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Abstract

Vital signs observations are regular measurements used by healthcare staff to track a patient’s overall health status on hospital
wards. We look at the potential in re-purposing aggregated and anonymised hospital data sources surrounding vital signs
recording to provide new insights into how care is managed and delivered on wards. In this paper, we conduct a retrospec-
tive longitudinal observational study of 770,720 individual vital signs recordings across 20 hospital wards in South Wales
(UK) and present a network modelling framework to explore and extract behavioural patterns via analysis of the resulting
network structures at a global and local level. Self-loop edges, dyad, triad, and tetrad subgraphs were extracted and evaluated
against a null model to determine individual statistical significance, and then combined into ward-level feature vectors to
provide the means for determining notable behaviours across wards. Modelling data as a static network, by aggregating all
vital sign observation data points, resulted in high uniformity but with the loss of important information which was better
captured when modelling the static-temporal network, highlighting time’s crucial role as a network element. Wards mostly
followed expected patterns, with chains or stand-alone supplementary observations by clinical staff. However, observation
sequences that deviate from this are revealed in five identified motif subgraphs and 6 anti-motif subgraphs. External ward
characteristics also showed minimal impact on the relative abundance of subgraphs, indicating a ‘superfamily’ phenomena
that has been similarly seen in complex networks in other domains. Overall, the results show that network modelling effec-
tively captured and exposed behaviours within vital signs observation data, and demonstrated uniformity across hospital
wards in managing this practice.

Keywords Vital signs observations - Retrospective study - Network analysis - Subgraph ratio profile - Motif discovery

1 Introduction

Vital signs (e.g., blood pressure, heart rate, respiratory rate,
temperature, level of consciousness, and oxygen saturation)
are routinely recorded by healthcare staff in hospitals to
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track a patient’s overall health status. Individual vital sign
scores are often combined into a single score as part of an
Early Warning Score (EWS) system that measures vital
signs across banded limits, such as NEWS-2 used within
the UK (RCP 2012a). All patient vital signs recordings are
required at regular observation intervals, which usually
range between 15 min and 12 h, depending on the require-
ments of the ward. The propensity of certain observation
intervals leads to clinical staff typically consolidating most
routine patient observations into ‘ward rounds’ (ABUHB
2017) 2-4 times a day (Nog et al. 2022) in a notably non-
uniform daily pattern of routine patient observations. It is
also common that individual patient observation intervals
are shortened as a cautionary response to threshold vital

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13721-024-00490-1&domain=pdf
http://orcid.org/0009-0009-6070-4425

55 Page 2 of 37

Network Modeling Analysis in Health Informatics and Bioinformatics

(2024) 13:55

signs observations (Johnson et al. 2014) with respect to
the relevant hospital policy (VitalPAC and ABUHB 2017).
These observations typically happen hourly, but can be as
short as 10—15 min in severe deterioration cases (e.g., sepsis
onset, NICE (2023), or whenever continuous monitoring is
not feasible).

Managing routine vital signs observations while sup-
porting patients on individual intervals presents a complex
challenge for clinical staff, reflected in documented com-
pliance issues (i.e., when vital signs recordings are missed
or delayed). The resulting variability in how routine vital
signs observations are undertaken raises questions for staff
on wards, hospital managers, and policymakers on whether
wards run an appropriate operating schedule and how they
support the delivery of care to patients on different obser-
vation intervals within it. This creates research motivations
in needing to provide a basis to help quantify and identify
patterns in ward behaviour. However, there are limited data
sources available to help quantify and aggregate this, due
to the cost and impracticalities of having either human
observers on wards or installing bespoke new technolo-
gies. To address this in this study, we re-purpose existing
data produced as a result of vital signs observations being
undertaken as they are now commonly being recorded on
mobile devices. A challenge exists however in appropri-
ately modelling and summarising this activity. We propose
a framework for modelling and analysing aggregated vital
signs observation data as network graphs by considering the
bed of the patient whose vital signs were measured as a node
and generating a directed edge to the bed of the subsequent
vital signs observation, if there is one (illustrated in Fig. 3).

Network modelling methods provide a versatile platform
for understanding the structure and behaviour of complex,
interconnected systems, and other aspects of healthcare sys-
tems have used these methods. For instance, network analy-
sis was used to identify communities in hospital services
(Niyirora and Aragones 2020) and which ones are the most
central (Flemming et al. 2022). Other fields that have poten-
tial influencing factors on network structures (e.g., fixed
locations and regular paths between these), such as airline
(Verma et al. 2014; Jingyi and Yifang 2014) and road traffic
networks (Cogoni et al. 2023; Logan and Goodwell 2023)
have also been explored.

In such networks, it has been shown that local substruc-
tures can evolve over time (Agasse-Duval and Lawford
2018) and can be used to identify players that do not fol-
low common behavioural patterns. For instance, Bounova
(2009) showed in their airline case study that most air-
lines keep to a typical ‘hub and spoke’ structure, whilst
the Southwest airline operates with an unusually random
flight pattern. Tracking patterns of substructure growth
suggests however that Southwest has become more cen-
tralised, closer to the typical hub-spoke topologies of other
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airlines. In the context of a hospital, identifying typical
ward operating behaviour, and therefore recognising wards
that operate atypically, or have done so for certain periods,
is critical information for hospital stakeholders as it may
highlight important implications such as under-resourcing,
but also may be indicative of the ward architecture and
environment, or other aspects of staff management. This
can then provide the basis for stakeholders to observe
changes as a result of any policy, training, or management
adjustments using patient vital signs observation patterns,
ultimately helping to improve overall ward efficiency and
patient care.

Using this framework, we model a large dataset of vital

sign recordings across 20 hospital wards spread across
multiple hospitals using different network representations
and explore how behaviours can manifest in the network
representation through analysing their inherent structures.
In particular, we look to the relative frequency of highly
recurrent substructure patterns (Milo et al. 2002, 2004a)
within vital signs observation sequences in comparison to
what may occur randomly as this has been shown to carry
significant information about the given network’s function
(Vazquez et al. 2004) without being influenced by mediat-
ing factors (such as size, specialism, etc). We also explore
the similarities and differences within and across wards
using these structures and how they can characterise the
management of care in ward environments. We summarise
our research motivations of this study using the following
research questions:
RQ1 Can vital signs observation sequences be effectively
described using network modelling and analy-
sis methods to reveal behaviours in how care is
managed?

RQ2 What specific local structures within network repre-
sentations of vital signs observation sequences can
be identified as motifs, what are their relative signifi-
cance, and what could they represent in how care is
managed?

RQ3 To what extent are networks derived from aggregated
vital signs observations data individualised to wards,

or do they exhibit similarities?

Through the modelling and analyses performed to answer
these questions, we reveal new evidence of ward heuristics
being used to help manage patient care, providing notable
cross-disciplinary contributions:

1. A novel framework for modelling sequences of patient
vital sign observation recordings as a network represen-
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tation, and a discussion on how this can be flexible and
scale to support broader applied applications;

2. The identification of ‘typical’ behaviours in vital sign
observation sequences and a discussion of how this may
be influenced by overarching care policies;

3. An evaluation of highly regular and irregular network
substructures, and how these combine to create a com-
mon network signature that is unique to hospital wards.

1.1 Paper outline

This study is centred around modelling vital sign observa-
tions using different network representations and analyses
the frequency of regular repeating isomorphic patterns,
known as ‘subgraphs’, using appropriate statistical signifi-
cance measures, to identify those that occur more or less
frequently than would be explained by random chance. The
study outline is described in Fig. 1 and contributes 4 key
results that describe vital sign observation management heu-
ristics in ward environments based on the networks and their
local structures.

The remainder of the paper is organised as outlined
below.

The Related Works section supplements the research
motivations in the Introduction by discussing key related
studies and identifying relevant research gaps that have
informed our research questions. The Materials and Meth-
ods section then introduces the content of our dataset and the
framework for modelling and analysing the data, including
how we define two network models per ward appropriately
from the dataset: one representation that aggregates all data
points for the period and one that is defined by an additional
temporal dimension. We continue with an explanation of

Fig.1 Flow diagram of study
methodology

Input data ﬁ

how subgraph frequencies are counted and discuss which
subgraphs are considered in this study. Next, we describe
minimum probability, frequency, and distribution criteria
that individual subgraph patterns will be tested against to
determine whether they are representative of regular network
behaviour. We follow by describing a statistical measure of
relative abundance to determine their strength. Finally, we
also describe the construction of a ‘null model’, to which the
subgraph frequencies are compared against.

We begin our Results section by exploring the global
structure of the networks using different network analy-
sis measures (e.g., density, clustering, and closeness) and
how the topological structure changes with the addition
of a temporal dimension. This is followed by categorising
networks with a temporal element using high-level features
to assess the consistency of observation sequence manage-
ment between wards. After considering these broad fea-
tures, we assess the local structure of the networks using
subgraph analysis to observe how well represented specific
sub-structures are relative to random networks (i.e., high
relative significance), and consider their place as a network
‘motif” (Milo et al. 2002; Ashford et al. 2019). Finally, we
use subgraph significance scores to construct fixed-length
feature vectors for each individual ward, where the length
is equal to the number of considered subgraphs. This func-
tional representation of individual ward network topologi-
cal structures can be used to determine the presence and
strength of a Subgraph Ratio Profile grouping (Milo et al.
2004a; Felmlee et al. 2021).

This is followed by the Discussion section, which exam-
ines the implications of the results against the research
questions, as well as additional clinical implications. After
this, the limitations of the study are discussed, along with
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suggestions for future work, including potential applications
with machine learning. The paper concludes with a summary
of the study and its contributions, as well as advantages and
disadvantages of the proposed framework.

2 Related work

Traditionally, EWS systems have required manual calcula-
tion of total parameter scores and documentation on bedside
paper charts, like the NHS” NEWS?2 vital signs observations
chart (RCP 2012b). However, a significant portion of sec-
ondary care is undergoing a transition to electronic docu-
mentation using handheld mobile devices (NICE 2020), such
as in the UK through the NHS Long Term Plan (NHS 2019).

Introducing electronic documentation and tracking for
patient vital signs observations (also known as ‘e-obser-
vations’) has been shown to have improvements in docu-
mentation quality (Wong et al. 2017; Prytherch et al.
2006; Cardona-Morrell et al. 2016; Downey et al. 2017,
Ludikhuize et al. 2012), more time attributed to patient
care (Gyi et al. 2019; Mohammed et al. 2009; Kolic et al.
2015), and improved timeliness compliance (Gale-Grant
and Quist 2018). It has also provided a basis for studies to
retrospectively examine the data resulting from vital sign
observations.

In this section, we outline our search strategy (Fig. 2),
including key terms and selection criteria (Table 1) used
to identify relevant studies. We summarise all retrospective
studies on vital sign observations that present ward-level
outcomes in Table 11. We then discuss the significant impact
of e-observations, highlighting how their implementation
has improved patient care and established a new field of
study focused on the frequency and documentation com-
pliance of vital sign observations. Following this, we con-
sider the application of complex networks in various case
examples for modelling and analysing human behaviour. We
also discuss the usefulness of studying the topological struc-
ture and relative frequencies of subgraphs in understanding
abstract and often obscured network behaviours, and how the
combination of relative subgraph frequencies can facilitate

Table 1 Inclusion and exclusion criteria for literature review
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Fig.2 PRISMA flow diagram of literature search methodology

a holistic comparison to other networks, including those of
different types. Finally, we draw on the research gaps identi-
fied across these areas and discuss how they have informed
the research questions and methodology used.

2.1 Search strategy

Due to the variability in datasets, study settings, and periods
in this field, this study completed a scoping review to iden-
tify relevant publications that describe retrospective studies
on a vital signs observations. Figure 2 reports the flow chart
of the study selection, which begins with a literature search
in the bibliographic databases PubMed and Google Scholar
(title, abstract, keywords) using the following search terms:

“Vital signs” + “retrospective” + (“missed” or
“VitalPAC”)

Inclusion criteria

Exclusion criteria

The paper is in English

Peer reviewed journal or conference publication

A retrospective longitudinal observational study of a vital sign observation dataset
Discusses outcomes of ward-level vital sign observation management features (such as fre-

quency and compliance to hospital policy)
Full text is available

The paper is not in English

Other publication types, such as editorials, let-
ters, legal cases, and interviews

Qualitative or survey studies

Discusses patient outcomes or EWS effectiveness

No full text available

@ Springer



Network Modeling Analysis in Health Informatics and Bioinformatics

(2024) 13:55

Page50f37 55

and the following related search terms: “vital signs”, “Ret-
rospective”, Late, “CareFlow”, “e-obs”, “e-observations”,
“electronic health record”. EndNote 20 referencing soft-
ware (Clarivate 2013) was used to screen titles and abstracts
of returned studies and define a core subset of highly-cited
studies that undertake a retrospective observational study
on vital signs observation data. Subsequently, we used the
‘snowball’ search method (Wohlin 2014) to identify addi-
tional works focused on ward-level outcomes in response to
the procedure of undertaking vital sign observations (e.g.,
frequency and compliance to hospital policies). We excluded
records that focused on individual patient outcome (e.g.,
mortality rates) and records that considered the predicative
capabilities of vital signs when they are used as part of an
EWS score. Relevant studies that discussed the implemen-
tation and handling of vital sign observation data inputting
methods, such as VitalPAC, are included.

2.2 Analysis of vital signs observations

The literature search highlights that most retrospective stud-
ies on vital signs observation datasets are primarily focused
on patient outcomes, however, we identified 19 studies that
meet the inclusion criteria described in Table 1. The dataset,
study setting, period, purpose, and results for all included
papers are summarised in Table 11. Among these 19 studies,
10 studies discussed both the frequency and compliance of
documenting a complete set of vital signs in adherence to
hospital scheduling policy, 7 only considered compliance,
and the last 2, only examined the frequency. It is clear from
this overview that the literature discussing ward-level out-
comes that arise from different vital sign observation man-
agement practices is still limited.

Shortcomings in the frequency and compliance of patient
observations have been identified (Leuvan and Mitchell
2008; Johnson et al. 2014; van Galen et al. 2016; Gale-Grant
and Quist 2018; Eddahchouri et al. 2021; Jackson et al.
2023) and have partially been attributed to staff interaction
with e-observation systems (Miltner et al. 2014; Watson
et al. 2014) and the impact of staffing levels or shift lengths
on documentation compliance and timeliness (Armstrong
et al. 2008; Dall’Ora 2017; Griffiths et al. 2018; Redfern
et al. 2019; Dall’Ora et al. 2019; Smith et al. 2020). Addi-
tionally, studies have examined how the hourly volume of
observations changes throughout the day (McGain et al.
2008; Hands et al. 2013), and whether inter-wards differ-
ences (Nog et al. 2022) or notable periods (Kostakis et al.
2021) can be identified. However, there has been limited
consideration of the potential impacts of the sequence in
which observations are undertaken, which informs the
design of the modelling and analysis framework in the study.

E-observations of vital signs have been suggested to not
only provide a practical and affordable clinical improvement

(Gale-Grant and Quist 2018), but also opened new frontiers
for inter-ward patient management analysis (Dall’Ora et al.
2020; Griffiths et al. 2018) and the consideration of new
patient management metrics, such as timeliness and com-
pliance (Watson et al. 2014). Wards have been shown to
broadly align in daily observation volume distribution (i.e.,
typical ward round times) when categorised by observation
interval distributions (Kostakis et al. 2021; Noé et al. 2022).
A method to stratify vital signs observation timeliness with
respect to the Time To Next Observation (TTNO) was also
defined by the Missed Care Study Group (Griffiths et al.
2018). This has led to further findings in the space, includ-
ing highlighting that shorter observation intervals and high
NEWS patients have been shown to have the most vital sign
observation omissions (Oliveira et al. 2022; Kostakis et al.
2021; Redfern et al. 2019).

Despite the merits of e-observations, there has been evi-
dence of data consistency shortcomings and poor device
implementation that can encourage nurse workarounds using
traditional methods (RCP 2012a; Yeung et al. 2012), par-
ticularly when the ability to record legitimate reasons for
missing observations is often omitted in the software (Hope
et al. 2019). So far, works utilising e-observations datasets
have been predominantly patient-focused, with most atten-
tion directed to evaluating EWS efficacy (e.g., Kellett 2011;
Bleyer et al. 2011), but a few studies have corroborated the
timeliness of vital signs observations to clinical staff man-
agement factors such as staffing levels (Griffiths et al. 2016;
Redfern et al. 2019) and shift length (Dall’Ora et al. 2019)
of registered nurses.

Other studies have also touched on well-established
understandings of general intra-patient observation manage-
ment behaviours, such as how vital signs observations are
consolidated into ward rounds (Hands et al. 2013), and how
this practice changes when operating in different periods
(such as COVID-19, Kostakis et al. 2021) or ward specialism
(Noég et al. 2022). However, a notable gap exists across these
studies in them having limited granularity in the behaviours
exposed beyond the grouping into ward rounds). How vital-
sign observations are being undertaken and prioritised from
patient to patient at a higher granularity forms the basis for
the research methodology in this study.

2.3 Analysis of complex networks

Network modelling approaches have been used as a means
to model and analyse complex systems. This includes analy-
sis within the healthcare domain where network analysis
methods have been used to identify communities in hospital
services (Niyirora and Aragones 2020), and which ones are
the most central (Flemming et al. 2022). However, to the
best of our knowledge, network modelling has not been used
to model and examine human behaviour in the healthcare
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domain, in a similar manner to other domains such as air-
craft (Agasse-Duval and Lawford 2018), or human mobility
networks more broadly (Hossmann et al. 2011). At a high
level, this research gap has informed the overarching meth-
odology of this study.

2.3.1 Network representations

There are further considerations in how the network models
can be constructed and analysed. The network representation
of vital signs observations is expected to be largely influ-
enced by common patient management procedures (such as
deteriorating patient policies ABUHB 2017) that may dic-
tate the recurrence of specific network features (Alon 2003),
much like how transportation links (Pellegrini et al. 2020)
are physically constrained by roads. Because of this, ward
operating policy will act as a key point of reference when
contextualising the resulting network structures.

Static networks using simple graphs have been shown to
be effective in representing key information on relationships
between entities in complex systems (Milo et al. 2004b).
Therefore, due to the limited literature surrounding represen-
tations of vital sign observation sequences, static networks
inform a basis of the methodology in this study. However,
as it is unclear to what extent modelling vital signs observa-
tion networks statically obscures dynamic ward-level behav-
iours and the possible causes behind them (Tantipathanana-
ndh et al. 2007), other network representations integrating
a temporal element are also used and provide a basis for
comparison. By considering the sequence in which edges
occur, it is envisaged that this may provide a richer context
to understand ward-management behaviour and determine
interactions which occur simultaneously.

The ‘temporal’ network dimension brings additional chal-
lenges that distinguish it from static networks, and can be
characterised in a number of ways. Existing methods either
consider a ‘static-temporal’ network representation by mod-
elling networks as strictly growing where a pair of nodes
connect once and stay connected forever (Leskovec et al.
2007; Jacobs et al. 2015) or where a series of static network
snapshots are taken at sequential moments in time (Tan-
tipathananandh et al. 2007; Mucha et al. 2010; Hulovatyy
and Milenkovic 2015). Alternatively, a strictly ‘temporal
network’ representation (Cinaglia and Cannataro 2022; Tu
et al. 2018b) may also be considered, where the network is
defined by a set of nodes and a collection of directed tem-
poral edges with a timestamp on each edge (Viswanath et al.
2009; Paranjape et al. 2016). For this study, we compare the
static network against a static-temporal network for which
snapshots are defined by heuristic ward-level behaviour:
ward rounds. Although this method has been suggested to
overlook the continuity of dynamic systems by discard-
ing the relationship between each snapshot (Holme and
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Saramiki 2012) and thereby potentially limiting the ability
to capture changes at a finer granularity (Paranjape et al.
2016; Tu et al. 2018b), it has also been suggested that static
networks are more precisely modelled when integrating this
form of temporal data (Chen et al. 2013).

2.3.2 Network analysis and comparison

For the analysis of the different network representations,
summative statistics of the global structure (e.g., density,
degree centrality, and clustering coefficients) have widely
been used to contextualise the properties of complex net-
works. These metrics do not only offer the potential to
characterise a wide range of natural phenomena and human
behaviour patterns but have also demonstrated correlations
with measures of more local substructures within the net-
work (e.g., Vazquez et al. 2004; Turner et al. 2019).

Analysis of the sub-structures within networks using vari-
ous subgraph analysis methods (Jazayeri and Yang 2020)
are adopted in increasing more fields since their original
applications to biological networks (Milo et al. 2002; Shen-
Orr et al. 2002). This has included analysis of Wikipedia
articles (Zlati et al. 2006) and editor behaviour (Wu et al.
2011) interactions, as well as investigating the drivers
behind network functions, such as identifying users involved
in YouTube ad spam campaigns (O’Callaghan et al. 2021).
This motivates addressing a further research gap in applying
global and local network analysis methods to a new domain
in this study, i.e., in network representations of vital signs
observation data. Within subgraph analysis, a key considera-
tion is the size of the subgraphs. Whilst many studies focus
on particular types of subgraphs, the most common being
triads (V = 3, where V is the total vertices in the graph)
(e.g., Milo et al. 2004b; Ashford et al. 2019; Turner et al.
2019), others also include other degrees, such as dyads
(V =2) and/or tetrads (V = 4) (e.g., (Felmlee et al. 2021;
Tu et al. 2020b). Exploring subgraph groups together (e.g.,
both triads and tetrads) will provide the scope to determine
the suitability of each in effectively capturing the nuances
of network behaviours whilst ensuring robustness against
potential different higher-order clustering (Milo et al. 2004b;
Olaf 2004; Benson et al. 2016; Agasse-Duval and Lawford
2018).

Importantly, the consideration of network self-loop edges
is also underrepresented in subgraph analysis of complex
networks, but they are also often missing in the networks
analysed (e.g., social networks or protein structures) or may
not be of interest, except in some demonstrated cases (Bec-
skei and Serrano 2000; Nitzan Rosenfeld and Alon 2002).
However, this is a key consideration for vital sign observa-
tions, where multiple repeat observations could be under-
taken with a patient over a short period of time before the
observation of another patient. A notable research gap exists



Network Modeling Analysis in Health Informatics and Bioinformatics

(2024) 13:55

Page7of37 55

Table 2 A simplified example

o . Observation Time Staff Patient Bed NEWS Concerned?

set of vital signs observations

recordings for a single ward 1 10:00 1 A 1 1 No
2 10:04 1 B 2 3 No
3 10:09 1 C 3 1 No
4 10:14 1 B 2 4 No
5 10:23 1 D 4 4 No
6 10:31 2 D 4 3 No
7 12:45 1 E 5 1 No
Example NEWS and ‘Concerned?’ scores are contextual for scope of further analysis

Table 3 s_ur,nmary of Ward  Year  Ward type Total observations ~ Staff IDs ~ PatientIDs ~ Bed IDs

characteristics for each of the 20

study wards W1 2019  Medical 44,573 183 904 32
w2 2019  Medical 47,533 129 1396 30
W3 2019  Surgical 44,837 251 1335 32
W4 2019  Surgical 42,356 226 1572 32
W5 2022  Gastroenterology 54,271 166 1403 31
w6 2022  Respiratory 45,515 184 1606 31
w7 2022  Medical 37,718 151 308 30
w8 2022  Medical 25,302 161 404 32
W9 2022  Cardiology 22,155 87 735 17
W10 2022  Rehabilitation 25,445 169 453 32
Wil 2022  Medical 28,501 137 422 30
‘v 2022 Care Of The Elderly 39,245 116 651 30
W13 2022  Rehabilitation 31,326 132 224 25
w14 2022  Cardiology 35,203 141 1352 24
W15 2022 Trauma & Orthopaedics 30,429 218 1267 28
W16 2022 Trauma & Orthopaedics 25,910 79 1764 35
W17 2022  Rehabilitation 11,970 100 178 18
W18 2022 Rehabilitation 28,408 53 233 34
W19 2022 Medical 9294 40 118 12
W20 2022  Rehabilitation 24,977 147 543 30

in developing a framework for considering a range of sub-
graph types along with self-loops that addresses the limita-
tions of existing approaches (e.g., gl2vec (Tu et al. 2020b))
that can be used to identify notable motifs in the network
structure as well as serve as a richer basis for comparison
across networks.

Various approaches have been proposed for counting the
frequency of the chosen types of subgraphs or motifs (Jazay-
eri and Yang 2020). Within this, different approaches aim
to address different challenges that can arise in the mining
and counting process. For example, very large networks can
cause the process to become too computationally expensive
and too slow to be practical. This has resulted in various
studies proposing the estimation of subgraph frequency
counting, rather than exact counts (Lotito et al. 2024). This
can include the adoption of machine learning in the meth-
odology, such as Graph Neural Networks (e.g., Besta et al.

2022; Kanatsoulis and Ribeiro 2024). However, while these
methods offer potential speed advantages, the disadvantages
in potential inaccuracies should be considered with the
application domain. In the context of this study, the network
representations are relatively small as a result of the physical
and environmental constraints of individual hospitals and
wards with limited number of staff and beds. This knowledge
combined with the context of safety in a healthcare domain
motivates the use of exact subgraph counting in examining
the current dataset. The existence of these methods however
motivate a design consideration for our proposed framework
in enabling flexibility for alternative counting methods (i.e.
estimation) for future works.

Furthermore, assessing whether a selection of networks
exhibit distinct or similar behaviours through global or local
network measures (e.g., subgraph frequency analysis) can
be challenging due to lack of comparable references. Milo
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Fig.3 Visual representation of
the example set of vital signs
observations (Table 2) and its
corresponding network repre-
sentation

8

HEALTHCARE
STAFF 1

et al. (2004a) presented an approach for comparing network
substructures via a normalised feature vector of significance
metrics (usually z-score or relative abundance (A)) for all
considered subgraphs. This is known as a Subgraph Ratio
Profile (SRP), or Triad Subgraph Profile (TSP). Subgraph
significance metrics are typically derived from subgraph
abundance rates in the study network in comparison to sub-
graph appearance rates in an appropriate sample of equiva-
lent randomized networks (e.g., of the same size and degree
sequence; Artzy-Randrup et al. 2004; Milenkovié et al.
2009), called a “null model” (Wasserman and Faust 1994).
This method facilitates comparison between numerous net-
works and is insensitive to network size and degree (Tu et al.
2020a), and as such, has become an established method.
SRP analysis has demonstrated unique profile groups across
different networks such as the World Wide Web, Wikipedia
articles, and global energy trade (Milo et al. 2004a; Zlati
et al. 2006; Shutters et al. 2022). Additionally, SRP analysis
has been applied for clustering similar networks (Ashford
et al. 2019), tracking evolutionary changes in biological
networks (Kashtan and Alon 2005), and serving as a vector
for feature representation (Tu et al. 2020b), thereby ena-
bling comparisons with various machine learning analysis
methods.

2.4 Summary of research gaps

The research gaps identified that will inform the methodol-
ogy of this study can be broadly summarised under several
key areas. Firstly, as discussed in Sect. 2.2, previous stud-
ies have not explicitly modelled vital sign observations at
a high granularity (e.g, sequences from one observation to
the next). Most studies focus on patient outcomes, such as

@ Springer

- -
/ HEALTHCARE
!/ STAFF 2
A4

10:00 (1)

[ ] [ ] a )
PATIENT A PATIENT B PATIENT C PATIENT D PATIENT E
BED 1 BED 2 BED 3 BED 4 BED 5
Time: Time: % Time: Time: Time:

10:23 (1)
10:31 (2)

10:04 (1) 12:45 (1)

10:14 (1)

10:09 (1)

O
-

the effectiveness of EWS packages or the compliance with
hospital documentation-practice policies. It is envisaged that
the contributions of this study will complement these works
by providing insight on ward behaviour at a higher granular-
ity and from an adjacent perspective.

Secondly, as discussed in Sects. 2.3 and 2.3.1, while net-
work representations and analysis has been used to model
and explore a wide range of complex systems, including
human behaviour in different domains, there has been lim-
ited use of modelling human behaviour in providing health-
care. Previous studies have shown how distinct behaviours
can manifest in network representations of independent
players within different case-study domains (e.g., social net-
works, road networks), and an opportunity exists to explore
how distinct vital observation networks structures are for
different wards and hospitals.

Thirdly, as discussed in Sect. 2.3.2 existing cross-discipli-
nary studies that do draw on network modelling techniques
often focus on a single group of subgraphs (e.g. triads) and
also omit or under-represent self-loop edges. A feature of
the vital signs observation data is that doing so would over-
look key behaviours, such as a clinical staff member rapidly
repeating a vital sign observation, or the impact of architec-
tural features in wards (i.e., if rooms have one, two, or four
beds). This would have a notable effect on practical applica-
tions in what could be effectively derived from wards and
for comparisons within and across them. There is therefore
an opportunity alongside the exploration of the dataset for
an extended representation of different types of subgraphs
in the motif discovery and comparison methodology and
analysis that could also be used more generally beyond this
study in the analysis of networks.
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Fig.4 Triads and tetrads represented in the example network shown in Fig. 3, where the full catalogue of triads is demonstrated in Fig. 13 and

the full catalogue of Tetrads is demonstrated in Fig. 14

3 Materials and methods

This study employs a vital signs observations dataset spanning
20 wards from various hospital sites and different specialisms.
Utilising this dataset, we present a framework that models this
data through multiple network representations with an objec-
tive to analysis key properties of their structure and facilitate
comparison of the similarities and differences in the behaviour
surrounding the management of patient care.

3.1 Dataoverview

In this study, we examine a large dataset of 770,720 indi-
vidual vital sign observations, for which we define an ‘vital
sign observation’ as a 7-dimensional vector that includes:
observation number, time of observation, staff ID, patient
ID, bed ID, NEWS, and staff concern (a checkbox, option-
ally selected at the bedside, indicating either ‘yes’ or the
default ‘no’). We describe an example set of 7 anonymised
vital signs observations in Table 2. This study spans 20 dif-
ferent wards of 8 different specialisations (medical, surgical,
rehabilitation, care of the elderly, orthopaedic, cardiology,
and acute stroke) from 7 different hospital sites run by the
Aneurin Bevan University Health Board (ABUHB) in South
Wales, UK (see Table 3). The selected wards have a con-
sistent framework of e-observations and staff have received
substantiated e-observations training. Additionally, the time-
frames were chosen such as that e-observations were consist-
ently recorded for a full year (4 wards for 2019 and 16 for
2022). The dataset is compiled from CareFlow eObserva-
tions,' a software installed on mobile devices on wards (e.g.,
iPod Touch, or an equivalent small tablet) which, among
other features, allow vital signs data to be entered at the bed-
side. CareFlow Vitals also performs automatic NEWS scor-
ing and observation-interval calculations (ABUHB 2017).

3.2 Static network construction

To the best of our knowledge, no-one has yet represented a
vital sign observation dataset as a network of clinical staff

! CareFlow eObservations is a software product from SystemC, for-
merly known as VitalPAC, as part of a broader Electronic Patient
Record (EPR) package (SystemC 2017, 2023).

movement patterns. Let the vital sign observation network
of a given ward be defined by G = (V, E), where each bed is
represented by a node v € V. To maintain continuity between
observation recordings, nodes were chosen to represent bed
IDs rather than patient IDs, since patients may move during
their stay, whereas bed configurations are largely consist-
ent and therefore a more accurate reflection of regular ward
actions. Directed edges are added to the network by iterating
over observation records in ascending time order. An edge
(v v;) € V indicates that an observation has taken place in
the bed v; directly after an observation in bed v;. We allow
self- loops (v, v;), but not multi-edges (where the same bed
sequences can occur multiple times). This is illustrated in
Fig. 3.

3.3 Subgraph discovery and time complexity

The results of this study are determined by the frequencies of
induced directed subgraphs of V nodes, i.e., V = 2 (dyads),
V = 3 (triads), V = 4 (tetrads), and self-loop edges. We treat
self-loop edges as ‘single-node network motifs’ to reduce
the huge number of higher-order subgraph permutations
that would need to be considered otherwise (i.e., for each
triad subgraph, 7 self-loop variants would also be possible,
and 15 for each tetrad subgraph), therefore reducing analy-
sis complexity (Nitzan Rosenfeld and Alon 2002) and noise
(Becskei and Serrano 2000). The broad range of subgraph
degree sequences will ensure robustness when identifying
superfamily behaviour and provide more leverage to expose
different organisational patterns between wards (Milo et al.
2004b; Benson et al. 2016). We also follow the common
practice to reduce the 16 possible isomorphic directed triads
to the 13 weakly connected triads (Tu et al. 2018a; Felmlee
et al. 2021), excluding those that do not include all three
nodes (003, 012, 102, see Fig. 13) and evaluate a dyad rep-
resentation (described as triads 012 and 102 in Fig. 13) sepa-
rately (Benson et al. 2016). The same practice is used for
tetrads (e.g., Kashtan and Alon 2005; Krumov et al. 2011;
Shen-Orr et al. 2002), for which we use a sample of the 199
weakly connected directed tetrads (McMillan and Felmlee
2020) (Fig. 4).

This study utilises two tools for the discovery of network
subgraphs of degrees V = 1to V = 4:
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e NetworkX Triadic Census® for subgraph instances of
degree sequences V =1,V =2, and V = 3 (see Fig. 13).

e gTrieScanner® for subgraph instances for degree
sequence V = 4 (see Fig. 14).

We utilise two methods for this study because of the
diverse nature of subgraphs that are considered. The Tri-
adic census program does not count subgraphs of greater
degree than V =3, and gTrieScanner does not support
counting dyad and self loop edges, which are also essential
components of this study. The NetworkX triadic census
sub-quadratic algorithm suggests a time complexity O(IEl),
where E is the number of edges in the network graph,
to record subgraph frequencies for all directed subgraphs
of degree sequences V=1, V=2, and V =3 in ’large’
and ’sparse’ networks. In other cases, the program uses
an algorithm of quadratic complexity O(|V|?), where V is
the number of vertices (Batagelj and Mrvar 2001; Moody
1998). Our networks are typically small, where V = 32
in our largest wards, so even in a connected graph repre-
sentation we expect low latency. The time complexity for
defining a census of degree n subgraphs using a gTrie data
structure method in practical applications is effectively
managed by the structure of the network graph. Ribeiro
and Silva (2010) suggests that their gTrie algorithm per-
forms worst for dense graphs with deep trees, however, the
method still outperformed alternative algorithms. For our
application of moderately sized graphs and relatively small
subgraph patterns, we can expect low latency for defin-
ing subgraph censuses. We also considered using machine
learning for probabilistic network motif mining, with the
main advantage being speed, though it comes with the
trade-off of being an approximation (Ribeiro et al. 2021;
Oliver et al. 2022). In the context of this study and the
relatively small network sizes, exact subgraph counting
and motif extraction is considered suitable. However, the
methodology here is flexible for any future applications
that would have significantly larger networks.

3.4 Static-temporal network construction

We also consider including temporality by building addi-
tional network representations from sequences of vital
signs observations undertaken in quick succession by indi-
vidual clinical members of staff. We note that the number of

2 Triadic census is a tool within the NetworkX Python library. Soft-
ware and user’s guide available at https://networkx.org/documentat
ion.html.

3 gTrieScanner (Ribeiro 2014) is a software that uses the g-trie data
structure to count occurrences of induced subgraphs according to
their isomorphic class (McKay 1981; Patra 2020) within larger net-
work graphs (software and users guide available at https://www.dcc.
fc.up.pt/gtries/output).
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patients observed within a staff ward round is highly varied
and non-standard, from regular single patient entries (illus-
trated by Healthcare Staff 2 in Fig. 3) up to as many as 20
vital sign observations long. We consider each temporally
sequential ward round as a static network ‘snapshot’ that
is evaluated individually, before aggregating the results for
ward-level comparisons. Figure 5 illustrates how the exam-
ple vital signs observation recordings in Table 2 would be
represented as three isolated network components, and Fig. 6
highlights the extracted subgraph patterns.

CareFlow e-Observations provide no predefined label-
ling for when a vital sign observation has been completed
as part of a ward round. To our knowledge, the current lit-
erature has also not discussed any formal definition as to
what can be considered a consistent start and end point
of different ward rounds. We therefore define that when a
clinical staff member is no longer undertaking vital signs
observations in ‘quick succession’ as the end point of a ward
round, where the time between observations exceeds a speci-
fied 0, in minutes. 0 must be inclusive of short additional
duties that occur within rounds (e.g., escalating a patient
to a senior staff member or assisting with a patient comfort
break before returning to the round), yet exclude other core
duties (e.g., washing, clinical investigations, handovers, drug
rounds, ward-transfers and mealtimes) (Hands et al. 2013).
Additionally, 0 should be calculated on a per-ward basis as
architecture, staffing levels, and time to complete observa-
tions differ significantly by ward size and type. However, 0
should also be small enough to avoid incorporating the start
of subsequent observation sequences or stand-alone obser-
vations (such as hourly patients) to not over-inflate volumes
of complex observation sequences. Therefore, it is practical
to calculate 0 for a specific ward by utilising the function
for the time taken to ‘miss’ a patient’s vital signs observa-
tion (e.g., 2X observation interval + observation interval,
Noé et al. 2022), based on the shortest observation interval
administered to a patient in that ward over the entire study
period. In practice the shortest patient observation interval
varies between wards, typically being 10 or 15 min, thus 0
is usually 30 or 45 min.

3.5 Statistical analysis

This analysis is rooted in statistical methods to identify sub-
graphs that occur dis-proportionally frequently to those seen
in a null model, indicating that they may represent likely
network motifs or anti-motifs. We use these to establish
similarities and differences in how wards operate and to
identify key behaviours that are abundant and those that are
uncommon.
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Fig.5 Adjusted network representation of the example network in
Fig. 3. The network is segregated into 3; two ’stand-alone’ observa-
tions, one by Healthcare Staff 1 and one by Healthcare Staff 2, and

0.5 08

102 111D 111U

Fig.6 Clinical staff action in the static-temporal networks illustrated
in Fig. 5 can be represented by four subgraphs; a reciprocating dyad,
two triads, (111D and 111U, Fig. 13), and one tetrad (T5, Fig. 14)

3.5.1 Null-model network construction

We construct our null model as the average of 100 ran-
dom networks that are generated as similar as possible to
the original dataset. This ensures statistical meaning in the
results (Milo et al. 20044a; Ribeiro et al. 2009), avoids biased
estimates of subgraph presence in the case of highly skewed
degree sequences (Artzy-Randrup et al. 2004), and prevents
an overly well-rounded significance profile as a result of the
noise in the data. To achieve this, we additionally control
the distribution of in-degree and out-degree vertices to node
and edge volumes, known as a Bi-Degree Edge (BDE, Milo
et al. 2004a; Shen-Orr et al. 2002; Kashtan and Alon 2005;
Yeger-Lotem 2004) or Bi-Degree Sequence (BDS, Tu et al.
2020a) model. BDE models are typically appropriate for
networks whose connectivity distribution differs markedly

Fig.7 The vital sign observations dataset for W1 visualised as a
static network

HEALTHCARE
STAFF 2

+ @ + ®

HEALTHCARE
STAFF 1

one that can be described as an ’immediate intermediate patient
return’ by Healthcare Staff 1

from that of a random graph with uniformly distributed links
(Berg and Lissig 2004). Each randomly generated network
is intended to represent a random staff path through a virtual
ward (like the example paths illustrated in Fig. 3. Individual
clinical staff cannot produce a directed edge from patient A
to patient B and then a subsequent edge from patient D to
patient E without first producing an edge from patient B to
patient D).

3.5.2 Statistical thresholds for subgraph frequency
and uniqueness

A formal definition for network motif candidate detection
was given by Ribeiro et al. (2009), derived from the work
of Milo et al. (2002), and has become a popular method
in this area (Kashani et al. 2009; Patra 2020). Ribeiro and
colleagues suggest that an induced size-k subgraph G, of a
graph G is a network motif when, for a given (self-selected)
set of parameters {P, U, D, N} (where P is the probability
threshold, U is the uniqueness threshold, D is the propor-
tional threshold, and N is the number of random similar
networks), it satisfies three conditions:

f@@‘%\ﬁ@

Fig.8 Visualisation of a sample of 100 staff vital sign observation
sequence networks extracted from the W1 dataset
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Table 4 Summary of network
characteristics for the 20

Static network

Static-temporal network

study wards for both static Ward Ny, R Py p clus,  clos,  Ne,yges Ry Py p clus,  clos,

and static-temporal network

representations Wi 44,572 0.1 1.03 1 1 1 35,565 0.6 0.2 016 O 0.19
w2 47,532 0.13 1.03 1 1 1 39,506 1.02 023 0.18 0.01 022
W3 44,836  0.13 1.03 1 1 1 34,064 063 02 015 0 0.18
W4 42,355 0.13 1.03 1 1 1 32,550 074 02 015 0 0.19
W5 54,270 0.16 1.03 1 1 1 43,897 1.08 028 021 0.02 0.26
w6 45,514 023 092 0.89 091 091 33322 098 031 02 0.01 023
W7 37,717 0.1 1.03 1 1 1 33,100 1.03 016 013 O 0.18
W8 25,301 0.12 101 098 099 098 21,18 0.83 0.15 0.12 O 0.15
W9 22,154  0.18 1.06 1 1 1 13,192 056 042 031 O 0.32
WI0 25444 0.13 1.03 1 1 1 20,256 0.7 019 015 0 0.18
WIl 28,500 0.14 1.03 1 1 1 22,956 0.85 0.2 015 0 0.18
W12 39,244 0.14 1.03 1 1 1 33,027 1.1 022 0.17 0.01 0.22
W13 31,325 0.13 1 096 098 097 27,041 104 0.18 014 0 0.18
W14 35202 0.14 1.04 1 1 1 27,332 075 019 015 0 0.18
W15 30,428 0.14 1.04 1 1 1 24438 0.87 027 021 0.01 026
W16 25909 0.12 071 069 092 079 18343 038 024 0.2 001 024
W17 11,969 0.15 1.06 1 1 1 10,168 096 0.15 0.12 0 0.16
W18 28,407 0.14 103 1 1 1 23,970 1 0.17 0.13 0 0.17
W19 9293 0.15 1.09 1 1 1 7,505 063 015 013 0 0.16
W20 24976 0.13 1.03 1 1 1 20,554 078 0.16 0.13 0 0.17
Where N, is the number of edges, R is the ratio of self-loop to non-self-loop edges, p,; is the density

Fig.9 A non-exhaustive
example set of vital signs

edges

inclusive of self-loops, p is network density excluding self-loop edges, clus,, is the average network cluster-
ing coefficient and clos,, is the average network closeness coefficient
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Condition 1: Over-representation

PrOb(frand(Gk) >freal(Gk)) <P (1)

The number of random networks in which G, appears
more than the input network, divided by the number
of networks in the random ensemble, where f,,,(G,)
denotes the frequency of the subgraph G, in the random

@ Springer

network ensemble, f,,,,(G,) denotes the frequency of G,
in the network being analysed, and P defines the prob-
ability threshold. For anti-motifs, the probability that
they appear in randomized networks fewer times than in
the real network is P,y < P, where P = 0.01 (Milo
et al. 2002; Milo et al. 2004b):

PrOb(fmnd(Gk) <f;'eal(Gk)) <P (2)
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Table 5 Summary of routine

s . ) Ward  Total ‘rounds’ A % B % C % D % E %

clinical staff vital sign

observation sequences type Wi 9008 2409 26.7 1927 214 2916 324 640 7.1 1116 124

Zt"ulg;“\iifgz each of the 20 w2 8027 1712 213 1708 213 1850 23 740 92 2017 25.
W3 10,773 3567 33.1 2351 21.8 2623 243 896 8.3 1336 124
W4 9806 2930 299 2358 24 2293 234 791 8.1 1434 14.6
W5 10,374 1991 19.2 2225 214 2676 258 1277 123 2205 21.3
W6 12,193 3040 249 3244 266 2088 17.1 1427  11.7 2394 19.6
W7 4618 645 14 1225 265 1249 27 382 8.3 1117 242
W8 4117 995 242 1092 26.5 1007 245 322 7.8 701 17
W9 8963 2444 273 1669 18.6 3130 349 1191 133 529 5.9
W10 5189 1398 269 1211 233 1472 284 445 8.6 663 12.8
WI11 5545 1301 235 1459 263 1369 247 514 9.3 902 16.3
w12 6218 950 153 1516 244 1640 264 667 10.7 1445 232
W13 4285 724 169 1014 237 1139 26.6 406 9.5 1002 234
w14 7871 2150 273 1950 24.8 1859 23.6 800 102 1112 14.1
W15 5991 1195 199 1216 203 1797 30 623 104 1160 194
Wli6 7567 2399  31.7 1153 152 2914 385 527 7 574 7.6
W17 1802 352 19.5 517 28.7 411 228 142 7.9 380 21.1
W18 4438 959 21.6 1143 258 1061 239 394 8.9 881 199
w19 1789 490 274 434 243 527 29.5 120 6.7 218 12.2
W20 4423 1108 25.1 1140 258 1155 26.1 369 8.3 651 14.7

Observation sequence type descriptions are illustrated in Fig. 9

e Condition 2: Minimum frequency
freal(Gk) 22U (3)

where f,,,,(G,) denotes the frequency of the subgraph
G, in the real network and U defines the frequency
threshold.

¢ Condition 3: Minimum deviation

freal(Gk) _frand(Gk) > D Xfrand(Gk) (4‘)

Jreat(Gy) should be significantly larger than f,,,,(G,) to
prevent the detection of motifs that have a small differ-
ence between these two values but have a narrow dis-
tribution in the random networks. D is the proportional
threshold that ensures the minimum difference between
Jreat(Gp) and f,,,,(G,). For anti-motifs, there should be
a minimum difference between f,,,,(G,) and f,,,,(G}),
where D = 0.1 (Milo et al. 2002):

frand(Gk) _freal(Gk) > D Xfrand(Gk) (5)

There are no widely accepted exact thresholds for these con-
ditions, but it is commonly argued that the more restricted
thresholds yield more precise motifs (Kashani et al. 2009).
A subtle variation is the notion of an anti-motif Milo et al.
(2004a), which is a significantly under-represented subgraph
that has also shown to be meaningful (Baskerville and Pac-
zuski 2006; Ashford et al. 2019). We use the same values

for P, D, and U as Milo et al. (2002) as a basis for motif and
anti-motif candidate selection (Milo et al. 2004b).

3.5.3 Motif (and anti-motif) candidate statistical analysis

Typically, after being selected by passing all criteria in
Sect. 3.5 original and null frequencies of motif (and anti-
motif) subgraphs are subsequently assessed using statistical
significance measures such as the Z-score (Milo et al. 2002)
or relative abundance (A) (Milo et al. 2004a). Consider-
ing the large variation of ward sizes (Table 3) and patient
throughput in the study dataset, we apply A as our signifi-
cance metric for robustness against different network sizes
when evaluating the appearances of small subgraphs (Ciri-
ello and Guerra 2008).

_ f;'eal(Gk) _ﬁand(Gk)
A(Gk) B freal(Gk) +f;’and(Gk) te (6)

The error term € has been shown to work well when set to 3
for triads and 4 for tetrads (Milo et al. 2004a; Felmlee et al.
2021) to prevent the relative abundance approaching infinity
in rarely counted subgraphs (Patra 2020). We then calculate
the Subgraph Ratio Profile, which is the normalised value
of A.
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Table§ Nurpber of wards (N) Static Static-temporal
in which a given subgraph
meets motif (V,,) and anti- Subgraph N, N,_, C(G u C(Gyo N, N,_, C(G u C(GYo
motif (N,_,,) candidate criteria,
truncated by non-zero values Non-self-loop 0.96 0.01 20 0.82 0.05
for subgraph concentration Self-loop 0.04 0.01 20 0.18 0.05
(C(Gy)). mean (), and standard 114 (012) 1 0.02 0.05 13 0.98 0.01
deviation (o)
Rec. Dyad (102) 1 0.18 0.38 3 0.02 0.01
021D 1 20 0.01 0.01
0210 1 20 0.01 0.01
021C 20 0.93 0.04
111D 2 0.01 0.02 4 0.02 0.01
111U 2 0.01 0.02 4 0.01 0.01
030C 1 0.01 0.01
201 1 0.01 0.02
120C 0.01 0.01
210 1 0.02 0.05
300 1 0.95 0.12
T1 1 20 0.02 0.01
T2 20 0.01 0.01
T5 1 1 0.01 0.01
T11 1 20 0.01 0.01
T12 20 0.86 0.09
T15 20 0.02 0.01
T18 1 1 0.01 0.01
T20 1 0.01 0.01
T34 1 0.01 0.01
T37 1 0.01 0.01
T73 0.01 0.01
T195 1 0.01 0.02
T197 3 0.01 0.04
T198 1 0.93 0.17

Full concentration profiles are shown in Figs. 15 and 16. Both the static and static-temporal network con-
struction results are shown. Values equivalent to 0 to 2 decimal places are blocked out

SRP(G,) = & %
2 A(Gy)?

3.5.4 Subgraph catalogue reduction

As mentioned in Sect. 3.2, there are 217 subgraph vari-
ations, with some potentially over- or under-represented
in the networks. The literature suggests various methods
that reduce the catalogue of subgraphs used for evaluation.
Ribeiro (2011) recommends only searching in the null
model for subgraphs that appear in the original network
to reduce execution time (Shutters et al. 2022), however, in
cases where anti-motifs (where subgraph patterns are dis-
tinct if dis-proportionally under-represented) are also con-
sidered, a complete census must still be performed. Berg

@ Springer

and Lissig (2004) also suggests that tetrad variations of
triad subgraphs, such as those with a ‘dangling” edge (i.e.,
a 3-node subgraph plus one incoming or outgoing edge),
can also be excluded from searches to reduce execution
time. Other work uses statistical significance metrics to
reduce the subgraph catalogue after a full census has been
completed, through either selecting the top n subgraphs by
rank (Milo et al. 2004b) or only discussing subgraphs over
a significance threshold (McMillan and Felmlee 2020).

For our results, we reduce our subgraph catalogue using
a “Concentration” metric, (C(G,)), which is determined
by how frequently a subgraph Gy appears in comparison
with other subgraphs of the same size (Milo et al. 2004b).
Z-scores for all subgraphs will be presented in the Appen-
dix. If there are n number of size-k subgraphs in a network,
then C(G, ) of the ith subgraph G is defined as:
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We exclude 0 values (to two decimal places) for subgraph
concentration mean, (C(G,)u), and standard deviation,
(C(Gy)o). This accounts for variation in network size and
degree when sampling for motifs based on frequency (Ciri-
ello and Guerra 2008).

Table7 Median (Mdn), mean (u) and standard deviation (¢) of
Spearman’s correlation coefficients, denoted as r, of the static tem-
poral network construction SRP profiles for a selection of subgraph
groupings

Subgraph group Mdn r, Ty number of
tests with
p < .05

All subgraphs 0.760 0.715 0.147 190

self-loops & dyads 1.000 1.000 0.000 190

triads 0.957 0941 0.049 190

tetrads 0.692 0.630 0.202 176

self-loops, dyads & triads  0.968 0.962 0.025 190

Median, mean, and standard deviation values are calculated from all
ward comparison tests (N = 190). Figures 19 and 20 show the full
pairwise test matrices for the static and static-temporal network con-
struction, respectively

We then use the reduced catalogue of subgraphs to define
an SRP for each ward vital signs observations network.
This not only presents a clear visual representation of the
relative strengths of the local patterns within it, but also
allows us to compare against other networks, including
those of different types. Here, we conduct an analysis of
statistical similarity between the profiles of the different
wards using correlation tests similarly to other types of
complex networks (e.g., Milo et al. 2004b). The feature
vectors will firstly be tested for normality using one-sam-
ple Kolmogorov—Smirnov tests to determine whether the
correlation should use an appropriate parametric or non-
parametric test. Then, dependent on the strength of the
correlation results, we use the strength and sign of the
correlations to determine whether ward networks are indi-
vidual, clustered, or form a hospital ward “superfamily”
profile. External features, which in our case could be ward
size or specialism, have shown to develop clusters in col-
lections of networks within others non-medical domains
(Ashford et al. 2019; Tu et al. 2020b) or across domains
(Milo et al. 2004a; Shutters et al. 2022).
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Table 8 The mean, u, and the
standard deviation, o, of the

Network construction

Subgraph census

Runtime y (s) Runtime o (s)

execution time to complete a Static Self-loops, Dyads, and Triads 0.008 0.04
computing equipment All 0.027 0.014
Static-temporal Self-loops, Dyads, and Triads 0.241 0.091
Tetrads 0.037 0.019
All 0.279 0.108

4 Results

We divide our results into three subsections; Network
Structure (4.1), Subgraph Analysis (4.2), and Subgraph
Ratio Profile Analysis (4.3). We examine network metrics
(such as density, closeness, and clustering) across the over-
all structure of the networks, and categorise observation
sequences in the static-temporal construction for a broad
overview of the staff behaviour patterns. Then, we describe
the concentration and relative frequency of subgraphs. This
includes evaluating the execution time required for the fre-
quency analysis, identifying motifs within the network, and
assessing the strength of these motifs. This is followed by
a comparison of ward SRPs using pairwise test matrices,
to determine the extent of any correlation and whether the
networks are similarly structured. Finally, we summarise the
key findings.

4.1 Network structure

Table 4 introduces both network constructions using vari-
ous metrics (wWhere N,,,, is the number of edges, Ry, is the
ratio of self-loop to non-self-loop edges, p, is the density
inclusive of self-loops, p is network density excluding self-
loop edges,”* clus,, is the average network clustering coeffi-
cient and clos, is the average network closeness coefficient).
All wards appear to be highly interconnected and tend to
form a connected graph when modelled as a static network
across extended periods (Fig. 7). High network density with
(p =1.02, 0 =0.078) and without including self-loops
(u =0.98,0 = 0.070), clustering (4 = 0.99, 0 = 0.026), and
closeness (u = 0.98, ¢ = 0.051), may obscure any nuance
in potential behaviour patterns. The static-temporal net-
work is much less interconnected, with low ward network
density (with self-loops (4 = 0.21, ¢ = 0.067) and without
self-loops (u = 0.17, 0 = 0.040)) and closeness (u =0,
o = 0.004), and negligible clustering (4 = 0.20, ¢ = 0.041).
This is a reflection of the expected short and typically simple
vital sign observation sequences that make up a clinical staff
path during a ward round (see Fig. 8). It is clear that there

* In networks where self loops are counted in the total number of
edges graphs can have density higher than 1.
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is general similarity seen across wards and sites, especially
in the highly interconnected static network, which will be
reflected by highly interconnected subgraphs, such as triad
300 or tetrad T199. On the other hand, the much less inter-
connected static-temporal network maintains some notable
variability that motivates exploring the substructures further.

The broad structure of routine vital sign observation
sequences by clinical staff in the static-temporal model was
categorised by the occurrence of a repeated vital sign obser-
vation within the sequence, or lack thereof. This exercise
provides context to the volume of clinical staff vital sign
observation sequences that are complex enough for a vari-
ety of network sub-structures to occur. Figure 9 describes
five broad observation sequence categories: A, a stand-alone
vital signs observation, B, a rapidly repeated stand-alone
vital sign observation, C, a vital sign observation sequence,
D, a vital sign observation sequence with a single repeated
vital sign observation for one patient, and E, a vital sign
observation sequence with multiple repeated vital sign
observations.

About 75-80% of static-temporal ‘snapshots’ are
either stand-alone vital sign observations, repeated stand-
alone vital sign observations, or sequential vital signs
observation sequences (categories A, B, and C in Fig. 9
respectively). None of these categories can be effectively
described using subgraph analysis due to their low com-
plexity (see Table 5). Sequences where clinical staff rap-
idly repeat vital sign observations once to one patient
(category D, Fig. 9) represent 7-13% of all vital signs
observation sequences, with the rest comprised of high
complexity sequences (category E, Fig. 9), which are sus-
pected to represent key ‘non-routine’ ward behaviours.
The distinct relative similarity between all wards for vital
signs observation sequence type volumes is representative
of an abstracted operating policy and/or precedent. How-
ever, we also observe a significant spread of D (u = 9.18%,
6 =1.79%) and E (u = 16.86%, 6 = 5.46%) type vital sign
observation sequence proportions that is indicative of flu-
idity in ward operating behaviour.
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Fig. 11 Hospital ward motifs
(Self-Loop, 102, 111U, 111D,
and 030C) and anti-motifs
(021U, 021D, T1, T2, T11, © ©
and T15) in the static-temporal
network construction of

vitals observation recordings
(Sect. 4.4). Motifs and anti-

Motifs

motifs have been identified Self-Loop 102

based on performance against

criteria described in Sect. 3.5 N .
Anti-motifs

and relative abundance, A,
scores

ot Lo

021U 021D

4.2 Subgraph analysis
4.2.1 Motif identification

Table 6 describes the number of wards () in which a given
subgraph meets all three statistical criteria for motif candidacy
(Sect. 3.5), truncated by non-zero (to 2 decimal places) values
for C(G,) p and C(G,) o values (Figs. 15, 16 show the full con-
centration profiles for both network constructions). C(G,) has
been calculated in four separate groups respective to subgraph
degree sequence: Nodes and self-loops, dyads, triads, and tet-
rads. These methods exclude motif and anti-motif candidates
with insignificant C(G,) scores across all study wards from
further investigation, since low appearance volumes cannot
be used to calculate statistical significance reliably. The cal-
culated C(G,) values reflect the results in Sect. 4.1 and Figs. 7
and 8. The static network sees high counts for completely
connected subgraphs (reciprocating dyad, 300, and T198),
whereas the primary concentrations for the static-temporal
model represent highly disconnected subgraphs that illustrate
a chain of observations (012, 021C, and T12).

Subgraphs identified to be motif (or anti-motif) candi-
dates from the criteria detailed in Sect. 3.5 across all or a
majority of wards likely reflect routine (or highly irregular)
ward behaviours, and subgraphs identified as motif or anti-
motif candidates across some wards may represent behav-
iours relating to a ward characteristic, such as specialisation
or site. Considering Table 6, there is low representation for
both motif and anti-motif candidates in the static network,
showcasing that the most common subgraphs are not nec-
essarily network motifs, and that uniformity seemingly
prevents variation in subgraph appearance. Again, in the
static-temporal construction the most prominent subgraphs
are also still significantly underrepresented in comparison
to the null model, however, we successfully identified a set

@g)@{j@)i@@{i

111U

@ ©

T-1 T-2 T-11

of subgraphs in the static-temporal network likely to reflect
heuristic ward-level operation behaviours; 5 that meet motif
selection criteria nearly universally in the static-temporal
network construction (Self-loops, Reciprocating dyads,
111D, 111U, and 030C) and another 2 tetrads that meet
motif selection criteria in about half the wards (T12 and
T34). Additionally, we find 7 subgraphs that meet anti-motif
criteria in all wards (Non-self-loops, 021D, 021U, 021C, T1,
T2, and T11) and note that dyads meet anti-motif criteria in
13 wards. These results are expected as all triad and tetrad
anti-motifs have weakly connected components, and it is
impossible for them to occur in real-world data.

4.2.2 Motif strength evaluation

Figures 17 and 18 illustrate SRP profiles for each study ward
for both network construction methods, with the truncated
version (inclusive of subgraphs with C(G,) u values greater
than 0.01 in either construction, in line with Table 6) shown
in Fig. 10. Subgraphs that meet all motif selection criteria
in some wards and the threshold for our chosen statistical
significance measure, relative abundance (A), for which
we consider to be 0.3, can be rightly described as network
motifs.

Although there are some notable A scores for self-loops
(0.99, 0.93, 0.96, 0.99), 102 (0.42), 111D (0.48, 0.56), 111U
(0.48), 030C (0.37, 0.50), and 120C (0.43) in the static net-
work SRP profiles, these only occur in a handful of wards,
and are without supporting significant C(G,) scores. This
is likely a reflection of variability in the data rather than
evidence of motif or anti-motif presence. Conversely, there
are several prevalent subgraphs within the static-temporal
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Fig. 12 Significant tetrads
identified in the static-temporal !
vital sign observation networks I
effectively mirror the identified I
significant triads, accompanied I
by an additional leading or exit- 1
|
1
1

)

ing edge. Where A represents & >@
anti-motifs, AA motifs, * tetrads
T12 that demonstrates both a 021UA 021D

lead and exit edge on top of a
triad 021C, ** tetrad T73, the
equivalent shape of 030C, and
*#% tetrad TS5 which occurs
twice

o

o

w)&—0

D
—> A

A —>

T-17 T-114

network construction that may represent highly regular or
highly irregular behaviours. Self-loop edges are the only
subgraph to satisfy all three motif selection criteria and
exhibit high A scores across all study wards. Whilst not
universally meeting all three motif candidate criteria, recip-
rocating dyads (102), and triads 111D, 111U, and 030C
all demonstrate significant A scores (where A is above our
threshold value of 0.3 across the majority of wards). It is
therefore worth considering setting a precedent to only
consider ‘Condition 2: Minimum frequency’ (Ciriello and
Guerra 2008; Baskerville and Paczuski 2006; Ashford et al.
2019) for a compelling case in also describing these as net-
work motifs.

Anti-motifs have a broader representation in the prelimi-
nary criteria, with 10 subgraphs meeting anti-motif candi-
dacy criteria. Four of these subgraphs (non-self loops, dyads
(012), 012C, and T12) have weaker A scores. This represents
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a notable variation that suggests they are not strictly anti-
motifs, and may instead be more reflective of behaviours
dependent on ward specialisation. The remaining 6 sub-
graphs (021D, 021U, T1, T2, T11, and T15) additionally
maintain significant A scores and can therefore be regarded
as anti-motifs.

4.3 Comparing subgraph ratio profiles
between wards

One-sample Kolmogorov—Smirnov tests for normality con-
firmed that in both constructions all distributions of sub-
graph ratio profiles were not normally distributed (results
are described in Table 10, which in all cases reject the null
hypothesis). Spearman’s Rank-Order Correlation tests were
therefore used to complete pairwise tests between wards.
Additionally, a False Discovery Rate (FDR) correction was
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applied to account for type I errors. The results are summa-
rised in Table 7 and full correlation coefficient matrices are
shown in the Appendix (Figs. 19, 20). The results support
the visual similarity observed between static-temporal ward
network SRPs in Fig. 10. The correlation tests were also
significant in all results for low-order subgraphs, triads, and
for the combined subgraph catalogue. While correlation tests
for tetrads weren’t significant in every case, they were also
still significant in most (in 176 of 190 tests).

These results strongly imply the existence of a higher-
level classification beyond individual networks based on
the overarching design principles governing the general
intra-patient ward operational strategy. Overall, the results
reaffirm the similarities between wards, as evidenced by
the consistent vital signs observation sequences categories
(Table 5), and indicate that this level of detail is likely to be
insufficient to detect influences from features such as spe-
cialism, size, and hospital layout using clustering or graph
embedding methods as seen in studies examining other types
of complex networks (Ashford et al. 2019; Tu et al. 2020b).

4.3.1 Execution time for different scenarios

Typical execution times® to complete different censuses
for the networks of each ward are summarised in Table 8.
A complete census was achieved in under 1 s for all sce-
narios, i.e., irrespective of the network construction, the
types of subgraphs to include, and the ward. Network fre-
quency censuses were also repeated for equal sized ran-
dom networks (see Sect. 3.5), resulting in similar execu-
tion times. The number of random networks used may vary
depending on the specific applied scenario by a stakeholder
(Ribeiro and Silva 2010), therefore the total execution
time for modelling a ward can therefore be estimated as
Treal census T (N random networks * Treal cem‘us) (Where T=the time
taken and N=the number of networks). After the subgraph
frequency counting stage, each network is described as a 1
by 217 dimensional vector, and all subsequent calculations
are then the same irrespective of the scenario.

A breakdown for different scenarios by ward, network
representation type, and subgraph types is shown in Table 9
(Appendix). The ward characteristics in this dataset repre-
sent a range of different hospitals, ward specialisms, number
of beds, and number of staff (Table 3), which are representa-
tive of hospital wards in general (Giancotti et al. 2017). The
execution times are similar for wards with different non-
network based characteristics (e.g., ward type, number of
observations, or specialism, as outlined in Table 3) across
both network representations and different subgraph types.

3 All tests were executed on an 2022 Apple MacBook Pro, with the
M2 processor and 16 GB RAM.

However, there are notable, relative differences between
different specific scenarios that may be attributable to net-
work characteristics. For example, for scenarios where a
static-temporal network representation is used, the subgraph
frequency analysis takes longer than the static network in all
cases where all subgraph types are used, and almost all cases
where subset of subgraph types are used (e.g. W19, tetrads
only as an exception). This is despite the static-temporal
network representations having a smaller number of edges
(as shown in Table 4) than the static network representation.

A potential reason for this is the differences in density
between the static network and static-temporal representa-
tions in this dataset, where very dense networks may have an
abundance of a limited number of specific tetrad subgraphs
that are quicker to determine and count. This presents some
additional considerations where the methodology may be
applied to new hospital ward data, or datasets and networks
representing other types of behaviour or complex systems.

4.4 Key results summary

The four key results described in Fig. 1 can be summarised
as follows:

1  Uniformity in the static network representation
motivates using time as a network element. Figures 7
and 8, and Table 4 demonstrate that when evaluating all
observations without making adjustments for staff ID
or period, the static network tends toward a complete
graph and loses information.

2 Staff vital signs observation sequences typically lack
subgraph complexity. Most staff members vital signs
observation sequences are either linear sequences or
supplementary stand-alone vital signs observations
(Table 5).

3a We define 5 motif patterns in staff vital signs obser-
vation sequences: Self-loops, reciprocating dyads
(102), and triads (111D, 111U, and 030C). Illus-
trated in Fig. 11, the identified highly regular network
subgraphs demonstrate the processes of clinical staff
returning to a previous patient within short timeframes.

3b We define 6 anti-motif patterns in staff vital signs
observation sequences: 021D, 021U, T1, T2, T11,
and T15. [llustrated in Fig. 11, the identified highly
irregular network subgraphs demonstrate movement
patterns that are not possible to occur when consider-
ing the recording behaviour of individual staff mem-
bers, and therefore are not significant.
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4  External ward characteristics have little impact on
rates of specific staff behaviours for routine vital
signs observations. Closeness in network structure
measures (Tables 4 and 5) and local substructures
(Fig. 10 and Table 7) in the static-temporal represen-
tation show wards produce similar relative rates of
specific staff movement patterns despite differences in
ward size, specialism, staffing levels, and architecture.

5 Discussion

The two network representations in this study, static and
static-temporal (Figs. 7, 8), have demonstrated markedly
different results. When incorporating all vital signs obser-
vations over the complete 12-month period dataset for each
ward into a static network, we note that the network pro-
gresses toward a complete graph (Result 1, Fig. 1). This
is unlike other applied scenarios, such as airline networks,
where journeys are typically restricted to the terminals for
which a company has paid for the route. In this case, it may
signify the flexibility in the allocation of beds where clinical
staff complete their vital sign observations. This result con-
tributes to RQ1 by motivating static-temporal network rep-
resentations of a vital sign observations using sequences that
include time and staff elements in order to support higher
specificity studies, such as describing the patterns that occur
when clinical staff rapidly repeat routine patient vital signs
observations.

In the static-temporal network, all wards saw significant
volumes and C(G,,) scores of 012C and T12 subgraphs and
high proportions of type A (stand-alone), type B (repeated
stand-alone observation), and type C (sequential without
patient return actions) vital sign observation sequences
(Table 5). This may suggest a managerial precedent to com-
plete ward rounds as a simple vital sign observation sequence
that include all patients within an individual clinical staff
member’s scope-partially addressing RQ2. This would still
allow for the escalation of patient care responsibility of seri-
ous adverse events (such as high NEWS readings) to senior
or tasked members of staff accordingly. Yet, there is a sig-
nificant fluidity in which clinical staff undertake and record
vital signs observations within ward rounds, as demonstrated
by the occurrence of types D and E observation sequences.
The most common subgraphs 012C and T12 (which repre-
sent simple sequences of vital signs observations) both meet
anti-motif criteria and maintain significantly low A scores
when measured against a BDE null model. Moreover, we
see high representation of immediate repetition of vital sign
observations behaviours reflected in the identified network
motifs (see Fig. 11)-contributing further to RQ2.
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A clinical staff member may rapidly repeat a vital sign
observation for different reasons. For instance, this may
be reflective of patients that are on the threshold of a ‘high
NEWS’ score (where NEWS is considered high when it
exceeds a score of 5 in total or 3 in one vital sign, RCP
(2012a)). Alternatively, it may simply be a low stakes
route alteration caused for instance by a patient fall, a
patient away from their bed, overseeing a student obser-
vation, or monitoring short-term medication effects. These
examples highlight the opportunity our method provides to
model a collection of vital signs observation recordings as
separate sequences which can support further research into
the drivers of these repeat observations during specific
periods of regular ward activities, like rounds and shift
handovers. Additional vital sign observation information,
like NEWS and staff concern observation labelling (i.e., ’is
concerned’ described in Sect. 3.1 and Table 2), may also
be useful in interpreting the role of motifs within specific
situational contexts like ward rounds and shift handovers.

The importance of including tetrads when defining an
SRP profile for ward vital sign observation data was less
significant than expected. In this study, we suspected that
ward specialism, architectural artefacts (i.e., wards seg-
regated into smaller rooms of 2, 3, or 4+ beds), or local
patient flow management practices, may present alterna-
tive patterns when considering tetrads in comparison to
smaller subgraph types (e.g., dyads or triads). However,
all highly represented tetrads appear to match highly rep-
resented triad subgraphs in the static-temporal network,
just with an additional leading or exiting edge (illustrated
in Fig. 12). In this somewhat common case (Milo et al.
2004a), it is reasonable to suggest as an additional con-
sideration for RQ1 that tetrads in vital sign observation
networks reflect the same behavioural traits as triads and
could be excluded in subsequent studies where execution
environments have limited computationally capability.

Furthermore, we repeatedly highlight the distinct rela-
tive similarity in which wards operate in all the intra-ward
comparisons throughout this study-addressing RQ3. The
significant correlations in observation sequence categories
distributions (Result 2, Fig. 1) and SRP profiles (Table 7)
present reasonable evidence that the aggregation of vital
sign observation sequences in different wards results in
similar frequencies of network sub-structures (Result 3,
Fig. 1), and therefore arguably conform to “superfam-
ily” behaviour (Milo et al. 2004a; Result 4, Fig. 1). We
expected some similarity due to ward adherence to com-
mon health board policies (e.g., ABUHB (2017)), but the
high level of similarity is worth highlighting given the
variety in ward specialisms, staff, ward layouts, and geo-
graphical sites. The profile also appears unique to rou-
tine ward vital sign observation networks when compared
to other works evaluating World Wide Web hyperlink,
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biological, energy trade, and social networks (Milo et al.
2004a; Shutters et al. 2022), which typically show much
lower significance for subgraphs with strongly connected
components (such as motifs 111D, 111U, and 030C). This
similarity also presents considerations for future graph
embedding tasks (e.g., Tu et al. (2020b)) where effective
network identification using subgraph profiles may be lim-
ited (contributing to RQ1).

Additionally, despite the quick runtime (Sect. 4.3.1) the
high similarity among the ward SRP profiles presents oppor-
tunities for feature reduction where necessary in the execu-
tion environment. High r values for all subgraph groupings
(see Table 7) highlight the potential to reduce the SRP fea-
ture vector to a subset of subgraph types. This also con-
tributes to RQ1 by having the obvious benefit of reduced
computational requirements, while also enabling broader
comparison with other data and networks (e.g. (Milo et al.
2004a; Shutters et al. 2022)) where required that may, for
example, not have self-loops.

5.1 Clinical implications and applications

While the scope of this study surrounds basic research in
modelling and examining human behaviour in hospital ward
care settings, the findings and contributions present impli-
cations for clinical practice through the identified similar
motifs and anti-motifs across the wards. It also provides
additional considerations for specific, applied use cases of
the framework. Different hospital stakeholders, from staff on
wards, to managers on wards and sites, to health boards and
trusts, can benefit from summarisations of how activities on
wards are undertaken. The re-purposing of data from key,
routine ward activities surrounding patient care in vital sign
observations can provide a basis for this without the practi-
cal challenges and costs of bespoke equipment or third-party
observers.

The modelling and analysis framework used here can pro-
vide the foundation for the development of future tools that
summarise and visualise ward behaviour, alongside other
data relevant to the stakeholder and use case (e.g., alongside
timeliness, patient outcomes, or other factors highlighted
in complementary studies (Sect. 2.2)). For example, hospi-
tal managers or policymakers may undertake retrospective
reviews of ward activity, either routinely, as a result of a
staffing policy, training change, or as a result of a disruptive
event, where the results provide a baseline of typical ward
behaviour. Any deviations thereof could bes identified in the
network and SRP profiles over the time period in question.
Additionally, this could and help contextualise instances
where staff immediately repeat an observation, or repeat an
observation within the same sequence, to identify and man-
age patients that require additional attention, even if they
are not presenting threshold NEWS scores. These examples

are not exhaustive, and the network representation may also
provide utility in supporting other clinical activities, such as
summarising the state of ward activity during shift hando-
vers for staff on wards. Any new or changes to policies or
staff resource allocations built upon this information may
then impact on other relevant aspects to the use case, such
as the timeliness and compliance of vital signs observations.

6 Limitations and future work

The dataset used in this study represents vital sign observa-
tions of the period of a year. However, the accuracy of vital
sign observations is dependent on the point at which they are
taken, and adherence to regular and timely recordings remains
variable as observed in the literature (Sect. 2.2). While the
volume of observations and the observation sequence category
distributions (Sect. 4.1) are as expected (Sect. 3.1), there is
potential for some data gaps where, for example, a patient is
escalated to a doctor and the patient is under constant super-
vision, that observations are no longer documented on the
devices and may instead be taken using pens and paper (Yeung
et al. 2012). There may also be unknown cases and data gaps
where observations were undertaken on paper where no device
was available (e.g., due to being used or due to low battery,
for example). The effect of this is mitigated here through the
aggregation of data over a large time period, however this
presents considerations for future studies and applications,
where a further mitigating strategy may be to focus on ‘rou-
tine’ observations (i.e., those taken in, or planned for, ward
rounds) and their compliance.

Furthermore, the focus of this study has been to present
the framework and typical observed behaviours over a large
time period. Future studies, or applied use cases, may wish
to undertake the modelling and analysis over shorter time
periods to observe any changes to the identified motifs, anti-
motifs or overall SRPs around potentially severely disrup-
tive events (e.g., sepsis onset) or a less consequential event
(e.g., student training observations). Further work could
also explore how ward conditions (namely current patient
NEWS and TTNOs) leading to the emergence of the promi-
nent self-loop and triad motif subgraphs (111D, 111U, and
030C) that are reflective of clinical staff rapidly repeating
vital sign observations (i.e., disruption to ‘typical’ behaviour
flows), fluctuates before and after their occurrence. The con-
text behind routine ward rounds behaviour, including when,
why, and to what extent disruption occurs.

6.1 Future applications with machine learning
In Sects. 2.3 and 3.3, we discussed the use of machine

learning for approximate network motif mining, noting
that although the primary advantage is speed, given the
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context of the study and the network sizes, the drawback
of approximation motivates exact subgraph counting and
motif extraction in this domain. However, the methodology
here is flexible for future applications involving significantly
larger networks, such as health board/trust or governments
scaling across all hospitals in their remit. Additionally, the
SRP profiles could serve as feature vectors for graph embed-
ding tasks (e.g., Tu et al. (2020b)), or in other downstream
applied machine learning tasks such as the prediction of
related, external factors such as ward observation timeliness,
or other compliance values. The applicability and utility of
these tasks will depend on the needs of specific stakeholders
(Sect. 5.1).

7 Conclusions

Understanding how hospital wards undertake routine tasks
such as vital signs observations can be a valuable basis for
supporting decision-making in patient care management. In
this study, we explore a large dataset of anonymised vital
sign observations and observe key characteristics and behav-
iours through the development and use of a network model-
ling and analysis framework.

The framework has a number of advantages and disad-
vantages. The primary advantages of this framework are its
flexibility in being generally agnostic to specific software,
requiring a limited number of expected data fields (Table 2),
and time sorted observations. It is also flexible to the type
of network representation used and the types of subgraphs
considered. In this study, we show the use of multiple differ-
ent sets of subgraph types together, spanning from self-loops
to tetrads. A disadvantage, or note of caution for the frame-
work is the potential for the extracted motifs, anti-motifs and
profile to be influenced by the size of the network forming

@ Springer

the input data. For instance, hospital wards with a handful
of beds (such as in some small community hospitals) may
not produce a distinct profile or motifs relative to random
networks.

Using the framework, we also provide several additional
contributions highlighted in the results and discussion
(Sect. 5) that provide insights and recommendations from
the dataset used. For example, we show that the inclusion
of temporal data in the network construction yielded addi-
tional utility for motif extraction and profiling, with a small
increase in real execution time. This may limit the ability
to scale to significantly larger networks, but if necessary a
reduction in the types of subgraph could be used, or sub-
graph/motif approximation techniques could be adopted,
with the results from the exact count here used for reference
to help mitigate any potential issues with approximation
accuracy.

Overall, we find that modelling the data as a static-tem-
poral network and employing statistical criteria to identify
highly regular and irregular subgraphs is shown to be effec-
tive in encapsulating typical behaviours surrounding vital
sign observations that occur within wards. Namely, that rou-
tine patient vitals observations are often executed as simple
sequences supplemented by stand-alone observations when
repeat observations are required. Additionally, we find that
ward size, hospital site, and specialisms do not create nota-
bly different behaviours and that the similar, distinct profile
aligns with the presence of “superfamilies” of complex net-
works in other domains observed in similar works (Milo
et al. 2004b; Felmlee et al. 2021; Turner et al. 2019).

Appendix: Tables

See Tables 9, 10 and 11.
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Table 9 Execution runtimes to

Static network
generate a subgraph census for

Static-temporal network

all wards and for all network Ward Self-loops, Tetrads All subgraphs Self-loops, Tetrads All subgraphs
construction scenarios dyads, triads dyads, triads

W1 0.012 0.001 0.013 0.315 0.096 0411
w2 0.002 0.003 0.005 0.162 0.02 0.182
W3 0.01 0.023 0.032 0.277 0.045 0.322
W4 0.011 0.029 0.04 0.228 0.025 0.253
W5 0.004 0.01 0.014 0.289 0.038 0.327
W6 0.008 0.023 0.031 0.262 0.038 0.3

W7 0.009 0.022 0.031 0.256 0.028 0.284
w38 0.007 0.017 0.023 0.175 0.03 0.205
W9 0.01 0.028 0.038 0.212 0.025 0.237
W10 0.01 0.022 0.032 0.322 0.071 0.393
Wil 0.01 0.02 0.03 0.166 0.027 0.193
w12 0.005 0.012 0.017 0.197 0.031 0.227
w13 0.002 0.004 0.006 0.08 0.013 0.093
w14 0.013 0.036 0.049 0.174 0.029 0.203
W15 0.001 0.001 0.002 0.054 0.009 0.063
W16 0.009 0.023 0.032 0.152 0.024 0.176
W17 0.012 0.028 0.04 0.335 0.093 0.428
W18 0.009 0.022 0.03 0.347 0.052 0.399
W19 0.011 0.094 0.105 0.317 0.048 0.366
W20 0.011 0.027 0.038 0.324 0.044 0.367

Censuses for self-loops, dyads and triads were generated with NetworkX Triadic Census and the tetrad cen-

suses were generated with GTrieScanner

Table 10 P value results from a one-sample Kolmogorov—Smirnov
test for normality, applied to the SRP feature vectors determined in
this study, indicate that in all ward cases and for both network con-
struction methods, the SRP is not likely to be normally distributed

Ward Static Static-temporal
W1 0.000017 0.000021
w2 0.000017 0.000100
W3 0.000084 0.000025
W4 0.000059 0.000145
W5 0.000010 0.000098
W6 0.000049 0.000092
W7 0.000048 0.000111
W8 0.000006 0.000028
W9 0.000049 0.000176
W10 0.000036 0.000059
W11 0.000257 0.000019
W12 0.000054 0.000062
W13 0.000017 0.000168
w14 0.000018 0.000102
W15 0.000017 0.000395
W16 0.000054 0.000151
W17 0.000005 0.000072
W18 0.000006 0.000023
W19 0.000004 0.000079
W20 0.000004 0.000157
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Figures

See Figs. 13, 14, 15, 16, 17, 18, 19, 20.
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Fig. 13 Variations of both static directed dyads, 012 and 102 (some-
times described as ‘Reciprocating Dyad’), and all 13 triad subgraphs.
* marks weakly connected subgraphs (where any node in a subgraph
cannot be reached by any other node) and A marks subgraphs with
strongly connected components (where there is a path between all
vertices in the subgraph). Triads are labelled in line with convention

(Batagelj and Mrvar 2001)
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Fig. 14 All 199 tetrads with
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Fig. 19 Spearman’s correla-
tion pairwise test matrix for the
static network ward representa-
tion
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Fig.20 Spearman’s correla- -1.00
tion pairwise test matrix for the
static-temporal network ward
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