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Abstract: This paper investigates a practical last-mile delivery scenario where a fleet of trucks re-
plenishes autonomous mobile parcel lockers (AMPLs) in an urban seAing. The lockers move along 
specified paths within restricted zones to reach customers’ locations. Ensuring seamless coordina-
tion between trucks and AMPLs requires the identification of suitable locations to exchange empty 
or loaded modular lockers. We first introduce a mixed-integer linear programming (MILP) formu-
lation for the investigated problem. The proposed formulation establishes the basis for optimizing 
meeting point selection and routing decisions. Additionally, the study introduces a cluster-based 
simulated annealing (CSA) algorithm tailored for addressing larger-scale instances of the studied 
problem. The CSA algorithm incorporates the K-means clustering method with specialized opera-
tors rooted in an extensive neighborhood search, aiming to improve the effectiveness of solution 
discovery. We generated a new set of benchmark instances to assess the MILP formulation’s effi-
ciency and the proposed metaheuristic algorithm and conducted comprehensive numerical experi-
ments. 
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1. Introduction 
Last-mile delivery operations, a crucial aspect of urban logistics, have gained a9en-

tion due to their environmental and social impact on humans and the environment. These 
operations, which involve expensive transportation of goods to their destinations, face 
challenges and opportunities driven by the booming demand for e-commerce services. 
The growth of megacities and the projected increase in e-commerce sales underscore the 
need for efficient last-mile logistics solutions [1]. 

As the complexity of last-mile delivery within supply networks continues to grow, 
recent technological advancements offer retailers and logistics service providers (LSPs) 
the potential to address these challenges with greater efficiency and effectiveness [2]. 
Some of these innovative solutions catering to demanding customer needs include rapid 
delivery [3], collaborative shipping [4], mobile delivery routes [5], pavement-side delivery 
[6], storage lockers [7], autonomous delivery robots [8], and drone delivery [9]. However, 
the feasibility of these solutions varies across locations due to constraints in urban infra-
structure development. In contrast, online consumers’ expectations for timely and cost-
effective order fulfillment persist. Consequently, effective coordination of the flow of 
goods, collaborative efforts among stakeholders, and optimal order consolidation remain 
critical components in navigating the complexities of last-mile logistics [10]. 

Citation: Hedayati, S.; Setak, M.; Van 

Woensel, T.; Demir, E. Re-Supplying 

Autonomous Mobile Parcel Lockers 

in Last-Mile Distribution. Future 

Transp. 2024, 4, x. 

hFps://doi.org/10.3390/xxxxx 

Academic Editor(s): Name 

Received: 22 July 2024 

Revised: 1 October 2024 

Accepted: 10 October 2024 

Published: date 

 

Copyright: © 2024 by the authors. 

SubmiFed for possible open access 

publication under the terms and 

conditions of the Creative Commons 

AFribution (CC BY) license 

(hFps://creativecommons.org/license

s/by/4.0/). 



Future Transp. 2024, 4, FOR PEER REVIEW  2 
 

 

A novel innovation in last-mile delivery is the mobile parcel locker (MPL) technology, 
which allows customers to pick up parcels from convenient locations [11,12,13]. MPLs can 
be operated autonomously or with a human driver. They can be classified into two groups: 
fixed locker boxes mounted on mobile platforms, and mobile platforms with separate 
locker sections. MPLs can travel between different locations throughout the day, serving 
customers in nearby areas. Consequently, online consumers can conveniently access them 
during designated time windows for order retrieval or returns. 

In a comprehensive study conducted by [13], various last-mile se9ings and configu-
rations were examined. Based on their research findings, our current problem lies in the 
space between two distinct configurations. Specifically, this study lies in the middle of the 
“depot–mobile parcel locker–self-service” configuration, as investigated by [11], and the 
“depot–autonomous van–locker–self-service” configuration, as studied by [14]. The cen-
tral focus of this study is to look at the procedure of replenishing a fleet of autonomous 
MPLs (AMPLs) by using a fleet of trucks, with a specific emphasis on refining last-mile 
logistics within the delivery network. The primary objective is to enhance the operational 
efficiency of a designated subset of AMPLs by optimizing the loading of restocked lockers 
and unloading returned ones, facilitated by a group of delivery trucks. 

However, there is a drawback related to the capacity of this delivery assistant. If AM-
PLs are not replenished regularly, the lockers cannot fulfill orders throughout the day, as 
anticipated with other MPL variants. Although this system offers considerable potential 
for the transportation and operations research community, current research remains lim-
ited. Therefore, this paper is dedicated to devising a formulation and a solution strategy 
for a scenario in which a fleet of trucks efficiently loads replenished lockers and unloads 
returned ones from several AMPLs at selected meeting points during the day. To address 
this complex problem, we combine two established variants of the vehicle routing prob-
lem (VRP), namely, the VRP with multiple time windows (VRPMTW) and the generalized 
VRPTW (GVRPTW). On the one hand, leveraging the GVRPTW approach enables us to 
pick an appropriate physical demand location from alternative options, ensuring service 
within the designated time window for the AMPLs. Nevertheless, unlike VRPTW and 
VRPMTW, this issue does not require a visit to all nodes. On the other hand, the VRPMTW 
framework empowers us to deconstruct a physical demand point into other nodes, termed 
meeting points, within our graph-based model. This partitioning facilitates the segmenta-
tion of lengthy waiting periods at each physical point into more manageable time win-
dows, effectively transforming the problem into a recognizable VRPMTW instance. 

With our aim centered on selecting the best meeting point from various alternatives, 
we face the task of choosing a physical location that aligns with a time window within the 
broader time slot. Moreover, each time window is linked to a unique parking fee, allowing 
us to integrate this aspect into our model. It is important to note that this innovative inte-
grated approach remains unexplored in previous research in the context of last-mile ap-
plications. The problem addressed in this paper differs from the problem discussed by 
[11], who focused on optimizing the location of human driver MPLs in the last-mile de-
livery context. In this paper, the main objective is to efficiently re-supply AMPLs (called 
R-AMPLP), eliminating the need for them to return to the depot for refilling. This ap-
proach significantly benefits e-commerce firms or LSPs, as new orders can be processed 
and transferred to meeting points without the AMPLs returning to the depot. 

The contributions in this paper can be summarized into three key dimensions. Firstly, 
we introduce a novel re-supplying AMPL problem in the context of last-mile distribution, 
entailing an optimization strategy for establishing a designated set of meeting points. 
These aspects aid in the efficient loading and unloading of lockers on AMPLs, which cus-
tomers have emptied in the initial segment of their routes and need to be restocked for the 
remaining customers in the la9er segment. Second, we present a MILP formulation tai-
lored to this problem. Our formulation incorporates various alternative locations charac-
terized by multiple time windows, time-dependent parking charges, and a fleet of capac-
itated trucks responsible for conveying same-day orders. These orders are stowed in 
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loaded lockers, moving from the depot to the pre-identified meeting points. Lastly, we 
propose a cluster-based simulated annealing (CSA) algorithm featuring a specialized en-
hancement operator to manage the clustering aspect and randomized destroy and repair 
operators. Particularly, we incorporate the well-known K-means method to cluster nodes 
as a preparation phase and then customize the simulated annealing (SA) approach to han-
dle the instances. 

The following sections of the paper are structured as follows: Section 2 reviews the 
related literature that addresses similar problems. Section 3 presents the problem defini-
tion and the problem’s mathematical formulation. Section 4 presents the CSA algorithm 
and its features, including the clustering method and neighborhood search operators. Sec-
tion 5 presents the computational outcomes of applying the MILP model and the CSA 
algorithm on a range of benchmark instances. Finally, Section 6 concludes the paper and 
provides possible avenues for future research. 

2. Literature Review 
This section reviews the work related to the problem at hand. Theoretically, the in-

vestigated problem falls under the VRPMTW, in which a physical demand location can 
be defined with multiple time windows during the planning horizon. On the other hand, 
since it aims to select an optimal meeting point amongst a set of alternative meeting points 
located at different locations and has different time windows, the GVRPTW concept is 
also considered. In addition, although it is related to the dynamic VRP, by considering 
fixed order acceptance and fixed routes, including meeting points, we can also adapt our 
problem to a static se9ing. 

Regarding last-mile delivery, many studies proposed various innovations for per-
forming delivery operations. We refer to [13] and [2] for more details. In this se9ing, we 
only focused on re-supplying MPL. Therefore, our literature review section is divided into 
three fields. First, we review the recent generalized VRPTW (GVRPTW) studies. Second, 
the works related to the VRPMTWs are explored. Finally, recent research studies have 
been reviewed in the context of MPLs. 

2.1. The Generalized Vehicle Routing Problem with Time Windows 
One of the VRP variants is the VRPTW, where customers must be visited within a 

specific period [15]. Another type of VRP, known as the generalized VRP (GVRP), consid-
ers a se9ing in which customers are grouped into some unconnected clusters, and the goal 
is to visit exactly one node in each cluster [16-17]. Theoretically, when we combine the 
VRPTW and the GVRP, we obtain an extended version of the GVRP, known as the 
GVRPTW. To our knowledge, the GVRPTW was first studied by [18]. The problem is for-
mulated and solved in their paper by an incremental Tabu search algorithm. After that, 
[5] presented the VRP with roaming delivery locations (VRPRDL), known as the trunk 
delivery problem. In this problem, customers can select their preferred locations with time 
windows for receiving orders. The difference between the VRPRDL and GVRPTW is that 
time windows in the VRPRDL cannot overlap with each other because the location of each 
customer may change during the day. For this problem, they introduced an arc-based for-
mulation. Afterward, [19] formulated the VRPRDL as a set-covering problem and pro-
moted a branch-and-cut-and-price algorithm as a solution approach. On the other hand, 
the main difference between the VRPRDL and our problem is that each location is availa-
ble as a meeting point within different time windows. 

Recently, [20] proposed the VRP with delivery options (VRPDO), which, similar to 
the VRPRDL, gives customers alternatives to pick up their orders from different locations. 
They presented an MIP and a large neighborhood search (LNS) algorithm for the problem. 
The authors considered an extension of the VRPTW with multiple delivery options. Our 
problem, however, concerns a se9ing where a fleet of vehicles must re-supply a fleet of 
mobile parcel lockers in a location (or re-supply point). Therefore, we focused on re-



Future Transp. 2024, 4, FOR PEER REVIEW  4 
 

 

supply operations rather than customers’ pickup alternatives. [21] presented a VRPDO 
involving optimizing shipments to various locations considering customer preferences 
and time windows. They introduced a new algorithm to minimize carrier costs while ac-
commodating shared capacity constraints. This approach, tested in scenarios with up to 
100 delivery options, includes new solutions to routing problems with roaming delivery 
locations. [22] introduced a new VRP variant that addresses the delivery of parcels to a 
customer’s vehicle at various locations during the day. It replaces the traditional distance 
matrix with a probability distribution matrix for variable travel times. The research ap-
plied a Monte Carlo method combined with an enhanced greedy randomized adaptive 
search procedure to find a near-optimal solution, which was validated through various 
experiments. 

2.2. The VRP with Multiple Time Windows 
One of the first studies on the VRPMTW was presented by [23]. The authors consid-

ered a periodic VRP concept in which demand points are associated with different time 
windows during the planning horizon. They presented an MIP model and an ant colony 
algorithm to minimize the total duration. In another study, [24,25] proposed a heuristic 
algorithm known as the hybrid variable neighborhood with the Tabu search algorithm for 
the VRPMTW. [26] studied a multi-objective version of the VRPMTW based on customer 
preference with a case study. The authors applied a local search algorithm to solve it. Re-
cently, [27] presented an exact polynomial–time algorithm based on neighborhood evalu-
ation. The main difference between our work and these works is that, in our se9ing, each 
demand point has multiple potential locations and time windows, with time-dependent 
traveling time and parking fees. 

2.3. Mobile Parcel Lockers 
Regarding MPLs, the paper presented by [11] was the first research to introduce an 

optimization problem in the MPL context. The objective of their paper was to find optimal 
locations for MPLs. They presented three alternative mixed-integer programs and a heu-
ristic algorithm for their problem. The authors did not consider any assumption of re-
sponding to new orders and re-supply operations in a same-day context. See Tables 1 and 
2 for a comparison of the contributions of this paper with related work in the literature. 

Table 1. The main differences between GVRPTW, VRPMTW, and MPLs. 

Reference Setting GVRPTW VRPMTW MPLs 
[11] Alternative locations *  * 
[24,25] Alternative time windows  *  
[11,20] Sharing delivery locations   * 

This paper Alternative locations and 
alternative time windows * * * 
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Table 2. A list of contributions and solution methodologies from selected publications. 

Reference Model Solution Roaming/ 
GVRPTW 

Multiple Time 
Windows 

Parking Slot  
Fee AMPL Sharing 

Locations 
[5] IP a GRASP d-VNS e *     
[18] - TS f *     
[21] MIP b GRASP *     
[20] MIP LNS g *    * 
[[21] SP c BPC h *    * 
This paper MIP CSA i * * * *  

a Integer programming, b mixed-integer programming, c set-partitioning, d greedy randomized adap-
tive search procedure, e variable neighborhood search, f Tabu search, g large neighborhood search, h 
branch-and-cut-and-price, i cluster-based simulated annealing. 

3. Problem Description 
We now formally introduce the R-AMPLP and present the corresponding mathemat-

ical formulation of the problem. Assume an LSP serving its customers in distinct geo-
graphical areas or zones with a fleet of AMPLs. In particular, the LSP employs a delivery 
system with several AMPLs that cover all delivery needs in each zone during the day via 
already optimized paths. Zones may have restrictions, and not all types of trucks or vans, 
such as typical delivery vehicles, can be used. In addition, it is assumed that demand is 
deterministic, leading daily delivery orders through fixed paths with a long planning hori-
zon. As demand information and zones are known and constant, several AMPLs can be 
assigned to each zone with pre-defined paths, where they travel and stop at known loca-
tions associated with time windows. 

However, in this se9ing, there are two main issues for which the LSP should decide. 
The first problem is the capacity restriction of AMPLs to satisfy all customers’ orders dur-
ing a planning horizon. This implies that all AMPLs are depleted approaching noon and 
require replenishment to serve the remaining customers or demand points that have not 
been addressed on their routes. The second issue concerns situations where there are a 
few parking slots to exchange lockers between trucks and AMPLs located around each 
zone. Additionally, each parking slot has a different reservation price during the day. It is 
crucial to highlight that when lockers are fully emptied from autonomous mobile plat-
forms, the synchronization of each box’s capacity is disrupted, particularly when previous 
customers have not received their orders. Therefore, it is assumed that all customers 
served before noon have collected their orders, leaving all boxes empty. 

Furthermore, the LSP operates a distribution center (DC) from which trucks are dis-
patched to replenish AMPLs with new lockers and retrieve returned lockers. Each truck 
can transport multiple loaded parcel lockers replenished at the DC. At a designated meet-
ing point, a truck unloads a specified number of parcel lockers onto an equal number of 
mobile platforms, known as AMPLs. The AMPLs then move from the drop-off point into 
a zone and follow predetermined routes to serve customers. Customers can visit AMPLs 
in zones to receive orders from designated lockers. Since demands are already known in 
the system and AMPLs move in pre-defined routes, the required time in the operation 
course is clear for replenishment. Therefore, once all delivery orders up to the meeting 
time have been fulfilled, the AMPL returns to a truck at a specific parking slot to deliver 
its parcel locker and retrieve a new one. Consequently, exchange operations can occur at 
a parking space or meeting point. 

For further information on the application of this problem, we refer to Figure 1. The 
biggest advantage of loaded lockers is the autonomy of being separated from the carrying 
platforms. Figure 1 shows a scenario where three autonomous platforms, each with an 
empty locker, endeavor to swap their lockers at a meeting point. This is especially im-
portant in places that restrict the entry of delivery vans or trucks. AMPLs can offer a viable 
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solution by collaborating with a truck fleet to serve a diverse range of last-mile customers 
in such areas (e.g., city centers). 

Additional assumptions and system details are outlined as follows: Figure 1 illus-
trates how the predetermined route of each AMPL is divided into two segments around 
midday. Indeed, once all customers have retrieved their orders from the boxes, the AMPL 
becomes empty. Utilizing its navigation, it can then move to a designated parking slot 
within specified time windows. Each zone has a predetermined number of parking spaces 
outside (i.e., parking 1–4) that can be reserved at different costs during different day peri-
ods. The arrival time of a truck at a meeting point is considered to access a specific parking 
slot, meaning a time window is associated with each parking slot. AMPLs are available 
during the designated time windows for delivering and loading parcel lockers at the se-
lected meeting point by automatically changing their paths, as shown in Figure 1. The 
maximum number of AMPLs visited at each meeting point corresponds to the number of 
parcel lockers carried by truck. For example, in a zone with a dedicated AMPL, a truck 
may deliver and load one parcel locker at the selected meeting point. While a truck can 
visit multiple meeting points from different zones during its trip, the capacity constraint 
must be adhered to. The ba9ery capacity of the AMPLs is assumed to be sufficient to sup-
port daily operations. Trucks are required to reach the selected meeting points (e.g., park-
ing slots within specified time windows) on time. The time needed to load and unload 
parcel lockers is also incorporated into the travel time. 

 
Figure 1. Meeting of trucks and AMPLs at meeting points with different leaving and returning 
points for AMPLs. 

3.1. Mixed-Integer Linear Programming Model 
This section presents a mixed-integer linear programming model for the problem. 

We define the R-AMPLP on a directed graph, 𝐺 =	 (𝑁, 𝐴), in which 𝑁 is associated with 
the node set, 𝑁 =	{0,1, … , 𝑛}, and 𝐴 corresponds to the arc set, 𝐴 = {(𝑖, 𝑗):	𝑖, 𝑗	𝜖	𝐶, 𝑖 ≠ 𝑗}. 
Set 𝐶 = 𝑁\	{𝐶! , 0} is associated with potential meeting points, which are grouped into a 
set of 𝑝  distinct clusters (i.e., zones), 𝐶 =	 7𝐶", 𝐶#, … , 𝐶$	8.	The complement set, 𝐶! =
	7𝐶!", 𝐶!#, … , 𝐶!$	8, corresponds to the AMPLs’ leaving and returning points. Note that in 



Future Transp. 2024, 4, FOR PEER REVIEW  7 
 

 

this study, zones and clusters are used interchangeably. These two sets have two main 
properties, which are as follows: for members in 𝐶, 𝐶% ∩	𝐶%! = ∅, ∀ℎ,	ℎ& ∈ 1,… , 𝑝, where 
ℎ ≠ 	ℎ&  and 𝐶" ∪	𝐶# ∪ …∪ 𝐶$ = 𝑁\	{0, 𝐶!},  and for members in 𝐶! ,  𝐶!% ∩	𝐶!%! =
∅, ∀ℎ , 	ℎ& ∈ 1,… , 𝑝,	 where ℎ ≠ 	ℎ&  and 𝐶!" ∪	𝐶!# ∪ …∪ 𝐶!$ = 𝑁\	{0, 𝐶} . Each cluster, 
𝐶!%, 1 ≤ ℎ ≤ 𝑝, corresponds to several leaving and returning points for AMPL(s). Node	0 
represents a depot with a set of 𝑘 homogeneous trucks, 𝑉 =	 {1,… , 𝑘}. Each truck has a 
specific capacity, 𝐿' , 1 ≤ 𝑓 ≤ 𝑘, and a certain constant speed, 𝑠' . 

More precisely, for handling multiple time windows associated with each location, 
we consider multiple copies of a certain physical location, each with a specific time win-
dow and identical traveling distances. Hence, for a node 𝑖 ∈ 𝐶%, there is a time window, 
[𝑒( , 𝑙(], which is associated with a specific parking cost, 𝑝𝑐( . All the nodes in a cluster, 
𝐶%, 1 ≤ ℎ ≤ 𝑝,	 have an equal non-negative demand, 0 < 𝑞( ≤ max{𝐿", … , 𝐿)} , ∀𝑖 ∈ 𝐶% , 
which equals the number of AMPLs available at node 𝑖. On the other hand, node 𝑏 ∈ 𝐶!% 
is a node at which an AMPL in zone ℎ leaves its path to go to the meeting point and 
returns to its path at 𝑏′ ∈ 𝐶!% to continue serving customers. Note that 𝑏 ∈ 𝐶!% and 𝑏 ∈
𝐶!%	might be identical, in other words, 𝑏 = 𝑏′, or different based on the system configu-
ration. For instance, as Figure 1 shows, three leaving and three returning points are asso-
ciated with three AMPLs moving in the presented zone. We assume that at each meeting 
point, AMPLs are available from the beginning of the time windows, so the operation 
starts as soon as the truck arrives. 

The travel time, 𝑑(*/𝑠', is associated with each arc, (𝑖, 𝑗)	𝜖	𝐴, where 𝑑(* represents 
the traveling distance from 𝑖	to 𝑗. Also, 𝑠' denotes the speed of the trucks, which is con-
stant and the same for 1 ≤ 𝑓 ≤ 𝑘, in our case. Concerning AMPLs’ paths, in this paper, 
we only consider the traveling distance that each AMPL must pass to reach the meeting 
point. In fact, as AMPLs have pre-defined paths and a navigation system that can help 
them find the meeting points, we consider the traveling distance they must pass in our 
objective function. 

Moreover, the working time length of the day is defined as [0, 𝑇]. The solution to 
this problem is to provide 𝑘 optimal routes, in which (i) a location	is only served by ex-
actly one truck within corresponding time windows (i.e., meeting point); (ii) all of the 
routes of trucks must start and end at the depot within [𝑒+, 𝑙+],	which is equal to [0, 𝑇]; 
(iii) the total demand carried by each truck cannot exceed 𝐿', which is connected to the 
capacity of the truck 𝑓. Also, each truck’s total operation time cannot exceed 𝑇. Finally, 
(iv) the total cost, including traveling and parking costs, is minimized. The required sym-
bols for presenting the MILP model are listed in Table 3. 

Table 3. Notations used in the model. 

Notation Description 
Sets   
𝑁 =	 {0, 1… , 𝑛} The set of nodes 
𝑁\	{0, 𝐶!} The set of meeting points 
𝐴 = {(𝑖, 𝑗) ∶ 	𝑖, 𝑗	𝜖	𝑁\	{0, 𝐶!}	, 𝑖 ≠ 𝑗} The set of arcs 
𝐶 =	 7𝐶1, 𝐶2, … , 𝐶$	8 The set of clusters corresponding to meeting points  
𝐶! =	 7𝐶!1, 𝐶!2, … , 𝐶!$	8 The complement set of clusters associated with AMPL paths 
𝑉 =	 {1, … , 𝑘} The set of vehicles 
{0}	𝜖	𝑁 
𝑏 ∈ 𝐶!% 
𝑏′ ∈ 𝐶!% 

The depot 
Leaving point in cluster h 
Returning point in cluster h 

Parameters  
𝑑(* The traveling distance (cost) between meeting points 𝑖 and 𝑗 
𝑞( The demand of node 𝑖, 𝑖 ∈ 𝑁{0} 
𝑠' The speed of vehicle 𝑓 



Future Transp. 2024, 4, FOR PEER REVIEW  8 
 

 

𝐿' The capacity of vehicle 𝑓 
𝑒( The earliest arriving time at a meeting point 𝑖 
𝑙( The latest arriving time at a meeting point 𝑗 
𝑝𝑐( The parking cost at a meeting point 𝑖 
Decision variables  
𝑎( ≥ 0 The arrival time at a meeting point 𝑖 

𝑥(*'	𝜖	{0,1} 
If the traveling path between node 𝑖 to node 𝑗 is traveled by a vehicle 𝑓, it is 
equal to 1, and 0 otherwise 

𝑦( 	𝜖	{0,1} 
If the node 𝑖	in a cluster is visited by a vehicle 𝑓, it is equal to 1, and 0 
otherwise 

The MILP model of the R-AMPLP is presented as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒\ \ \ 𝑑(*𝑥(*' +\ 𝑝𝑐(𝑦(
(∈𝑁\	{0,."}'∈0*∈1\."(∈1\."

+\ (𝑑3( + 𝑑(3!)𝑦(
.#∈	.

 (1) 

subject to: 

∑ 𝑦((∈.# = 1, ∀	𝐶% ∈ 	𝐶, (2) 

\ \ 𝑥(*'
'∈0*∈5\	{	."}

= 𝑦( , ∀	𝑖 ∈ 𝑁\	{	𝐶!}, 𝑖 ≠ 𝑗, (3) 

\ \ 𝑥*('
'∈0*∈1\	{."}

= 𝑦( , ∀	𝑖 ∈ 𝑁\	{	𝐶!}, 𝑖 ≠ 𝑗, (4) 

\ \ 𝑥(*'
'∈0*∈1\	{	."}

−\ \ 𝑥*('
'∈0*∈1\	{	."}

= 0, ∀	𝑖 ∈ 	𝑁\	{0,𝐶!}, 𝑖 ≠ 𝑗, (5) 

\ 𝑥+('
(∈1\	{0,."},(7+

≤ 1, ∀	𝑓 ∈ 	𝑉, (6) 

\ 𝑥(+'
(∈1\	{0,."},(7+

≤ 1, ∀	𝑓 ∈ 	𝑉, (7) 

\ 𝑞(
(∈1\	{	."}

\ 𝑥(*'
*∈1\	{	."}

≤ 𝐿' , ∀	𝑓 ∈ 	𝑉, (8) 

𝑒( ≤ 𝑎( ≤ 𝑙( , ∀	𝑖 ∈ 	𝑁\	{	𝐶!}, (9) 

𝑎( − 𝑎* + (𝑑(*/𝑠') ≤ 𝑙(𝑦( − 𝑒*𝑦* − `𝑙( − 𝑒*a𝑥(*' , ∀	(𝑖, 𝑗) ∈ 	𝑁\	{	𝐶!}, ∀	𝑓 ∈ 	𝑉, (10) 

𝑎( + (𝑑(+/𝑠')𝑥(+' ≤ 𝑙+, ∀	𝑖 ∈ 𝑁\	{	𝐶!}, ∀	𝑓 ∈ 	𝑉, (11) 

𝑥(*' ∈ {0,1}, ∀(	𝑖, 𝑗) ∈ 	𝐴, ∀	𝑓 ∈ 	𝑉, (12) 

𝑦( ∈ {0,1}, ∀	𝑖 ∈ 	𝑁\	{	𝐶!}, (13) 

𝑎( ∈ 	ℝ8, ∀	𝑖 ∈ 	𝑁\	{	𝐶!}. (14) 

The objective function (1) minimizes the total traveling and related parking costs. We 
assume that the traveling distance corresponding to each route defines its cost. Hence, we 
do not add any new parameter to calculate the cost. The first summation shows the total 
traveling cost associated with trucks’ routes. The second summation shows the total park-
ing cost that the system must pay. Finally, the third summation corresponds to the total 
traveling cost associated with AMPLs’ paths from their leaving points to the meeting 
points and from the meeting points to the returning points. Constraints (2)–(4) ensure that 
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exactly one node of each cluster is served by a vehicle. Constraint (5) is a flow constraint 
that guarantees each cluster has the same entry and exit re-supply point. Constraints (6) 
and (7) ensure that routes must start and end at the depot. Constraint (8) ensures that each 
route’s total demand cannot exceed the assigned vehicle’s capacity. Constraints (9)–(11) 
are time window constraints, in which constraint (10) ensures that the service time asso-
ciated with each meeting point must be within its time window, and constraint (11) guar-
antees that arrival and traveling times are consistent. 

Moreover, using these constraints, sub-tours are eliminated. Constraint (9) ensures 
that each tour ends before the end of the working time. Finally, Constraints (12)–(14) pre-
sent the domains of decision variables. Constraints (2)–(4) and (9)–(11) are based on a 
study on the generalized traveling salesman problem (GTSPTW) presented by [28], but 
we adapted them to consider a specific vehicle index in the formulation. 

4. The Solution Approach 
We initially provide the underlying mathematical principles to introduce our cluster-

based simulated annealing (CSA) solution approach for the R-AMPLP. This groundwork 
enables our solution to manage the objective function and constraints of the problem ef-
fectively. For simplicity, we assume from now on that AMPLs’ paths cover meeting points 
with no need to change their route, so the third element in the objective function (1) be-
comes zero. Regarding the mathematical foundation of the problem, we now present the 
related equations by which a given objective function, ℱ, must be minimized, subject to a 
set of constraints. A possible solution is shown by 𝜔, and ℱ(𝜔) represents the value or 
fitness of the given solution, 𝜔.  Assume that a set of meeting points 𝐶 = 𝑁\𝐶! =
{0, 1, 2, … ,𝑚}, clusters 𝐶 = 7𝐶", … , 𝐶$	8,	trucks V = {1,… , 𝑘},	and dummy nodes ℒ = {𝑚 +
1,… ,𝑚 + 𝑘 − 1} are given. All possible solutions are shown by set ℧.	A solution, 𝜔 ∈
℧,	of this optimization problem can be arranged in a row with 𝑆 = 𝑝 + |ℒ| columns, so 
|𝜔| = 𝑆. Each column is represented by ℊ9(𝑣) = 𝜑,𝜔 ∈ ℧, 𝑣 ∈ ℒ ∪ 𝐶, 𝜑 ∈ {1,… , 𝑆}. As an 
example, a solution with 𝑚 = 20, |𝐶%| = 4, ∀ℎ ∈ 1,… , 𝑝	 = 5, and	𝑘 = 2 is shown in Figure 
2. Therefore, in this instance, |𝜔| is equal to 𝑆 = 5 + 1 = 6. 

Clusters (p = 5) Meeting points (m = 20) 

1 𝑣 =	1 𝑣 =2 𝑣 =3* 𝑣 =4 

2 𝑣 =	5 𝑣 =6 𝑣 =7* 𝑣 =8 

3 𝑣 =	9 𝑣 =10* 𝑣 =11 𝑣 =12 

4 𝑣 =13 𝑣 =14* 𝑣 =15 𝑣 =16 

5 𝑣 =17 𝑣 =18 𝑣 =19* 𝑣 =20 

* Selected meeting points from each cluster in a solution. 
 

Truck 1  Truck 2 

   
 

𝜑 =1 𝜑 =2 𝜑 =3 𝜑 =4 𝜑 =5 𝜑 =6 

𝑣 =3 𝑣 =7 𝑣 =10 𝑣 =21 𝑣 =14 𝑣 =19 
 

↓ ↓ ↓ ↓ ↓ ↓ 
 

ℊ(3)

= 1 

ℊ(7)

= 2 

ℊ(10)

= 3 

ℊ(21)

= 4 

ℊ(14)

= 5 

ℊ(19)

= 6 
  

Figure 2. A solution with m = 20, p	= 5, and k = 2. 

Let 𝐴 = (𝑚 + 1) × (𝑚 + 1) be a squared matrix, where	𝑑:;	is the traveling cost be-
tween each pair, 𝑢, 𝑣 ∈ 𝑁\𝐶! , 𝑢 ≠ 𝑣. To be more precise, assume a zone with three physi-
cal parking slots. All three parking slots are available in a single time slot with a one-and-
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a-half-hour course between 12: 00	and	14: 00. This timeframe is separated by three dis-
tinct shorter time windows (e.g., 12: 30– 13: 00, 13: 01– 13: 30, and	13: 31– 14: 00 ). It 
means that this zone must be served only in the mentioned time slot, from 12:30 to 14:00. 
Hence, in our methodology, we create 3 × 3 = 9	virtual nodes or meeting points associ-
ated with this zone. 

4.1. Cost functions 
 Here, we present a set of functions to obtain an objective function value. 

4.1.1. Total Traveling Cost Formula 
Let 𝜓'9 be the total traveling cost corresponding to the distance associated with each 

truck, 𝑓 ∈ {1, . . , 𝑘}. To calculate 𝜓'9, the current solution, 𝜔, must be broken into a set of 
𝜔' , ⋃ 𝜔' =)

'<" 𝜔\ℒ. Since in 𝜔 solution, there are dummy nodes to separate each truck’s 
tour, we only need to use 𝑣 ∈ 𝜔\ℒ. Hence, nodes that are between dummy nodes are used 
to calculate the cost function, 𝜓'9 . In the example above, node 21 is a dummy node. 
Therefore, all nodes before this node are visited by truck 1, and all nodes after that are 
served by truck 2. If 𝜔 represents a solution, the following Formula (15) shows the total 
traveling cost, Ψ9, associated with the current solution: 

∀𝑓:	𝜓'9 = ∑ ∑ 𝑑:;;∈9\ℒ:∈9\ℒ +∑ 𝑑+,;;∈9\ℒ +∑ 𝑐:,+:∈9\ℒ → Ψ9 = ∑ 𝜓''∈> .  (15) 

where 𝑢, 𝑣 ∉ 	ℒ, 𝑑+,;	represents the distance from the depot or node 0 to the first meeting 
point, and 𝑑:,+	shows the distance from the last meeting point to the depot or node 0 cor-
responding with vehicle 𝑓 . In the presented example, regarding the truck 1, 	𝑑+,; 	→
𝑑+,?	and 𝑑:,+ → 𝑑"+,+	are the distances from the depot to the first meeting point and from 
the last meeting point to the depot. Acknowledging the constancy of the overall distance 
that AMPLs must traverse to reach their designated meeting points, we regard this com-
ponent as a fixed constant within our analysis. Consequently, this distance is excluded 
from the mathematical formulation underlying our heuristic strategy and the computa-
tion of numerical outcomes. This decision streamlines the model by focusing on variable 
distances directly influenced by routing decisions, thereby enhancing the clarity and ef-
fectiveness of our heuristic approach in optimizing traveling costs. As a justification, this 
element does not affect the total cost calculation, as the distance matrix of leaving points 
to all possible meeting points and from meeting points to returning points for each cluster 
is already available. 

4.1.2. Capacity Violation and Penalty Cost Formula 
Let 𝑞; be the demand associated with meeting point 𝑣, and 𝐿' be the total capacity 

corresponding to the vehicle, 𝑓 ∈ {1, . . , 𝑘}. If 𝜔 represents a solution, the following For-
mula (16) shows the penalty cost, ℳ9, associated with capacity violation of the current 
solution: 

∀	𝑓:	𝛿'9 = max	{0, 𝐿' − ∑ 𝑞;} → ℳ9 = ∑ 𝛿'9,'∈>;∈9\ℒ   (16) 

where 𝛿'9 ≥ 0 represents the amount of capacity violation corresponding with vehicle 𝑓. 

4.1.3. Time Window Violation and Its Penalty Cost Formula 
Let 𝑒;, 𝑙;, 𝑎; be the earliest time, latest time, and arrival time at the meeting point 

𝑣 ∈ 𝜔\ℒ, respectively. If 𝜔 represents a solution, the following Formula (17) shows the 
penalty cost, Γ9, associated with a time window violation of the current solution: 

∀	𝑣 ∈ 	𝜔\ℒ →	𝛾;@ = max	{0,	 𝑒; − 𝑎;}  

→ Γ9 = ∑ (𝛾;@;∈9\ℒ + 𝛾;
A), 

∀	𝑣 ∈ 	𝜔\ℒ →	𝛾;
A = max	{0, 𝑎; − 𝑙;} 

(17) 
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where 𝛾;@	and	𝛾;
A ≥ 0 represent the number of time window violations corresponding 

with the earliest time and latest time associated with meeting point 𝑣 ∈ 𝜔\ℒ, respectively. 

4.1.4. Parking Slot Cost Formula 
Let 𝜌;, 𝑣 ∈ 𝜔\ℒ be the parking slot fee associated with meeting point 𝑣. If 𝜔 repre-

sents a solution, the following Formula (18) shows the penalty cost, Ρ9, associated with 
the current solution’s total parking fee: 

∀	𝑣 ∈ 𝜔\ℒ →	Ρ9 = ∑ 𝜌;;∈9\ℒ ,  (18) 

where 𝜌; ≥ 0 represents the parking fee corresponding to parking slot 𝑣 ∈ 𝜔\ℒ. 
Objective function: 
The total cost corresponding to the solution 𝜔 is presented in Equation (19). We base 

our assumption on the idea that the traveling distance for each route determines its asso-
ciated cost. Therefore, we do not introduce any additional parameters for cost calculation. 

ℱ(𝜔) = Ψ9 +ℳ9 + Γ9 + Ρ9 (19) 

Regarding the optimal solution, 𝜔∗,	the objective function value, ℱ(𝜔∗), shows the 
minimum cost of the system. More precisely, 

𝜔∗ 𝜔 ∈ ℧�⃖����������� minℱ(𝜔). (20) 

As mentioned in this section, ℧ represents all possible solutions in which 0 ∉ ℧. 

4.2. A Cluster-Based Simulated Annealing Algorithm 
This section presents the procedure of a cluster-based simulated annealing (CSA) al-

gorithm. According to [29] and [30], using simulated annealing (SA) with a set of neigh-
borhood search operators in the context of the VRP and its variants is successful. 

We first provide a general rule for the CSA and then step-by-step define sub-algo-
rithms in three main categories: clustering, initial solution, and improvement algorithms. 
In Algorithm 1, we define steps to solve the problem by applying the CSA algorithm. This 
algorithm uses three phases to deliver a solution. The first phase is to obtain data from 
Algorithm 2, by which nodes are grouped into distinct clusters by applying a K-means 
algorithm. The second phase creates an initial solution using Algorithm 3 based on the 
output of Algorithm 2. Finally, by calling Algorithm 4 and its sub-functions (see Appendix 
A) improvement algorithms, Algorithm 1 tries to find an optimal solution based on a 
standard simulated annealing step, as shown in Algorithm 1. 

Algorithm 1. The cluster-based simulated annealing algorithm (CSA) 
//Initialization phase creates an initial solution (instance) by calling 
Algorithm 3; 
ωbest ← ω; 
calculate the fitness value (ω); 
F(ωbest) ← F(ω); 

T ← T0; 
Tf ← 0; 
//improvement phase 
for externaliteration=1 to EImax do 

if T>Tf then 
for internaliteration=1 to IImax do 

ωnew ←createnighborhoodsolutions(ω); 
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F(ωnew) ← calculatethefitnessvalue(ωnew); 
if F(ωnew) <= F(ω) then 

ω← ωnew; 
else 

Δ =T0 – Tf ; 
η = e(Δ/T) ; 
if random(0,1) <= η then 

ω← ωnew; 

end 
end 

end 
end 
if F(ω) <= F(ωbest) then 
ωnew← ω; 
end 
T=εT; 

end 

In Algorithm 2, a given dataset is transformed into a dataset with clusters grouped 
into distinct clusters based on clustering criteria, such as nodes’ coordinates. In this algo-
rithm, we consider the coordinates of nodes as grouping criteria by applying a K-means 
procedure. This algorithm is based on the silhoue9e method [31]. The method is a widely 
used technique in cluster analysis, particularly in the context of unsupervised machine 
learning and data mining. It serves as a valuable tool for evaluating the quality of cluster-
ing results. The primary goal of clustering is to partition a dataset into distinct groups or 
clusters, each containing similar data points. The silhoue9e method quantitatively 
measures how well this goal has been achieved. Several steps are involved in computing 
the silhoue9e score for a particular data point, as follows: (i) Calculate the average dis-
tance (ϖ) between the data point and all other data points within the same cluster. This 
value represents the cohesion of the data point with its cluster, indicating how similar it 
is to the other points in the same group. (ii) Calculate the average distance (κ) between the 
data point and all data points in the nearest neighboring cluster that the data point is not 
a part of. This value measures the separation of the data point from other clusters, indi-
cating how dissimilar it is to points in neighboring clusters. (iii) Compute the silhoue9e 
score (ς) for the data point using the formula: ς = (κ − ϖ)/max(ϖ, κ). 

Algorithm 2. Clustering algorithm. 
Input: Nodes’ coordinates, nodes’ labels 𝑁 
Output: A set of H clusters, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒   
Step 1: Call data to extract horizontal and vertical coordinates. 
Step 2: Analyze the maximum number of distinct clusters by calling the silhouette 
method. 
Step 3: Select p	𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 based on the silhouette method. 
Step 4: Apply the K-means method for clustering. 
Step 5: Print zones (clusters) with memberships. 
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Concerning producing an initial solution, we apply Algorithm 3. This algorithm 
yields a set of nodes obtained from Algorithm 2 and then creates an initial solution ran-
domly. 

Algorithm 3. Initial random solution algorithm. 

Input : An instance 
Output : An initial solution, ω 

function create initial solution (instance) 

N ← Ninstance; 

p ← pinstance; 

k ← kinstance; 

|ω| ← p + k − 1; 
ω ← 0; 
for g=1 to p do 

cluster(g)←random_sampling(g,1); 
end 
ω←[permutation([p+1:p+k-1],[cluster(g) from 1 to p])]; 

To improve the initial solution, Algorithm 4 is applied. The algorithm employs six 
internal operators that are invoked randomly to enhance the initial solution. A detailed 
explanation of these operators can be found in Appendix A. Each operator is linked to a 
distinct selection function, which identifies a group of nodes and generates new routes. 

Algorithm 4. Create neighborhoods algorithm. 
Input: An initial solution, ω  
Output: A new solution, ωnew 

function create neighborhoods (ω)  
r ←random_integer_number[1,6] 
switch r do 

case 1 do  
ωnew ←2_opt(ω); 

end 
case 2 do  

ωnew ←remove_insert1(ω); 
end 
case 3 do  

ωnew ←shake_cluster(ω); 
end 
case 4 do  

ωnew ←3_opt(ω); 
end 
case 5 do  

ωnew ←remove_insert_2(ω); 
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end 
case 6 do  

ωnew ←reverse(ω); 
end 

end 

5. Computational Experiments 
This section demonstrates the computational outcomes achieved by solving various 

instances, adapted according to the methodology described in this paper. It also offers 
substantial proof of the effectiveness of the CSA. 

5.1. Dataset and Strategy Definition 
Our experiments used the Solomon dataset [32]. It is important to note that for ob-

taining multiple time windows associated with each node, we defined four internal strat-
egies, including 25-nodes-per-set (25nps), 50-nodes-per-set (50nps), 75-nodes-per-set (75nps), 
and 100-nodes-per-set (100nps). These strategies indicate how many nodes from each da-
taset with which range were selected. For example, regarding class C1, 25nps means we 
chose the first 25 nodes. We applied this approach to create a wide range of instances, and 
each dataset, such as c101 from class C1, was divided into four strategies as instances. 

Moreover, we designed three and four scenarios to combine strategies for each class, 
C1, C2, R1, R2, RC1, and RC2, as explained in the following tables. For instance, scenario 
c101—c103 means combining internal strategies from c101 to c103. The number of scenar-
ios depended on the dataset class, as depicted in Tables 4, 6, 8, and 10. In fact, there were 
four scenarios for classes R1 and R2, and for the rest, there were three. Our instances had 
a specific ID based on both scenarios and strategies mentioned before. For example, an 
instance with ID “c101—103:25nps” indicates that it called the first 25 nodes from each 
dataset from c101 to c103, creating 75 meeting points. The reason for this approach was 
that it created multiple time windows for several nodes. As each dataset, such as C1, had 
identical coordinates but different time windows associated with each node, c101—
103:25nps represents 25 alternative locations, with 3 time windows for each node. The 
number of clusters was obtained by applying Algorithm 2. 

5.2. Performance Metrics and Parameters 
The performance metrics included the number of nodes (|𝑁|), the number of capaci-

tated arcs (|𝐶|), demand (𝑞(), vehicle capacity (𝐿'), the number of time windows (NTWs), 
and the average solutions. Moreover, based on the length of the value of the earliest time 
associated with each node, we assigned a parking slot fee between 1 and 4. Particularly, 
we divided the maximum earliest time windows into four intervals. Then, we considered 
the earliest time windows associated with each node to assign the parking fee. If it was 
below the first interval, then we assigned 1, and so on. Therefore, the parking slot fee was 
calculated for the total cost of each instance. Moreover, as we already mentioned, we as-
sumed that the third summation in the objective function was a constant in our calcula-
tions, so we could ignore it in the final results. 

Regarding the CSA parameters, we set them at 𝐸𝐼CDE = 150,000, 𝐼𝐼CDE = 50, 𝑇+ =
100, 𝜀 = 0.9999, and	𝑇' = 0, empirically. To confirm that the CSA is a reliable algorithm, 
we solved a set of small and medium-sized instances using the IBM CPLEX solver [33], as 
shown in Table 16. We selected the first dataset from each scenario corresponding to each 
class. All instances were run on a 64-bit Windows system with 8 GB RAM and Core i5 
CPU. The maximum computational time for CPLEX was set to 3600 s. Here, parking fees 
were disregarded to emphasize the contrast between RRAMPL and the original VRPTW. 

To illustrate the impact of clustering and to assess the effects of various factors on our 
defined problem, we presented outcomes dually linked to each class. Initially, we 
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showcased the outcomes of the R-AMPLP, a solution yielded through CSA. Subsequently, 
we offered results for the fundamental VRPTW problem, maintaining an equal count of 
clusters and nodes. For instance, in C1, there were nine different subsets, C1–C9, each with 
25, 50, and 100 nodes. For this, in CSA, we set the number of clusters to the size of the 
instance (nodes) and obtained the objective value related to the dataset. The results are 
shown in Tables 5, 7, 9, and 11. It is important to note that no parking slot fee was associ-
ated with VRPTW instances. 

5.3. Results of the R-AMPLP and VRPTW 
Focusing on the results, we compared the R-AMPLP solution with the VRPTW. This 

comparison highlighted the CSA algorithm’s efficacy in reducing operational costs and 
demonstrated the impact of clustering on solution quality. 

Regarding class C1, as depicted in Table 4, identical strategies employed across dis-
tinct scenarios—such as 25nps in c101—c103 and c101—c106—exhibited comparable clus-
ter counts and average solutions. This observation was evident from the graphical repre-
sentation, where the time window variability in classes c103 and c104 was noticeably more 
uneven than the rest. These findings were further substantiated by the results presented 
in Table 5 for the VRPTW. 

Table 4. Numerical results based on Solomon’s dataset C1. 

Class Scenario Strategy ID |𝑵| |𝑪| 𝒒𝒊 𝑳𝒇 NTWs Average of Solutions 

C1 

c101—c103 

25nps c101-c103:25nps 75 3 20 60 3 83.48 
50nps c101-c103:50nps 150 6 20 60 3 231.58 
75nps c101-c103:75nps 225 9 20 60 3 466.84 
100nps c101-c103:100nps 300 10 20 60 3 478.41 

c101—c106 

25nps c101-c106:25nps 150 3 20 60 6 82.48 
50nps c101-c106:50nps 300 7 20 60 6 266.94 
75nps c101-c106:75nps 450 10 20 60 6 495.03 
100nps c101-c106:100nps 600 10 20 60 6 470.24 

c101—c109 

25nps c101-c109:25nps 225 3 20 60 9 71.12 
50nps c101-c109:50nps 450 6 20 60 9 243.29 
75nps c101-c109:75nps 675 8 20 60 9 446.26 
100nps c101-c109:100nps 900 10 20 60 9 488.05 

Average - - - 375 8.5 20 60 6 318.64 

The Pearson correlation coefficient of 0.985 indicated a strong positive correlation, 
suggesting that as the number of clusters increased, there was a tendency for the average 
objective values to increase as well. The statistical significance of this correlation was sup-
ported by a p-value of approximately 6.35 × 10−9, indicating that the observed relationship 
was not due to random chance. 

Table 5. Numerical results for confirming the CSA performance compared to optimal solutions on 
Solomon’s dataset C1. 

Dataset Subset |𝑵| |𝑪| Optimal 
(Benchmark) CSA Solution Gap % 

C1 

c101 25 25 191.3 191.81 0.27% 
c101 50 50 362.4 363.24 0.23% 
c101 100 100 827.3 828.93 0.20% 
c102 25 25 190.3 190.73 0.23% 
c102 50 50 361.4 362.17 0.21% 
c102 100 100 827.3 828.93 0.20% 
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c103 25 25 190.3 190.73 0.23% 
c103 50 50 361.4 362.17 0.21% 
c103 100 100 826.3 834.75 1.02% 
c104 25 25 186.9 187.45 0.29% 
c104 50 50 358 358.88 0.25% 
c104 100 100 822.9 834.94 1.46% 
c105 25 25 191.3 191.81 0.27% 
c105 50 50 362.4 363.24 0.23% 
c105 100 100 827.3 828.93 0.20% 
c106 25 25 191.3 191.81 0.27% 
c106 50 50 362.4 363.24 0.23% 
c106 100 100 827.3 828.93 0.20% 
c107 25 25 191.3 191.81 0.27% 
c107 50 50 362.4 363.24 0.23% 
c107 100 100 827.3 828.93 0.20% 
c108 25 25 191.3 191.81 0.27% 
c108 50 50 362.4 363.24 0.23% 
c108 100 100 827.3 828.94 0.20% 
c109 25 25 191.3 191.81 0.27% 
c109 50 50 362.4 363.92 0.42% 
c109 100 100 827.3 828.94 0.20% 

   Average 459.65 463.45 0.36% 

Tables 4 and 5 show that the objective value increased when the number of nodes and 
clusters increased. The mean overall cost of R-AMPLP within this specific class, denoted 
as C1, was 318.64. This value contrasted notably with the VRPTW context, where the cost 
was 459.65. As such, it can be deduced that the R-AMPLP demonstrated enhanced cost 
efficiency compared to the original VRPTW, mainly when clustering was a viable option 
within the given configuration. The performance shown by the introduced algorithm for 
this class revealed an exceedingly slight gap compared to the exact solutions associated 
with it. 

Regarding class C2, Table 6 shows that the average objective values were related to 
the number of clusters. That is, scenarios with more clusters had greater solution values. 
In addition, the length of time window intervals significantly impacted the cost values. 
Although the coordinates corresponding to each node were the same in both class C1 and 
C2, the length of the time window intervals was tighter in class C1, and solution values 
regarding class C1 were greater than class C2 on average. 

Table 6. Numerical results based on Solomon’s dataset C2. 

Class Scenario Strategy ID |𝑵| |𝑪| 𝒒𝒊 𝑳𝒇 NTWs Average of 
Solutions 

C2 

c201—c203 

25nps c201-c203:25nps 75 8 20 60 3 173.50 
50nps c201-c203:50nps 150 9 20 60 3 213.34 
75nps c201-c203:75nps 225 10 20 60 3 373.65 
100nps c201-c203:100nps 300 8 20 60 3 294.02 

c201—c206 

25nps c201-c206:25nps 150 9 20 60 6 224.05 
50nps c201-c206:50nps 300 5 20 60 6 145.77 
75nps c201-c206:75nps 450 8 20 60 6 221.37 
100nps c201-c206:100nps 600 10 20 60 6 341.01 

c201—c208 25nps c201-c208:25nps 200 10 20 60 8 266.68 



Future Transp. 2024, 4, FOR PEER REVIEW  17 
 

 

50nps c201-c208:50nps 400 7 20 60 8 204.00 
75nps c201-c208:75nps 600 10 20 60 8 306.95 
100nps c201-c208:100nps 800 7 20 60 8 216.77 

Average - - - 354.16 8.41 20 60 5.66 248.42 

The statistical analysis of Table 6 from Solomon’s dataset C2 showed a positive cor-
relation between the number of clusters (|C|) and the average objective values (average 
of solutions), with a correlation coefficient of approximately 0.774. This indicated a mod-
erate to strong correlation. The p-value was approximately 0.0031, suggesting this corre-
lation was statistically significant. 

Regarding Table 7, as the results revealed, the performance of the CSA compared to 
the optimal solutions was worse than that of class C1 in Table 5. Consequently, the average 
gap in class C2 was greater than that in class C1, which means that the CSA worked be9er 
with the same solution resources in cases with tighter time windows, such as C1. Also, for 
small instances, the CSA quality was near optimal. 

Table 7. Numerical results for confirming the CSA performance compared to benchmarks on Solo-
mon’s dataset C2. 

Dataset Subset |𝑵| |𝑪| Optimal 
(Benchmark) 

CSA Solution Gap % 

C2 

c201 25 25 214.7 215.54 0.39% 
c201 50 50 360.2 361.79 0.44% 
c201 100 100 589.1 673.16 14.27% 
c202 25 25 214.7 215.54 0.39% 
c202 50 50 360.2 395.81 9.89% 
c202 100 100 589.1 674.29 14.46% 
c203 25 25 214.7 215.54 0.39% 
c203 50 50 359.8 393.98 9.50% 
c203 100 100 588.7 674.95 14.65% 
c204 25 25 213.1 215.54 1.15% 
c204 50 50 350.1 393.37 12.36% 
c204 100 100 588.1 640.59 8.93% 
c205 25 25 214.7 215.54 0.39% 
c205 50 50 359.8 364.75 1.38% 
c205 100 100 586.4 652.41 11.26% 
c206 25 25 214.7 215.54 0.39% 
c206 50 50 359.8 361.41 0.45% 
c206 100 100 586 642.57 9.65% 
c207 25 25 214.5 215.54 0.48% 
c207 50 50 359.6 402.32 11.88% 
c207 100 100 585.5 675.75 15.41% 
c208 25 25 214.5 215.54 0.48% 
c208 50 50 350.5 352.12 0.46% 
c208 100 100 585.5 637.07 8.81% 

Average - - - 386.41 417.53 8.05% 

Table 8 shows that scenarios with larger clusters had greater solution values regard-
ing dataset R1. The results revealed that the effect of the number of clusters on solution 
values was considerable. 

Table 8. Numerical results based on Solomon’s dataset R1. 
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Class Scenario Strategy ID |𝑵| |𝑪| 𝒒𝒊 𝑳𝒇 NTWs Average of 
Solutions 

R1 

r101-r103 

25nps r101-r103:25nps 75 10 20 60 3 276.05 
50nps r101-r103:50nps 150 4 20 60 3 88.46 
75nps r101-r103:75nps 225 5 20 60 3 102.31 
100nps r101-r103:100nps 300 4 20 60 3 78.92 

r101-r106 

25nps r101-r106:25nps 150 9 20 60 6 253.62 
50nps r101-r106:50nps 300 10 20 60 6 264.91 
75nps r101-r106:75nps 450 4 20 60 6 78.84 
100nps r101-r106:100nps 600 4 20 60 6 78.81 

r101-r109 

25nps r101-r109:25nps 225 9 20 60 9 284.7 
50nps r101-r109:50nps 450 8 20 60 9 240.79 
75nps r101-r109:75nps 675 4 20 60 9 76.25 
100nps r101-r109:100nps 900 4 20 60 9 65.59 

r101-r112 

25nps r101-r112:25nps 300 8 20 60 12 207.54 
50nps r101-r112:50nps 600 4 20 60 12 77.25 
75nps r101-r112:75nps 900 3 20 60 12 34.26 
100nps r101-r12:100nps 1200 4 20 60 12 68.69 

Average - - - 468.75 5.87 20 60 7.5 142.31 

The analysis of Table 8, using Solomon’s dataset R1, demonstrated a notably strong 
positive correlation between the number of clusters (|C|) and the average objective values, 
as indicated by a correlation coefficient near 0.989. This reflected a nearly ideal correlation. 
With a p-value of around 5.35 × 10−13, the statistical significance of this correlation was 
extremely high, confirming its reliability. 

Table 9 asserts that increasing the number of nodes impacted both objective function 
values and, in most cases, the gap between optimal solutions and the CSA. However, an 
improvement was achieved in the gap regarding class C1. We can interpret this improve-
ment based on the structure of class R1, in which nodes were sca9ered randomly in the 
geographical area. On the other hand, as the numerical results of the R-AMPLP presented, 
applying the clustering approach could reduce the operation cost of the system and algo-
rithm. 

Table 9. Numerical results for confirming the CSA performance compared to benchmarks on Solo-
mon’s dataset R1. 

Dataset Subset |𝑵| |𝑪| Optimal 
(Benchmark) CSA Solution Gap % 

R1 

r101 25 25 617.1 627.13 1.63% 
r101 50 50 1044 1065.9 2.10% 
r101 100 100 1637.7 1699.34 3.76% 
r102 25 25 547.1 550.20 0.57% 
r102 50 50 909 923.22 1.56% 
r102 100 100 1466.6 1523.34 3.87% 
r103 25 25 454.6 464.82 2.25% 
r103 50 50 772.9 813.05 5.19% 
r103 100 100 1208.7 1289.84 6.71% 
r104 25 25 416.9 437.08 4.84% 
r104 50 50 625.4 644.07 2.99% 
r104 100 100 971.5 1043.67 7.43% 
r105 25 25 530.5 531.53 0.19% 
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r105 50 50 899.3 948.36 5.46% 
r105 100 100 1355.3 1462.89 7.94% 
r106 25 25 465.4 466.48 0.23% 
r106 50 50 793 830.78 4.76% 
r106 100 100 1234.6 1299.89 5.29% 
r107 25 25 424.3 437.67 3.15% 
r107 50 50 711.1 746.12 4.92% 
r107 100 100 1064.6 1127.83 5.94% 
r108 25 25 379.3 398.29 5.01% 
r108 50 50 617.87 630.53 2.05% 
r108 100 100 - 1001.17 - 
r109 25 25 441.3 442.62 0.30% 
r109 50 50 786.8 819.21 4.12% 
r109 100 100 1146.9 1211.66 5.65% 
r110 25 25 444.1 447.47 0.76% 
r110 50 50 697 735.05 5.46% 
r110 100 100 1068 1150.07 7.68% 
r111 25 25 428.8 440.04 2.62% 
r111 50 50 707.2 740.56 4.72% 
r111 100 100 1048.7 1101.81 5.06% 
r112 25 25 393 413.44 5.20% 
r112 50 50 630.2 646.85 2.64% 
r112 100 100 - 999.19 - 

Average - - - 792.31 * 831.71 * 4.97% 
* These results are restricted to the available optimal solutions in the benchmark. 

Regarding class R2, Table 10 reveals that scenarios with larger clusters had greater 
solution values. The results also showed that the number of clusters’ effect on solution 
values was more dominant than the time windows’ interval length. To be more precise, 
when considering a given strategy across various scenarios, it became evident that the 
impact of the time window duration was relatively less significant than the influence ex-
erted by the number of nodes and clusters. 

Table 10. Numerical results based on Solomon’s dataset R2. 

Class Scenario Strategy ID |𝑵| |𝑪| 𝒒𝒊 𝑳𝒇 NTWs Average of 
Solutions 

R2 

r201—r203 

25nps r201-r203:25nps 75 10 20 60 3 271.9 
50nps r201-r203:50nps 150 4 20 60 3 85.06 
75nps r201-r203:75nps 225 5 20 60 3 100.42 
100nps r201-r203:100nps 300 4 20 60 3 84.01 

r201—r206 

25nps r201-r206:25nps 150 9 20 60 6 287.70 
50nps r201-r206:50nps 300 10 20 60 6 247.64 
75nps r201-r206:75nps 450 4 20 60 6 79.52 
100nps r201-r206:100nps 600 4 20 60 6 77.36 

r201—r209 

25nps r201-r209:25nps 225 9 20 60 9 285.15 
50nps r201-r209:50nps 450 8 20 60 9 232.81 
75nps r201-r209:75nps 675 4 20 60 9 81.04 
100nps r201-r209:100nps 900 4 20 60 9 70.90 

r201—r211 
25nps r201-r211:25nps 275 8 20 60 11 225.76 
50nps r201-r211:50nps 550 9 20 60 11 280.85 
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75nps r201-r211:75nps 825 3 20 60 11 34.30 
100nps r201-r211:100nps 1100 4 20 60 11 72.23 

Average - - - 453.12 6.18 20 60 7.25 157.29 

The examination of Table 10, drawn from Solomon’s R2 dataset, revealed a powerful 
positive correlation between the count of clusters (|C|) and the average values of the so-
lutions. With a correlation coefficient near 0.981, the relationship approached an almost 
perfect correlation. The p-value, approximately 2.20 × 10−11, underscored the remarkable 
statistical significance of this correlation. 

As the results in Table 10 show, class R1 had a shorter interval length and a smaller 
average solution value than class R2. In classes R1 and R2, known as sca9ered datasets, 
the average of the solution depended on the average time window interval length. This 
conclusion is different from that of classes C1 and C2, where dataset C1, with a shorter 
interval length on average than C2, had a greater average solution value. Moreover, the 
average solution values in classes R1 and R2 were smaller than those in C1. 

Table 11 reveals the same conclusions regarding the correlation between the number 
of nodes and the value of the objective functions and gaps when we compared the optimal 
solutions with the CSA results. On the other hand, the average cost of class R2 was less 
than that of class R1, so having tighter time windows led to higher costs. 

Table 11. Numerical results for confirming the CSA performance compared to benchmarks on Sol-
omon’s dataset R2. 

Dataset Subset |𝑵| |𝑪| Optimal 
(Benchmark) CSA Solution Gap % 

R2 

r201 25 25 463.3 475.51 2.64% 
r201 50 50 791.9 836.80 5.67% 
r201 100 100 1143.2 1271.95 11.26% 
r202 25 25 410.5 421.28 2.63% 
r202 50 50 698.5 765.80 9.63% 
r202 100 100 - 1265.5 - 
r203 25 25 391.4 399.67 2.11% 
r203 50 50 605.3 618.98 2.26% 
r203 100 100 - 977.39 - 
r204 25 25 355 358.57 1.01% 
r204 50 50 506.4 530.84 4.83% 
r204 100 100 - 824.16 - 
r205 25 25 393 407.00 3.56% 
r205 50 50 690.1 723.90 4.90% 
r205 100 100 - 1074.42 - 
r206 25 25 324.0 325.10 0.34% 
r206 50 50 632.4 692.00 9.42% 
r206 100 100 - 970.02 - 
r207 25 25 361.6 392.32 8.50% 
r207 50 50 - 583.01 - 
r207 100 100 - 914.83 - 
r208 25 25 328.2 331.79 1.09% 
r208 50 50 - 510.88 - 
r208 100 100 - 778.72 - 
r209 25 25 370.7 399.21 7.69% 
r209 50 50 600.6 619.53 3.15% 
r209 100 100 - 954.34 - 
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r210 25 25 404.6 431.10 6.55% 
r210 50 50 645.6 679.01 5.18% 
r210 100 100  - 959.19 - 
r211 25 25 350.9 351.9 0.28% 
r211 50 50 535.5 581.60 8.61% 
r211 100 100 - 817.02 - 

Average - - - 526.33 * 553.04 * 5.07% * 
* These results are restricted to the available optimal solutions in the benchmark. 

Regarding dataset RC1, as with previous datasets, scenarios with larger clusters had 
greater solution values than others, see Table 12. These results showed that the number of 
clusters defined the dominant element on solution values. 

Table 12. Numerical results based on Solomon’s dataset RC1. 

Class Scenario Strategy ID |𝑵| |𝑪| 𝒒𝒊 𝑳𝒇 NTWs Average of 
Solutions 

RC1 

rc101—rc103 

25nps rc101-rc103:25nps 75 4 20 60 3 187.33 
50nps rc101-rc103:50nps 150 5 20 60 3 235.24 
75nps rc101-rc103:75nps 225 8 20 60 3 278.85 
100nps rc101-rc103:100nps 300 10 20 60 3 350.11 

rc101—rc106 

25nps rc101-rc106:25nps 150 3 20 60 6 124.08 
50nps rc101-rc106:50nps 300 4 20 60 6 201.48 
75nps rc101-rc106:75nps 450 9 20 60 6 288.80 
100nps rc101-rc106:100nps 600 10 20 60 6 316.13 

rc101—rc108 

25nps rc101-rc108:25nps 200 7 20 60 8 235.24 
50nps rc101-rc108:50nps 400 5 20 60 8 255.85 
75nps rc101-rc108:75nps 600 9 20 60 8 347.09 
100nps rc101-rc108:100nps 800 9 20 60 8 284.67 

Average - - - 354.16 6.91 20 60 5.66 258.74 

The analysis of Table 12 from Solomon’s dataset RC1 revealed a strong positive cor-
relation between the number of clusters (|C|) and the average objective values (average 
of solutions), with a correlation coefficient of approximately 0.916. This indicates a sub-
stantial correlation. The p-value was around 2.84 × 10−5, suggesting that this correlation 
was statistically significant. 

Based on Tables 12 and 13, the mean objective values within this class lay intermedi-
ate to those of classes R1, R2, and C1. This positioning arose because the configuration 
linked to this particular class, RC1, no longer adhered strictly to pure clustering or random 
sca9ering. 

Table 13. Numerical results for confirming the CSA performance compared to benchmarks on Sol-
omon’s dataset RC1. 

Dataset Subset |𝑵| |𝑪| Optimal 
(Benchmark) CSA Solution Gap % 

RC1 

rc101 25 25 461.1 464.57 0.75% 
rc101 50 50 944 968.80 2.63% 
rc101 100 100 1619.8 1721.18 6.26% 
rc102 25 25 351.8 352.74 0.27% 
rc102 50 50 822.5 890.26 8.24% 
rc102 100 100 1457.4 1539.48 5.63% 
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rc103 25 25 332.8 333.91 0.33% 
rc103 50 50 710.9 753.52 6.00% 
rc103 100 100 1258 1391.77 10.63% 
rc104 25 25 306.6 307.14 0.18% 
rc104 50 50 545.8 546.51 0.13% 
rc104 100 100 - 1191.07 - 
rc105 25 25 411.3 434.29 5.59% 
rc105 50 50 855.3 894.08 4.53% 
rc105 100 100 1513.7 1649.14 8.95% 
rc106 25 25 345.5 347.26 0.51% 
rc106 50 50 723.2 814.49 12.62% 
rc106 100 100 - 1475.35 - 
rc107 25 25 298.3 298.95 0.22% 
rc107 50 50 642.7 671.77 4.52% 
rc107 100 100 1207.8 1278.37 5.84% 
rc108 25 25 294.5 295.74 0.42% 
rc108 50 50 598.1 599.17 0.18% 
rc108 100 100 1114.2 1217.62 9.28% 

Average - - - 764.33 * 807.76 * 5.68% * 
* These results are restricted to the available optimal solutions in the benchmark. 

Table 14 shows that scenarios with more clusters had greater solution values for class 
RC2. In addition, several clusters dominated the solution compared to the effect of the 
time window interval length on solution values. 

Table 14. Numerical results based on Solomon’s dataset RC2. 

Class Scenario strategy ID |𝑵| |𝑪| 𝒒𝒊 𝑳𝒇 NTWs Average of 
Solutions 

RC2 

rc201—rc203 

25nps rc201-rc203:25nps 75 4 20 60 3 187.33 
50nps rc201-rc203:50nps 150 5 20 60 3 238.58 
75nps rc201-rc203:75nps 225 8 20 60 3 297.67 
100nps rc201-rc203:100nps 300 10 20 60 3 357.66 

rc201—rc206 

25nps rc201-rc206:25nps 150 3 20 60 6 143.4 
50nps rc201-rc206:50nps 300 4 20 60 6 209.03 
75nps rc201-rc206:75nps 450 9 20 60 6 313.10 
100nps rc201-rc206:100nps 600 10 20 60 6 347.58 

rc201—rc208 

25nps rc201-rc208:25nps 200 7 20 60 8 240.23 
50nps rc201-rc208:50nps 400 5 20 60 8 250.89 
75nps rc201-rc208:75nps 600 9 20 60 8 359.58 
100nps rc201-rc208:100nps 800 9 20 60 8 369.96 

Average - - - 354.16 6.91 20 60 5.66 276.25 

The examination of Table 14, based on Solomon’s RC2 dataset, showed a significantly 
strong positive correlation between the number of clusters (|C|) and the average objective 
values, evidenced by a correlation coefficient of about 0.951. This demonstrates a substan-
tial and meaningful correlation. The p-value, approximately 2.05 × 10−6, emphasized the 
statistical importance of this correlation. 

In class RC1, as Table 15 shows, the average gap was less than that in class C2 but 
greater than that in classes C1, R1, and R2. In fact, as in class RC1 and RC2 the dispersing 
method was no longer random and clustered, the results were also in the middle of those 
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approaches. Regarding the general insights from Table 15, the numbers of objective func-
tion values and gaps increased when the number of nodes increased in most cases. 

Table 15. Numerical results for confirming the CSA performance compared to benchmarks on Sol-
omon’s dataset RC2. 

Class Subset |𝑵| |𝑪| Optimal 
(Benchmark) CSA Solution Gap % 

RC2 

rc201 25 25 360.2 361.24 0.29% * 
rc201 50 50 684.8 686.31 0.22% 
rc201 100 100 1261.8 1395.70 10.61% 
rc202 25 25 338 338.82 0.24% 
rc202 50 50 613.6 665.53 8.46% 
rc202 100 100 1092.3 1233.72 12.95% 
rc203 25 25 326.9 328.44 0.47% 
rc203 50 50 555.3 625.60 12.66% 
rc203 100 100 - 1082.26 - 
rc204 25 25 299.7 315.95 5.42% 
rc204 50 50 444.2 462.98 4.23% 
rc204 100 100 - 847.32 - 
rc205 25 25 338 338.93 0.28% 
rc205 50 50 630.2 631.98 0.28% 
rc205 100 100 1154 1241.2 7.56% 
rc206 25 25 324 325.10 0.34% 
rc206 50 50 610 611.75 0.29% 
rc206 100 100 - 1190.45 - 
rc207 25 25 298.3 298.95 0.22% 
rc207 50 50 558.6 561.42 0.50% 
rc207 100 100 - 1081.70 - 
rc208 25 25 269.1 269.56 0.17% 
rc208 50 50 - 491.46 - 
rc208 100 100 - 810.35 - 

Average - - - 564.38 * 594.06 * 5.26% * 
* These results are restricted to the available optimal solutions in the benchmark. 

In Table 15, objective values increased while we increased the number of nodes. On 
the other hand, regarding classes R1 and R2, the average gap and cost of the RC2 were 
greater than those in both classes R1 and R2. Here, again, we can recognize that tighter 
time windows produced higher costs. The results from RC2 with wider time windows 
showed that the average cost was less than the average cost in RC1. 

As a comprehensive class comparison, Figure 3 shows that R1 and R2 had smaller 
objective values than RC1, RC2, C1, and C2. In fact, after applying the clustering method, 
pure sca9ered datasets had the smallest objective values. In addition, the average number 
of clusters in classes R1 and R2 was smaller than that in C1, C2, RC1, and RC2. Also, the 
average number of clusters in classes RC1 and RC2 was smaller than that in C1 and C2. 
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Figure 3. Visual representation of R-AMPLP outcomes. Part (a) illustrates the distribution of clusters 
for each class, while part (b) displays the distribution of objective values (OFV) across different clas-
ses. 

5.4. Comparison with CPLEX Solutions 
We compared the performance of the CSA algorithm with CPLEX on a set of small 

and medium-sized datasets that were solved before, as shown in Table 16. 
By comparing CSA solutions with those obtained from the CPLEX solver, this section 

evidences the reliability and effectiveness of our proposed algorithm. 

Table 16. Numerical results needed to confirm the CSA performance, solved by CPLEX. 

Class Scenario Strategy ID |𝑵| |𝑪| 𝒒𝒊 𝑳𝒇 NTWs MIP 
Solution 

CSA 
Solution 

Gap % 

C1 c101-c103 25nps c101-c103:25nps 75 3 20 60 3 83.48 83.48 0.00% 
C1 c101-c106 25nps c101-c106:25nps 150 3 20 60 6 82.48 82.48 0.00% 
C1 c101-c109 25nps c101-c109:25nps 225 3 20 60 9 71.12 71.12 0.00% 
C2 c201-c203 25nps c201-c203:25nps 75 8 20 60 3 172.81 173.5 0.40% 
C2 c201-c206 25nps c201-c206:25nps 150 9 20 60 6 199.38 214.39 7.53% 
C2 c201-c208 25nps c201-c208:25nps 200 10 20 60 8 236.03 243.67 3.24% 
R1 r101-r103 25nps r101-r103:25nps 75 10 20 60 3 242.32 246.33 1.65% 
R1 r101-r106 25nps r101-r106:25nps 150 9 20 60 6 207.00 234.7 13.38% 
R1 r101-r109 25nps r101-r109:25nps 225 9 20 60 9 238.70 257.61 7.92% 
R1 r101-r112 25nps r101-r112:25nps 300 8 20 60 12 197.00 207.54 5.35% 
R2 r201-r203 25nps r201-r203:25nps 75 10 20 60 3 244.32 264.52 8.27% 
R2 r201-r206 25nps r201-r206:25nps 150 9 20 60 6 209.32 233.73 11.66% 
R2 r201-r209 25nps r201-r209:25nps 225 9 20 60 9 234.34 250.73 6.99% 
R2 r201-r211 25nps r201-r211:25nps 275 8 20 60 11 198.63 209 5.22% 

RC1 rc101-rc103 25nps rc101-rc103:25nps 75 4 20 60 3 187.33 187.33 0.00% 
RC1 rc101-rc106 25nps rc101-rc106:25nps 150 3 20 60 6 124.08 124.08 0.00% 
RC1 rc101-rc108 25nps rc101-rc108:25nps 200 7 20 60 8 231.23 235.24 1.73% 
RC2 rc201-rc203 25nps rc201-rc203:25nps 75 4 20 60 3 187.33 187.33 0.00% 
RC2 rc201-rc206 25nps rc201-rc206:25nps 150 3 20 60 6 143.39 143.39 0.00% 
RC2 rc201-rc208 25nps rc201-rc208:25nps 200 7 20 60 8 231.23 240.23 3.89% 

Average 186.07 194.52 4.54% 
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The results showed that the outputs from CPLEX could confirm the output of CSA. 
Moreover, the important factor in the gap between CSA and CPLEX was the number of 
clusters and nodes in each instance (ID). The findings indicated that the algorithm’s per-
formance was notably superior for class C1 compared to the remaining classes. Figure 4 
depicts a graphical presentation of the CSA algorithm’s performance compared with 
CPLEX on small and medium-sized datasets. 

 

Figure 4. Graphical depiction of the CSA algorithm’s performance compared with CPLEX on small 
and medium-sized datasets. 

5.5. Summary of Findings 
Here, we have summarized insights from the presented numerical results. Firstly, by 

applying the clustering approach we used in the R-AMPLP instances, the traveling cost 
decreased regarding the original cases in the VRPTW se9ing of the Solomon dataset 
(Solomon, 1987), in which the clustering approaches were not considered. Secondly, hav-
ing wider time windows caused smaller costs than cases of tighter time windows, either 
in the pure VRPTW or R-AMPLP se9ing. An important point relates to class C2, where 
the outcomes suggested that combining clustering with extended time windows resulted 
in lower costs. Figure 5 depicts the numerical results based on Solomon’s datasets 
(VRPTW) compared to the R-AMPLP. 

 

Figure 5. Graphical depiction of numerical results based on Solomon’s datasets (VRPTW) compared 
to the R-AMPLP. 
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It is critical to note that these results revealed that even when considering the parking 
slot fee, the operation cost related to the R-AMPLP was significantly less than the VRPTW 
se9ing. 

5.6. Managarial Insights 
In this study, we divided the last-mile delivery operation into two subsystems to co-

ordinate the handling of delivery items using different technologies and facilities. How-
ever, the scope of this paper was limited to situations where access to final customers for 
order delivery may not be possible due to restrictions. In these cases, AMPL units were 
employed to fulfill orders in certain clusters. Additionally, due to the real-world limita-
tions posed by the capacity of AMPLs, a fleet of trucks was utilized to replenish these units 
with new orders. This replenishment can either serve remaining customers along pre-de-
fined AMPL routes or fulfill same-day delivery requests. Moreover, serving AMPLs at 
designated meeting points, whether included in their paths or not, can significantly re-
duce travel costs, as this approach eliminates the need for AMPLs to return to distribution 
centers. Consequently, trucks also avoid the need to cover all customer nodes, which can 
be costly in last-mile delivery due to increased demands for drivers, trucks, and opera-
tional costs, as well as negative environmental impacts. 

Unlike the GVRPTW, this study addressed not only issues related to alternative phys-
ical points but also managed multiple time windows for each physical node. This added 
complexity increased the challenges associated with GVRPTW. The situation became even 
more complicated when each time window at each physical node incurred specific or 
time-dependent parking costs during the operational delivery period. 

The proposed algorithm overcame the complexities of the presented problem by in-
corporating the K-means clustering method. This approach first classified physical nodes 
into distinct clusters and then created copies of each node to apply the multiple time win-
dows strategy, making the model more realistic and closer to real-world scenarios in last-
mile delivery. Given that the number of meeting points is typically extremely large when 
handling multiple time windows for a set of physical nodes, having an effective algorithm 
to manage these issues is crucial. The results revealed that the algorithm could effectively 
address the complexity, even for those VRPTW instances, such as a basic case of R-AM-
PLP, where no exact solution existed. In such cases, the algorithm could provide a feasible 
solution within a reasonable timeframe. Furthermore, this algorithm was not sensitive to 
the structure of meeting points concerning their associated time windows. For instance, a 
physical node in a zone may have three distinct time windows, each with a parking fee, 
or three time windows arranged serially within a long time slot, or even overlapping with 
each other. 

6. Conclusions 
In summary, we presented a significant advancement in the efficiency of last-mile 

distribution by developing a mixed-integer linear programming (MILP) model tailored 
for re-supplying autonomous mobile parcel lockers (AMPLs) through a coordinated effort 
with a fleet of trucks. Although AMPLs move in pre-defined paths, we considered the 
traveling cost from leaving points in their paths to selected meeting points and from the 
meeting points to returning points in their paths. Moreover, we introduced a novel ap-
proach utilizing cluster-based simulated annealing (CSA) to tackle the complexities of 
large-scale re-supply scenarios, with the model’s robustness validated against smaller in-
stances for a comprehensive understanding of its effectiveness. The CSA heuristic effi-
ciently managed up to 1200 potential meeting points, showcasing the model’s scalability 
and applicability for practical deployment. This system significantly aided in the strategic 
planning of AMPL re-supply points, ensuring that the AMPLs could maintain optimal 
service routes while integrating re-supply needs effectively. By employing advanced 
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navigation systems, the AMPLs were systematically directed to designated re-supply 
points, minimizing the total re-supplying cost and optimizing the network’s overall effi-
ciency. 

Our findings illuminated the cost benefits of a clustering strategy coupled with as-
signing multiple time windows to alternative meeting locations, which collectively low-
ered the operational expenses compared to traditional methods that necessitate individual 
visits to each AMPL individually. This streamlined approach negated the requirement for 
AMPLs to return to distribution centers for re-supply, enhancing operational efficiency 
and extending the reach of service routes without significant deviations. In summarizing 
the comprehensive class comparison and performance evaluation presented, it was evi-
dent that the application of clustering methods significantly impacted the efficiency and 
objective values in routing problems, as demonstrated by the comparison across different 
classes (R1, R2, RC1, RC2, C1, and C2). Particularly, the groups R1 and R2 demonstrated 
lower objective values and smaller average cluster counts compared to their counterparts, 
underscoring the efficiency of sca9ered meeting points in yielding more efficient and cost-
effective solutions relative to clustered or semi-clustered strategies. Moreover, comparing 
the CSA algorithm with CPLEX across various dataset sizes confirmed the CSA algo-
rithm’s robust performance, with minimal discrepancies observed between the two ap-
proaches. This alignment further emphasized the reliability of clustering strategies in op-
timizing routing problems. Notably, the findings underscored the significant advantages 
of applying clustering, particularly in the context of the VRPTW se9ings from Solomon’s 
dataset, where the introduction of broader time windows coupled with clustering ap-
proaches yielded lower operational costs. This suggests a promising avenue for enhancing 
the efficiency of routing problems by strategically integrating clustering methods and ad-
justing time window parameters, ultimately leading to significant cost reductions. 

The research suggested promising research avenues for the future. These include in-
tegrating considerations of electric consumption, addressing parameter uncertainties and 
synchronization challenges between AMPLs and trucks, and investigating comprehensive 
location-allocation and routing problems within specific geographic areas. Notably, the 
study identified the dynamic and intricate case of replenishing mobile vendor machines 
in urban se9ings as a viable domain for further investigation. 
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Appendix A 
In Algorithms A1–A6, we present improvement functions that were randomly se-

lected at each internal iteration to create an improvement in the current solution. Figures 
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A1–A6 graphically show operations that were performed by these algorithms, corre-
sponding to the example provided in Section 4. 

In Algorithm A1, the 2_opt operator is depicted. This operator selects two meeting 
points and then exchanges their positions within the current route. 

Algorithm A1. 2_opt algorithm. 
Input: An initial solution, ω 

Output: A new solution, ωnew  

function 2_opt (ω) 

S ← |ω|; 

g(v) ← 0; 

g(u) ← 0; 

[list(1),list(2)] ← random sampling((1,S),2); 
g(v) ← list(1); 
g(u) ← list(2); 
update(ω) ← ω([g(u) g(v)]); 
ωnew ← ω; 

 

𝑣 =3 𝒗 =7 𝑣 =10 𝑣 =21 𝒗 =14 𝑣 =19 
 

↓ 

𝑣 =3 𝒗 =14 𝑣 =10 𝑣 =21 𝒗 =7 𝑣 =19 
 

Figure A1. Graphical depiction of Algorithm A1 corresponding to the example in Section 4. 

Algorithm A2 operates by selecting two meeting points within the current solution. 
It then assesses their order and removes the meeting point with the lesser order from its 
route, placing it instead after the second selected meeting point. This process effectively 
destroys and constructs new routes. 

Algorithm A2. remove_insert_1 algorithm. 
Input: An initial solution, ω 

Output: A new solution, ωnew  

function remove_insert_1 (ω) 

S ← |ω|; 

g(v) ← 0; 

g(u) ← 0; 

[list(1),list(2)] ← random sampling((1,S),2); 
g(v) ← list(1); 
g(u) ← list(2); 
if g(v)<g(u) then 

update(ω)←ω([[1:g(v)-1][g(v)+1:g(u)][g(v)][g(u)+1:|ω|])]); 
else 

update(ω)←ω([[1:g(u)][g(v)][g(u)+1:g(v)-1][g(v)+1:|ω|])]); 
end 
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ωnew ← ω; 
 

𝑣 =3 𝒗 =7 𝑣 =10 𝑣 =21 𝒗 =14 𝑣 =19 
 

↓ 

𝑣 =3 𝑣 =10 𝑣 =21 𝒗 =14 𝒗 =7 𝑣 =19 
 

Figure A2. Graphical depiction of Algorithm A2 corresponding to the example in Section 4. 

Algorithm A3 functions by shaking up the current solution, achieved by selecting a 
new meeting point from each cluster. This is a fundamental operator for managing alter-
native locations that have multiple time windows. 

Algorithm A3. shake_cluster algorithm. 

Input: An initial solution, ω 

Output: A new solution, ωnew  

function shake-cluster (ω)  
S ← |ω|; 
L ← Linstance; 
C← Cinstance; 
for g(v) do 

if v\∈	L then 
update (ω) ← ω([random_sampling(g(g(v)).1)}); 
end 

end 
ωnew ← ω; 

 

𝒗 =3 𝒗 =7 𝒗 =10 𝑣 =21 𝒗 =14 𝒗 =19 
 

↓ 

𝒗 =2 𝒗 =5 𝒗 =9 𝑣 =21 𝒗 = 𝟏𝟑 𝒗 =17 
 

Figure A3. Graphical depiction of Algorithm A3 corresponding to the example in Section 4. 

Algorithm A4 selects three meeting points within the current solution and proceeds 
to exchange their positions with each other. 

Algorithm A4. 3_opt algorithm. 
Input: An initial solution, ω 

Output: A new solution, ωnew  

function 3_opt (ω) 
S ← |ω|; 
g(v) ← 0; 
g(u) ← 0; 
g(w) ← 0; 
[list(1),list(2),list(3)] ← random sampling((1,S),3); 
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g(v) ← list(1); 
g(u) ← list(2); 
g(w) ← list(3); 
update(ω) ← ω([[g(u)] [g(w)] [g(v)]]); 
ωnew ← ω; 

 

𝑣 =3 𝒗 =7 𝑣 =10 𝒗 =21 𝑣 =14 𝒗 =19 
 

↓ 

𝑣 =3 𝒗 =21 𝑣 =10 𝒗 =19 𝑣 =14 𝒗 =7 
 

Figure A4. Graphical depiction of Algorithm A5 corresponding to the example in Section 4. 

Algorithm A5 involves selecting a single meeting point in the current solution and 
then transferring it from its original route to a different route. 

Algorithm A5. remove_insert_2 algorithm. 
Input: An initial solution, ω 

Output: A new solution, ωnew  

 function remove_insert_2 (ω) 

S ← |ω|; 

g(v) ← 0; 

g(u) ← 0; 

[list(v)] ← random sampling((1,S),1); 
[list(u)] ← find dummy(ω,1); 
g(v) ← list(v); 
g(u) ←list(u); 
if g(v) < g(u) then 

update(ω)←ω([[1:g(v)-1][g(v)+1:g(u)[g(v)][g(u)+1:|ω|]]); 
else 

update(ω)←ω([[g(v)][ 1:g(u)[g(u)+1:g(v)+1][g(v)+1:|ω|]]); 
end 
ωnew ← ω; 

 

𝑣 =3 𝑣 =7 𝑣 =10 𝑣 =21 𝒗 =14 𝑣 =19 
 

↓ 

𝒗 =14 𝑣 =3 𝑣 =7 𝑣 =10 𝑣 =21 𝑣 =19 
 

Figure A5. Graphical depiction of Algorithm A4 corresponding to the example in Section 4. 

Algorithm A6 involves selecting two elements within the current solution and dis-
rupting the routes. This is carried out by reversing the order of meeting points located 
between these two selected points. 

Algorithm A6. reverse algorithm. 
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Input : An initial solution, ω 
Output: A new solution, ωnew 

function reverse (ω) 
S ← |ω|; 
g(v) ← 0; 
g(u) ← 0; 
g(w) ← 0; 
g(y) ← 0; 

[list(1),list(2)] ← random sampling((1,S),2); 
g(v) ← list(1); 
g(u) ← list(2); 
g(w) ← find min(g(v),g(u)); 
g(y) ← find max(g(v),g(u)); 
update(ω) ← ω(reverse([[g(y)] : [g(w)]])); 
ωnew ← ω; 

 

𝑣 =3 𝒗 =7 𝒗 =10 𝒗 =21 𝒗 =14 𝑣 =19 
 

↓ 

𝑣 =3 𝒗 =14 𝒗 = 𝟐𝟏 𝒗 = 𝟏𝟎 𝒗 = 𝟕 𝑣 =19 
 

Figure A6. Graphical depiction of Algorithm A6 corresponding to the example in Section 4. 
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