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Abstract

Transformer models excel at capturing long-range dependencies in sequential data,
but lack explicit mechanisms to leverage structural patterns inherent in fixed-length
input sequences. In this paper, we propose a novel sequence structure learning and
modulation approach that endows Transformers with the ability to model and utilize
such fixed-sequence structural properties for improved performance on inertial
pose estimation tasks. Specifically, our method introduces a Sequence Structure
Module (SSM) that utilizes structural information of fixed-length inertial sensor
readings to adjust the input features of transformers. Such structural information
can either be acquired by learning or specified based on users’ prior knowledge.
To justify the prospect of our approach, we show that i) injecting spatial structural
information of IMUs/joints learned from data improves accuracy, while ii) injecting
temporal structural information based on smooth priors reduces jitter (i.e., improves
steadiness), in a spatial-temporal transformer solution for inertial pose estimation.
Extensive experiments across multiple benchmark datasets demonstrate the supe-
riority of our approach against state-of-the-art methods and has the potential to
advance the design of the transformer architecture for fixed-length sequences.

1 Introduction

Estimating human pose is a long-standing and prominent task that underlies many computer vision 
and graphics applications, e.g., animation production, virtual reality. As an alternative to vision-based 
solutions, wearable device-based methods are gaining increasing interest as they are environment-
free, occlusion-unaware, privacy-friendly. For ensuring high accuracy and maintaining portability 
and usability, most prior works [18, 55, 56, 20, 60] abandon densely placed configurations, instead 
leveraging a sparse set of Inertial Measurement Units (IMUs) to reconstruct human motion. Since 
IMUs can provide continuous measurements of rotation and acceleration, we define pose estimation 
with sparse inertial sensors as a sequence learning task.

Recently, Transformer-based architectures have achieved tremendous success in various sequence 
learning tasks, and applying them to sparse inertial motion capture is a natural idea. However, 
empirically, we find that, directly using the native transformer to model IMU sequences results in 
unacceptable jitter and inaccurate postures. Through our analysis, we attribute this to the native 
Transformer architecture, whose self-attention mechanism was originally designed to flexibly handle 
variable-length sequence inputs, thus lacks inductive bias for modeling fixed-length sequences that 
have clear structures. For instance, for an IMUs reading sequence, the length is usually fixed (e.g., 
the number of observed past frames in a time window or the number of IMUs) and each token in the 
sequence has a specific meaning (e.g., each temporal token denotes a frame and each spatial token
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Figure 1: Left: we use only six IMUs to predict the full-body pose in real-time, which are fixed on
left and right forearm, the left and right lower leg, the head, and the pelvis. Right: our system is
capable of capturing a wide range of daily motions as well as challenging movements.

represents an IMU). In other words, as a representative type of fixed-length sequences, IMU readings
have clear structures both in spatial and temporal dimensions. However, such structural information
is not explicitly modeled in native Transformers.

To bridge this gap, we present an innovative approach for learning and modulating sequence structure,
which empowers transformers to effectively capture and leverage structural properties of fixed-length
sequences, leading to enhanced performance in inertial pose estimation tasks. Specifically, our
method introduces a novel Sequence Structure Module (SSM) designed to leverage the structural
information of fixed-length sequences to adjust the input features of Transformers. For inertial
pose estimation tasks, we devised two SSM variants: SSM-S and SSM-T, for injecting spatial and
temporal structural information into spatial and temporal transformer features, respectively. Extensive
experiments on four public benchmarks demonstrate that our method achieves superior performances
than state-of-the-art methods, where the average errors of the whole-body angles decreased by
13% and 38%, together with the lowest jitter, on the DIP-IMU [18] and TotalCapture [46] datasets,
respectively. In addition, we implemented a real-time pose estimation system to test the performance
of our approach in real-world scenarios. In summary, our contributions include:

• We identify a key limitation of the native transformer architecture: its lack of inductive
biases for modeling fixed-length sequences with inherent structural properties. To address
this shortcoming, we propose a novel Sequence Structure Module (SSM) that enables
transformers to effectively capture and leverage the structural priors present in fixed-length
sequential data.

• For inertial motion capture tasks involving sequential IMU data, we propose two SSM
variants: SSM-S and SSM-T, which incorporate structural inductive biases of the IMU
sensor layout (spatial) and time frames (temporal), respectively, into transformer learning.

• Extensive experiments demonstrate that our method outperforms state-of-the-art ones on
the DIP-IMU and TotalCapture datasets by a large margin. To further demonstrate the
superiority of our approach, we implemented a real-time motion capture system based on
six IMUs to evaluate the performance of our model in complex real-world scenarios.

2 Related Works

2.1 Human Pose Estimation

Human pose estimation (HPE) has been a long-standing research topic, with numerous researchers
exploring it using various types of sensors. As our research lies on IMU sensors, we roughly
categorize sensors into two types: non-IMU and IMU.

2



HPE with non-IMU Sensors. In non-IMU human motion capture solutions, vision-based methods
still dominate the mainstream so far. Early methods [14, 23, 16, 42] used multiple cameras and
marker points to capture human poses, which imposed significant constraints on the environment.
With the popularity of deep learning, an increasing number of methods are using a single camera
to capture human 2D/3D poses, such as CPN [8], HRNet [44] and others [62, 22, 54, 51, 61, 45,
39, 28, 67, 58, 25], achieving significant success. In addition, there are also other types of sensors
used for tracking human motion, such as 6DOF trackers [43, 5, 13, 19, 63], flexible fabric sensors
[7, 26, 68], wireless sensors [6, 53] and hybrid sensors [3, 35, 38]. Although each method has its
own advantages, motion capture systems based on IMUs are emerging and gaining prominence, due
to their wearability, portability, and ease of use.

HPE with IMU Sensors. The advantage of inertial motion capture systems compared to vision-based
methods is their resistance to extreme conditions such as bright lights and occlusion. Commercial
systems like Xsens [41] and Noitom [36] place multiple IMUs on the user’s body, while achieving
accurate pose estimation, also restricting the user’s movements and requiring lots of time for IMU
attachment. To enhance user comfort and usability, an increasing number of studies [48, 18, 56, 55,
20, 60] are shifting towards sparse inertial motion capture and predict human postures using only
a few IMUs. As a pioneering work in sparse inertial pose prediction, SIP [48] demonstrates that
recovering full-body motion using only 6 IMUs is feasible for the first time, but it is an optimization-
based approach which is computationally slow. Huang et al. [18], the first to introduce neural
networks into this task, employ a bidirectional RNN to achieve real-time performance. After that,
Transpose [56] proposes a multi-stage pose estimation framework, utilizing three sub-networks based
on bidirectional RNN to predict pose, further enhancing accuracy. However, both of [18, 56] require
future frames as input, which adds additional latency. PIP [55], introduces physical constraints,
improving the physical plausibility of motion without the need for future frames. Another work,
TIP [20], utilizes Transformer to predict human body poses while simultaneously generating terrain,
achieving prediction of human motion in non-planar environments. Contemporaneous work, DynaIP
[60], leverages pseudo-velocity learning to fully utilize acceleration and models the human body
into three separate regions, each focusing on their unique characteristics. In addition, some studies
[34, 69] have attempted to place IMUs in objects carried by the body for tracking human motion.
For example, Zuo et al. [69] use a loose-wear jacket with 4 IMUs to capture the upper body motion,
which provide the users with high comfort and freedom of movement.

However, existing methods only focus on modeling the temporal dimension (whether using RNNs
or Transformers) while neglecting the spatial dimension. Unlike them, we utilize a two-stage
Transformer-based spatial-temporal framework, independently capturing the dependencies of both
space and time. Meanwhile, we have also designed two modules, SSM-S and SSM-T, enabling the
Transformer to more effectively leverage structural information from fixed-length sequences.

2.2 Transformer Variants for Time Series

Transformer has seen a number of modifications to address the limitations of well-known works such
as BERT [11] and ViT [12]. In the field of time-series data modeling, researchers have proposed
various approaches, one common method being modifications in positional encoding [24, 59, 27,
64, 50, 65]. For example, Transformer-XL [10] introduced relative positional encoding, enabling
the model to capture long-range dependencies, TCN-Transformer [2] combines the characteristics
of convolutional networks with relative positional encoding. Self-attention module is the central
part of Transformer. However, for many long-sequence based tasks, the time complexity of self-
attention module is a computational bottleneck. Various works [31, 64, 65, 49, 4, 52] are proposed
to address this issue. Longformer [4] employs a sparse attention mechanism, specifying local and
global attention, allowing the model to handle long sequences while maintaining computational
efficiency. Linformer [49] approximates the original high-dimensional attention matrix through
low-rank projection, reducing both computational and memory requirements. Additionally, some
researchers made structural modifications [52, 10, 64, 21] to Transformer for time series tasks. For
example, Transformer-XL [10] incorporates a segment-level recurrence mechanism in the encoder to
handle longer contextual information. Reformer [21] utilizes locality-sensitive hashing (LSH) and a
reversible network structure, enabling the model to process extremely long sequences. Informer [64]
introduces ProbSparse Self-Attention, reducing the computational complexity of self-attention.
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Previous studies have modified the Transformer extensively, but they have largely overlooked its
limitations in modeling fixed-length sequences and does not impose Transformer to explicitly utilize
the inherent structural information within it. Our work bridges this gap.

3 Method

3.1 Why is Sequence Structure Modeling Missing in Native Transformer Architecture?

The Transformer architecture [47] was originally designed to accomplish machine translation tasks in
natural language processing. To handle variable-length textual inputs with different syntaxes, the
native Transformer architecture does not make any inductive bias on their structures, but instead
focuses on the content of the input text. Specifically, let X ∈ RN×d be the embedded input sequence
of length N and feature dimension d, the self-attention mechanism is defined as:

Attention(Q,K, V ) = αV = softmax(QK⊤/
√
d)V (1)

where Q = XWQ, K = XWK and V = XWV ∈ RN×d; WQ, WK , and WV ∈ Rd×d; α ∈ RN×N .
Among them, only the attention matrix α is modeling the relationships among the N input tokens.
However, its element α(i,j) is calculated as the product between the i-th query (Q) and the j-th key
(K) pair, thus representing the relationship between individual tokens rather than the structure of the
input sequence as a whole. This enables it to handle sequences with different N that do not share a
common structure (e.g., sentences).

However, in many other domains (e.g., pose estimation), the input sequences usually have fixed
length (e.g., the number of observed past frames or body joints) and a clear structure (e.g., temporal
continuity or spatial relationship), which implies that the structural information of input sequences
can facilitate learning. Motivated by this key insight, we propose a novel Sequence Structure Module
(SSM) to endow the Transformer architecture with the ability to model and utilize the structural
information inherent in fixed-length input sequences.

3.2 Sequence Structure Module

Our Sequence Structure Module (SSM) aims to fully utilize the structured information of fixed-
length sequence inputs to compensate for the lack of inductive bias in the transformer architecture.
Specifically, as shown in Fig. 2 (d), given a sequence embedding X ∈ RN×d, before entering the
transformer encoder, we multiply X with a structural matrix S ∈ RN×N , followed by a LayerNorm
(LN) layer [1] and a MLP Block:

X̃ = MLP(LN(SX)) (2)

where X̃ ∈ RN×d, LN(·) is used to regularize the model and maintain gradient stability during
training and MLP(·) is used to increase the capacity of the module. The key distinction between the
structural matrix S and the self-attention matrix α is that the elements of S are independent of the
input X , making S universally applicable to all input sequences regardless of their content. This
allows S to effectively capture structural information. Then, we feed the structure-enhanced X̃ into
the subsequent transformer encoder for modeling the long-range dependencies using Eq. (1). The
structural matrix S can be obtained in various ways. For example, it can come from prior knowledge
in the specific domains, be entirely data-driven through learning, or be a combination of the two.
Here, we categorize the structure into the following three types: Explicit Structure SE , Implicit
Structure SI , and Explicit-Implicit Hybrid Structure SEI .

Explicit Structure (ES) is particularly useful when each token in the input sequence of a fixed length
N has a clear meaning (e.g., each token in a time sequence represents a frame), and the structural
relationships between the N tokens can be precisely captured based on prior knowledge. That is, each
element SE(i, j) in the structural matrix is provided by the user before training, allowing the user
to impose prior knowledge of the sequence structure on learning. Notably, when SE is the identity
matrix I , no modifications are made and the sequence structure module degenerates. We provide two
examples of how to construct explicit structures SE in Sec. 3.4.

Implicit Structure (IS) becomes appropriate when the meaning of each token in the sequence and/or
the structural relationships between tokens are unclear. Unlike ES, which are completely determined

4



Figure 2: (a) Previous work only employ temporal encoders (RNN or transformer) to predict pose. (b)
Our spatial-temporal framework. (c) Our spatial-temporal framework with SSM. (d) Our sequence
structure module (SSM), simply consists of structural matrix S, LayerNorm [1] and MLP Block.

by the user, the establishment of IS relies on a learnable matrix P , that is learned in a data-driven
manner. We define the implicit structure matrix SI using the following equation:

SI = I + P (3)

where I, P ∈ RN×N and I denotes the identity matrix. Notably, another way to define SI is to solely
use P without the identity matrix I , namely SI = P . But as pointed out in [17], in the extreme
situation, it is easier to optimize P into a zero matrix rather than an identity matrix.

Explicit-Implicit Hybrid Structure (EIHS) aims to strike a balance between ES and IS by allowing
the user to provide an initial structure matrix based on prior knowledge, while also using data-driven
methods to modify it. It can also be referred to as a non-identity matrix initialization of Eq. (3):

SEI = SE + P (4)

where SE ∈ RN×N represents the explicit structure, and P ∈ RN×N is a learnable matrix. In the
extreme case, when the user-designed explicit structure SE = I , EIHS degenerates into IS.

3.3 SSM for Transformer-based Sparse Inertial Pose Estimation

Problem Formulation. Our task is to accomplish real-time human pose estimation using data
acquired from 6 inertial sensors positioned on the wrists of both hands, ankles of both feet, waist,
and head (Fig. 1). Each IMU can provide sequential acceleration A and orientation R signals on
the body part it is placed on, where A ∈ R3 is the linear acceleration and R ∈ R3×3 is the rotation
matrix. Our goal is to learn a mapping f which reconstructs the joints’ rotations of the full body:

OT
1:J = f({A,R}1:T1:N ) (5)

where T denotes the number of observed frames from the past, J denotes the number of predicted
joints, N denotes the number of IMUs, and O ∈ SO(3) is the rotation of body joints, representing
the human pose with a certain skeleton (e.g. SMPL [29]).

Spatial-Temporal Transformer with SSM. To accomplish this task, unlike previous works that
only employed temporal encoders (Fig. 2 (a)), we utilize a spatial-temporal framework transformer
network as our baseline model (Fig. 2 (b)), where the spatial transformer models the local motion
correlations among N IMUs/joints within a frame, while the temporal transformer captures the global
dependencies between T frames throughout the entire sequence. Since the values of N and T are
typically fixed, (e.g. N = 6 and T = 30), we introduce two variants of Sequence Structure Module,
SSM-S and SSM-T, to leverage the structural information of fixed sequences in spatial and temporal
dimensions, respectively (Fig. 2 (c)). As previously mentioned, each SSM has three different choices
for the structure matrix S. After thorough experimental comparisons in Sec 4.4, our final choice is
that, the structural matrix of SSM-S is derived from EIHS, and the structure of SSM-T is ES. Due to
page limitations, we have included more network details in Appendix Sec. 7.
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3.4 Constructing Explicit Structures

The power of SSM lies in its large design space of explicit structures SE . Here, we take the sparse
inertial pose estimation task as an example, to demonstrate how to construct SE in spatial and
temporal dimensions based on prior knowledge.

Figure 3: The visualization of SE−S , and SE−T with different σ.

Spatial Structure Construction. The motivation for constructing the spatial structure SE−S is to
explore relevance and consistency between body joints when the human body moves. “Relevance
and consistency” refer to the tendency for certain joints to exhibit similar movement patterns across a
large sample of human motions. For instance, when the left hand moves forward, the head, torso, and
legs are likely to move in a certain coordinated manner.

We utilize a statistical approach to accomplish this task. Specifically, we utilize the AMASS [32]
dataset to decompose the rotations of different joints in each frame into rotations along the x-axis,
y-axis, and z-axis, representing the rotations in terms of Euler angles. By doing so, we obtain
Rx, Ry, Rz ∈ RJ×f , where f denotes the number of observed frames and J denotes the number of
joints. We select subsets (sub) of the rotations consisting of the N joints where IMUs are placed (e.g.,
N = 6) and have: R(x,sub), R(y,sub), R(z,sub) ∈ RN×f . We independently calculate the correlation
matrix Ck ∈ RN×N , k = x, y, z for each subset and sum up the results for average to obtain the
spatial explicit structure SE−S ∈ RN×N :

Ck(i, j) =
cov(R

(k,sub)
(i) , R

(k,sub)
(j) )√

var(R
(k,sub)
(i) )× var(R

(k,sub)
(j) )

(6)

SE−S =
1

3

∑
k=x,y,z

Ck (7)

where cov denotes the covariance between two variables, and var denotes the variance of a variable.
The resulting SE−S is shown in Fig. 3. It can be observed that, the movements between the two
hands and the two legs exhibit high correlation; but the movements of the head and the root (spine)
are relatively independent; which aligns with our intuition.

Temporal Structure Construction. Unlike the use of statistical methods to calculate spatial explicit
structures SE−S , the construction of temporal explicit structures SE−T is much more straightforward,
which follows the “distance” between two frames within a time sequence. That is, when two frames
are “close” enough, such as adjacent frames, their correlation is relatively high; when the frames are
“farther apart”, such as the first and last frames in a sequence, their correlation tends to decrease as the
“distance” increases; akin to a smoothness prior. Mathematically, we define SE−T ∈ RT×T using a
function that linearly decreases with increasing “distance”:

SE−T (i, j) =


0 if |i− j| ≥ σ,

1− |i− j|
σ

else
(8)

where σ is a hyperparameter, which represents the maximum “distance” between two frames that
are considered correlated. Specifically, when the “distance” between i-th and j-th frame, namely
|i− j| ≥ σ, we consider these two frames to be unrelated. Fig. 3 shows the visualization of SE−T
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under different values of σ. In our experimental setup, T = 30 and σ = 10. For details on how to
determine σ, please refer to Sec. 4.4.

Notably, in addition to the two methods mentioned above, there are many ways to construct explicit
structures. In fact, any matrix with a specific meaning can serve as an explicit structure. While we
have presented two illustrative examples, the ongoing quest to design tailored SSM explicit structures
for diverse tasks offers boundless opportunities for exploration and innovation.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We use the following datasets in our experiments, which can be divided into three categories:
1) Synthetic dataset: AMASS [32]. 2) Real datasets with SMPL [29] skeleton: DIP-IMU [18] and
TotalCapture [46]. 3) Real datasets with Xsens [41] skeleton: AnDy [33], CIP [37], and Emokine [9].
We use them to train and evaluate our methods as follows: 1) Following [56, 55, 20], we first pre-train
our model on AMASS and fine-tune it on the training set of DIP-IMU, then test it on the test set of
DIP-IMU and the entire TotalCapture dataset; 2) Following [60], we train our model on the training
sets of AnDy, CIP, and Emokine datasets and test it on the test sets of AnDy and CIP datasets.

Evaluation Metrics. We use the following metrics to evaluate our method: 1) SIP error, measuring
the mean global rotation error of upper arms and upper legs in degrees; 2) Angular error, measuring
the mean global rotation error of all body joints in degrees; 3) Positional error, measuring the mean
Euclidean distance error of all estimated joints in centimeters with the root joint (Spine) aligned;
4) Mesh error, measuring the mean Euclidean distance error of all vertices of the estimated body
mesh with the root joint (Spine) aligned. The vertex coordinates are calculated by applying the pose
parameters to the SMPL [29] body model; 5) Jitter, measuring the mean jerk (time derivative of
acceleration) of all body joints in the global space, which reflects the smoothness of the motion [15].

4.2 Implementation Details

We implement our method using the PyTorch [40] framework on one NVIDIA GeForce RTX 4090
GPU. PyTorch version is 2.0.0, and CUDA version is 11.8. During the training stage, we use the
AdamW [30] optimizer to train our model with a batch size of 4096. The learning rate is initialized
to 0.0001 and decayed by 0.99 per epoch. We implement the live demo using a laptop equipped with
an Intel® Core™ i9-13900HX Processor CPU and an NVIDIA GeForce RTX 4060 GPU.

4.3 Comparisons with SOTA

Quantitative Results. We compare our method with state-of-the-art ones, including TransPose [56],
TIP [20], PIP [55], DynaIP [60], which also accomplish pose estimation from only 6 IMUs signals.
All metrics are calculated in the real-time setting and the best and runner-up results in each column
are marked in bold and underline respectively.

Table 1: Comparison with SOTA methods on DIP-IMU [18] and TotalCapture [46] datasets with
SMPL [29] skeleton. Bold indicates best and underline indicates runner-up results.

DIP-IMU TotalCapture

SIP Err Ang Err Pos Err Mesh Err Jitter SIP Err Ang Err Pos Err Mesh Err Jitter

DIP[18] 17.10 15.16 7.33 8.96 3.01 18.62 17.22 9.42 11.22 3.62
Transpose[56] 17.03 8.86 6.03 7.14 1.08 16.40 12.77 6.42 7.20 1.83
TIP[20] 16.92 9.07 5.63 6.62 1.53 13.20 12.24 5.68 6.78 1.57
PIP[55] 15.02 8.72 5.01 6.02 0.14 12.93 12.04 5.61 6.51 0.18
DynaIP[60] 14.11 7.00 4.97 5.97 0.18 12.42 11.06 5.11 5.79 0.22
PNP[57] 13.71 8.75 4.97 5.77 0.17 10.89 10.45 4.74 5.45 0.26

Ours 7.90 6.06 3.12 3.78 0.07 7.00 6.82 3.36 4.00 0.09

As shown in Table 1 and Table 2, the results indicate that our method has surpassed previous
approaches by a significant margin on both four benchmark datasets, achieving more accurate and
steadier pose estimation. Specifically, our SIP Err on four datasets is significantly ahead of other
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Table 2: Comparison with SOTA methods on AnDy [33] and
CIP [37] datasets with Xsens [41] skeleton.

AnDy CIP

SIP Err Ang Err Pos Err SIP Err Ang Err Pos Err

Transpose[56] 12.15 6.29 4.91 20.06 8.75 6.86
TIP[20] 10.11 4.55 3.56 13.05 5.67 4.30
PIP[55] 9.49 4.09 3.29 12.68 5.52 4.12
DynaIP[60] 8.93 3.45 3.41 11.42 4.54 3.69

Ours 4.56 3.37 1.73 8.14 5.49 2.57

Table 3: Ablation study of SSM-S
and SSM-T.

Models Ang Err Jitter τ

Baseline 8.82 0.48 14.25
+ SSM-S 7.83 0.43 12.04
+ SSM-T 7.93 0.09 8.68

Ours 6.82 0.09 7.46

methods, outperforming the runner-up by 44%, 44%, 49% and 29% respectively. We attribute this
to our spatio-temporal framework and the spatial structure information in SSM-S, which help the
model better capture the motion correlation between body joints. Besides, on the DIP-IMU and
TotalCapture datasets, our predicted motion sequences exhibit the least jitter (i.e., smoothest motion
sequence). We attribute this to the temporal sequence structure information in our SSM-T, which
provides more temporal prior knowledge between frames and smooths the input features to generate
more stable and consistent motion prediction results.

Qualitative Results. We also provide a visual comparison between the estimated pose and the ground
truth on the TotalCapture dataset. Compared with state-of-the-art methods, our method achieves
more precise predictions as shown in Fig. 4. The comparison of the two actions (leaning forward and
bending over) indicates that, our method can estimate the positions of arms and legs more accurately
than previous methods. Additionally, the comparison of the two ambiguous actions (raising a leg and
raising both hands) in the second row shows that our model better identifies these ambiguous actions.

Figure 4: Qualitative comparisons with the state-of-the-art methods on TotalCapture dataset.

Analysis for Error of Joints. As shown in Fig. 5, we also compare the angular errors of individual
joints on the DIP-IMU and TotalCapture datasets. It can be observed that, the errors of previous
methods are mostly concentrated in the joints of the hands (L/R elbows and shoulders) and legs
(L/R hips and knees), which are the main sources of SIP Err. We believe this is because they only
capture the inter-frames dependencies in the temporal dimension, while neglecting to model the
motion correlations between body joints in the spatial dimension. Unlike them, we utilize a two-stage
spatial-temporal framework, where the spatial encoder independently models the motion consistency
of IMUs/joints within a frame, and SSM-S injects spatial structural information into the features.
Their combined effect allows for more accurate estimation of each joint rotation.

4.4 Ablation Study

We conduct ablation experiments on the TotalCapture dataset, reporting two metrics: Ang Err and
Jitter. Additionally, we observe a trade-off between Ang Err and Jitter, challenging the simultaneous
achievement of the lowest values for both. For convenience, we introduce a temporary metric
τ = (Ang Err) ∗ Exp(Jitter) as a reference for selecting the optimal model, where a lower τ
represents the balance between accuracy and stability, with Exp(·) denoting exponential operation.
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Figure 5: Error of different joints on DIP-IMU and TotalCapture datasets.

Design of Sequence Structure for SSM-S and SSM-T. We first explore the designs of sequence
structure in SSM-S and SSM-T. As previously mentioned, each SSM can have three different choices,
resulting in a total of 3 × 3 = 9 combinations for the two SSMs. To simplify this, we first fix the
type of SSM-S as IS and explore the best structure type for SSM-T. As shown in Tab. 4, comparing
Settings 1, 2, and 3 demonstrates that ES is the best structure choice for SSM-T, as the other two
structures result in unacceptable jitter. Based on this, we conduct experiments with Settings 4 and 6.
By comparing Settings 2, 4, and 6, we find that EIHS is the best choice for SSM-S, as it significantly
reduces angular error without substantially increasing jitter (i.e., with lower τ ). Thus, we conclude
that, EIHS + ES is the best combination for SSM-S and SSM-T.

Table 4: Ablation study on SSM design.

Setting SSM-S SSM-T Ang Err Jitter τ

1 IS IS 7.79 0.54 13.37
2 IS ES 7.94 0.09 8.69
3 IS EIHS 7.86 0.53 13.35
4 ES ES 8.11 0.08 8.79
5 EIHS IS 8.13 0.34 11.42

6 EIHS ES 6.82 0.09 7.46

Table 5: Performance under differ-
ent selection for hyperparameter σ.
σ Ang Err Jitter τ

30 8.08 0.07 8.66
25 8.05 0.07 8.63
20 7.76 0.07 8.32
15 7.85 0.08 8.50
10 6.82 0.09 7.46
5 7.33 0.13 8.34
1 7.25 0.38 10.60

Further Exploration for SE−T . Fig. 3 shows the visualization of SE−T under different choices of
σ, and Tab. 5 shows their performance on TotalCapture dataset. It can be observed that the model
achieves the best performance when σ = 10. We hypothesize that this means the information from
the adjacent 10 frames should be given more emphasis for IMU measurements in our case.

Contribution of Each Component. We conduct a thorough ablation study when σ = 10, to
investigate the respective contributions of SSM-S and SSM-T. We use the most basic spatial-temporal
framework (Fig. 2 (b)) as the baseline model and sequentially add SSM-S and SSM-T. The results
are shown in Tab. 3. It can be observed that the primary function of SSM-S is to reduce joint angle
error to improve the accuracy of human pose prediction, while the role of SSM-T is to reduce jitter to
enhance the coherence of the posture and generate steadier motion sequence.

In-depth analysis of SSM-S. To look deeper into SSM-S, we visualized the spatial structure matrix
SE−S (before training), the learnable matrix PS and the final spatial structure matrix SEI−S as
shown in Fig. 6. It can be observed that:

• The overall pattern of the structure matrix remain the same before and after training (SE−S

and SEI−S), i.e., the movements between the two hands and the two legs still exhibit high
correlation; and the movements of the head and the root (spine) are still negatively correlated.
This demonstrates the effectiveness of our SE−S as initialization/prior.
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Figure 6: The visualization of SE−S , PS and SEI−S . First column: SE−S obtained using the
AMASS dataset before training. First row: results from our model trained on the AMASS, DIP-IMU
dataset. Second row: results from our model trained on the AnDy, CIP, and Emokine datasets.

• The learnable matrix PS adds small offsets to the spatial structure matrix, i.e., slightly
suppresses the correlation between two hands, two legs and head vs. root. We attribute
this to the different motion distributions among datasets: i) in AMASS, daily actions (e.g.,
walking, jogging, running, sitting and stretching) are dominant, and the movements of both
hands and legs show extremely high consistency; ii) in the DIP-IMU, although daily actions
are also the majority, there are a large number of single-hand and single-leg movements,
such as single-hand raising, grasping and swinging; single-leg lifting, etc., which weaken the
movement consistency of both hands and legs; iii) in the Andy and CIP, there are numerous
industry-oriented activities, which are very different from daily movements, resulting in
a relatively large adjustment range of the learnable matrix PS . This demonstrates the
effectiveness of our PS in adapting the structure matrix to different datasets, and maintains
a high generalization ability.

4.5 Live Demo

We have implemented a real-time pose estimation visualization system using Python and Unity. We
select a variety of actions to evaluate the performance of our model in real-world scenarios. These
include everyday actions like walking, sitting, kicking, stretching, sports and more. Additionally,
we choose some challenging movements such as single-leg standing, rolling, Chinese Kung Fu and
dance movements to assess the generalization ability of our model. Through the live demo, it can be
observed that even under intense physical activity, our approach still maintains long-term stability
and shows robust generalization capability. Please refer to the supplementary video for our demo.

5 Conclusion

In this paper, we propose a novel sequence structure learning and modulation approach that empowers
Transformers with the ability to model and utilize fixed-length sequence structural information.
We present a simple yet effective Sequence Structure Module (SSM) to accomplish this, achieving
impressive performance in sparse inertial pose estimation tasks. This showcases the powerful potential
of the SSM to generalize to other Transformer-based fixed-length sequence tasks.
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Appendix

7 Detailed Network Architecture

Figure 7: Our network architecture in detail.

As shown in Fig. 7, our network mainly consists of Linear Embedding, SSM-S, Spatial Transformer
Encoder, SSM-T, Temporal Transformer Encoder and Regression Head Module. In the main text, we
introduce SSM-S and SSM-T. Here, we provide an introduction to the remaining parts.

Linear Embedding. Our network takes M ∈ RT×N×12, the measurements from N IMUs over
the past T frames as input. Firstly, we linearly map each IMU measurement m(i,j) ∈ R12 into an
embedding vector z(i,j) ∈ RD by means of a learnable matrix E ∈ R12×D:

z(i,j) = m(i,j)E (9)
After that, the input M ∈ RT×N×12 becomes Fs ∈ RT×N×D. The spatial feature Fs is fed into
SSM-S to inject spatial structure, and the resulting F̃s is then send into the Spatial Transformer
Encoder to model the motion correlation between body joints.

Spatial Transformer Encoder. Given F̃s, we first add a learnable spatial position embedding
Ps ∈ RN×D to each token for maintaining spatial position information. The resulting joint sequence
of features zs are fed into a spatial encoder consisting of a sequence of L transformer layers. Each
layer ℓ comprises of Multi-Head Self-Attention [47], LayerNorm [1], and MLP blocks:

zs = F̃s + Ps (10)
yℓs = MSA(LN(zℓs)) + zℓs (11)

zℓ+1
s = MLP(LN(yℓs)) + yℓs (12)

The output of the last transformer layer is zLs ∈ RT×N×D, which is sent into SSM-T where temporal
structural information is incorporated.

Temporal Transformer Encoder. We treat the output of SSM-T, F̃t ∈ RT×N×D , as the input of
temporal transformer encoder, to further extract the global dependencies across frames in the entire
sequence. We first reshape F̃t into F̃t ∈ RT×(N ·D) . Before the temporal transformer encoder, we
add a learnable temporal positional embedding Pt ∈ RT×(N ·D) to retain frame position information.
The resulting frame sequence of features zt are fed into a temporal encoder, which has the same
architecture as the spatial transformer encoder. The procedure can be formulated as:

zt = F̃t + Pt (13)
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yℓt = MSA(LN(zℓt)) + zℓt (14)

zℓ+1
t = MLP(LN(yℓt)) + yℓt (15)

The output of the last transformer layer is zLt ∈ RT×(N ·D), a compact spatial-temporal feature
representation, which is sent into regression head module.

Regression Head Module. We map zLt into the whole body joint rotations Ô ∈ RT×J×6 using
Layer Normalization [1] and MLP block:

Ô = MLP(LN(zLt )) (16)

where J denotes the number of joints and 6 denotes 6D rotation representation [66]. The whole
network is optimized by minimizing the Mean Squared Error (MSE) between Ô and the ground-truth
O as:

L =
∥∥∥Ô − O

∥∥∥2 (17)

During the training stage, we compute the loss using the predictions Ô and ground-truth O of T
frames. During the inference stage, we only utilize the last frame as the output.

8 Additional Experiments

Result of Another Definition for SE−T .

Figure 8: The visualization of SE−T of different definition when σ = 10 and σ = 20.

We further explore an alternative definition of SE−T :

SE−T (i, j) =


0 if |i− j| ≥ σ,

1− |i− j|
T

else
(18)

Differing from Eq. (8), in Eq. (18), σ has been replaced by T . We compare the cases with σ = 10 and
σ = 20 to the previous scenario, denoted as ∗. The visualization for SE−T are shown in Fig. 8 and
the performance on TotalCapture dataset is shown in Tab. 6. It is easily discernible that the definition
of Eq. (8) is significantly superior to that of Eq. (18), both in terms of accuracy and stability.

Table 6: The performance under different definition for SE−T on TotalCapture dataset.
Ang Err Jitter τ

(σ = 10) 6.82 0.09 7.46
(σ = 10)∗ 7.86 0.08 8.51

(σ = 20) 7.76 0.07 8.32
(σ = 20)∗ 8.33 0.07 8.93

Ablation Study of the Order of SE/TE.

We provide the results of switching the order from "SE-TE" to "TE-SE" as Tab. 7. The results show
that our "SE-TE" order outperforms its "TE-SE" variant by a large margin, which is consistent with
the common practice in many spatio-temporal frameworks.
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Table 7: The performance under different definition for SE−T on TotalCapture dataset.
Method Ang Err Jitter τ

SE-TE (ours) 6.82 0.09 7.46
TE-SE 8.67 0.11 9.68

Generalization of Module under More Sensors.

Although we focused on the more challenging "sparse" settings (6 IMUs) in our paper, showing addi-
tional results of applying our modules to more sensors could further demonstrate their generalization
ability. Specifically, we increase the number of IMUs from 6 to 10 (with the additional 4 IMUs
placed on the left and right shoulders and thighs), and conduct experiments and ablation studies on
the DIP-IMU dataset.

Table 8: The performance under more sensors on DIP-IMU dataset.
IMUs Ang Err Jitter τ

6 (ours) 6.06 0.07 6.49
10 (ours) 4.40 0.03 4.53

10 (ours w/o SSM-S) 5.69 0.03 5.86
10 (ours w/o SSM-T) 4.56 0.13 5.19

10 (ours w/o SSM-S, w/o SSM-T) 5.58 0.14 6.42

As shown in Tab. 8, after adding 4 IMUs, our proposed method still works effectively (higher
accuracy and lower jitter). Additionally, the ablation study results show that the roles of SSM-S and
SSM-T remain consistent with their performance when using 6 IMUs. That is, SSM-S improves the
accuracy of motion prediction, while SSM-T reduces jitter to enhance the coherence of the posture.
Based on the above experimental results, it can be concluded that our proposed method maintains
strong generalization ability as the number of sensors increases.

Performance on Different Users with Different Physiques. To study the performance on different
users with different physiques, we conduct experiments on DIP-IMU dataset. To demonstrate this
more clearly, we computed the BMI values (BMI = Mass(kg) / Height2(m)) for each individual,
categorize them into three groups, and report our model’s performance across these three categories
as Tab. 10:

Table 9: The performance on different users with different physiques.
BMI ID Number Ang Err Jitter τ

C1: BMI<21.7 S2/S6 2 7.33 0.08 7.94
C2: 21.7<=BMI<=24.9 S1/S3/S5/S7/S8/S9 6 7.63 0.09 8.35

C3: BMI>24.9 S4/S10 2 8.07 0.09 8.83

average / 10 7.66 0.09 8.35

The experimental results demonstrate that our method is robust and performs well across users with
different physiques. For reference, we also include the results for each individual as Tab. 10.

More Comparisons with Other NN Structures. As shown in Tab. 11, we construct a spatio-temporal
framework using GCN layers as the spatial encoder and Conv1d layers as the temporal encoder. The
results show that our method significantly outperforms the GCN + Conv1d implementation.

9 Discussion

The Design of τ . In our experiments, we observed that it is difficult for Ang Err and Jitter to
simultaneously reach their minima, forming a trade-off in-between. For example, in Tab. 6, with
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Table 10: The performance for each individual on different users with different physiques.
ID Ang Err Jitter τ Mass(kg) Height(cm) BMI Categorya

s1 7.74 0.05 8.13 86 186 24.85 2
s2 7.47 0.05 7.85 65 178 20.51 1
s3 7.95 0.11 8.87 87 187 24.87 2
s4 7.63 0.11 8.51 78 170 26.98 3
s5 7.64 0.12 8.61 80 180 24.69 2
s6 7.20 0.11 8.03 58 172 19.60 1
s7 6.89 0.09 7.53 70 178 22.09 2
s8 7.13 0.09 7.80 80 180 24.69 2
s9 8.48 0.06 9.00 85 187 24.30 2
s10 8.51 0.07 9.12 87 181 26.55 3

Table 11: More Comparisons with Other NN Structures.
Method Ang Err Jitter τ

GCN + Conv1d 14.31 0.28 18.93
Transformer + Transformer(ours) 6.82 0.09 7.46

σ = 20, Ang Err is 7.76 and Jitter is 0.07; with σ = 10, Ang Err decreases to 6.82 while Jitter
increases to 0.09. To strike a balance in this trade-off, we introduce τ = (AngErr) ∗Exp(Jitter) to
combine Ang Err and Jitter into a single measure. The reason for using Exp is that we have observed
that the impact of the Jitter on viewing experience is non-linear:

• When Jitter is relatively high (e.g., jitter > 0.3), the visual quality is unacceptable.
• When Jitter is relatively low (e.g., 0 < jitter < 0.2), the visual experience is good and

insensitive to changes in Jitter.

Therefore, we use Exp to measure the impact of Jitter on the viewing experience.

10 Limitation

Lack of Global Translation. Although our method has made significant progress in predicting
human pose from sparse inertial sensor data, it lacks global tracking of human motion trajectories.
We believe that relying solely on IMU for accurate global translation prediction is challenging, as
IMUs may drift, resulting in unreliable measurements of acceleration. Combining other types of
sensors with IMUs is a promising solution.

The Construction for Explicit Structure. As mentioned earlier, any matrix can serve as an explicit
structure SE . We provide two examples demonstrating how to construct an explicit structure solely for
illustrative purposes. Constructing SE more effectively for specific tasks requires further exploration.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discussed them in Sec. 10 of the supplementary materials.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We did not make theoretical contributions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we will release the code/data later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we specified all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: No, we did not do that.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, For each experiment, we provided sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have direct potential positive societal impacts and negative
societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not have such issues.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all the creators or original owners of assets (e.g., code, data, models), used
in the paper, are properly credited and are the license and terms of use explicitly mentioned
and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not have such issues in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Yes, we included relevant details.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not have such issues.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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