt, and Rus-

1See Section 3 and https://arxiv.org/abs/2407.08497 for more
details of the computation of strengths and importance scores, re-
spectively.

https://arxiv.org/abs/2407.08497


sell 2017) explain how an AI model’s output would change
if one alters the inputs. These explanations are comprehen-
sible because they elicit causal reasoning and thinking in hu-
mans (Byrne 2019; Verma, Dickerson, and Hines 2020).

In this work, we introduce counterfactual explanations to
the QBAF setting to compensate for the limitations of at-
tribution explanations. Here, counterfactually explaining a
QBAF means to identify a base score function that could
lead to a specified final strength of a topic argument under
a given gradual semantics. For example, in Figure 1, if the
applicant had a different base score function that could re-
sult in a desired final strength of α, then the loan would have
been approved.

The main contributions of our paper are:

• We formally define three counterfactual problems for
QBAFs (Section 4).

• We propose formal properties guiding the design of ex-
planation methods to solve counterfactual problems for
QBAFs and propose an iterative algorithm (CE-QArg) to
generate valid, cost-effective counterfactuals2 (Section 5).

• We propose formal properties for counterfactuals (Sec-
tion 6).

• We empirically show the high effectiveness, scalability,
and robustness of CE-QArg (Section 7).

The proofs of all technical results are in https://arxiv.org/
abs/2407.08497. The code is available at https://github.com/
XiangYin2021/CE-QArg.

2 Related Work
The literature on QBAF explanations primarily focuses on
attribution-based explanations. These methods aim to ex-
plain the reasoning outcome for (final strength of) a particu-
lar argument (referred to as the topic argument) in a QBAF
by assigning importance scores to arguments. There are
various ways to define these importance scores, including
removal-based methods (Kampik et al. 2024) that measure
the impact of removing an argument; gradient-based meth-
ods (Yin, Potyka, and Toni 2023) that measure sensitivity
with respect to an argument’s base score; and Shapley-based
methods (Kampik et al. 2024) that distribute the overall im-
pact among all arguments using tools from game theory.
Shapley-based methods can also be used to attribute impor-
tance scores to edges (attacks and supports) rather than ar-
guments in a QBAF to explain their impact (Amgoud, Ben-
Naim, and Vesic 2017; Yin, Potyka, and Toni 2024). While
attribution-based explanations are helpful and intuitive in
explaining outcomes (final strength), they cannot guide im-
proving them by altering the inputs (QBAFs). We focus in-
stead on counterfactual explanations.

Counterfactual explanations are typically used in XAI
(Wachter, Mittelstadt, and Russell 2017) and contestable
AI (Alfrink et al. 2023; Leofante et al. 2024) to indicate
paths towards “algorithmic recourse”. Counterfactual ex-
planations for QBAFs have not been well-studied. A recent

2We sometimes refer to counterfactual explanations simply as
counterfactuals.

study by (Kampik, Čyras, and Alarcón 2024) focuses on ex-
plaining why the strengths’ partial order of two topic argu-
ments swap after updating QBAFs (e.g. by adding/removing
arguments/edges or changing the base scores of arguments),
seeing counterfactual explanations as argument sets whose
elements, when updated, cause this swap. For example, sup-
pose there are two topic arguments α and β in a QBAF and
the final strength of α is smaller than that of β. If a sup-
porter γ for α were added, resulting in α’s strength becom-
ing larger than β’s, then the set {γ} is a possible counter-
factual explanation for the strength swap between α and β.
Instead, we focus on explaining arguments’ strength rather
than partial orders between arguments’ strengths. Addition-
ally, we focus on counterfactuals as base score functions
in structure-fixed QBAFs rather than as argument sets in
structure-changeable QBAFs. Another work (Oren et al.
2022), implicitly relates to counterfactual explanations for
QBAFs under gradual semantics, by studying the inverse
problem of identifying base score functions that can lead to
a desired ranking of strengths for all arguments. Differently,
we focus on reaching a desired strength for topic arguments
instead of a desired ranking of all arguments.

It is also worth mentioning (Sakama 2014), which ini-
tially introduced and investigated counterfactual problems
in the argumentation area. This work studies what would
happen if an initially accepted (rejected) argument were re-
jected (accepted) (e.g. by adding a new attacker or removing
all the attackers towards an argument) and how to explain the
corresponding acceptance change of arguments. Differently
from our method, this work focuses on abstract argumenta-
tion under complete labellings (Dung 1995) and on the con-
sequences of changes rather than their causes as we do.

3 Preliminaries
Formally, a QBAF can be defined as follows.

Definition 1. A Quantitative Bipolar Argumentation Frame-
work (QBAF) is a quadruple Q = ⟨A,R−,R+, τ⟩ consist-
ing of a finite set of arguments A, binary relations of attack
R− ⊆ A×A and support R+ ⊆ A×A (R− ∩ R+ = ∅)
and a base score function τ : A → [0, 1].

The base score function in QBAFs ascribes initial
strengths (base scores) to arguments therein. QBAFs may
be represented graphically (as in Figure 1) using nodes to
represent arguments and their base scores and edges to show
the relations among arguments. Then QBAFs are said to be
(a)cyclic if the graphs representing them are (a)cyclic.

Definition 2. A gradual semantics σ is a function that eval-
uates a QBAF Q = ⟨A,R−,R+, τ⟩ by ascribing values
σ(α) ∈ [0, 1] to every α ∈ A as their strength.

Different (gradual) semantics typically ascribe different
strengths to arguments. Most semantics define the strength
of an argument through an iterative procedure involving
two functions: first, an aggregation function aggregates the
strength of the argument’s attackers and supporters; then, an
influence function combines the aggregation values with the
argument’s base score to determine its strength. Gradual se-
mantics guarantee convergence for acyclic QBAFs (Potyka

https://arxiv.org/abs/2407.08497
https://arxiv.org/abs/2407.08497
https://github.com/XiangYin2021/CE-QArg
https://github.com/XiangYin2021/CE-QArg


2019). For cyclic QBAFs, the strength values may not con-
verge (Mossakowski and Neuhaus 2018), but when they do,
they converge quickly in practice (Potyka 2018). Our focus
in this paper is on cases where convergence occurs, as we
aim to explain the strength, which is only possible when the
strength is defined. Thus, we will assume in the remainder
that gradual semantics are well-defined, as follows.
Definition 3. A gradual semantics σ is well-defined for a
QBAFQ = ⟨A,R−,R+, τ⟩ iff σ(α) exists for every α ∈ A.
Notation 1. In the remainder, unless specified otherwise,
we use Q = ⟨A,R−,R+, τ⟩ and Qτ ′ = ⟨A,R−,R+, τ ′⟩
to indicate two QBAFs with different base score functions
only, and use σ for any (well-defined) gradual semantics.
For α ∈ A, we let στ ′(α) denote σ(α) in Qτ ′ .

Concretely, we will use the Quadratic Energy (QE) (Po-
tyka 2018), Restricted Euler-based (REB) (Amgoud and
Ben-Naim 2018), and Discontinuity-Free Quantitative Ar-
gumentation Debates (DF-QuAD) (Rago et al. 2016). To
aid understanding, we will show the definition and an exam-
ple of the DF-QuAD semantics and recap the other two in
https://arxiv.org/abs/2407.08497.

In DF-QuAD, for any argument α ∈ A, σDF (α) is de-
fined as follows:

Aggregation function:

Eα =
∏

{β∈A|(β,α)∈R−}

(1− σDF (β))−
∏

{β∈A|(β,α)∈R+}

(1− σDF (β)).

Influence function:

σDF (α) =

{
τ(α)− τ(α) · |Eα| if Eα ≤ 0;

τ(α) + (1− τ(α)) · Eα if Eα > 0.

An example of applying DF-QuAD is as follows.
Example 1. Considering the QBAF in Figure 1, where
τ(α) = 0.5, τ(β) = 0.3, τ(γ) = 0.6, τ(ρ) = 0.7, and
τ(ζ) = 0.4. According to the aggregation and influence
function of the DF-QuAD semantics3, we have Eα = 0.24−
0.91 = −0.67, Eβ = −0.7, Eγ = 0.4, Eρ = 0, Eζ = 0,
σDF (α) = τ(α)− τ(α) · |Eα| = 0.165, σDF (β) = τ(β)−
τ(β)·|Eβ | = 0.09, σDF (γ) = τ(γ)+(1−τ(γ))·Eγ = 0.76,
σDF (ρ) = τ(ρ) = 0.7, σDF (ζ) = τ(ζ) = 0.4.

4 Counterfactuals for QBAFs
We define three counterfactual problems (see Figure 2) and
explore the existence of solutions thereto (i.e. counterfac-
tuals) and their relationships. Intuitively, given a QBAF, a
topic argument and a desired strength therefor, we see coun-
terfactuals as changes to the base score function to obtain
the desired strength for the topic argument.

4.1 Strong Counterfactual Problem
Definition 4. Given a topic argument α∗ ∈ A and a desired
strength s∗ for α∗ such that σ(α∗) ̸= s∗ in Q, the strong
counterfactual problem amounts to identifying a base score
function τ ′ ̸= τ such that στ ′(α∗) = s∗ (in Qτ ′ ).

3We follow the convention that the product of an empty set is 1
(not 0) because 1 is the neutral element with respect to multiplica-
tion.

Figure 2: Illustration of strong (left), δ−approximate (middle), and
weak (right) counterfactual problems. The squares represent all
possible base score functions, with τ the current base score func-
tion, and the red (above diagonal) and green (below diagonal) parts
as undesirable and desirable alternatives, respectively.

In Figure 2 (left), τ is in the (undesired) red part and
τ ′1, τ

′
2, τ

′
3 in the green part are possible counterfactuals (base

score functions) as they exactly hit the desired strength.
A trivial solution to the strong counterfactual problem

might be just setting the base score of the topic argument
to the desired strength and the base score of all others to 0.

Definition 5. Given a topic argument α∗ ∈ A and a desired
strength s∗ for α∗, the trivial counterfactual is the base score
function τ ′ ̸= τ such that τ ′(α∗) = s∗ and τ ′(α) = 0 for
all α ∈ A \ {α∗}.

The trivial counterfactual is a solution to the strong coun-
terfactual problem if the semantics satisfies the following
stability property (Amgoud and Ben-Naim 2018).4

Definition 6. A gradual semantics σ satisfies s-stability iff
for any α ∈ A, whenever σ(β) = 0 for all (β, α) ∈ R− ∪
R+, then σ(α) = τ(α).

Proposition 1 (Solution Existence). If σ satisfies s-stability
andQ is acyclic, then the trivial counterfactual is a solution
to the strong counterfactual problem.

Proposition 2. QE, REB, and DF-QuAD satisfy s-stability.

Since commonly considered semantics satisfy s-stability,
a (trivial) solution to the strong counterfactual problem al-
ways exists in acyclic QBAFs. For cyclic QBAFs, the trivial
counterfactual is not a solution even in a very simple QBAF
with two mutually supporting arguments.

4.2 δ−Approximate Counterfactual Problem
Ensuring that the final strength of a topic argument analyti-
cally equals the desired strength may be challenging due to
the complexity of the definition of gradual semantics that
may involve various linear and nonlinear transformations
(e.g., QE, REB and DF-QuAD). Thus, we consider the fol-
lowing relaxation of the strong counterfactual problem.

Definition 7. Given a constant δ>0, a topic argument α∗∈
A and a desired strength s∗ for α∗ such that σ(α∗) ̸= s∗ in
Q, the δ−approximate counterfactual problem amounts to
identifying a base score function τ ′ ̸= τ such that

• if σ(α∗)<s∗ in Q, then s∗≤στ ′(α∗)≤s∗+δ in Qτ ′ and
• if σ(α∗)>s∗ in Q, then s∗−δ≤στ ′(α∗)≤s∗ in Qτ ′ .

4Strictly speaking, the definition in (Amgoud and Ben-Naim
2018) assumes R− = R+ = ∅, but if the neutrality property (Am-
goud and Ben-Naim 2018) holds, the definitions are equivalent.

https://arxiv.org/abs/2407.08497


As an illustration, in Figure 2 (middle), τ ′1, τ
′
2 and τ ′3 are

all solutions to the δ−approximate counterfactual problem
as they all lie in the δ-interval region of the desired strength.

4.3 Weak Counterfactual Problem
For practical applications, it is also worth further relax-
ing the δ−approximate counterfactual problem, e.g. when
QBAFs are used to solve binary classification problems (Co-
carascu, Rago, and Toni 2019; Kotonya and Toni 2019), the
topic argument’s final strength does not necessarily need to
equal or approximate the desired strength. Concretely, in an
argumentative movie recommender system of (Cocarascu,
Rago, and Toni 2019), as long as a movie’s rating (final
strength) is higher than some threshold, the movie is consid-
ered of good quality. Thus, we next propose the following
further relaxation of the strong counterfactual problem.

Definition 8. Given a topic argument α∗∈A in Q and a
desired strength s∗ for α∗ such that σ(α∗) ̸= s∗ in Q, the
weak counterfactual problem amounts to identifying a base
score function τ ′̸=τ such that

• if σ(α∗) < s∗ in Q, then στ ′(α∗) ≥ s∗ in Qτ ′ and
• if σ(α∗) > s∗ in Q, then στ ′(α∗) ≤ s∗ in Qτ ′ .

As an illustration, in Figure 2 (right), τ ′1, τ
′
2 and τ ′3 are all

solution to the weak counterfactual problem as they all cross
the threshold (red diagonal line).

4.4 Validity and Problem Relationships
We define notions of validity for counterfactuals and then
explore the relationships among these notions.

To be consistent with the literature of counterfactuals in
XAI, if a base score function is a solution to a counterfactual
problem, we say that this solution is a valid counterfactual.

Definition 9. A valid counterfactual for the strong/δ−appro-
ximate/weak counterfactual problem is a base score function
τ ′ which is a solution to the strong/δ−approximate/weak
counterfactual problem, respectively.

To illustrate, in Figure 2, all τ ′1, τ
′
2 and τ ′3 are valid coun-

terfactuals as they are solutions to the (respective) problems.
Next, we study relationships among valid counterfactuals.

Proposition 3 (Problem Relationships).

1. If a counterfactual is valid for the strong counterfactual
problem, then it is also valid for the δ−approximate and
weak counterfactual problems.

2. If a counterfactual is valid for the δ−approximate coun-
terfactual problem, then it is also valid for the weak coun-
terfactual problem.

Corollary 1. If σ satisfies s-stability and Q is
acyclic, then the trivial counterfactual is valid for the
strong/δ−approximate/weak counterfactual problem.

However, non-trivial valid counterfactuals do not always
exist when not allowing directly setting the base score of the
topic argument to the desired strength. For instance, when
a topic argument is not connected with any other arguments
in the QBAF, then there is no non-trivial counterfactual.

Proposition 4 (Uniqueness). There is a unique valid
counterfactual (for the strong/δ−approximate/weak
counterfactual problem) iff the trivial counterfactual is the
only valid counterfactual (for the respective problem).

We leave to future study the identification of special
classes of QBAFs for which non-trivial counterfactual ex-
planations can be always guaranteed to exist.

5 Cost-Effective Counterfactuals
In this section we turn to computational challenges: we aim
to design an algorithm that can return not only valid but also
cost-effective counterfactuals for the δ−approximate coun-
terfactual problem. We focus on this problem because, as
discussed in Section 4.2, it may be unrealistic to aim at
exactly matching the desired strength and solve the strong
counterfactual problem and, by Proposition 3, once a valid
δ−approximate counterfactual is returned, it is also valid
for the weak counterfactual problem. We interpret cost as
distance: the shorter the distance, the lower the cost of a
counterfactual. This is in line with literature on counterfac-
tual explanations in XAI (Wachter, Mittelstadt, and Russell
2017). To illustrate, in Figure 2 (middle), while τ ′1, τ

′
2 and

τ ′3 are all valid δ−approximate, their distance to the original
base score varies, using the following notion of distance.
Definition 10. The Lp-Norm Distance between τ and τ ′ is:

dp(τ, τ
′) =

(∑
α∈A
||τ(α)− τ ′(α)||p

) 1
p

.

Minimizing this distance is difficult because there is no
closed expression for a topic argument’s final strength in
general (cyclic) graphs. Here, we will therefore propose an
approximate algorithm and evaluate it empirically in Sec-
tion 7. Before giving the algorithm (in Section 5.2), we will
present properties driving its design (Section 5.1 below).

5.1 Algorithm Design Properties
We will design an iterative algorithm that incrementally
adapts the weight to find a close counterfactual. To do
so, we need to determine an updating direction and mag-
nitude, which means deciding how much each argument’s
base score should be increased or decreased. To determine
the former, we partition arguments based on their polarity.
We first define paths and connectivity between arguments.
Definition 11. For any α, β ∈A, we let pα7→β = ⟨(γ0, γ1),
(γ1, γ2), · · · , (γn−1, γn)⟩(n ≥ 1) denote a path from α to β,
where α=γ0, β=γn, γi ∈ A(1 ≤ i ≤ n) and (γi−1, γi) ∈
R− ∪R+.
Notation 2. We let |pα7→β | denote the length of path pα7→β .
We let Pα7→β and |Pβ 7→α| denote the set of all paths from α
to β, and the number of paths in Pα7→β , respectively.

We next distinguish three types of connectivity based on
the number of paths from one argument to another.
Definition 12. For any α, β ∈ A:
• β is disconnected from α iff Pβ 7→α = ∅;
• β is single-path connected to α iff |Pβ 7→α| = 1;



Figure 3: An example QBAF (base scores omitted).

• β is multi-path connected to α iff |Pβ 7→α| > 1.

Example 2. Consider the QBAF in Figure 3. γ is discon-
nected from β because there is no path from γ to β; γ is
single-path connected to δ via path pγ 7→δ = ⟨(γ, δ)⟩; α
is multi-path connected to β, because there are infinitely
many paths from α to β, namely p′α7→β = ⟨(α, β)⟩, p′′α7→β =

⟨(α, β), (β, α), (α, β)⟩ and so on.

Inspired by (Rago, Li, and Toni 2023; Yin, Potyka, and
Toni 2023), we define polarity to characterize the influence
between arguments according to their connectivity and the
number of attacks on paths between them.

Definition 13. The polarity from β to α (α,β∈A, α̸=β) is:

• neutral (β is neutral to α) iff β is disconnected from α;
• positive (β is positive to α) iff Pα 7→β ̸= ∅ and for every

path pα 7→β ∈ Pβ 7→α, |pβ 7→α ∩R−| is even;
• negative (β is negative to α) iff Pβ 7→α ̸= ∅ and for every

path pβ 7→α ∈ Pβ 7→α, |pβ 7→α ∩R−| is odd;
• unknown (β is unknown to α) iff ∃p′β 7→α ∈ Pβ 7→α such

that
∣∣∣p′β 7→α∩R−

∣∣∣ is even and ∃p′′β 7→α ∈ Pβ 7→α such that∣∣∣p′′β 7→α∩R−
∣∣∣is odd.

So, if β is single-path connected to α, then it is positive or
negative to α; if β is multi-path connected to α, unless it is
positive or negative to α on every path, it is unknown to α.

Example 3. In Figure 3, γ is neutral to β; γ is positive to δ
as there is only one path pγ 7→δ with 0 (even number) attacks;
α is negative to β since, although there are infinitely many
paths from α to β, each path has an odd number of attacks;
β is unknown to δ as for one path p′β 7→δ = ⟨(β, δ)⟩, it has
1 attack, while for another path p′′β 7→δ = ⟨(β, γ), (γ, δ)⟩, it
has 0 attacks. Hence, β is unknown to δ.

We can restrict the update direction of arguments based
on their polarity assuming that σ respects directionality and
monotonicity. Directionality (Amgoud and Ben-Naim 2016)
states that the strength of an argument depends only on its
incoming edges.

Definition 14. A semantics σ satisfies directionality iff, for
anyQ andQ′=⟨A′,R−′

,R+′
, τ ′⟩ such thatA = A′,R− ⊆

R−′, andR+ ⊆ R+′, the following holds: for any α, β, γ ∈
A, let σQ′(γ) denote the strength of γ inQ′, ifR−′∪R+′

=
R− ∪R+ ∪ {(α, β)} and Pβ 7→γ = ∅, then σ(γ) = σQ′(γ).

Proposition 5. If a semantics σ satisfies directionality, then
for any α, β ∈A such that β is neutral to α and for any τ ′

such that τ ′(β) is an arbitrary value from [0, 1] and τ ′(γ) =
τ(γ) for all γ∈A\ {β}, στ ′(α) = σ(α) always holds.

Proposition 6. QE, REB, DF-QuAD satisfy directionality.

Figure 4: A QBAF evaluated by the DF-QuAD semantics (inspired
by (Kampik et al. 2024)).

For semantics satisfying directionality, by Proposition 5,
we could just maintain the base scores of neutral arguments
(wrt. the topic argument) when identifying counterfactuals.

Monotonicity states that increasing (decreasing) the base
score of a single-path connected supporter (attacker) will not
decrease (increase) the final strength of the topic argument.
Definition 15. A semantics σ satisfies monotonicity iff for
any α, β ∈A such that β is single-path connected to α, for
any τ1,τ2 with τ1(β)≤ τ2(β) and τ1(γ)=τ2(γ) for all γ∈
A\{β}:
• if (β, α) ∈ R−, then στ1(α) ≥ στ2(α);
• if (β, α) ∈ R+, then στ1(α) ≤ στ2(α).

Proposition 7. If a semantics σ satisfies monotonicity, then
for any τ1, τ2 such that τ1(β) ≤ τ2(β) and τ1(γ) = τ2(γ)
for all γ ∈ A \ {β}:
• if β is negative to α, then στ1(α) ≥ στ2(α);
• if β is positive to α, then στ1(α) ≤ στ2(α).

Proposition 8. QE, REB, DF-QuAD satisfy monotonicity.

For semantics satisfying monotonicity, by Prop. 7, we can
increase a topic argument’s the strength by increasing (de-
creasing) the base scores of positive (negative) arguments.

We now consider unknown arguments. Since their base
scores may not be globally monotonic to the strength of a
topic argument, we cannot simply decide an invariant updat-
ing direction for their base scores. For example, in Figure 4
where the base scores of all arguments are 0, with the in-
crease of β’s base score from 0 to 1 while all others remain
the same, the final strength of α displays a non-monotonic
effect, increasing initially and then decreasing. To overcome
this challenge, we introduce the difference quotient from
one argument to another, enabling us to capture the average
changing rate of the strength wrt. the base score within an
interval, approximately reflecting local monotonicity at the
current base score. Then, the difference quotient can act as
indicator for the updating direction of unknown arguments.
Definition 16. For any α, β ∈ A, given a constant h ∈
[−1, 0) ∪ (0, 1] and a base score function τ ′ such that
τ ′(β) = τ(β) + h ∈ [0, 1] and τ ′(γ) = τ(γ) for all
γ ∈ A \ {β}, the difference quotient from β to α is:

∆h
β 7→α =

στ ′(α)− σ(α)

h
.

As an illustration, if the difference quotient from an un-
known argument to the topic argument is greater (less) than
0, we increase (decrease) its base score when the desired



strength is higher than the current. However, if the differ-
ence quotient is exactly equal to 0, we do not update. To
highlight the compatibility of the difference quotient with
our previous ideas, let us note that neutral arguments always
have 0 difference quotient, while positive (negative) argu-
ments always have positive (negative) quotients.

Proposition 9 (Sign Invariance). For any α, β ∈ A, for any
h ∈ [−1, 0) ∪ (0, 1], if a semantics σ satisfies directionality
and monotonicity, then

• if β is neutral to α, ∆h
β 7→α = 0;

• if β is positive to α, ∆h
β 7→α ≥ 0;

• if β is negative to α, ∆h
β 7→α ≤ 0.

After determining the updating directions for all four
types of arguments, we consider updating the magnitude. To
do so, we use a priority strategy that assigns higher updat-
ing magnitude to arguments closer to the topic argument in
terms of path length. We expect that an appropriate priority
can help identify cost-effective counterfactuals in terms of
Lp-norm distance, under the hypothesis that updating closer
arguments is more efficient in achieving the desired strength.
We empirically verify this hypothesis in Section 7.

We define priority as the reciprocal of the shortest path
length from one argument to another, which is at most 1 for
the attackers or supporters.

Definition 17. For any α, β ∈ A, α ̸= β:

• if β is disconnected from α, then the priority from β to α
is 0;

• if β is single-path or multi-path connected to α via n(n ≥
1) paths p1β 7→α, · · · , pnβ 7→α ∈ Pβ 7→α, then the priority
from β to α is 1/min{|pβ 7→α| | pβ 7→α ∈ Pβ 7→α}.

Example 4. Consider the QBAF in Figure 3. Let us first
consider the priority from α to δ. There are infinitely many
paths from α to δ. Among them, path pα 7→δ=⟨(α, β), (β, δ)⟩
has the minimal length 2, thus, the priority from α to δ is 0.5.
Since the minimal length of paths from β to δ and from γ to
δ are both 1, the priorities are both 1.

5.2 Algorithms
Algorithm 1 computes the polarity from α to β (α ̸= β)
in three steps. Firstly, we compute all the non-cyclic paths
from α to β with Depth-First Search (DFS) and store them
in a set of paths called Pα7→β . If there is no path, then the
polarity is neutral. Secondly, all the nodes in all the paths
are checked for cycles with the function find cycles 5, which
outputs a set of elementary cycles. If any of the node is part
of a cycle, then we check whether each cycle contains an
odd number of attacks. If this is the case, then the polarity
from α to β is unknown because the cycle will contain both
odd and even numbers of attacks by going through the cycle

5See https://github.com/XiangYin2021/CE-QArg for details. A
quicker implementation could involve applying (Johnson 1975),
which is able to find all the elementary cycles of a directed graph in
time bounded by O((n+e)(c+1)), where n, e, and c are the number
of nodes, edges, and elementary cycles (nodes occur once except
for the starting node) in the graph, respectively.

Algorithm 1 Polarity Computation Algorithm
Input: A QBAF Q, two arguments α, β ∈ A
Output: The polarity from α to β

1: Pα7→β ← DFS(Q, α, β)
2: if Pα 7→β == ∅ then
3: return −2 //neutral
4: for pα7→β in Pα7→β do
5: for node in pα7→β do
6: cycles← find cycles(Q, node)
7: for cycle in cycles do
8: if cycle contains odd number attacks then
9: return 0 // unknown

10: polarity ← [ ] // empty array
11: for pα7→β in Pα7→β do
12: if pα 7→β contains odd number attacks then
13: polarity.append(−1) // negative
14: else if pα 7→β contains even number attacks then
15: polarity.append(1) // positive
16: if all items in polarity == −1 then
17: return −1 // negative
18: else if all items in polarity == 1 then
19: return 1 // positive
20: else
21: return 0 // unknown

Algorithm 2 Priority Computation Algorithm
Input: A QBAF Q, two arguments α, β ∈ A, a constant c
Output: The priority from α to β

1: if α == β then
2: return c
3: Pα7→β ← DFS(Q, α, β)
4: return 1/min{length(pα7→β) | pα7→β ∈ Pα7→β}

an odd or even number of times. For instance, suppose a
QBAF consists of two arguments α and β, where α attacks
β, and β supports α. In this case, path ⟨(α, β)⟩ is negative
while ⟨(α, β), (β, α), (α, β)⟩ is positive, thus α is unknown
to β. Finally, we check the number of attacks on every path:
if all the paths contain an odd (even) number of attacks, α is
negative (positive) to β, and it is unknown otherwise.

Algorithm 2 computes the priority from α to β. We define
the self-priority of an argument as a constant greater than 1.
Thus an argument has the highest priority to itself than any
others. Next, we perform a DFS to compute all the non-
cyclic paths from α to β and return the reciprocal of the
shortest path length.

Algorithm 3 (which we call CE-QArg for Counterfac-
tual Explanations for Quantitative bipolar Argumentation
frameworks) is an iterative updating algorithm for identify-
ing valid and cost-effective δ-approximate counterfactuals.
CE-QArg essentially involves determining the direction and
magnitude of arguments. For brevity, we assume the current
strength of the topic argument is less than the desired one.
Firstly, we compute the polarity and priority for each argu-
ment with the function func polarity and func priority from
Algorithm 1 and 2, respectively. Secondly, the key part of

https://github.com/XiangYin2021/CE-QArg


Algorithm 3 CE-QArg
Input: A QBAFQ, a gradual semantics σ, a topic argument
α∗ and a desired strength s∗ for α∗

Parameter: An updating step ε, a change h
Output: A counterfactual τ∗

1: update, polarity, priority ← {}, {}, {} //dictionaries
2: for α in A do
3: polarity[α]← func polarity(α, α∗)
4: priority[α]← func priority(α, α∗)
5: if polarity[α] == −2 then
6: update[α]← 0 // neutral
7: else if polarity[α] == 1 then
8: update[α]← 1 // positive
9: else if polarity[α] == −1 then

10: update[α]← −1 // negative
11: while σ(α∗) < s∗ do
12: for α in A do
13: if polarity[α] == 0 then
14: dquo[α]← func dquo(α, α∗, h)
15: if dquo[α] > 0 then
16: update[α]← 1
17: else if dquo[α] < 0 then
18: update[α]← −1
19: else
20: update[α]← 0
21: for α in A do
22: τ∗(α) ← max(0,min(1, τ∗(α) + update[α] · ε ·

priority[α]))
23: compute σ(α∗)
24: return τ∗

this algorithm is to determine the updating direction in ev-
ery updating iteration. For this, we need an update list to
record the updating direction in each iteration. For positive,
negative and neutral arguments (lines 5-10), we only need
to identify the updating direction once since they remain in-
variant, whereas, for unknown arguments (lines 13-20), we
need to compute their updating direction in every iteration
by difference quotient using the function func dquo, which
can be intuitively implemented by Definition 16 (so we omit
the details). Once the updating direction of every argument
is determined in an iteration, we update the base scores of
all arguments all in one go by a small step multiplied by
their priority (line 22) and make sure they are within the
bounds. We assume the step is small enough that the inter-
actions among arguments can be neglected. We repeat this
procedure iteratively until the current strength reaches the
desired strength, after which we return a possible counter-
factual (lines 11-24).

6 Formal Properties for Explanations
We study the properties for counterfactuals, with a focus on
the neutral, negative, and positive arguments. Here, we as-
sume the gradual semantics considered satisfy both direc-
tionality and monotonicity. Note that the properties of ex-
planations are distinct from those of semantics, despite the
satisfaction of the former being dependent on the latter.

Existence (Čyras, Kampik, and Weng 2022; Kampik et al.
2024) is a commonly considered property for explanations.
It says that if the strength of an argument differs from its
base score, then there must exist an argument that caused the
change. Alteration Existence states that if a valid counterfac-
tual increases the strength of the topic argument, then there
must exist a positive (negative) argument whose base score
is also increased (decreased) in the counterfactual whenever
the QBAF does not have any unknown arguments.
Proposition 10 (Alteration Existence). Given a valid coun-
terfactual τ∗ (for the strong/δ−approximate/weak counter-
factual problem), a topic argument α∗ ∈ A such that
τ∗(α∗) = τ(α∗), and ∄β ∈ A (β ̸= α∗) such that β is
unknown to α∗:

1. If σ(α∗) ̸=στ∗(α∗), then ∃γ∈A such that τ(γ) ̸=τ∗(γ);
2. If σ(α∗) < στ∗(α∗), then either ∃γ ∈ A such that γ is

positive to α∗ and τ(γ) ≤ τ∗(γ) or ∃γ ∈ A such that γ
is negative to α∗ and τ(γ) ≥ τ∗(γ);

3. If σ(α∗) > στ∗(α∗), then either ∃γ ∈ A such that γ is
positive to α∗ and τ(γ) ≥ τ∗(γ) or ∃γ ∈ A such that γ
is negative to α∗ and τ(γ) ≤ τ∗(γ).
Given that validity is fundamental for counterfactuals, we

introduce two properties associated with validity.
For attribution-based explanations for QBAFs, it is inter-

esting to explore the effects of removing or nullifying an
argument (by setting its base score to 0 – e.g. see removal-
based contribution functions in (Kampik et al. 2024) and
agreement in (Yin, Potyka, and Toni 2023)). For counter-
factual explanations, it is essential to consider the validity
of a counterfactual if it is perturbed. Combining both ideas,
we propose a novel property called nullified-validity, which
examines whether a valid counterfactual remains valid even
after nullifying an argument. For example, nullifying a pos-
itive argument in a valid counterfactual could still result in a
valid counterfactual if a smaller strength is expected for the
topic argument in the weak counterfactual problem.
Proposition 11 (Nullified-Validity). Given a valid coun-
terfactual τ∗ (for the strong/δ−approximate/weak counter-
factual problem), a topic argument α∗ ∈ A and a de-
sired strength s∗ for α∗, and another base score function
τ0 such that for some β ∈ A (β ̸= α∗), τ0(β) = 0 and
τ0(γ) = τ∗(γ) for all γ ∈ A \ {β}:

1. If β is neutral to α∗, then τ0 is still valid for the
strong/δ−approximate/weak counterfactual problem;

2. If β is negative to α∗ and στ∗(α∗)≥s∗, then τ0 is still
valid for the weak counterfactual problem;

3. If β is positive to α∗ and στ∗(α∗) ≤ s∗, then τ0 is still
valid for the weak counterfactual problem.
In attribution-based explanations for QBAFs, it is also

interesting to compare two related explanations and study
their properties (e.g., see monotonicity in (Yin, Potyka, and
Toni 2023) and dominance in (Amgoud, Ben-Naim, and
Vesic 2017; Yin, Potyka, and Toni 2024)). We extend this
idea to counterfactuals by focusing on the validity property.
Related-validity identifies a valid counterfactual by compar-
ing it with another already valid counterfactual without re-
computing the strengths of arguments. To illustrate, suppose



we have a valid counterfactual for the weak counterfactual
problem, where the strength of the topic argument is as small
as desirable. Then we can compare it with another counter-
factual: if the latter counterfactual has a smaller base score
in a positive argument while keeping all other base scores
the same, it is still considered valid.

Proposition 12 (Related-Validity). Given a valid counter-
factual explanation τ∗ (for the weak counterfactual prob-
lem), a topic argument α∗ ∈ A and a desired strength s∗

for α∗ such that στ∗(α∗) ≥ s∗, for every other base score
function τ ′ in Qτ ′ , and all β ∈ A (β ̸= α∗):

1. If β ∈ A is neutral to α∗, τ ′(β) ≥ τ∗(β) and τ ′(γ) =
τ∗(γ) for all γ ∈ A \ {β}, then τ ′ is also valid (for the
weak counterfactual problem);

2. If β ∈ A is negative to α∗, τ ′(β) ≤ τ∗(β) and τ ′(γ) =
τ∗(γ) for all γ ∈ A\{β}, then τ ′ is also a valid counter-
factual (for the weak counterfactual problem);

3. If β ∈ A is positive to α∗, τ ′(β) ≥ τ∗(β) and τ ′(γ) =
τ∗(γ) for all γ ∈ A\{β}, then τ ′ is also a valid counter-
factual (for the weak counterfactual problem).

7 Evaluations
We show effectiveness (Experiment 1), scalability (Exper-
iment 2) and robustness (Experiment 3) of CE-QArg. In
this section, we focus on the δ−approximate counterfactual
problem and valid explanations therefor with δ = 0.1.

Settings We conducted experiments separately using
acyclic and cyclic QBAFs. For acyclic QBAFs, we gen-
erated tree-like QBAFs as they occur in many applications
of QBAFs (e.g. see (Kotonya and Toni 2019; Cocarascu,
Rago, and Toni 2019; Chi et al. 2021)). We created full bi-
nary, ternary, and quaternary trees with different widths (2,
3, and 4) and depths (from 1 to 8) where each edge was
randomly set to an attack or a support. The topic argument
was set as the root of the tree. To improve the credibility of
the results and reduce the impact of random errors, we ran-
domly created each tree-like QBAF with a specified width
and depth 100 times with different base scores in [0, 1] over
different arguments. For cyclic QBAFs, we created varying
numbers of arguments (from 100, 200, to 1000), each re-
peated 100 times with random attacks or supports, random
base scores in [0, 1], and a randomly designated topic argu-
ment. The argument-relation ratio was set as 1:1 to avoid
dense QBAFs which can impact the explainability because
of their high structural complexity, making them difficult to
comprehend and thus less suitable for explainability.

We report on experiments with the QE semantics6. We
set the updating step ε to 0.01 in each iteration. Besides, we
used both L1 and L2-norm distance as the metric for cost.

7.1 Experiment 1: Effectiveness
We show the effectiveness of CE-QArg by conducting abla-
tion studies on polarity and priority. We first propose the

6We give results with DF-QuAD and REB in https://arxiv.org/
abs/2407.08497.

Baseline method (BL) based on Proposition 9, which di-
rectly computes the difference quotient for all arguments
as the updating indicators without considering their polarity
and priority. We then separately applied priority or polar-
ity on the BL to show their individual efficacy (denoted as
BL+pri and BL+pol). Finally, we showed the performance
of our CE-QArg which incorporates both polarity and pri-
ority. We evaluated CE-QArg on validity, L1, L2-norm dis-
tance, and runtime.

Table 1: Ablation studies for polarity and priority on acyclic/cyclic
QBAFs: Comparison of average validity, L1, L2-norm distance,
and runtime over 100 random generated acyclic full binary tree-like
QBAFs with a depth of 7 and cyclic QBAFs with 100 arguments
and 100 relations.7(The best results are shown in bold.)

Validity L1 L2 Runtime (s)
BL 1.00/0.78 16.52/17.75 1.65/1.87 1.52/79.57
BL+pri 1.00/0.93 4.04/0.51 0.49/0.30 1.16/32.30
BL+pol 1.00/1.00 22.03/1.42 2.05/0.46 0.02 /1.58
Ours 1.00/1.00 4.33/0.54 0.50/0.30 0.01/0.80

We first discuss the results of acyclic QBAFs (left side of
slash in Table 1). All methods had the best validity of 1.00.
The use of priority is expected to shorten the L1 and L2-
norm distance by updating the arguments close to the topic
argument with a larger step. The results of BL and BL+pri
showed that applying priority resulted in a 75.5% and 70.3%
decrease in L1 and L2-norm distance, respectively, which
also reduced the runtime by 23.7% in the meanwhile. These
findings are in line with our hypothesis in that priority en-
ables reaching a desired strength more cost-effectively, mak-
ing the distance shorter and thus requiring fewer iterations.
Utilizing polarity is expected to lower the runtime by com-
puting the polarity only once for neutral, positive, and nega-
tive arguments in a QBAF. The results of BL and BL+pol
showed that applying polarity significantly decreased the
runtime by 98.7% as expected because the BL computes
the difference quotient in every iteration for every argument,
which causes the runtime wastage. For our CEQArg, we
see that the runtime is better than that of any of the previ-
ous three algorithms. Compared to BL+pri, although the L1

and L2-norm distance is slightly longer in our CE-QArg, the
runtime is substantially decreased.

The results of cyclic QBAFs (right side of the slash) are
similar. We can observe that using priority alone decreased
the L1 and L2-norm distance by 97.1% and 84.0%, respec-
tively; and solely applying polarity significantly decreased
the runtime by 98.0%. Finally, applying both priority and
polarity can yield the desired counterfactual explanations
in terms of the L1 and L2-norm distance and shorten the
algorithm runtime. However, it is interesting to note that
the validity was violated without applying polarity (BL and
BL+pri). This is probably because of the computation er-
ror of arguments’ strength, especially for cyclic QBAFs
where an analytical value does not generally exist. Then,
the strength error will cause the wrong difference quotient

7We show the effectiveness on larger QBAFs in https://arxiv.
org/abs/2407.08497.
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thus the wrong updating direction. As a result, the current
strength just oscillates around the desired strength. The in-
validity of counterfactuals also explains why the L1 and L2-
norm distance performs better than others in BL+pri.

Overall, the ablation studies show the effectiveness of pri-
ority and polarity on both acyclic and cyclic QBAFs, which
allows finding valid and cost-effective counterfactuals.

7.2 Experiment 2: Scalability
We evaluated the scalability of CE-QArg on QBAFs of vary-
ing sizes. We show both validity and the runtime perfor-
mance. First, all tested acyclic and cyclic QBAFs achieved
a validity score of 1.00. We next present the average run-
time for acyclic and cyclic QBAFs with different sizes in
Figure 5.

Figure 5: Scalability evaluation for CE-QArg on acyclic (left) and
cyclic (right) QBAFs: comparison of average runtime over 100 ran-
domly generated acyclic and cyclic QBAFs.

Figure 5 (left) shows the runtime for binary, ternary, and
quaternary tree-like QBAFs with depths ranging from 1 to
8. Notably, binary and ternary trees have a runtime less
than 1s across all depths. However, the runtime for quater-
nary trees increases sharply from depth 7 (2.76s) to depth
8 (36.00s), which is expected since the number of argu-
ments increases substantially from (47 − 1)/3 = 5, 461 to
(48 − 1)/3 = 21, 845. In Figure 5 (right), we observe the
average runtime (blue line) increases as the number of ar-
guments in QBAFs increases. However, there are two out-
liers at the number of 600 and 900 which may be due to the
randomness of the QBAF generation. Therefore, we added
the median runtime, which shows a stable rising trend as
expected. Note that the runtime line plot can vary dramat-
ically with different densities of QBAFs because CE-QArg
involves the traverse of the QBAF using DFS when com-
puting the polarity and priority. This could be improved by
adding pruning strategies while traversing to reduce the run-
time cost: we leave this improvement to future work. In
summary, both acyclic and cyclic QBAFs exhibit reasonable
runtime performance, demonstrating good scalability of CE-
QArg.

7.3 Experiment 3: Robustness
Robustness is a crucial and commonly considered metric
for counterfactual explanation methods (Artelt et al. 2021;
Jiang et al. 2023a; Jiang et al. 2023b; Jiang et al. 2024). An
explanation method is robust against input perturbations if
similar inputs leading to the same outputs give rise to sim-
ilar explanations. For instance, if two loan applicants with
similar conditions are rejected, they should obtain similar

counterfactuals. However, non-robust methods may gener-
ate completely different counterfactuals for similar rejected
applicants (see an example in Figure 1(b) of (Slack et al.
2021)), which is unfair as they have different updating costs
to obtain the desired decision. As an illustration, the coun-
terfactual explanation method in Figure 6 (left) is more ro-
bust against input perturbations than that of Figure 6 (right)
as the new counterfactual is still close to the previous coun-
terfactual after the input is perturbed. We propose a robust-
ness against input perturbations metric which uses the Lp-
norm distance to evaluate the robustness of CE-QArg under
the perturbation of the input base score function.

Figure 6: Comparison of robust (left) and non-robust (right) coun-
terfactual explanation methods against input perturbations.

Metric 1. Given a perturbation score e > 0, two base score
functions τ and τe = τ(α)+ e for all α ∈ A, and two coun-
terfactual explanation τ ′ for τ and τ ′e for τe, the robustness
against input perturbations is measured by dp(τ

′, τ ′e).

In addition, inspired by (Leofante and Lomuscio 2023;
Pawelczyk et al. 2022), we propose a robustness against
noisy execution metric, which requires that the gener-
ated counterfactual could still lead to similar output (final
strength for the topic argument) even if the counterfactual
is perturbed. Still taking the loan application as an exam-
ple, robustness against noisy execution ensures that when a
rejected applicant is very close to the provided counterfac-
tual, then the output of this counterfactual should also be
close to the desired final strength. We evaluate robustness
against noisy execution by the absolute difference between
the strength of a topic argument obtained with two similar
counterfactuals.

Metric 2. Given a topic argument α∗ ∈ A, a perturba-
tion score e, and two counterfactual explanations τ ′ and
τ ′e = τ ′(α) + e for all α ∈ A, the robustness against noisy
execution is measured by |στ ′

e
(α∗)− στ ′(α∗)|.

We applied Metrics 1 and 2 with an increasing perturba-
tion e from 10−8 to 10−1 over acyclic and cyclic QBAFs.
Figure 7 (left) shows the robustness against input perturba-
tions through the average explanation difference measured
by Metric 1, while Figure 7 (right) shows the robustness
against noisy execution through the average strength differ-
ence of the topic argument measured by Metric 2. With the
increase of e, the explanation difference and strength differ-
ence both showed an approximate linear and stable increas-
ing trend, albeit in Figure 7 (right), we observed a bit of un-
steadiness at the beginning when e = 10−8 and e = 10−7.
Overall, CE-QArg exhibited robustness against input per-
turbations and noisy execution on both cyclic and acyclic
QBAFs.



Figure 7: Robustness evaluation of perturbing base score functions
(left) and perturbing generated counterfactuals (right) over 100 ran-
dom generated QBAFs with increasing perturbation e from 10−8

to 10−1. Acyclic QBAFs are binary trees with a depth of 7 while
cyclic QBAFs contain 100 arguments and relations.8

8 Conclusions

We formally defined three counterfactual problem variants
and discussed their relationships. We proposed an itera-
tive algorithm CE-QArg to identify valid and cost-effective
counterfactuals. We discussed some formal properties of our
counterfactual explanations and empirically evaluate CE-
QArg on random generated QBAFs. Experimental results
show that CE-QArg has a desirable performance on effec-
tiveness, scalability, and robustness. While the identifica-
tion of valid and cost-effectiveness counterfactuals still lacks
sufficient theoretical guarantees because there is no closed
expression for a topic argument’s final strength in general
(cyclic) graphs, we improved the searching process by ap-
plying polarity and priority so that the L1 and L2-norm dis-
tance and the runtime decreased significantly compared to
the baseline (BL) method.

There are a few avenues for future work. First, it would be
interesting to explore identifying counterfactuals in QBAFs
when their structure can be changed by adding or removing
arguments or edges. Second, it would be worth exploring
identifying counterfactuals for multiple topic arguments si-
multaneously. However, this would be challenging as it in-
volves the interactive effect among topic arguments. Third,
it would also be interesting to explore the relationship be-
tween argument attribution explanations and counterfactual
explanations (Kommiya Mothilal et al. 2021). Finally, it
would be important to carry out case studies and user ex-
periments as explanations should finally help humans un-
derstand and make better decisions.
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Supplementary Material for
“CE-QArg: Counterfactual Explanations for

Quantitative Bipolar Argumentation Frameworks”

A Gradual Semantics
In this section, we will show the computation for the Quadratic Energy (QE), Restricted Euler-based (REB), and Discontinuity-
Free Quantitative Argumentation Debates (DF-QuAD) semantics.

The QE semantics is computed as follows:
Aggregation function:

Eα =
∑

{β∈A|(β,α)∈R+}

σQE(β)−
∑

{β∈A|(β,α)∈R−}

σQE(β) (1)

Influence function:

σQE(α) =

τ(α)− τ(α) · E2
α

1+E2
α

if Eα ≤ 0

τ(α) + (1− τ(α)) · E2
α

1+E2
α

if Eα > 0
(2)

The REB semantics is computed as follows:
Aggregation function:

Eα =
∑

{β∈A|(β,α)∈R+}

σREB(β)−
∑

{β∈A|(β,α)∈R−}

σREB(β) (3)

Influence function:

σREB(α) = 1− 1− τ2(α)

1 + τ(α) · eEα
(4)

B Additional Details for Section 1
Computation of the importance scores: According to (Kampik et al. 2024), the Shapley-based importance score from β to α
under the semantics σ is defined as follows:

ϕα
σ(β)=

∑
S⊆A\{α,β}

(|A \ {α}| − |S| − 1)! |S|!
|A \ {α}|!

[
σS∪{β}(α)− σS(α)

]
, (5)

where σS(α) denotes the strength of α only when arguments in S exist in the QBAF, while for arguments not in S, they are
deleted from the QBAF when computing the strength of α. In Figure 1, according to Equation 5, we have ϕα

σ(β) = 0.0975,
ϕα
σ(γ) = −0.34, ϕα

σ(ρ) = −0.0525, ϕα
σ(ζ) = −0.04.

C Proofs
Proposition 1 (Solution Existence). If σ satisfies s-stability andQ is acyclic, then the trivial counterfactual is a solution to the
strong counterfactual problem.

Proof. Suppose α∗ ∈ A is the topic argument. According to Definition 5, we know that the trivial counterfactual explanation
is the base score function τ ′ ̸= τ such that τ ′(α∗) = s∗ and τ ′(α) = 0 for all other α ∈ A \ {α∗} in Qτ ′ . Therefore, we have
σ(α) = 0 for all the arguments α before α∗ in the topological order of the Q according to the computation of the semantics.
Therefore, for all the attackers and supporters of α∗, σ(α) = 0. Thus, σ(α∗) = τ(α∗) = s∗. Thus, the trivial counterfactual is
a solution to the strong counterfactual problem if Q is acyclic.

Proposition 2. QE, REB, and DF-QuAD satisfy s-stability.

Proof. A semantics satisfies s-stability if it satisfies both stability and neutrality. Since the QE semantics satisfies both stability
and neutrality (see (Potyka 2018) for the proof), it satisfies s-stability. Analogously, see (Amgoud and Ben-Naim 2018) for the
proof of the REB and DF-QuAD semantics.

Proposition 3 (Problem Relationships).

1. If a counterfactual is valid for the strong counterfactual problem, then it is also valid for the δ−approximate and weak
counterfactual problems.

2. If a counterfactual is valid for the δ−approximate counterfactual problem, then it is also valid for the weak counterfactual
problem.



Proof. According to Definition 9, if a counterfactual is a solution to the counterfactual problem, then it is valid. Therefore,
according to Definition 4, 7, and 8, we can see the relationship between these problems.

Proposition 5. If a semantics σ satisfies directionality, then for any α, β ∈A such that β is neutral to α and for any τ ′ such
that τ ′(β) is an arbitrary value from [0, 1] and τ ′(γ) = τ(γ) for all γ∈A\ {β}, στ ′(α) = σ(α) always holds.

Proof. β is neutral to α means that β is disconnected from α by Definition 13, thus there is no path from β to α. Therefore,
β has no influence on σ(α) no matter what τ(β) is by Definition 14. Therefore, στ ′(α) ≡ σ(α) always holds as long as
τ ′(γ) = τ(γ) for all other γ ∈ A \ {β}.

Proposition 6. QE, REB, DF-QuAD satisfy directionality.

Proof. See (Potyka 2018) for the proof of the QE semantics. See (Amgoud and Ben-Naim 2018) for the proof of the REB and
DF-QuAD semantics.

Proposition 7. If a semantics σ satisfies monotonicity, then for any τ1, τ2 such that τ1(β) ≤ τ2(β) and τ1(γ) = τ2(γ) for all
γ ∈ A \ {β}:
• if β is negative to α, then στ1(α) ≥ στ2(α);
• if β is positive to α, then στ1(α) ≤ στ2(α).

Proof. Let a1, a2, a3, . . . , an ∈ A, β = a1 and α = an, (n ≥ 2).
Case 1: When a1 is positive to an, there are two sub-cases:
Case 1a: a1 is single-path connected to an and there are even number of attacks on the path according to Definition 13.
Suppose a1 is single-path connected to an through path pa1 7→an

= ⟨(a1, a2), (a2, a3), . . . , (an−1, an)⟩. Since a1 is single-
path connected to an, for any ai(1 < i < n), ai is also single-path connected to an, otherwise a1 is no longer single-path
connected to an. Therefore, for any ai(1 ≤ i < n), ai is single-path connected to an.

If τ1(a1) ≤ τ2(a1), then we have στ1(a1) ≤ στ2(a1). Then for any ai(1 ≤ i < n), either στ1(ai) ≤ στ2(ai) or στ1(ai) ≥
στ2(ai), which will further affect ai+1’s strength based on the relation from ai to ai+1.

Specifically, there are 4 cases that how ai affects ai+1 according to the satisfaction of monotonicity.

1. στ1(ai) ≤ στ2(ai) ∧ (ai, ai+1) ∈ R− ⇒ στ1(ai+1) ≥ στ2(ai+1)

2. στ1(ai) ≤ στ2(ai) ∧ (ai, ai+1) ∈ R+ ⇒ στ1(ai+1) ≤ στ2(ai+1)

3. στ1(ai) ≥ στ2(ai) ∧ (ai, ai+1) ∈ R− ⇒ στ1(ai+1) ≤ στ2(ai+1)

4. στ1(ai) ≥ στ2(ai) ∧ (ai, ai+1) ∈ R+ ⇒ στ1(ai+1) ≥ στ2(ai+1)

Based on these 4 cases, we find that (1) every time when ai passes an attack, the increase of ai’s strength will cause the
decrease of ai+1’s strength; (2) every time when ai passes a support, the increase of ai’s strength will cause the increase of
ai+1’s strength.

Initially, since τ1(a1) ≤ τ2(a1), we have στ1(a1) ≤ στ2(a1). Then, along this path, every time ai passes an attack, the
strength magnitude relationship for the ai+1 differs from that of ai.

Thus, if a1 passes even number of attacks, then the strength magnitude relationship for the an is the same as that of a1, that
is, στ1(ai+1) ≤ στ2(ai+1). Therefore, if a1 is positive to an, then στ1(an) ≤ στ2(an).

Case 1b: a1 is multi-path connected to an and each path contains even number of attacks. In this case, similar to the single-
path cases, that a1 will either decrease the strength of attackers of an or increase the strength of supporters of an; or both way.
Therefore, if a1 is positive to an, then στ1(an) ≤ στ2(an).

Case 2: β is negative to α. Analogously to the proof in case 1.

Proposition 8. QE, REB, DF-QuAD satisfy monotonicity.

Proof. The proof for the QE semantics:
1. For any α, β ∈ A such that β is a single-path connected attacker to α. If τ1(β) ≤ τ2(β) and τ1(γ) = τ2(γ) for all

other γ ∈ A \ {β}, then Eβ still remains the same as the strength of β’s attackers and supporters does not change. Then,
σQE
τ1 (β) ≤ σQE

τ2 (β). For α, since β is the only attacker that the final strength changes, thus, Eα decreases or maintains.
Therefore, στ1(α) ≥ στ2(α) by Equation 2.

2. For any α, β ∈ A such that β is a single-path connected supporter to α. The proof is analogous to the Case 1.
The proof for the REB and DF-QuAD semantics are analogous to the proof of the QE semantics.

Proposition 9 (Sign Invariance). For any α, β ∈ A, for any h ∈ [−1, 0) ∪ (0, 1], if a semantics σ satisfies directionality and
monotonicity, then

• if β is neutral to α, ∆h
β 7→α = 0;



• if β is positive to α, ∆h
β 7→α ≥ 0;

• if β is negative to α, ∆h
β 7→α ≤ 0.

Proof. 1. Since β is neutral to α, στ ′(α) = σ(α), ∆h
β 7→α = στ′ (α)−σ(α)

h = 0.
2. As proved in Proposition 7, if an argument β is positive to α, then increasing τ(β) will not decrease σ(α). Hence, if

h > 0, στ ′(α) ≥ σ(α); or if h < 0, στ ′(α) ≤ σ(α). In either case, ∆h
β 7→α = στ′ (α)−σ(α)

h ≥ 0.
3. Analogously to the proof in 2.

Proposition 10 (Alteration Existence). Given a valid counterfactual τ∗ (for the strong/δ−approximate/weak counterfactual
problem), a topic argument α∗ ∈ A such that τ∗(α∗) = τ(α∗), and ∄β ∈ A (β ̸= α∗) such that β is unknown to α∗:

1. If σ(α∗) ̸=στ∗(α∗), then ∃γ∈A such that τ(γ) ̸=τ∗(γ);
2. If σ(α∗) < στ∗(α∗), then either ∃γ ∈ A such that γ is positive to α∗ and τ(γ) ≤ τ∗(γ) or ∃γ ∈ A such that γ is negative

to α∗ and τ(γ) ≥ τ∗(γ);
3. If σ(α∗) > στ∗(α∗), then either ∃γ ∈ A such that γ is positive to α∗ and τ(γ) ≥ τ∗(γ) or ∃γ ∈ A such that γ is negative

to α∗ and τ(γ) ≤ τ∗(γ).

Proof. Since there is no unknown argument to α, there are only neutral, positive, and negative arguments to α. Since the
final strength of α is different with the counterfactual τ∗, we can exclude neutral arguments as they have no influence on α
according to Definition 14. Therefore, we can only consider positive and negative arguments in the following proof. As proved
in Proposition 7, if an argument β is positive to α, this means that increasing τ(β) will not decrease σ(α); if β is negative to α,
then increasing τ(β) will not increase σ(α).

1. If the base scores for all the arguments are the same, then σ(α∗) ̸= στ∗(α∗) will not happen because σ(α∗) = στ∗(α∗).
Therefore, if σ(α∗) ̸= στ∗(α∗), then ∃γ ∈ A such that τ(γ) ̸= τ∗(γ).

2. If all the positive arguments decrease their base scores or all the negative arguments increase their base scores, then
σ(α∗) < στ∗(α∗) will not happen as there is no positive contribution to the final strength of α. Therefore, either ∃γ ∈ A such
that γ is positive to α∗ and τ(γ) ≤ τ∗(γ) or ∃γ ∈ A such that γ is negative to α∗ and τ(γ) ≥ τ∗(γ).

3. Analogously to the proof in 2.

Proposition 11 (Nullified-Validity). Given a valid counterfactual τ∗ (for the strong/δ−approximate/weak counterfactual prob-
lem), a topic argument α∗ ∈ A and a desired strength s∗ for α∗, and another base score function τ0 such that for some β ∈ A
(β ̸= α∗), τ0(β) = 0 and τ0(γ) = τ∗(γ) for all γ ∈ A \ {β}:

1. If β is neutral to α∗, then τ0 is still valid for the strong/δ−approximate/weak counterfactual problem;
2. If β is negative to α∗ and στ∗(α∗)≥s∗, then τ0 is still valid for the weak counterfactual problem;
3. If β is positive to α∗ and στ∗(α∗) ≤ s∗, then τ0 is still valid for the weak counterfactual problem.

Proof. 1. If β is neutral to α∗, then setting τ(β) to 0 will not impact the final strength of α∗, thus, τ0 is still valid for the weak
counterfactual problems.

2. If the current strength is valid and greater or equal to the desired strength, then τ0 is still valid if it does not decrease the
current strength. Since β is negative to α∗, setting the base score of β to 0 will not decrease the final strength of α∗. Thus, τ0
is still valid for the weak counterfactual problem.

3. Analogously to the proof in 2.

Proposition 12 (Related-Validity). Given a valid counterfactual explanation τ∗ (for the weak counterfactual problem), a topic
argument α∗ ∈ A and a desired strength s∗ for α∗ such that στ∗(α∗) ≥ s∗, for every other base score function τ ′ in Qτ ′ , and
all β ∈ A (β ̸= α∗):

1. If β ∈ A is neutral to α∗, τ ′(β) ≥ τ∗(β) and τ ′(γ) = τ∗(γ) for all γ ∈ A \ {β}, then τ ′ is also valid (for the weak
counterfactual problem);

2. If β ∈ A is negative to α∗, τ ′(β) ≤ τ∗(β) and τ ′(γ) = τ∗(γ) for all γ ∈ A \ {β}, then τ ′ is also a valid counterfactual (for
the weak counterfactual problem);

3. If β ∈ A is positive to α∗, τ ′(β) ≥ τ∗(β) and τ ′(γ) = τ∗(γ) for all γ ∈ A \ {β}, then τ ′ is also a valid counterfactual (for
the weak counterfactual problem).

Proof. 1. If β is neutral to α∗, then increasing τ(β) will not impact the final strength of α∗, thus, τ ′ is still valid for the weak
counterfactual problems.

2. If the current strength is valid and greater or equal to the desired strength, then τ ′ is still valid if it does not decrease the
current strength. Since β is negative to α∗, decreasing the base score of β will not decrease the final strength of α∗. Thus, τ ′ is
still valid for the weak counterfactual problem.

3. Analogously to the proof in 2.



D Additional Results for Section 7

depth of full binary tree 1 2 3 4 5 6 7 8
Validity avg 100% 100% 100% 100% 100% 100% 100% 100%
L1 dist avg 0.2428 0.5665 0.8817 1.2465 1.93715 2.914681667 4.33313 7.41227
L2 dist avg 0.2428 0.349797347 0.394276655 0.401603068 0.451644956 0.48204884 0.500199031 0.581580695
Runtime avg 0.002250516 0.002820656 0.003330777 0.003740871 0.004881136 0.006691618 0.018744333 0.027886395

depth of full ternary tree 1 2 3 4 5 6 7 8
Validity avg 100% 100% 100% 100% 100% 100% 100% 100%
L1 dist avg 0.2428 0.6196 1.24845 2.55385 4.963641667 11.92632167 30.66984833 58.33474
L2 dist avg 0.2428 0.331281168 0.402227822 0.484308185 0.535948028 0.704746092 1.007415026 1.075490197
Runtime avg 0.001930501 0.004991331 0.005791538 0.008422241 0.016374342 0.044281733 0.189644701 0.914366341

depth of full quaternion tree 1 2 3 4 5 6 7 8
Validity avg 100% 100% 100% 100% 100% 100% 100% 100%
L1 dist avg 0.2428 0.7411 2.0668 4.665916667 12.533775 40.72221333 130.238235 428.3937186
L2 dist avg 0.2428 0.356349134 0.5154598 0.576857575 0.748766159 1.170944482 1.82663353 2.961038596
Runtime avg 0.002220514 0.005531254 0.007231643 0.012782934 0.049338901 0.315750322 2.764963973 36.00037978
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