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Abstract

Quantitative bipolar argumentation frameworks (QBAFs)
have various applications in areas like product recommen-
dation, review aggregation and explaining machine learning
models. QBAF semantics assign a strength to every argu-
ment that is based on an a priori belief and the strength of
its attackers and supporters. Intuitively, a QBAF semantics
is open-minded when it is unbiased in the sense that a priori
beliefs can be given up eventually when sufficient arguments
to the contrary are presented. While this behaviour is desir-
able in many applications, existing open-minded semantics
also have the property that even very weak arguments will
eventually eliminate the a priori beliefs. In this paper, we
will study notions of conservativeness that demand that the
deviation from the a priori beliefs is bounded by the strength
of pro and contra arguments. We will discuss compatibility
and conflicts with existing properties and present two new
semantics with interesting semantical guarantees. To do so,
we will build up on the framework of modular semantics and
prove some general relationships between functional and se-
mantical properties that are useful to simplify the study of
new modular semantics.

1 Introduction
Quantitative bipolar argumentation frameworks (QBAFs)
are abstract argumentation frameworks (Dung 1995) that
represent attack and support relationships between argu-
ments (Amgoud et al. 2008; Amgoud and Ben-Naim 2017;
Baroni, Rago, and Toni 2018). Each argument is assigned a
base score (an a priori belief) and QBAF semantics assign a
final strength to every argument based on its base score and
the strength of its attackers and supporters. QBAFs have ap-
plications in various domains like product recommendation
(Rago, Cocarascu, and Toni 2018), review aggregation (Co-
carascu, Rago, and Toni 2019), stance aggregation (Kotonya
and Toni 2019), explaining the PageRank of websites (Al-
bini et al. 2020) or the predictions of neural networks (Ay-
oobi, Potyka, and Toni 2023).

In many applications, we want to balance between conser-
vativeness and open-mindedness (Potyka 2019b): a seman-
tics should be conservative in the sense that it does not give
up a priori beliefs too easily, but it should be open-minded
in the sense that a priori beliefs can be given up eventually
when sufficient evidence to the contrary is presented. As

we will discuss later in detail, existing open-minded seman-
tics have the property that even very weak arguments can
make another argument very strong or weak when they oc-
cur in large numbers. This can be undesirable. For exam-
ple, when evaluating a movie based on arguments made in
reviews, a large number of mediocre evaluations of an as-
pect in individual reviews (e.g., the acting was okay) should
not result in an outstanding evaluation of the overall aspect
(the acting was great). Another example are truth discovery
problems, where we want to evaluate the trustworthiness of
sources and the believability of claims (Gupta and Han 2011;
Berti-Equille and Borge-Holthoefer 2015; Li et al. 2016;
Singleton and Booth 2022). As noted in (Singleton 2020),
such problems can be naturally represented by bipolar argu-
mentation frameworks where sources and their claims sup-
port each other (a claim is more believable if it is supported
by trustworthy sources and a source is more trustworthy if
it makes believable claims) and contradicting claims attack
each other. We recently implemented this idea with QBAFs
(Potyka and Booth 2024). In this setting, we want open-
mindedness, but we also want to be able to bound the be-
lievability of a claim by the trustworthiness of its supporters
from above.

We will study two notions of conservativeness. The first
notion is called absolute conservativeness (AC). Roughly
speaking, AC directly restricts the strength values that an
argument can take based on the maximum strength of its
attackers and supporters. However, implementing absolute
conservativeness turns out to be intricate and may severely
restrict the potential final strength values based on the a pri-
ori beliefs. We therefore also introduce the weaker notion of
relative conservativeness (RC) that allows adjusting the base
score relative to the strength of attackers and supporters. We
discuss limitations of existing semantics and introduce two
novel semantics that satisfy conservativeness properties and
many other interesting properties from the literature.

In order to study the new semantics efficiently, we build
up on the framework of modular semantics (Mossakowski
and Neuhaus 2018) that encompasses commonly applied
QBAF semantics like Df-QuAD (Rago et al. 2016), Euler-
based (Amgoud and Ben-Naim 2017), quadratic energy (Po-
tyka 2018a) and MLP-based semantics (Potyka 2021). All
modular semantics define the strength values by means of an
update function that is composed of an aggregation function



Figure 1: A truth discovery QBAF. Source (green) and claim (blue)
arguments have base scores 0.5 and 0, respectively.

(aggregating the strength of an argument’s attackers and sup-
porters) and an influence function (adapting the base score
based on the aggregate). In recent papers like (Potyka 2021),
semantics have been compared based on 14 semantical prop-
erties. However, as shown in (Baroni, Rago, and Toni 2018),
many of these properties can be seen as instances of more
general principles called Balance and Monotonicity. We
will connect Balance and Monotonicity and some other in-
dependent semantical principles to properties of aggregation
and influence functions to further simplify the study of new
modular semantics. Similar connections have been made in
(Amgoud and Doder 2018) for gradual semantics of attack
frameworks and some of our results can be seen as gener-
alizations of their results to bipolar frameworks. We will
discuss the relationship at the end of the paper (Section 6).

The remainder of this paper is structured as follows: We
give a quick introduction to QBAFs in Section 2. In Section
3, we will discuss interesting properties of aggregation and
influence functions, and explain, in Section 4, how they are
related to the semantical properties of the induced QBAF
semantics. We will also show that every modular seman-
tics satisfies some basic properties from (Amgoud and Ben-
Naim 2017) by definition. These results do not only simplify
the investigation of our new semantics, but will hopefully
also simplify the design and study of future modular seman-
tics. In Section 5, we will introduce absolute and relative
conservativeness formally and discuss limitations of exist-
ing semantics. We will introduce a new influence and aggre-
gation function and discuss how they can be combined with
existing functions to define novel semantics that can pro-
vide a better tradeoff between conservativeness and open-
mindedness.

2 Background
Formally, QBAFs can be defined as follows (Baroni, Rago,
and Toni 2018).

Definition 1 (QBAF). A QBAF is a quadruple Q =
(A,Att,Sup, β) consisting of a set of arguments A, two bi-
nary relations Att and Sup called attack and support and a
function β : A → [0, 1] that assigns a base score β(a) to
every argument a ∈ A.

For all a ∈ A, we let Att(a) = {b ∈ A | (b, a) ∈ Att}
and define Sup(a) analogously. Figure 1 shows a QBAF
that encodes a truth discovery problem as suggested in (Sin-
gleton 2020). In this example, we have four sources (green)
that make claims (blue) about the place and year of birth of
a person. We denote support relationships by dashed and at-

Figure 2: Evolution of strength values under quadratic energy se-
mantics for the QBAF in Figure 1. X-axis shows iteration, Y-axis
shows strength values in the iteration.

tack relationships by solid edges. We assign base score 0.5
to sources (we are initially indifferent about sources) and 0
to claims (we initially reject all claims).

QBAF semantics associate QBAFs with a strength func-
tion that assigns a final strength to every argument.

Definition 2 (QBAF semantics, strength function). A QBAF
semantics is a partial function that maps a QBAF Q =
(A,Att,Sup, β) to a strength function σQ : A → D.

QBAF semantics are only partially defined because they
are often based on an update procedure that may not termi-
nate for some QBAFs (Mossakowski and Neuhaus 2018).
The update procedure of common QBAF semantics (Rago
et al. 2016; Amgoud and Ben-Naim 2017; Potyka 2018a;
Potyka 2021) initializes the strength values of all arguments
with their base scores and then repeatedly applies the fol-
lowing two steps until the strength values converge:

Aggregation: for every argument, use an aggregation func-
tion to aggregate the strength values of attackers and sup-
porters.

Influence: for every argument, use an influence function to
set the new strength to a value based on the base score and
the aggregate.

We will discuss aggregation and influence functions and the
update process in detail in the next section. For now, we just
illustrate the process in Figure 2 by plotting the evolution of
the strength values of arguments for the QBAF from Figure 1
under the quadratic energy semantics from (Potyka 2018a).

3 Aggregation and Influence Functions
QBAF semantics that can be defined in terms of an aggre-
gation and influence function are called modular semantics
(Mossakowski and Neuhaus 2018). In this section, we will
go into some details of the definitions. Along the way, we
will develop some new results that will simplify the study of
future modular semantics.

3.1 Aggregation Functions
The aggregation function is the most intricate part of modu-
lar semantics. Strictly speaking, modular semantics are not
based on a single aggregation function, but on a family of
aggregation functions of the form αm,n : Rn+m → R for
all m,n ∈ Rn. Intuitively, the first n parameters of αm,n

are the strength values of an argument’s attackers and the



last m the strength values of its supporters. We assume that
αm,n is permutation-invariant with respect to the first m and
the last n parameters, that is, the order of the strength values
does not matter. This assumption is satisfied for all mod-
ular semantics that we are aware of and allows us to sim-
plify the notation αm,n(a1, . . . , am, s1, . . . , sn) to α(A,S)
where A = {a1, . . . , am} and S = {s1, . . . , sn} are multi-
sets. We give three examples of aggregation functions from
the literature.

αΣ(A,S) =
∑
s∈S

s−
∑
a∈A

a, (Sum)

αΠ(A,S) =
∏
a∈A

(1− a)−
∏
s∈S

(1− s), (Product)

α⊤(A,S) = max
a∈A

(1− a)−max
s∈S

(1− s). (Top)

αΣ is used in the Euler-based (Amgoud and Ben-Naim
2017), quadratic energy (Potyka 2018a) and MLP-based
(Potyka 2021) semantics, αΠ in the Df-QuAD (Rago et al.
2016) semantics. The intuition of αΠ can be understood by
interpreting the first term as a positive bias that can be de-
creased by the attackers and the second term as a negative
bias that can be decreased by the supporters. α⊤ has been
introduced in (Mossakowski and Neuhaus 2018) to define
a semantics that guarantees well-defined strength values for
all QBAFs. While the introduced semantics has some se-
mantical shortcomings caused by the choice of the influence
function, α⊤ itself has some nice properties that we will
come back to later.

Aggregation functions usually ignore arguments with
strength 0. In order to simplify referring to the non-zero
strength values, we make the following definition.
Definition 3 (Core). For a multiset S of real numbers, we
let Core(S) = {x ∈ S | x ̸= 0} denote the sub-multiset
that contains only the non-zero elements.

We call an aggregation function that depends only on the
core of its inputs neutral.
Definition 4 (Neutrality). An aggregation function α satis-
fies Neutrality iff α(A,S) = α(Core(A),Core(S)).

Intuitively, an aggregation function should return a pos-
itive (negative) value if the supporters (attackers) dominate
the attackers (supporters) and zero if they are in balance.
The following definition will be helpful later to make these
ideas precise.
Definition 5 (Domination and Balance). Let S, T be multi-
sets of real numbers.
• S dominates T if Core(S) = Core(T ) = ∅ or there is a

sub-multiset S′ ⊆ Core(S) and a bijective function f :
Core(T ) → S′ such that x ≤ f(x) for all x ∈ Core(T ).
If, in addition, |Core(S)| > |Core(T )| or there is an x ∈
Core(T ) such that x < f(x), S strictly dominates T .

• S and T are balanced if Core(S) = Core(T ).
We write S ⪰ T (S ≻ T ) if S (strictly) dominates T and
S ∼= T if they are balanced.

As we explain in the following lemma, ⪰ and ∼= are re-
lated as the symbols suggest.

Lemma 6. S ∼= T if and only if S ⪰ T and T ⪰ S.

Proof. First assume that S ∼= T . To see that S ⪰ T , just let
S′ = Core(S) in the definition of domination and let f be
the identity. T ⪰ S follows symmetrically.

Now assume that S ⪰ T and T ⪰ S. By domination,
there are bijective mappings from Core(S) to a subset of
Core(T ) and from Core(T ) to a subset of Core(S), which
implies that |Core(S)| = |Core(T )|. Let n = |Core(T )|
and order the elements in S and T increasingly and denote
them by s1, . . . , sn and t1, . . . , tn, respectively. If s1 < t1,
then S could not dominate T and if s1 > t1, T could not
dominate S. Hence, s1 = t1. Continuing in this way, we can
show that si = ti for all i = 1, . . . , n. Thus, the mapping
that maps f(si) = ti shows that S and T are balanced.

Many aggregation functions satisfy the following mono-
tonicity properties.

Definition 7 ((Strict) Monotonicity). An aggregation func-
tion α satisfies Monotonicity iff

1. α(A,S) ≤ 0 if A ⪰ S,
2. α(A,S) ≥ 0 if S ⪰ A,
3. α(A,S) ≤ α(A′, S) if A ⪰ A′,
4. α(A,S) ≥ α(A,S′) if S ⪰ S′.

If the inequalities can be replaced by strict inequalities for
strict domination, α satisfies Strict Monotonicity.

Monotonicity has an important implication that we call
Balance.

Lemma 8 (Balance). If α satisfies monotonicity, then

1. α(A,S) = 0 whenever A ∼= S.
2. α(A,S) = α(A′, S′) whenever A ∼= A′ and S ∼= S′.

Proof. 1. Lemma 6 implies that A dominates S and vice
versa. Hence, monotonicity implies 0 ≤ α(A,S) ≤ 0, that
is, α(A,S) = 0.

2. Lemma 6 implies that A ⪰ A′ ⪰ A and S ⪰
S′ ⪰ S. Hence, α(A,S) ≥ α(A′, S) ≥ α(A′, S′) ≥
α(A′, S) ≥ α(A,S) by monotonicity of α and thus
α(A,S) = α(A′, S′).

There are two more technical properties of aggrega-
tion functions that are relevant for the duality and open-
mindedness properties that we will discuss later. Roughly
speaking, duality (Potyka 2018a) requires that the posi-
tive effect of supporters equals the negative effect of at-
tackers. Open-mindedness requires that adding support-
ers/attackers indefinitely will always result in the same up-
per/lower bound independent of the original set of support-
ers/attackers.

Definition 9. An aggregation function α satisfies

• Duality if α(A,S) = −α(S,A),
• Open-Mindedness with range (l, u) if there are l, u ∈ R∞

such that for all finite multisets A,S of real numbers,
limn→∞ α(A⊔En, S) = l and limn→∞ α(A,S⊔En) =
u, where En is the multiset that contains n copies of 1.



All of our aggregation functions satisfy duality (Potyka
2019a)[Proposition 5.4] and it is easy to check that αΣ satis-
fies open-mindedness with range (−∞,∞). We have some
additional guarantees that follow from elementary properties
of the arithmetic operations involved in the definitions.

Lemma 10. αΣ, αΠ and α⊤ satisfy monotonicity, balance,
neutrality and duality. αΣ also satisfies strict monotonicity
and open-mindedness with range (−∞,∞).

To see that αΠ and α⊤ do not satisfy Strict Monotonic-
ity, consider A = {1, 1}, S = {1}. Since A dominates S,
strict monotonicity demands that the aggregate is negative,
but αΠ(A,S) = 0 − 0 = 0 = 1 − 1 = α⊤(A,S). αΠ and
α⊤ do not satisfy open-mindedness because the upper and
lower bounds depend on A and S. For example, if A = ∅,
a single supporter with strength 1 will make the aggregate
1, but if A = {0.5}, the aggregate can never become larger
than 0.5 no matter how many supporters with strength 1 we
add.

3.2 Influence Functions
The influence function of modular semantics is relatively
straightforward. Formally, it has the form ι : R2 → R.
The first parameter is the base score of an argument and the
second is the aggregate obtained from the aggregation func-
tion. Intuitively, a positive aggregate should increase and a
negative aggregate should decrease the base score. ι has to
make sure that the result falls into the desired strength do-
main again. We give four examples of aggregation functions
from the literature.

ιl(b, a) = b+b ·min{0, a}+(1−b) ·max{0, a}, (Linear)

ιe(b, a) = 1− (1− b2)/(1 + b · exp(a)), (Euler)

ιq(b, a) = b− b · h(−a) + b · h(a), (QE)

where h(a) = (max{0, a})2/(1 + max{0, a})2),

ιm(b, a) = ϕl(ln(b/(1− b)) + a), (MLP)

where ϕl(x) = 1/(1 + exp(−z)) is the logistic function,
and we let ln 0 := −∞, ln 1/0 := ∞, ϕl(−∞) := 0 and
ϕl(∞) := 1.
ιl is used with αΠ in Df-QuAD (Rago et al. 2016), but

could also naturally be combined with α⊤ since both of them
create aggregates between −1 and 1. ιe has been used with
αΣ for the Euler-based (Amgoud and Ben-Naim 2017) se-
mantics and with α⊤ in (Mossakowski and Neuhaus 2018)
to create a semantics that always guarantees well-defined
strength values. However, since ιe has been defined for an
unbounded aggregation function, the strength values under
this semantics are very conservative in the sense that they
cannot differ much from the base scores (Potyka 2019a). ιq
and ιm can be combined with αΣ to define the quadratic
energy (Potyka 2018a) and MLP-based semantics (Potyka
2021), respectively.

Balance and monotonicity have the following counterpart
for influence functions.

Definition 11 ((Strict) Monotonicity). An influence function
ι satisfies monotonicity if

1. ι(b, a) ≤ b if a < 0,
2. ι(b, a) ≥ b if a > 0,
3. ι(b1, a) ≤ ι(b2, a) if b1 < b2,
4. ι(b, a1) ≤ ι(b, a2) if a1 < a2.

If the inequalities can be replaced by strict inequalities,
when excluding b = 0 for the first and b = 1 for the sec-
ond item, ι satisfies strict monotonicity.

Definition 12 (Balance). An influence function ι satisfies
Balance if ι(b, 0) = b.

We have again two properties of influence functions that
are relevant for duality and open-mindedness of modular se-
mantics.

Definition 13. An influence function ι satisfies

• Duality if 1− ι(b, a) = ι(1− b,−a),
• Open-mindedness for range (l, u) ∈ R2

∞ if
lima→l ι(b, a) = 0 and lima→u ι(b, a) = 1.

In natural language, duality states that the difference be-
tween 1 and the strength for base score b and aggregate a
(1 − ι(b, a)) should be equal to the difference between 0
and the strength for base score 1 − b and aggregate −a
(ι(1 − b,−a) − 0). Intuitively, this means that a positive
aggregate brings the strength equally fast to 1 as a negative
aggregate brings it to 0. The open-mindedness property ba-
sically guarantees that when we combine aggregation and
influence functions with the same range, then adding strong
attackers/supporters can bring the strength arbitrarily close
to 0/1 independent of our a priori beliefs.

ιl, ιq and ιm satisfy duality as shown in (Potyka 2019a,
Proposition 5.1) and (Potyka 2021, Theorem 3), respec-
tively. The remaining claims in the following lemma follow
again from basic arithmetic properties and some simple limit
considerations for open-mindedness.

Lemma 14. ιl, ιe, ιq, ιm satisfy monotonicity, strict mono-
tonicity and balance. ιl, ιq and ιm satisfy duality. ιl and
ι⊤ are open-minded for range (−1, 1) and ιq for range
(−∞,∞).

We refer to (Potyka 2019a) for a detailled discussion of
why ιe satisfies neither duality nor open-mindedness. ιm
almost satisfies open-mindedness, but fails to do so for
b ∈ {0, 1}. We refer to (Potyka 2021) for a more thorough
discussion of the reasons.

4 Modular Semantics
4.1 Discrete and Continuous Semantics
We will refer to a pair of aggregation and influence function
as the kernel of a modular semantics in the following. We
call it elementary if it satisfies some useful properties that
we summarize in the following definition.

Definition 15 ((Elementary) Kernel). A kernel is a pair
(α, ι) consisting of an aggregation and incluence function.
(α, ι) is called elementary if both are Lipschitz-continuous,
satisfy monotonicity and balance, and α additionally satis-
fies neutrality.



Lipschitz-continuity is a technical condition that is help-
ful for proving convergence guarantees of modular seman-
tics (Potyka 2019a). Intuitively, the growth of a Lipschitz-
function is bounded by a constant at any point. The precise
definition is not important for this paper, but we mention it
here because it is satisfied by all commonly considered mod-
ular semantics and important for some technical results.

From each kernel, we can define a discrete and a continu-
ous modular semantics. Roughly speaking, both can be de-
fined as the limit of a strength evolution process s : R≥0 →
[0, 1]|A|, where si(t) is the strength of the i-th argument at
time t (Potyka 2018a; Potyka 2019a). For discrete seman-
tics, we consider discrete time steps and the strength values
at time t ∈ N are obtained by updating the base score t times
with respect to the aggregation and influence function. This
is illustrated in Figure 2, where the x-axis shows t and we
plot the components s(t)i in different colors against the y-
axis that shows the strength values. More formally, given
a kernel (α, ι) and a QBAF Q = (A,Att,Sup, β), we can
assume without loss of generality that A = {1, . . . , n}. We
can then define s by letting
• s(0)i = β(i),
• s(t + 1)i = ι(β(i), α({s(t)i | i ∈ Att(a)}, {s(t)i | i ∈
Sup(a)})

for all i ∈ A and t ∈ N . The strength function under dis-
crete modular semantics is then defined by the limit

σd(i) = lim
t→∞

s(t)i. (1)

To explain the continuous semantics, let uQ denote the
update function that maps s(t) to s(t + 1) for a QBAF Q
as described above and consider the system of differential
equations

dsi
dt

= uQ(s)i − si, (i ∈ A). (2)

with initial condition s(0)i = β(i). As shown in (Potyka
2019a, Proposition 4.1), if the aggregation and influence
functions are (Lipschitz-)continuous, there is a unique solu-
tion s∗ and the continuous semantics is defined by the limit

σc(i) = lim
t→∞

s∗(t)i. (3)

Intuitively, s∗ continuizes s, which can improve stabil-
ity. That is, in cases where the discrete semantics fails to
converge, the continuous semantics may still have a well-
defined limit. To illustrate this, Figure 3 shows, on the left,
the evolution of strength values for the QBAF in Figure 1 un-
der discrete quadratic energy (top) and Df-QuAD semantics
(bottom). Notably, the strength function under Df-QuAD
is not defined because the strength values start cycling. On
the right, we show the evolution under continuous seman-
tics. Note that the continuous quadratic energy semantics
converges to the same limit as its discrete counterpart in a
smoother way. The continuous Df-QuAD semantics con-
verges to a meaningful limit even though its discrete coun-
terpart does not.

We are currently unaware of examples where continuous
semantics fail to converge and in all examples that we are

Figure 3: Evolution of strength values under discrete (left) and con-
tinuous (right) quadratic energy (top) and Df-QuAD (bottom) se-
mantics for the QBAF in Figure 1.

aware of where both converge, they converge to the same
limit. However, we have not been able to prove that this
happens in general. The technical details of discrete and
continuous semantics are not important for this paper and we
refer to (Potyka 2019a) for more details. The most important
result for us is that if the limits exist, they correspond to
a fixed-point of the update function defined by aggregation
and influence function. This allows us to study semantical
properties of continuous and discrete semantics in a uniform
way even if we cannot guarantee that the fixed-points are
equal in general.
Definition 16 ((Elementary) Discrete/Continuous Modu-
lar Semantics). The discrete/continuous modular semantics
generated by the kernel (α, ι) maps a QBAF Q to the limit
(1)/ (3) if it exists. The semantics is called elementary if the
kernel is elementary.
Proposition 17 ((Potyka 2019a)). If the strength function σ
under discrete/continuous elementary modular semantics is
defined for a QBAF Q, then it is a fixed point of the update
function uQ.

It is interesting to note that, in cases where we can prove
convergence of discrete semantics, uQ has a unique fixed-
point and so the discrete and continuous semantics are guar-
anteed to be equal in these cases (Potyka 2019a).

4.2 General Properties of Modular Semantics
Before introducing our new semantics and studying their
properties, it is useful to notice some general relationships
between properties of aggregation and influence functions
and the modular semantics that they induce. As noted in
(Baroni, Rago, and Toni 2018), many properties considered
in the literature come down to two principles that have been
called balance and monotonicity. Intuitively, if the attackers
and supporters of an argument are balanced, then its final
strength should just be its base score (balance). If one dom-
inates the other, the base score should be increased or de-
creased accordingly (monotonicity). To make this intuition
more precise, we first define the notions of domination and
balance between sets of arguments.
Definition 18 (Domination and Balance). Let Q =
(A,Att,Sup, β) be a QBAF such that σQ is well-defined.



For all X ⊆ A, let σQ(X) = {σ(a) | a ∈ X} denote
the multiset of strength values of arguments in X . For all
X1, X2 ⊆ A, we say that
• X1 (strictly) dominates X2 if σQ(X1) ⪰ σQ(X2)

(σQ(X1) ≻ σQ(X2)) and denote this by X1 ⪰Q X2

(X1 ≻Q X2).
• X1 and X2 are balanced if σQ(X1) ∼= σQ(X2) and de-

note this by X1
∼=Q X2.

As we note in the following theorem, all modular seman-
tics satisfy some basic properties introduced in (Amgoud
and Ben-Naim 2017), and every elementary modular seman-
tics satisfies non-strict balance and monotonicity properties
(Baroni, Rago, and Toni 2018). For the anonymity prop-
erty from (Amgoud and Ben-Naim 2017), we need one ad-
ditional definition.
Definition 19 (QBAF isomorphism). A (QBAF) isomor-
phism π between two QBAFs Q = (A,Att,Sup, β) and
Q′ = (A′,Att′,Sup′, β′) is a bijective function π : A → A′

such that Att′ = {(π(a), π(b)) | (a, b) ∈ Att)}, Sup′ =
{(π(a), π(b)) | (a, b) ∈ Sup)} and β(a) = β′(π(a)) for all
a ∈ A.
Theorem 20. Let Q = (A,Att,Sup, β) and Q′ =
(A′,Att′,Sup′, β′) be QBAFs such that σQ and σQ′ are
well-defined. Every modular semantics satisfies
Anonymity: If there is an isomorphism π between Q and

Q′, then σQ(a) = σQ′(π(a)) for all a ∈ A.
Independence: If A ∩ A′ = ∅ and Q′′ = (A ∪ A′,Att ∪

Att′,Sup∪Sup′, β′′), where β′′(a) = β(a) for all a ∈ A
and β′′(a′) = β′(a′) for all a′ ∈ A′, then σQ′′ is
well-defined and σQ′′(a) = σQ(a) for all a ∈ A and
σQ′′(a′) = σQ′(a′) for all a′ ∈ A′.

Directionality: If A = A′, β = β′ and either (Att′ =
Att ∪ {(a, b)} and Sup′ = Sup) or (Att′ = Att and
Sup′ = Sup∪{(a, b)}), then for all c ∈ A such that there
is no directed path from b to c, σ(c) = σ′(c).

Every elementary modular semantics satisfies additionally
Individual A-Monotonicity: For all a ∈ A, if Att(a) ⪰Q

Sup(a), then σQ(a) ≤ β(a).
Individual S-Monotonicity: For all a ∈ A, if Sup(a) ⪰Q

Att(a), then σQ(a) ≥ β(a).
Relative Monotonicity: For all a, b ∈ A, if β(a) ≤ β(b),

Att(a) ⪰Q Att(b) and Sup(b) ⪰Q Sup(a), then
σQ(a) ≤ σQ(b).

Individual Balance: For all a ∈ A, if Att(a) ∼=Q Sup(a),
then σQ(a) = β(a).

Relative Balance: For all a, b ∈ A, if β(a) = β(b),
Att(a) ∼=Q Att(b) and Sup(a) ∼=Q Sup(b), then
σQ(a) = σQ(b).

Proof. For brevity, for all x ∈ A, we let Bx = β(x), Sx =
σQ(Sup(x)) and Ax = σQ(Att(x)) in the following.

Anonymity: Follows immediately by observing that the
arguments a ∈ A and there counterparts π(a) ∈ A′ will be
evaluated in the exact same way.

Independence: Follows immediately by observing that the
arguments from Q and Q′ will be evaluated independently.

Directionality: Follows by observing that the aggregation
function depends only on the parents of an argument. Hence,
the new edge can affect the evaluation of c only if b is a
predecessor of c, which is the case iff there is a directed path
from b to c

Individual A-Monotonicity: Since, σQ is a fixed-point
of uQ, we have σQ(a) = ι(Ba, α(Aa, Sa)). Aa ⪰ Sa

and monotonicity of α imply α(Aa, Sa) ≤ 0. Hence,
ι(Ba, α(Aa, Sa)) ≤ Ba by monotonicity of ι.

Individual S-Monotonicity: follows analogously.
Rel. Monotonicity: σQ(a) = ι(Ba, α(Aa, Sa) and

σQ(b) = ι(Bb, α(Ab, Sb) because σQ is a fixed-point of uQ.
Since Aa ⪰ Ab and Sb ⪰ Sa, monotonicty of α implies
α(Aa, Sa) ≤ α(Ab, Sa) ≤ α(Ab, Sb). Then monotonic-
ity of ι implies ι(Ba, α(Aa, Sa)) ≤ ι(Bb, α(Aa, Sa)) ≤
ι(Bb, α(Ab, Sb)). Hence, σQ(a) ≤ σQ(b).

Individual Balance: Proposition 6 together with Individ-
ual A- and S-monotonicity implies σQ(a) ≤ β(a) and
σQ(a) ≥ β(a). Hence, σQ(a) = β(a).

Relative Balance: Proposition 6 together with Relative
monotonicity implies σQ(a) ≤ σQ(b) and σQ(a) ≥ σQ(b).
Hence, σQ(a) = σQ(b).

Let us emphasize that, in the proof of individual and rela-
tive balance, we also proved the following relationship.

Corollary 21. 1. Individual A- and S-monotonicity together
imply Individual Balance.

2. Relative Monotonicity implies Relative Balance.

We explain next, what semantical properties the remain-
ing properties of aggregation and influence functions entail.

Theorem 22. Let Q and σQ be defined as in Theorem 20.
Every elementary modular semantics such that α and ι sat-
isfy strict monotonicity satisfies

Strict Individual A-Monotonicity: For all a ∈ A, if
β(a) > 0 and Att(a) ≻Q Sup(a), then σQ(a) < β(a).

Strict Individual S-Monotonicity: For all a ∈ A, if
β(a) < 1 and Sup(a) ≻Q Att(a), then σQ(a) > β(a).

Strict Relative Monotonicity: For all a, b ∈ A, if 0 <
β(a) ≤ β(b) < 1, Att(a) ⪰Q Att(b) and Sup(b) ⪰Q

Sup(a) and (β(a) < β(b) or Att(a) ≻Q Att(b) or
Sup(b) ≻Q Sup(a)), then σQ(a) < σQ(b).

Every elementary modular semantics such that α and ι sat-
isfy duality satisfies

Duality: For all a, b ∈ A, if β(a) = 1 − β(b), Att(a) ∼=Q

Sup(b) and Sup(a) ∼=Q Att(b), then σQ(a) = 1−σQ(b).

Every elementary modular semantics such that ι and α sat-
isfy open mindedness with the same range (l, u) satisfies

Open-Mindedness: Let A0 = A, Att0 = Att, Sup0 =
Sup, β0 = β. For i ≥ 1, let Ai = Ai−1 ∪ {ai} for some
new argument ai ̸∈ Ai−1 and βi(a) = βi−1(a) for all
a ∈ Ai−1 and βi(ai) = 1. For all a ∈ A, let Let Ea

0 = ∅
and Ea

i = Ea
i−1∪{(ai, a)}. If, for all a ∈ A such that the

strength of all QBAFs Qa,−
i = (Ai,Atti ∪ Ei,Supi, βi)

and Qa,+
i = (Ai,Atti,Supi ∪ Ei, βi) is well-defined,

then limi→∞ σQa,−
i

(a) = 0 and limi→∞ σQa,+
i

(a) = 1.



Proof. Strict Monotonicity: The proofs are analogous to the
proofs of the non-strict properties. We demonstrate this for
A-Monotonicity: Since, σQ is a fixed-point of uQ, we have
σQ(a) = ι(Ba, α(Aa, Sa)). Aa ≻ Sa implies α(Aa, Sa) <
0 by strict monotonicity of α. Hence, ι(Ba, α(Aa, Sa)) <
Ba by strict monotonicity of ι.

Duality: Note that Ax
∼=Q Sy implies Core(Ax) =

Core(Sy). Since α satisfies neutrality, we can assume with-
out loss of generality that Ax = Core(Ax) = Core(Sy) =
Sy in this case. Hence, α(Aa, Sa) = −α(Sa, Aa) =
−α(Ab, Sb) by duality of α and 1 − ι(Ba, α(Aa, Sa)) =
ι(1 − Ba,−α(Aa, Sa)) = ι(1 − Bb, α(Ab, Sb)) by duality
of ι. From this, the claim follows because σQ is a fixed-point
of uQ.

Open-Mindedness: For all new arguments aj in all
QBAFs, we have Att(aj) = Sup(aj) = ∅. Hence, stability
implies σQa,−

i
(aj) = σQa,+

i
(aj) = βi(aj) = 1 for all i ≥ j.

Let us focus on Qa,−
i and just write Qi for ease of notation.

Since, σQi is a fixed-point of the update function, we have
σQi

(a) = ι(βi(a), α(σQi
(Atti(a)), σQi

(Supi(a))).
By construction σQi

(Atti(a)) contains at least i
1s. Hence, open-mindedness of α implies that
limi→∞ α(σQi

(Atti(a)), σQi
(Supi(a)) = l. Then

open-mindedness of ι implies that limi→∞ σQi
(a) = 0.

The proof for Qa,+
i is analogous.

Intuitively, duality states that attackers and supporters be-
have symmetrically. For example, if the attackers and sup-
porters increase the base score 0.7 of an argument by 0.2 to
0.9, we should expect that when we switch the roles of at-
tackers and supporters and change the base score to 1−0.7 =
0.3, it should decrease by 0.2 to 0.1. Open-mindedness
states that if we keep adding undefeated strong (base score
1) attackers/supporters of an argument, its strength should
eventually go to 0/1.

5 Conservativeness and Open-Mindedness
5.1 Absolute Conservativeness
As discussed in the introduction, in applications like rec-
ommender systems or truth discovery, we may want both
open-mindedness and some notion of conservativeness. At
the moment, we can satisfy open-mindedness only with
αΣ. However, since αΣ is unbounded, even arguments with
marginal strength, say 0.01 instead of 1, can significantly
impact other arguments when they occur in large numbers.
We want to be able to bound the minimal/maximal achiev-
able strength by the base score and the maximal strength of
attackers/supporters. As a first attempt to axiomatize this
idea, we may ask that an argument’s strength is bounded
from below/above by its initial weight and the strength of its
attackers/supporters as follows.

Definition 23 (Absolute Conservativeness). A QBAF se-
mantics satisfies absolute conservativeness if for every
QBAF Q such that σQ is well-defined, for all arguments
a ∈ A, we have min{β(a), 1 − maxb∈Att(a) σQ(b)} ≤
σQ(a) ≤ max{β(a),maxb∈Sup(a) σQ(b)}.

Intuitively, absolute conservativeness demands that the
negative/positive deviation of the final strength from the
base score cannot be larger than the maximum strength of
an attacker/supporter. We are not aware of any existing se-
mantics that satisfies this property. To see that none of the
semantics that we introduced earlier satisfy absolute conser-
vativeness, think of a QBAF with two arguments a, b both
with base score 0.5 and a support edge from a to b. Then
a’s final strength must be 0.5 by individual balance. Hence,
all aggregation functions will return a positive aggregate for
b and all influence functions will increase b’s base score to
a strength strictly greater than 0.5. Hence, b will violate the
upper bound max{β(b),maxc∈Sup(b) σQ(c)} = 0.5.

There are many trivial ways to satisfy absolute conserva-
tiveness. For example, we could use an aggregation function
that always returns 0 or an influence function that always re-
turns the initial weight. A more natural solution is to use α⊤
(which guarantees that only the maximal values are consid-
ered) and to define a new influence function guided by the
bound that we want to satisfy. We call this influence function
AC.

ιac(b, a) =

{
min{b, 1 + a} if a < 0,
max{b, a} else.

(AC)

ιac satisfies the following properties.

Lemma 24. ιac is Lipschitz-continuous and satisfies mono-
tonicity, balance, duality and open-mindedness for range
(−1, 1).

Proof. ιac is Lipschitz-continuous with Lipschitz constant 1
because it is a piece-wise linear function composed of linear
functions whose slope is bounded by 1.

Monotonicity and balance follow from elementary arith-
metic. For duality, assume that a > 0 and note that ιac(1 −
b,−a) = min{1−b, 1−a} = 1−max{b, a} = 1−ιac(b, a).
The case a ≤ 0 is similar. Open-mindedness for range
(−1, 1) follows immediately from the definition.

ιac does not satisfy strict monotonicity because a change
in a will be ignored when it is not sufficiently large com-
pared to β(a) and vice versa. We can combine ιac with α⊤
to satisfy absolute conservativeness and call the correspond-
ing semantics TAC.

Definition 25 (TAC Semantics). The TAC Semantics is the
modular semantics defined by the kernel (α⊤, ιac).

Theorem 26. The TAC semantics is an elementary modular
semantics. For every QBAF Q such that σQ is well-defined,
it satisfies all properties from Theorem 20, duality and ab-
solute conservativeness. It does not satisfy the strict mono-
tonicity and open-mindedness properties.

Proof. Everything but absolute conservativeness follows
from the properties of (α⊤, ιac) and Theorems 20 and
22. For absolute conservativeness, since σQ is a
fixed-point of the update function, we have σQ(a) =
ιac(Ba, α⊤(Aa, Sa)). By definition of α⊤, −maxs∈Aa

s ≤
α⊤(Aa, Sa) ≤ maxs∈Sa

s. Hence, the definition of
ιac implies that min{Ba, 1 − maxs∈Aa

s} ≤ σQ(a) ≤
max{Ba,maxs∈Sa

s}.



The TAC semantics does not satisfy the strict mono-
tonicity properties for the same reasons that we had for
top and product aggregation before. Once there is an at-
tacker/supporter with strength 1, the maximum impact is
obtained and additional attackers/supporters cannot bring
any additional negative/positive effect. The lack of open-
mindedness is caused by the top aggregation function
that cannot take −1/1 anymore if there is a single sup-
porter/attacker with non-zero strength.

Overall, the TAC semantics is a reasonable and non-trivial
choice when absolute conservativeness is desirable. How-
ever, it may be more conservative than we want.

Proposition 27. When combining ιac and any aggregation
function α such that −maxA ≤ α(A,S) ≤ maxS, then for
every QBAF Q such that σQ is well-defined, for all a ∈ AQ,
we have min{β(a), 1 − B} ≤ σQ(a) ≤ max{β(a), B}
where B is the maximum base score of a predecessor of a.

Proof. All strength values are initialized with the base
scores, so the claim is initially true. When performing a dis-
crete update, the new strength of every argument is bounded
from above by the argument’s base score or the maximum
strength of its parents, so it remains bounded by the maxi-
mum base score of its predecessors by the assumption about
α. We can check similarly that the lower bound remains
intact. For continuous updates, consider the solution s∗ of
equation (2). Again, it respects the bounds initially by the
initial condition of (2). If, for some argument i ∈ A, s(t)i =
B at some time t, (2) implies dsi

dt (t) = ι(β(i), α({s(t)i | i ∈
Att(a)}, {s(t)i | i ∈ Sup(a)}) − si(t) ≤ B − B = 0, that
is, s(t)i is non-increasing and thus the bounds remains in-
tact. Similarly, we can check that the lower bound remains
intact.

For example, if all base scores are bounded from above by
0.5 as in our truth discovery example, then the final strength
of arguments cannot deviate by more than 0.5 from their
base score. In our truth discovery example, this means that
claims cannot obtain a strength value larger than 0.5.

5.2 Relative Conservativeness
In many applications, a slightly weaker notion of conserva-
tiveness seems sufficient that aligns better better with exist-
ing influence functions in the literature. Instead of demand-
ing that the initial weight and the strength of parents define
absolute bounds, we allow relative deviations from the base
score based on the evidence presented by the pro and contra
arguments.

Definition 28 (Relative Conservativeness). A QBAF seman-
tics satisfies relative conservativeness if there is a strictly
monotonically increasing function f : [0, 1] → [0, 1] with
f(0) = 0 and f(1) = 1 such that for every QBAF Q
such that σQ is well-defined, for all arguments a ∈ A,
we have β(a) − f(maxb∈Att(a) σQ(b)) · β(a) ≤ σQ(a) ≤
β(a) + f(maxb∈Sup(a) σQ(b)) · (1− β(a)).

Intuitively, relative conservativeness demands that the
maximum strength of attackers/supporters bounds how close
the final strength can come to 0/1 relative to the base score

(only an attacker/supporter with strength 1 allows moving
the final strength all the way to 0/1 provided that the base
score was not already 0/1). The function f determines how
fast this can happen. For example, f could just be the lin-
ear function f(x) = x. In this case, the condition be-
comes just β(a) − (maxb∈Att(a) σQ(b)) · β(a) ≤ σQ(a) ≤
β(a) + (maxb∈Sup(a) σQ(b)) · (1− β(a)). We will connect
relative conservativeness to properties of aggregation and in-
fluence functions again.

Definition 29. (i). An aggregation function α satisfies rel-
ative conservativeness if −maxA ≤ α(A,S) ≤ maxS.
(ii). An influence function ι satisfies relative conservative-
ness if there is a strictly monotonically increasing function
f : [0, 1] → [0, 1] with f(0) = 0 and f(1) = 1 such that
b−f(−min{0, a})·b ≤ ι(b, a) ≤ b+f(max{0, a})·(1−b).

Proposition 30. If α and ι satisfy relative conservative-
ness, then the associated modular semantics satisfies rel-
ative conservativeness for every QBAF Q such that σQ is
well-defined.

Proof. Since σQ is a fixed-point of the update function, we
have σQ(a) = ι(β(a), α(σQ(Att(a)), σQ(Sup(a))). Since
α satisfies conservativeness, we have −maxσQ(Att(a)) ≤
α(A,S) ≤ maxσQ(Sup(a)). Hence, relative conservative-
ness of ι implies the claim.

Lemma 31. α⊤, αΠ and ιd satisfy relative conservativeness

Proof. For α⊤, the claim follows immediately from the def-
inition. For αΠ, note that αΠ(A,S) =

∏
a∈A(1 − a) −∏

s∈S(1− s) ≤ 1− (1−maxS) = maxS and similar for
the lower bound. ιd satisfies relative conservativeness for
the identity function f(x) = x.

Our previous results imply that Df-Quad and the seman-
tics defined by (α⊤, ιd) satisfy relative conservativeness.

Corollary 32. The modular semantics defined by (αΠ, ιd)
(Df-QuAD) and (α⊤, ιd) satisfy relative conservativeness.

Let us note that our previous results imply that (α⊤, ιd) is
another elementary modular semantics that satisfies duality
and therefore has properties very similar to Df-QuAD. We
can now also clarify the relationship between absolute and
relative conservativeness.

Proposition 33. Absolute conservativeness implies relative
conservativeness but not vice versa.

Proof. Suppose that a semantics satisfies absolute con-
servativeness. We show that it satisfies the lower
and upper bound defined by relative conservativness for
the identity function f(x) = x. For the lower
bound, note that β(a) − f(maxb∈Att(a) σQ(b)) · β(a) =
β(a) · (1 − f(maxb∈Att(a) σQ(b))) ≤ min{β(a), (1 −
f(maxb∈Att(a) σQ(b)))} since both factors are bounded
by 1. For the upper bound, note that β(a) +
f(maxb∈Sup(a) σQ(b)) · (1−β(a)) ≥ β(a) because the sec-
ond term is non-negative and β(a)+f(maxb∈Sup(a) σQ(b))·
(1 − β(a)) = β(a) · (1 − f(maxb∈Sup(a) σQ(b))) +
f(maxb∈Sup(a) σQ(b)) ≥ f(maxb∈Sup(a) σQ(b)). because



the first term is non-negative. Hence, absolute conservative-
ness implies relative conservativeness.

Since Df-QuAD satisfies relative but not absolute conser-
vativeness, the other direction cannot hold.

An immediate consequence is that the previously intro-
duced TAC semantics also satisfies relative conservative-
ness.

Corollary 34. The TAC semantics satisfies relative conser-
vativeness.

5.3 Conservativeness and Open-Mindedness
While we saw a number of reasonable semantics that satisfy
notions of conservativeness, none of them satisfies open-
mindedness. The problem of the existing semantics is the
aggregation function that is based on a difference P − S
of positive and negative influences. Both top and product
aggregation share the desirable property that the aggregate
is bounded from below by the negative maximum strength
of the attackers and from above by the maximum strength
of supporters. However, if both positive and negative influ-
ences exist, the aggregate will be bounded away from the
minimum/maximum by the minimal opposite value. While
this can be desirable when we only want to take the maximal
strength of arguments into account, it is undesirable when
we also want to take the number of arguments into account.
In order to combine the advantages of sum-aggregation (an
overwhelming majority of arguments can influence the fi-
nal outcome to an arbitrary degree) and product- and top-
aggregation (the maximum degree is bounded by the maxi-
mum strength of the involved arguments), we propose a new
aggregation function that we call convex-max (CM):

αc(A,S) = λ ·maxS − (1− λ) ·maxA, (CM)

where λ =
∑

s∈S s∑
s∈S s+

∑
a∈A a and we let max ∅ = 0 and

0
0 = 1. Formally, αc(A,S) is a convex combination of
maxS and −maxA. Intuitively, this means that it will al-
ways return a value between maxS and −maxA. How
close it is to either of them depends on the coefficient λ. For
λ = 1, it will take maxS, for λ = 0, it will take −maxA.
Values between 0 and 1 vary between these extremes.

Lemma 35. αc is Lipschitz-continuous and satisfies mono-
tonicity, balance, duality, relative conservativeness and is
open-minded for range (−1, 1).

Proof. For Lipschitz-continuity, first note that the maximum
is Lipschitz-continuous because it is a piecewise linear func-
tion with maximum slope 1. To see that the coeficients
are Lipschitz-continuous, we use the fact that a partially
differentiable function with bounded partial derivatives is
Lipschitz-continuous. By applying the quotient rule, we can
see that the partial derivaties are bounded by 1. Hence, each
product of coefficent and maximum is Lipschitz-continuous
with constant 1 and their sum is Lipschitz-continuous with
constant 2.

Monotonicity and balance follow from elementary arith-
metic. For duality, note that 1 − λ =

∑
s∈S s+

∑
a∈A a∑

s∈S s+
∑

a∈A a −

Figure 4: Overview of which semantics satisfy (strict) individual
A-/S- and relative- monotonicity, individual and relative balance,
duality, open-mindedness, absolute and relative conservativeness.
DfQ, EB, QE, MLP refer to Df-QuAD (Rago et al. 2016), Euler-
based (Amgoud and Ben-Naim 2017), quadratic energy (Potyka
2018a) and MLP-based (Potyka 2021) semantics, respectively.

∑
s∈S s∑

s∈S s+
∑

a∈A a =
∑

a∈A a∑
s∈S s+

∑
a∈A a . Hence, αc(A,S) =

λ · maxS − (1 − λ) · maxA = −((1 − λ) · maxA − λ ·
maxS) = −αc(S,A). Relative conservativeness follows
immediately from the fact that αc(A,S) is a convex combi-
nation of maxS and −maxA. For open-mindedness, note
that for limn→∞ αc(A ⊔ En, S), we have λ → 0 and thus
αc(A⊔En, S) → −max(A⊔En) = −1. The second limit
can be checked similarly.

Hence, our previous results imply that the modular se-
mantics defined by (αc, ιl) that we call the CRC seman-
tics satisfies both open-mindedness and relative conserva-
tiveness.
Definition 36 (CRC Semantics). The CRC Semantics is the
modular semantics defined by the kernel (αc, ιl).
Theorem 37. The CRC semantics is an elementary modular
semantics. For every QBAF Q such that σQ is well-defined,
it satisfies all properties from Theorem 20, duality, open-
mindedness and relative conservativeness. It does not satisfy
absolute conservativeness and strict monotonicity.

To see that the CRC semantics does not satisfy absolute
conservativeness, just consider a QBAF with two arguments
with base score 0.5 and a support from one to the other. Then
the supported argument has strength 1, which violates ab-
solute conservativeness. For strict monotonicity, note that
if an argument a has no attackers and two supporters with
strength 0.5 and 0.4, increasing the strength of the weaker
argument from 0.4 to 0.41 does not increase a’s strength
(which is already 0.5). Similarly adding another supporter
with strength smaller than 0.5 will not change a’s strength.

6 Discussion and Future Work
We studied two notions of conservativeness that allow
bounding the strength of arguments based on the strength
of their parents. Absolute conservativeness (AC) is a natu-
ral notion but may be too restrictive. The weaker notion of
relative conservativeness (RC) may be sufficient for many



applications. AC cannot be satisfied by existing modular
semantics, but can be satisfied by our new TAC semantics.
As we saw, Df-QuAD already satisfies relative conserva-
tiveness, but does not satisfy open-mindedness. Our new
CRC semantics satisfies both and most existing properties
from the literature (except the strict ones), but does not sat-
ify AC. Figure 4 summarizes the semantical properties of
the most important semantics discussed in this paper. We
do not include the anonymity, independence and direction-
ality properties because they are satisfied by every modu-
lar semantics independent of the choice of α and ι (Theo-
rem 20). Let us note that we could satisfy open-mindedness
and absolute conservativeness simultaneously by combin-
ing the AC-influence function ιac and the CM-aggregation
function αc. However, since the induced modular seman-
tics will suffer from the limitations stated in Proposition 27
we did not discuss it here in the interest of space. Imple-
mentations of all modular semantics that we discussed here
can be found in the Java library Attractor1 (Potyka 2018b;
Potyka 2022).

We spent some time on identifying relevant properties of
aggregation and influence functions. The results between
the relationship of properties of aggregation and influence
functions and the induced modular semantics simplified the
investigation of our new semantics significantly and we hope
that they can further simplify the study of future modular
semantics. As we discussed in the introduction, some of
these results can be seen as generalizations of results from
(Amgoud and Doder 2018) from the attack-only setting to
the bipolar setting. For example, our elementary kernels
can be seen as a stricter form of well-behaved evaluation
methods defined in (Amgoud and Doder 2018, Def. 6) (note
that the two conditions in (Amgoud and Doder 2018, Def.
6) can be seen as the attack-only counterpart of the func-
tional counterpart of balance and monotonicity). Our results
about anonymity, independence and directionality in The-
orem 20 can be seen as a generalization of (Amgoud and
Doder 2018, Prop. 2) to the bipolar setting. There is also a
slight generalization in the attack-only setting because (Am-
goud and Doder 2018, Prop. 2) assumes a unique fixed-
point, while we assume only convergence to any fixed-point
(well-definedness). The second part of Theorem 20 can
probably be seen as a generalization of (Amgoud and Do-
der 2018, Prop. 3-5) to the bipolar setting. Stating the exact
relationship is difficult because the properties in (Amgoud
and Doder 2018, Prop. 3-5) are special cases of balance and
monotonicity (Baroni, Rago, and Toni 2018) and no proofs
are provided in (Amgoud and Doder 2018).

In future work, we will study to which extent differ-
ent QBAF encodings under different semantics can satisfy
the postulates for truth discovery proposed in (Singleton
and Booth 2022) and evaluate their performance empirically
building up on benchmarks developed in (Elsaesser, Ever-
aere, and Konieczny 2023) and (Potyka and Booth 2024).
It would also be interesting to explore how QBAFs compare
to probabilistic (Hunter et al. 2021) or combined approaches
(Spaans and Doder 2023) in this setting.

1https://sourceforge.net/projects/attractorproject/
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