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Abstract
Vital signs observations are regular measurements used by healthcare staff to track a patient’s overall health status on hospital 
wards. We look at the potential in re-purposing aggregated and anonymised hospital data sources surrounding vital signs 
recording to provide new insights into how care is managed and delivered on wards. In this paper, we conduct a retrospec-
tive longitudinal observational study of 770,720 individual vital signs recordings across 20 hospital wards in South Wales 
(UK) and present a network modelling framework to explore and extract behavioural patterns via analysis of the resulting 
network structures at a global and local level. Self-loop edges, dyad, triad, and tetrad subgraphs were extracted and evaluated 
against a null model to determine individual statistical significance, and then combined into ward-level feature vectors to 
provide the means for determining notable behaviours across wards. Modelling data as a static network, by aggregating all 
vital sign observation data points, resulted in high uniformity but with the loss of important information which was better 
captured when modelling the static-temporal network, highlighting time’s crucial role as a network element. Wards mostly 
followed expected patterns, with chains or stand-alone supplementary observations by clinical staff. However, observation 
sequences that deviate from this are revealed in five identified motif subgraphs and 6 anti-motif subgraphs. External ward 
characteristics also showed minimal impact on the relative abundance of subgraphs, indicating a ‘superfamily’ phenomena 
that has been similarly seen in complex networks in other domains. Overall, the results show that network modelling effec-
tively captured and exposed behaviours within vital signs observation data, and demonstrated uniformity across hospital 
wards in managing this practice.
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1 Introduction

Vital signs (e.g., blood pressure, heart rate, respiratory rate, 
temperature, level of consciousness, and oxygen saturation) 
are routinely recorded by healthcare staff in hospitals to 
track a patient’s overall health status. Individual vital sign 
scores are often combined into a single score as part of an 
Early Warning Score (EWS) system that measures vital 
signs across banded limits, such as NEWS-2 used within 
the UK (RCP 2012a). All patient vital signs recordings are 
required at regular observation intervals, which usually 
range between 15 min and 12 h, depending on the require-
ments of the ward. The propensity of certain observation 
intervals leads to clinical staff typically consolidating most 
routine patient observations into ‘ward rounds’ (ABUHB 
2017) 2–4 times a day (Noë et al. 2022) in a notably non-
uniform daily pattern of routine patient observations. It is 
also common that individual patient observation intervals 
are shortened as a cautionary response to threshold vital 
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signs observations (Johnson et al. 2014) with respect to 
the relevant hospital policy (VitalPAC and ABUHB 2017). 
These observations typically happen hourly, but can be as 
short as 10–15 min in severe deterioration cases (e.g., sepsis 
onset, NICE (2023), or whenever continuous monitoring is 
not feasible).

Managing routine vital signs observations while sup-
porting patients on individual intervals presents a complex 
challenge for clinical staff, reflected in documented com-
pliance issues (i.e., when vital signs recordings are missed 
or delayed). The resulting variability in how routine vital 
signs observations are undertaken raises questions for staff 
on wards, hospital managers, and policymakers on whether 
wards run an appropriate operating schedule and how they 
support the delivery of care to patients on different obser-
vation intervals within it. This creates research motivations 
in needing to provide a basis to help quantify and identify 
patterns in ward behaviour. However, there are limited data 
sources available to help quantify and aggregate this, due 
to the cost and impracticalities of having either human 
observers on wards or installing bespoke new technolo-
gies. To address this in this study, we re-purpose existing 
data produced as a result of vital signs observations being 
undertaken as they are now commonly being recorded on 
mobile devices. A challenge exists however in appropri-
ately modelling and summarising this activity. We propose 
a framework for modelling and analysing aggregated vital 
signs observation data as network graphs by considering the 
bed of the patient whose vital signs were measured as a node 
and generating a directed edge to the bed of the subsequent 
vital signs observation, if there is one (illustrated in Fig. 3).

Network modelling methods provide a versatile platform 
for understanding the structure and behaviour of complex, 
interconnected systems, and other aspects of healthcare sys-
tems have used these methods. For instance, network analy-
sis was used to identify communities in hospital services 
(Niyirora and Aragones 2020) and which ones are the most 
central (Flemming et al. 2022). Other fields that have poten-
tial influencing factors on network structures (e.g., fixed 
locations and regular paths between these), such as airline 
(Verma et al. 2014; Jingyi and Yifang 2014) and road traffic 
networks (Cogoni et al. 2023; Logan and Goodwell 2023) 
have also been explored.

In such networks, it has been shown that local substruc-
tures can evolve over time (Agasse-Duval and Lawford 
2018) and can be used to identify players that do not fol-
low common behavioural patterns. For instance, Bounova 
(2009) showed in their airline case study that most air-
lines keep to a typical ‘hub and spoke’ structure, whilst 
the Southwest airline operates with an unusually random 
flight pattern. Tracking patterns of substructure growth 
suggests however that Southwest has become more cen-
tralised, closer to the typical hub-spoke topologies of other 

airlines. In the context of a hospital, identifying typical 
ward operating behaviour, and therefore recognising wards 
that operate atypically, or have done so for certain periods, 
is critical information for hospital stakeholders as it may 
highlight important implications such as under-resourcing, 
but also may be indicative of the ward architecture and 
environment, or other aspects of staff management. This 
can then provide the basis for stakeholders to observe 
changes as a result of any policy, training, or management 
adjustments using patient vital signs observation patterns, 
ultimately helping to improve overall ward efficiency and 
patient care.

Using this framework, we model a large dataset of vital 
sign recordings across 20 hospital wards spread across 
multiple hospitals using different network representations 
and explore how behaviours can manifest in the network 
representation through analysing their inherent structures. 
In particular, we look to the relative frequency of highly 
recurrent substructure patterns (Milo et al. 2002, 2004a) 
within vital signs observation sequences in comparison to 
what may occur randomly as this has been shown to carry 
significant information about the given network’s function 
(Vázquez et al. 2004) without being influenced by mediat-
ing factors (such as size, specialism, etc). We also explore 
the similarities and differences within and across wards 
using these structures and how they can characterise the 
management of care in ward environments. We summarise 
our research motivations of this study using the following 
research questions: 

RQ1  Can vital signs observation sequences be effectively 
described using network modelling and analy-
sis methods to reveal behaviours in how care is 
managed?

RQ2  What specific local structures within network repre-
sentations of vital signs observation sequences can 
be identified as motifs, what are their relative signifi-
cance, and what could they represent in how care is 
managed?

RQ3  To what extent are networks derived from aggregated 
vital signs observations data individualised to wards, 
or do they exhibit similarities?

Through the modelling and analyses performed to answer 
these questions, we reveal new evidence of ward heuristics 
being used to help manage patient care, providing notable 
cross-disciplinary contributions: 

1. A novel framework for modelling sequences of patient 
vital sign observation recordings as a network represen-
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tation, and a discussion on how this can be flexible and 
scale to support broader applied applications;

2. The identification of ‘typical’ behaviours in vital sign 
observation sequences and a discussion of how this may 
be influenced by overarching care policies;

3. An evaluation of highly regular and irregular network 
substructures, and how these combine to create a com-
mon network signature that is unique to hospital wards.

1.1  Paper outline

This study is centred around modelling vital sign observa-
tions using different network representations and analyses 
the frequency of regular repeating isomorphic patterns, 
known as ‘subgraphs’, using appropriate statistical signifi-
cance measures, to identify those that occur more or less 
frequently than would be explained by random chance. The 
study outline is described in Fig. 1 and contributes 4 key 
results that describe vital sign observation management heu-
ristics in ward environments based on the networks and their 
local structures.

The remainder of the paper is organised as outlined 
below.

The Related Works section supplements the research 
motivations in the Introduction by discussing key related 
studies and identifying relevant research gaps that have 
informed our research questions. The Materials and Meth-
ods section then introduces the content of our dataset and the 
framework for modelling and analysing the data, including 
how we define two network models per ward appropriately 
from the dataset: one representation that aggregates all data 
points for the period and one that is defined by an additional 
temporal dimension. We continue with an explanation of 

how subgraph frequencies are counted and discuss which 
subgraphs are considered in this study. Next, we describe 
minimum probability, frequency, and distribution criteria 
that individual subgraph patterns will be tested against to 
determine whether they are representative of regular network 
behaviour. We follow by describing a statistical measure of 
relative abundance to determine their strength. Finally, we 
also describe the construction of a ‘null model’, to which the 
subgraph frequencies are compared against.

We begin our Results section by exploring the global 
structure of the networks using different network analy-
sis measures (e.g., density, clustering, and closeness) and 
how the topological structure changes with the addition 
of a temporal dimension. This is followed by categorising 
networks with a temporal element using high-level features 
to assess the consistency of observation sequence manage-
ment between wards. After considering these broad fea-
tures, we assess the local structure of the networks using 
subgraph analysis to observe how well represented specific 
sub-structures are relative to random networks (i.e., high 
relative significance), and consider their place as a network 
‘motif’ (Milo et al. 2002; Ashford et al. 2019). Finally, we 
use subgraph significance scores to construct fixed-length 
feature vectors for each individual ward, where the length 
is equal to the number of considered subgraphs. This func-
tional representation of individual ward network topologi-
cal structures can be used to determine the presence and 
strength of a Subgraph Ratio Profile grouping (Milo et al. 
2004a; Felmlee et al. 2021).

This is followed by the Discussion section, which exam-
ines the implications of the results against the research 
questions, as well as additional clinical implications. After 
this, the limitations of the study are discussed, along with 

Fig. 1  Flow diagram of study 
methodology
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suggestions for future work, including potential applications 
with machine learning. The paper concludes with a summary 
of the study and its contributions, as well as advantages and 
disadvantages of the proposed framework.

2  Related work

Traditionally, EWS systems have required manual calcula-
tion of total parameter scores and documentation on bedside 
paper charts, like the NHS’ NEWS2 vital signs observations 
chart (RCP 2012b). However, a significant portion of sec-
ondary care is undergoing a transition to electronic docu-
mentation using handheld mobile devices (NICE 2020), such 
as in the UK through the NHS Long Term Plan (NHS 2019).

Introducing electronic documentation and tracking for 
patient vital signs observations (also known as ‘e-obser-
vations’) has been shown to have improvements in docu-
mentation quality (Wong et  al. 2017; Prytherch et  al. 
2006; Cardona-Morrell et al. 2016; Downey et al. 2017; 
Ludikhuize et al. 2012), more time attributed to patient 
care (Gyi et al. 2019; Mohammed et al. 2009; Kolic et al. 
2015), and improved timeliness compliance (Gale-Grant 
and Quist 2018). It has also provided a basis for studies to 
retrospectively examine the data resulting from vital sign 
observations.

In this section, we outline our search strategy (Fig. 2), 
including key terms and selection criteria (Table 1) used 
to identify relevant studies. We summarise all retrospective 
studies on vital sign observations that present ward-level 
outcomes in Table 11. We then discuss the significant impact 
of e-observations, highlighting how their implementation 
has improved patient care and established a new field of 
study focused on the frequency and documentation com-
pliance of vital sign observations. Following this, we con-
sider the application of complex networks in various case 
examples for modelling and analysing human behaviour. We 
also discuss the usefulness of studying the topological struc-
ture and relative frequencies of subgraphs in understanding 
abstract and often obscured network behaviours, and how the 
combination of relative subgraph frequencies can facilitate 

a holistic comparison to other networks, including those of 
different types. Finally, we draw on the research gaps identi-
fied across these areas and discuss how they have informed 
the research questions and methodology used.

2.1  Search strategy

Due to the variability in datasets, study settings, and periods 
in this field, this study completed a scoping review to iden-
tify relevant publications that describe retrospective studies 
on a vital signs observations. Figure 2 reports the flow chart 
of the study selection, which begins with a literature search 
in the bibliographic databases PubMed and Google Scholar 
(title, abstract, keywords) using the following search terms:

“Vital signs” + “retrospective” + (“missed” or 
“VitalPAC”)

Table 1  Inclusion and exclusion criteria for literature review

Inclusion criteria Exclusion criteria

The paper is in English The paper is not in English
Peer reviewed journal or conference publication Other publication types, such as editorials, let-

ters, legal cases, and interviews
A retrospective longitudinal observational study of a vital sign observation dataset Qualitative or survey studies
Discusses outcomes of ward-level vital sign observation management features (such as fre-

quency and compliance to hospital policy)
Discusses patient outcomes or EWS effectiveness

Full text is available No full text available

Fig. 2  PRISMA flow diagram of literature search methodology
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and the following related search terms: “vital signs”, “Ret-
rospective”, Late, “CareFlow”, “e-obs”, “e-observations”, 
“electronic health record”. EndNote 20 referencing soft-
ware (Clarivate 2013) was used to screen titles and abstracts 
of returned studies and define a core subset of highly-cited 
studies that undertake a retrospective observational study 
on vital signs observation data. Subsequently, we used the 
‘snowball’ search method (Wohlin 2014) to identify addi-
tional works focused on ward-level outcomes in response to 
the procedure of undertaking vital sign observations (e.g., 
frequency and compliance to hospital policies). We excluded 
records that focused on individual patient outcome (e.g., 
mortality rates) and records that considered the predicative 
capabilities of vital signs when they are used as part of an 
EWS score. Relevant studies that discussed the implemen-
tation and handling of vital sign observation data inputting 
methods, such as VitalPAC, are included.

2.2  Analysis of vital signs observations

The literature search highlights that most retrospective stud-
ies on vital signs observation datasets are primarily focused 
on patient outcomes, however, we identified 19 studies that 
meet the inclusion criteria described in Table 1. The dataset, 
study setting, period, purpose, and results for all included 
papers are summarised in Table 11. Among these 19 studies, 
10 studies discussed both the frequency and compliance of 
documenting a complete set of vital signs in adherence to 
hospital scheduling policy, 7 only considered compliance, 
and the last 2, only examined the frequency. It is clear from 
this overview that the literature discussing ward-level out-
comes that arise from different vital sign observation man-
agement practices is still limited.

Shortcomings in the frequency and compliance of patient 
observations have been identified (Leuvan and Mitchell 
2008; Johnson et al. 2014; van Galen et al. 2016; Gale-Grant 
and Quist 2018; Eddahchouri et al. 2021; Jackson et al. 
2023) and have partially been attributed to staff interaction 
with e-observation systems (Miltner et al. 2014; Watson 
et al. 2014) and the impact of staffing levels or shift lengths 
on documentation compliance and timeliness (Armstrong 
et al. 2008; Dall’Ora 2017; Griffiths et al. 2018; Redfern 
et al. 2019; Dall’Ora et al. 2019; Smith et al. 2020). Addi-
tionally, studies have examined how the hourly volume of 
observations changes throughout the day (McGain et al. 
2008; Hands et al. 2013), and whether inter-wards differ-
ences (Noë et al. 2022) or notable periods (Kostakis et al. 
2021) can be identified. However, there has been limited 
consideration of the potential impacts of the sequence in 
which observations are undertaken, which informs the 
design of the modelling and analysis framework in the study.

E-observations of vital signs have been suggested to not 
only provide a practical and affordable clinical improvement 

(Gale-Grant and Quist 2018), but also opened new frontiers 
for inter-ward patient management analysis (Dall’Ora et al. 
2020; Griffiths et al. 2018) and the consideration of new 
patient management metrics, such as timeliness and com-
pliance (Watson et al. 2014). Wards have been shown to 
broadly align in daily observation volume distribution (i.e., 
typical ward round times) when categorised by observation 
interval distributions (Kostakis et al. 2021; Noë et al. 2022). 
A method to stratify vital signs observation timeliness with 
respect to the Time To Next Observation (TTNO) was also 
defined by the Missed Care Study Group (Griffiths et al. 
2018). This has led to further findings in the space, includ-
ing highlighting that shorter observation intervals and high 
NEWS patients have been shown to have the most vital sign 
observation omissions (Oliveira et al. 2022; Kostakis et al. 
2021; Redfern et al. 2019).

Despite the merits of e-observations, there has been evi-
dence of data consistency shortcomings and poor device 
implementation that can encourage nurse workarounds using 
traditional methods (RCP 2012a; Yeung et al. 2012), par-
ticularly when the ability to record legitimate reasons for 
missing observations is often omitted in the software (Hope 
et al. 2019). So far, works utilising e-observations datasets 
have been predominantly patient-focused, with most atten-
tion directed to evaluating EWS efficacy (e.g., Kellett 2011; 
Bleyer et al. 2011), but a few studies have corroborated the 
timeliness of vital signs observations to clinical staff man-
agement factors such as staffing levels (Griffiths et al. 2016; 
Redfern et al. 2019) and shift length (Dall’Ora et al. 2019) 
of registered nurses.

Other studies have also touched on well-established 
understandings of general intra-patient observation manage-
ment behaviours, such as how vital signs observations are 
consolidated into ward rounds (Hands et al. 2013), and how 
this practice changes when operating in different periods 
(such as COVID-19, Kostakis et al. 2021) or ward specialism 
(Noë et al. 2022). However, a notable gap exists across these 
studies in them having limited granularity in the behaviours 
exposed beyond the grouping into ward rounds). How vital-
sign observations are being undertaken and prioritised from 
patient to patient at a higher granularity forms the basis for 
the research methodology in this study.

2.3  Analysis of complex networks

Network modelling approaches have been used as a means 
to model and analyse complex systems. This includes analy-
sis within the healthcare domain where network analysis 
methods have been used to identify communities in hospital 
services (Niyirora and Aragones 2020), and which ones are 
the most central (Flemming et al. 2022). However, to the 
best of our knowledge, network modelling has not been used 
to model and examine human behaviour in the healthcare 
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domain, in a similar manner to other domains such as air-
craft (Agasse-Duval and Lawford 2018), or human mobility 
networks more broadly (Hossmann et al. 2011). At a high 
level, this research gap has informed the overarching meth-
odology of this study.

2.3.1  Network representations

There are further considerations in how the network models 
can be constructed and analysed. The network representation 
of vital signs observations is expected to be largely influ-
enced by common patient management procedures (such as 
deteriorating patient policies ABUHB 2017) that may dic-
tate the recurrence of specific network features (Alon 2003), 
much like how transportation links (Pellegrini et al. 2020) 
are physically constrained by roads. Because of this, ward 
operating policy will act as a key point of reference when 
contextualising the resulting network structures.

Static networks using simple graphs have been shown to 
be effective in representing key information on relationships 
between entities in complex systems (Milo et al. 2004b). 
Therefore, due to the limited literature surrounding represen-
tations of vital sign observation sequences, static networks 
inform a basis of the methodology in this study. However, 
as it is unclear to what extent modelling vital signs observa-
tion networks statically obscures dynamic ward-level behav-
iours and the possible causes behind them (Tantipathanana-
ndh et al. 2007), other network representations integrating 
a temporal element are also used and provide a basis for 
comparison. By considering the sequence in which edges 
occur, it is envisaged that this may provide a richer context 
to understand ward-management behaviour and determine 
interactions which occur simultaneously.

The ‘temporal’ network dimension brings additional chal-
lenges that distinguish it from static networks, and can be 
characterised in a number of ways. Existing methods either 
consider a ‘static-temporal’ network representation by mod-
elling networks as strictly growing where a pair of nodes 
connect once and stay connected forever (Leskovec et al. 
2007; Jacobs et al. 2015) or where a series of static network 
snapshots are taken at sequential moments in time (Tan-
tipathananandh et al. 2007; Mucha et al. 2010; Hulovatyy 
and Milenkovic 2015). Alternatively, a strictly ‘temporal 
network’ representation (Cinaglia and Cannataro 2022; Tu 
et al. 2018b) may also be considered, where the network is 
defined by a set of nodes and a collection of directed tem-
poral edges with a timestamp on each edge (Viswanath et al. 
2009; Paranjape et al. 2016). For this study, we compare the 
static network against a static-temporal network for which 
snapshots are defined by heuristic ward-level behaviour: 
ward rounds. Although this method has been suggested to 
overlook the continuity of dynamic systems by discard-
ing the relationship between each snapshot (Holme and 

Saramäki 2012) and thereby potentially limiting the ability 
to capture changes at a finer granularity (Paranjape et al. 
2016; Tu et al. 2018b), it has also been suggested that static 
networks are more precisely modelled when integrating this 
form of temporal data (Chen et al. 2013).

2.3.2  Network analysis and comparison

For the analysis of the different network representations, 
summative statistics of the global structure (e.g., density, 
degree centrality, and clustering coefficients) have widely 
been used to contextualise the properties of complex net-
works. These metrics do not only offer the potential to 
characterise a wide range of natural phenomena and human 
behaviour patterns but have also demonstrated correlations 
with measures of more local substructures within the net-
work (e.g., Vázquez et al. 2004; Turner et al. 2019).

Analysis of the sub-structures within networks using vari-
ous subgraph analysis methods (Jazayeri and Yang 2020) 
are adopted in increasing more fields since their original 
applications to biological networks (Milo et al. 2002; Shen-
Orr et al. 2002). This has included analysis of Wikipedia 
articles (Zlati et al. 2006) and editor behaviour (Wu et al. 
2011) interactions, as well as investigating the drivers 
behind network functions, such as identifying users involved 
in YouTube ad spam campaigns (O’Callaghan et al. 2021). 
This motivates addressing a further research gap in applying 
global and local network analysis methods to a new domain 
in this study, i.e., in network representations of vital signs 
observation data. Within subgraph analysis, a key considera-
tion is the size of the subgraphs. Whilst many studies focus 
on particular types of subgraphs, the most common being 
triads ( V = 3 , where V is the total vertices in the graph) 
(e.g., Milo et al. 2004b; Ashford et al. 2019; Turner et al. 
2019), others also include other degrees, such as dyads 
( V = 2 ) and/or tetrads ( V = 4 ) (e.g., (Felmlee et al. 2021; 
Tu et al. 2020b). Exploring subgraph groups together (e.g., 
both triads and tetrads) will provide the scope to determine 
the suitability of each in effectively capturing the nuances 
of network behaviours whilst ensuring robustness against 
potential different higher-order clustering (Milo et al. 2004b; 
Olaf 2004; Benson et al. 2016; Agasse-Duval and Lawford 
2018).

Importantly, the consideration of network self-loop edges 
is also underrepresented in subgraph analysis of complex 
networks, but they are also often missing in the networks 
analysed (e.g., social networks or protein structures) or may 
not be of interest, except in some demonstrated cases (Bec-
skei and Serrano 2000; Nitzan Rosenfeld and Alon 2002). 
However, this is a key consideration for vital sign observa-
tions, where multiple repeat observations could be under-
taken with a patient over a short period of time before the 
observation of another patient. A notable research gap exists 



Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:55  Page 7 of 37    55 

in developing a framework for considering a range of sub-
graph types along with self-loops that addresses the limita-
tions of existing approaches (e.g., gl2vec (Tu et al. 2020b)) 
that can be used to identify notable motifs in the network 
structure as well as serve as a richer basis for comparison 
across networks.

Various approaches have been proposed for counting the 
frequency of the chosen types of subgraphs or motifs (Jazay-
eri and Yang 2020). Within this, different approaches aim 
to address different challenges that can arise in the mining 
and counting process. For example, very large networks can 
cause the process to become too computationally expensive 
and too slow to be practical. This has resulted in various 
studies proposing the estimation of subgraph frequency 
counting, rather than exact counts (Lotito et al. 2024). This 
can include the adoption of machine learning in the meth-
odology, such as Graph Neural Networks (e.g., Besta et al. 

2022; Kanatsoulis and Ribeiro 2024). However, while these 
methods offer potential speed advantages, the disadvantages 
in potential inaccuracies should be considered with the 
application domain. In the context of this study, the network 
representations are relatively small as a result of the physical 
and environmental constraints of individual hospitals and 
wards with limited number of staff and beds. This knowledge 
combined with the context of safety in a healthcare domain 
motivates the use of exact subgraph counting in examining 
the current dataset. The existence of these methods however 
motivate a design consideration for our proposed framework 
in enabling flexibility for alternative counting methods (i.e. 
estimation) for future works.

Furthermore, assessing whether a selection of networks 
exhibit distinct or similar behaviours through global or local 
network measures (e.g., subgraph frequency analysis) can 
be challenging due to lack of comparable references. Milo 

Table 2  A simplified example 
set of vital signs observations 
recordings for a single ward

Example NEWS and ‘Concerned?’ scores are contextual for scope of further analysis

Observation Time Staff Patient Bed NEWS Concerned?

1 10:00 1 A 1 1 No
2 10:04 1 B 2 3 No
3 10:09 1 C 3 1 No
4 10:14 1 B 2 4 No
5 10:23 1 D 4 4 No
6 10:31 2 D 4 3 No
7 12:45 1 E 5 1 No

Table 3  Summary of 
characteristics for each of the 20 
study wards

Ward Year Ward type Total observations Staff IDs Patient IDs Bed IDs

W1 2019 Medical 44,573 183 904 32
W2 2019 Medical 47,533 129 1396 30
W3 2019 Surgical 44,837 251 1335 32
W4 2019 Surgical 42,356 226 1572 32
W5 2022 Gastroenterology 54,271 166 1403 31
W6 2022 Respiratory 45,515 184 1606 31
W7 2022 Medical 37,718 151 308 30
W8 2022 Medical 25,302 161 404 32
W9 2022 Cardiology 22,155 87 735 17
W10 2022 Rehabilitation 25,445 169 453 32
W11 2022 Medical 28,501 137 422 30
W12 2022 Care Of The Elderly 39,245 116 651 30
W13 2022 Rehabilitation 31,326 132 224 25
W14 2022 Cardiology 35,203 141 1352 24
W15 2022 Trauma & Orthopaedics 30,429 218 1267 28
W16 2022 Trauma & Orthopaedics 25,910 79 1764 35
W17 2022 Rehabilitation 11,970 100 178 18
W18 2022 Rehabilitation 28,408 53 233 34
W19 2022 Medical 9294 40 118 12
W20 2022 Rehabilitation 24,977 147 543 30
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et al. (2004a) presented an approach for comparing network 
substructures via a normalised feature vector of significance 
metrics (usually z-score or relative abundance ( Δ )) for all 
considered subgraphs. This is known as a Subgraph Ratio 
Profile (SRP), or Triad Subgraph Profile (TSP). Subgraph 
significance metrics are typically derived from subgraph 
abundance rates in the study network in comparison to sub-
graph appearance rates in an appropriate sample of equiva-
lent randomized networks (e.g., of the same size and degree 
sequence; Artzy-Randrup et al. 2004; Milenković et al. 
2009), called a “null model” (Wasserman and Faust 1994). 
This method facilitates comparison between numerous net-
works and is insensitive to network size and degree (Tu et al. 
2020a), and as such, has become an established method. 
SRP analysis has demonstrated unique profile groups across 
different networks such as the World Wide Web, Wikipedia 
articles, and global energy trade (Milo et al. 2004a; Zlati 
et al. 2006; Shutters et al. 2022). Additionally, SRP analysis 
has been applied for clustering similar networks (Ashford 
et al. 2019), tracking evolutionary changes in biological 
networks (Kashtan and Alon 2005), and serving as a vector 
for feature representation (Tu et al. 2020b), thereby ena-
bling comparisons with various machine learning analysis 
methods.

2.4  Summary of research gaps

The research gaps identified that will inform the methodol-
ogy of this study can be broadly summarised under several 
key areas. Firstly, as discussed in Sect. 2.2, previous stud-
ies have not explicitly modelled vital sign observations at 
a high granularity (e.g, sequences from one observation to 
the next). Most studies focus on patient outcomes, such as 

the effectiveness of EWS packages or the compliance with 
hospital documentation-practice policies. It is envisaged that 
the contributions of this study will complement these works 
by providing insight on ward behaviour at a higher granular-
ity and from an adjacent perspective.

Secondly, as discussed in Sects. 2.3 and 2.3.1, while net-
work representations and analysis has been used to model 
and explore a wide range of complex systems, including 
human behaviour in different domains, there has been lim-
ited use of modelling human behaviour in providing health-
care. Previous studies have shown how distinct behaviours 
can manifest in network representations of independent 
players within different case-study domains (e.g., social net-
works, road networks), and an opportunity exists to explore 
how distinct vital observation networks structures are for 
different wards and hospitals.

Thirdly, as discussed in Sect. 2.3.2 existing cross-discipli-
nary studies that do draw on network modelling techniques 
often focus on a single group of subgraphs (e.g. triads) and 
also omit or under-represent self-loop edges. A feature of 
the vital signs observation data is that doing so would over-
look key behaviours, such as a clinical staff member rapidly 
repeating a vital sign observation, or the impact of architec-
tural features in wards (i.e., if rooms have one, two, or four 
beds). This would have a notable effect on practical applica-
tions in what could be effectively derived from wards and 
for comparisons within and across them. There is therefore 
an opportunity alongside the exploration of the dataset for 
an extended representation of different types of subgraphs 
in the motif discovery and comparison methodology and 
analysis that could also be used more generally beyond this 
study in the analysis of networks.

Fig. 3  Visual representation of 
the example set of vital signs 
observations (Table 2) and its 
corresponding network repre-
sentation
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3  Materials and methods

This study employs a vital signs observations dataset spanning 
20 wards from various hospital sites and different specialisms. 
Utilising this dataset, we present a framework that models this 
data through multiple network representations with an objec-
tive to analysis key properties of their structure and facilitate 
comparison of the similarities and differences in the behaviour 
surrounding the management of patient care.

3.1  Data overview

In this study, we examine a large dataset of 770,720 indi-
vidual vital sign observations, for which we define an ‘vital 
sign observation’ as a 7-dimensional vector that includes: 
observation number, time of observation, staff ID, patient 
ID, bed ID, NEWS, and staff concern (a checkbox, option-
ally selected at the bedside, indicating either ‘yes’ or the 
default ‘no’). We describe an example set of 7 anonymised 
vital signs observations in Table 2. This study spans 20 dif-
ferent wards of 8 different specialisations (medical, surgical, 
rehabilitation, care of the elderly, orthopaedic, cardiology, 
and acute stroke) from 7 different hospital sites run by the 
Aneurin Bevan University Health Board (ABUHB) in South 
Wales, UK (see Table 3). The selected wards have a con-
sistent framework of e-observations and staff have received 
substantiated e-observations training. Additionally, the time-
frames were chosen such as that e-observations were consist-
ently recorded for a full year (4 wards for 2019 and 16 for 
2022). The dataset is compiled from CareFlow eObserva-
tions,1 a software installed on mobile devices on wards (e.g., 
iPod Touch, or an equivalent small tablet) which, among 
other features, allow vital signs data to be entered at the bed-
side. CareFlow Vitals also performs automatic NEWS scor-
ing and observation-interval calculations (ABUHB 2017).

3.2  Static network construction

To the best of our knowledge, no-one has yet represented a 
vital sign observation dataset as a network of clinical staff 

movement patterns. Let the vital sign observation network 
of a given ward be defined by G = (V ,E) , where each bed is 
represented by a node v ∈ V. To maintain continuity between 
observation recordings, nodes were chosen to represent bed 
IDs rather than patient IDs, since patients may move during 
their stay, whereas bed configurations are largely consist-
ent and therefore a more accurate reflection of regular ward 
actions. Directed edges are added to the network by iterating 
over observation records in ascending time order. An edge 
( vi , vj ) ∈ V  indicates that an observation has taken place in 
the bed vj directly after an observation in bed vi . We allow 
self-loops ( vi , vi ), but not multi-edges (where the same bed 
sequences can occur multiple times). This is illustrated in 
Fig. 3.

3.3  Subgraph discovery and time complexity

The results of this study are determined by the frequencies of 
induced directed subgraphs of V nodes, i.e., V = 2 (dyads), 
V = 3 (triads), V = 4 (tetrads), and self-loop edges. We treat 
self-loop edges as ‘single-node network motifs’ to reduce 
the huge number of higher-order subgraph permutations 
that would need to be considered otherwise (i.e., for each 
triad subgraph, 7 self-loop variants would also be possible, 
and 15 for each tetrad subgraph), therefore reducing analy-
sis complexity (Nitzan Rosenfeld and Alon 2002) and noise 
(Becskei and Serrano 2000). The broad range of subgraph 
degree sequences will ensure robustness when identifying 
superfamily behaviour and provide more leverage to expose 
different organisational patterns between wards (Milo et al. 
2004b; Benson et al. 2016). We also follow the common 
practice to reduce the 16 possible isomorphic directed triads 
to the 13 weakly connected triads (Tu et al. 2018a; Felmlee 
et al. 2021), excluding those that do not include all three 
nodes (003, 012, 102, see Fig. 13) and evaluate a dyad rep-
resentation (described as triads 012 and 102 in Fig. 13) sepa-
rately (Benson et al. 2016). The same practice is used for 
tetrads (e.g., Kashtan and Alon 2005; Krumov et al. 2011; 
Shen-Orr et al. 2002), for which we use a sample of the 199 
weakly connected directed tetrads (McMillan and Felmlee 
2020) (Fig. 4).

This study utilises two tools for the discovery of network 
subgraphs of degrees V = 1 to V = 4:1 CareFlow eObservations is a software product from SystemC, for-

merly known as VitalPAC, as part of a broader Electronic Patient 
Record (EPR) package (SystemC 2017, 2023).

Fig. 4  Triads and tetrads represented in the example network shown in Fig. 3, where the full catalogue of triads is demonstrated in Fig. 13 and 
the full catalogue of Tetrads is demonstrated in Fig. 14



 Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:55    55  Page 10 of 37

• NetworkX Triadic Census2 for subgraph instances of 
degree sequences V = 1 , V = 2 , and V = 3 (see Fig. 13).

• gTrieScanner3 for subgraph instances for degree 
sequence V = 4 (see Fig. 14).

We utilise two methods for this study because of the 
diverse nature of subgraphs that are considered. The Tri-
adic census program does not count subgraphs of greater 
degree than V = 3 , and gTrieScanner does not support 
counting dyad and self loop edges, which are also essential 
components of this study. The NetworkX triadic census 
sub-quadratic algorithm suggests a time complexity O(|E|), 
where E is the number of edges in the network graph, 
to record subgraph frequencies for all directed subgraphs 
of degree sequences V = 1 , V = 2 , and V = 3 in ’large’ 
and ’sparse’ networks. In other cases, the program uses 
an algorithm of quadratic complexity O(|V|2) , where V is 
the number of vertices (Batagelj and Mrvar 2001; Moody 
1998). Our networks are typically small, where V = 32 
in our largest wards, so even in a connected graph repre-
sentation we expect low latency. The time complexity for 
defining a census of degree n subgraphs using a gTrie data 
structure method in practical applications is effectively 
managed by the structure of the network graph. Ribeiro 
and Silva (2010) suggests that their gTrie algorithm per-
forms worst for dense graphs with deep trees, however, the 
method still outperformed alternative algorithms. For our 
application of moderately sized graphs and relatively small 
subgraph patterns, we can expect low latency for defin-
ing subgraph censuses. We also considered using machine 
learning for probabilistic network motif mining, with the 
main advantage being speed, though it comes with the 
trade-off of being an approximation (Ribeiro et al. 2021; 
Oliver et al. 2022). In the context of this study and the 
relatively small network sizes, exact subgraph counting 
and motif extraction is considered suitable. However, the 
methodology here is flexible for any future applications 
that would have significantly larger networks.

3.4  Static‑temporal network construction

We also consider including temporality by building addi-
tional network representations from sequences of vital 
signs observations undertaken in quick succession by indi-
vidual clinical members of staff. We note that the number of 

patients observed within a staff ward round is highly varied 
and non-standard, from regular single patient entries (illus-
trated by Healthcare Staff 2 in Fig. 3) up to as many as 20 
vital sign observations long. We consider each temporally 
sequential ward round as a static network ‘snapshot’ that 
is evaluated individually, before aggregating the results for 
ward-level comparisons. Figure 5 illustrates how the exam-
ple vital signs observation recordings in Table 2 would be 
represented as three isolated network components, and Fig. 6 
highlights the extracted subgraph patterns.

CareFlow e-Observations provide no predefined label-
ling for when a vital sign observation has been completed 
as part of a ward round. To our knowledge, the current lit-
erature has also not discussed any formal definition as to 
what can be considered a consistent start and end point 
of different ward rounds. We therefore define that when a 
clinical staff member is no longer undertaking vital signs 
observations in ‘quick succession’ as the end point of a ward 
round, where the time between observations exceeds a speci-
fied � , in minutes. � must be inclusive of short additional 
duties that occur within rounds (e.g., escalating a patient 
to a senior staff member or assisting with a patient comfort 
break before returning to the round), yet exclude other core 
duties (e.g., washing, clinical investigations, handovers, drug 
rounds, ward-transfers and mealtimes) (Hands et al. 2013). 
Additionally, � should be calculated on a per-ward basis as 
architecture, staffing levels, and time to complete observa-
tions differ significantly by ward size and type. However, � 
should also be small enough to avoid incorporating the start 
of subsequent observation sequences or stand-alone obser-
vations (such as hourly patients) to not over-inflate volumes 
of complex observation sequences. Therefore, it is practical 
to calculate � for a specific ward by utilising the function 
for the time taken to ‘miss’ a patient’s vital signs observa-
tion (e.g., 2× observation interval + observation interval, 
Noë et al. 2022), based on the shortest observation interval 
administered to a patient in that ward over the entire study 
period. In practice the shortest patient observation interval 
varies between wards, typically being 10 or 15 min, thus � 
is usually 30 or 45 min.

3.5  Statistical analysis

This analysis is rooted in statistical methods to identify sub-
graphs that occur dis-proportionally frequently to those seen 
in a null model, indicating that they may represent likely 
network motifs or anti-motifs. We use these to establish 
similarities and differences in how wards operate and to 
identify key behaviours that are abundant and those that are 
uncommon.

2 Triadic census is a tool within the NetworkX Python library. Soft-
ware and user’s guide available at https:// netwo rkx. org/ docum entat 
ion. html.
3 gTrieScanner (Ribeiro 2014) is a software that uses the g-trie data 
structure to count occurrences of induced subgraphs according to 
their isomorphic class (McKay 1981; Patra 2020) within larger net-
work graphs (software and users guide available at https:// www. dcc. 
fc. up. pt/ gtries/ output).

https://networkx.org/documentation
https://networkx.org/documentation
https://www.dcc.fc.up.pt/gtries/output
https://www.dcc.fc.up.pt/gtries/output


Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:55  Page 11 of 37    55 

Fig. 5  Adjusted network representation of the example network in 
Fig. 3. The network is segregated into 3; two ’stand-alone’ observa-
tions, one by Healthcare Staff 1 and one by Healthcare Staff 2, and 

one that can be described as an ’immediate intermediate patient 
return’ by Healthcare Staff 1

Fig. 6  Clinical staff action in the static-temporal networks illustrated 
in Fig. 5 can be represented by four subgraphs; a reciprocating dyad, 
two triads, (111D and 111U, Fig. 13), and one tetrad (T5, Fig. 14)

3.5.1  Null‑model network construction

We construct our null model as the average of 100 ran-
dom networks that are generated as similar as possible to 
the original dataset. This ensures statistical meaning in the 
results (Milo et al. 2004a; Ribeiro et al. 2009), avoids biased 
estimates of subgraph presence in the case of highly skewed 
degree sequences (Artzy-Randrup et al. 2004), and prevents 
an overly well-rounded significance profile as a result of the 
noise in the data. To achieve this, we additionally control 
the distribution of in-degree and out-degree vertices to node 
and edge volumes, known as a Bi-Degree Edge (BDE, Milo 
et al. 2004a; Shen-Orr et al. 2002; Kashtan and Alon 2005; 
Yeger-Lotem 2004) or Bi-Degree Sequence (BDS, Tu et al. 
2020a) model. BDE models are typically appropriate for 
networks whose connectivity distribution differs markedly 

from that of a random graph with uniformly distributed links 
(Berg and Lässig 2004). Each randomly generated network 
is intended to represent a random staff path through a virtual 
ward (like the example paths illustrated in Fig. 3. Individual 
clinical staff cannot produce a directed edge from patient A 
to patient B and then a subsequent edge from patient D to 
patient E without first producing an edge from patient B to 
patient D).

3.5.2  Statistical thresholds for subgraph frequency 
and uniqueness

A formal definition for network motif candidate detection 
was given by Ribeiro et al. (2009), derived from the work 
of Milo et al. (2002), and has become a popular method 
in this area (Kashani et al. 2009; Patra 2020). Ribeiro and 
colleagues suggest that an induced size-k subgraph Gk of a 
graph G is a network motif when, for a given (self-selected) 
set of parameters {P, U, D, N} (where P is the probability 
threshold, U is the uniqueness threshold, D is the propor-
tional threshold, and N is the number of random similar 
networks), it satisfies three conditions:

Fig. 7  The vital sign observations dataset for W1 visualised as a 
static network

Fig. 8  Visualisation of a sample of 100 staff vital sign observation 
sequence networks extracted from the W1 dataset
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• Condition 1: Over-representation 

 The number of random networks in which Gk appears 
more than the input network, divided by the number 
of networks in the random ensemble, where frand(Gk) 
denotes the frequency of the subgraph Gk in the random 

(1)Prob(frand(Gk) > freal(Gk)) < P

network ensemble, freal(Gk) denotes the frequency of Gk 
in the network being analysed, and P defines the prob-
ability threshold. For anti-motifs, the probability that 
they appear in randomized networks fewer times than in 
the real network is Panti−motif < P , where P = 0.01 (Milo 
et al. 2002; Milo et al. 2004b): 

(2)Prob(frand(Gk) < freal(Gk)) < P

Table 4  Summary of network 
characteristics for the 20 
study wards for both static 
and static-temporal network 
representations

Where Nedges is the number of edges, Rsl is the ratio of self-loop to non-self-loop edges, �sl is the density 
inclusive of self-loops, � is network density excluding self-loop edges, clus� is the average network cluster-
ing coefficient and clos� is the average network closeness coefficient

Static network Static-temporal network

Ward Nedges Rsl �sl � clus� clos� Nedges Rsl �sl � clus� clos�

W1 44,572 0.1 1.03 1 1 1 35,565 0.6 0.2 0.16 0 0.19
W2 47,532 0.13 1.03 1 1 1 39,506 1.02 0.23 0.18 0.01 0.22
W3 44,836 0.13 1.03 1 1 1 34,064 0.63 0.2 0.15 0 0.18
W4 42,355 0.13 1.03 1 1 1 32,550 0.74 0.2 0.15 0 0.19
W5 54,270 0.16 1.03 1 1 1 43,897 1.08 0.28 0.21 0.02 0.26
W6 45,514 0.23 0.92 0.89 0.91 0.91 33,322 0.98 0.31 0.2 0.01 0.23
W7 37,717 0.1 1.03 1 1 1 33,100 1.03 0.16 0.13 0 0.18
W8 25,301 0.12 1.01 0.98 0.99 0.98 21,185 0.83 0.15 0.12 0 0.15
W9 22,154 0.18 1.06 1 1 1 13,192 0.56 0.42 0.31 0 0.32
W10 25,444 0.13 1.03 1 1 1 20,256 0.7 0.19 0.15 0 0.18
W11 28,500 0.14 1.03 1 1 1 22,956 0.85 0.2 0.15 0 0.18
W12 39,244 0.14 1.03 1 1 1 33,027 1.1 0.22 0.17 0.01 0.22
W13 31,325 0.13 1 0.96 0.98 0.97 27,041 1.04 0.18 0.14 0 0.18
W14 35,202 0.14 1.04 1 1 1 27,332 0.75 0.19 0.15 0 0.18
W15 30,428 0.14 1.04 1 1 1 24,438 0.87 0.27 0.21 0.01 0.26
W16 25,909 0.12 0.71 0.69 0.92 0.79 18,343 0.38 0.24 0.2 0.01 0.24
W17 11,969 0.15 1.06 1 1 1 10,168 0.96 0.15 0.12 0 0.16
W18 28,407 0.14 1.03 1 1 1 23,970 1 0.17 0.13 0 0.17
W19 9293 0.15 1.09 1 1 1 7,505 0.63 0.15 0.13 0 0.16
W20 24,976 0.13 1.03 1 1 1 20,554 0.78 0.16 0.13 0 0.17

Fig. 9  A non-exhaustive 
example set of vital signs 
observation sequence networks 
( V = 4 ) defined by 5 broad 
categories: A, a stand-alone 
vital sign observation, B, a rap-
idly repeated stand-alone vital 
signs observation, C, a vital 
sign observation sequence, D, a 
vital sign observation sequence 
with a single repeated vital sign 
observation for one patient, 
and E, a vital sign observation 
sequence with multiple repeated 
vital sign observations
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• Condition 2: Minimum frequency 

 where freal(Gk) denotes the frequency of the subgraph 
Gk in the real network and U defines the frequency 
threshold.

• Condition 3: Minimum deviation 

freal(Gk) should be significantly larger than frand(Gk) to 
prevent the detection of motifs that have a small differ-
ence between these two values but have a narrow dis-
tribution in the random networks. D is the proportional 
threshold that ensures the minimum difference between 
freal(Gk) and frand(Gk) . For anti-motifs, there should be 
a minimum difference between frand(Gk) and freal(Gk) , 
where D = 0.1 (Milo et al. 2002): 

There are no widely accepted exact thresholds for these con-
ditions, but it is commonly argued that the more restricted 
thresholds yield more precise motifs (Kashani et al. 2009). 
A subtle variation is the notion of an anti-motif Milo et al. 
(2004a), which is a significantly under-represented subgraph 
that has also shown to be meaningful (Baskerville and Pac-
zuski 2006; Ashford et al. 2019). We use the same values 

(3)freal(Gk) ≥ U

(4)freal(Gk) − frand(Gk) ≥ D × frand(Gk)

(5)frand(Gk) − freal(Gk) ≥ D × frand(Gk)

for P, D, and U as Milo et al. (2002) as a basis for motif and 
anti-motif candidate selection (Milo et al. 2004b).

3.5.3  Motif (and anti‑motif) candidate statistical analysis

Typically, after being selected by passing all criteria in 
Sect. 3.5 original and null frequencies of motif (and anti-
motif) subgraphs are subsequently assessed using statistical 
significance measures such as the Z-score (Milo et al. 2002) 
or relative abundance ( Δ ) (Milo et al. 2004a). Consider-
ing the large variation of ward sizes (Table 3) and patient 
throughput in the study dataset, we apply Δ as our signifi-
cance metric for robustness against different network sizes 
when evaluating the appearances of small subgraphs (Ciri-
ello and Guerra 2008).

The error term � has been shown to work well when set to 3 
for triads and 4 for tetrads (Milo et al. 2004a; Felmlee et al. 
2021) to prevent the relative abundance approaching infinity 
in rarely counted subgraphs (Patra 2020). We then calculate 
the Subgraph Ratio Profile, which is the normalised value 
of Δ.

(6)Δ(Gk) =
freal(Gk) − frand(Gk)

freal(Gk) + frand(Gk) + �

Table 5  Summary of routine 
clinical staff vital sign 
observation sequences type 
volumes for each of the 20 
study wards

Observation sequence type descriptions are illustrated in Fig. 9

Ward Total ‘rounds’ A % B % C % D % E %

W1 9008 2409 26.7 1927 21.4 2916 32.4 640 7.1 1116 12.4
W2 8027 1712 21.3 1708 21.3 1850 23 740 9.2 2017 25.1
W3 10,773 3567 33.1 2351 21.8 2623 24.3 896 8.3 1336 12.4
W4 9806 2930 29.9 2358 24 2293 23.4 791 8.1 1434 14.6
W5 10,374 1991 19.2 2225 21.4 2676 25.8 1277 12.3 2205 21.3
W6 12,193 3040 24.9 3244 26.6 2088 17.1 1427 11.7 2394 19.6
W7 4618 645 14 1225 26.5 1249 27 382 8.3 1117 24.2
W8 4117 995 24.2 1092 26.5 1007 24.5 322 7.8 701 17
W9 8963 2444 27.3 1669 18.6 3130 34.9 1191 13.3 529 5.9
W10 5189 1398 26.9 1211 23.3 1472 28.4 445 8.6 663 12.8
W11 5545 1301 23.5 1459 26.3 1369 24.7 514 9.3 902 16.3
W12 6218 950 15.3 1516 24.4 1640 26.4 667 10.7 1445 23.2
W13 4285 724 16.9 1014 23.7 1139 26.6 406 9.5 1002 23.4
W14 7871 2150 27.3 1950 24.8 1859 23.6 800 10.2 1112 14.1
W15 5991 1195 19.9 1216 20.3 1797 30 623 10.4 1160 19.4
W16 7567 2399 31.7 1153 15.2 2914 38.5 527 7 574 7.6
W17 1802 352 19.5 517 28.7 411 22.8 142 7.9 380 21.1
W18 4438 959 21.6 1143 25.8 1061 23.9 394 8.9 881 19.9
W19 1789 490 27.4 434 24.3 527 29.5 120 6.7 218 12.2
W20 4423 1108 25.1 1140 25.8 1155 26.1 369 8.3 651 14.7
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3.5.4  Subgraph catalogue reduction

As mentioned in Sect. 3.2, there are 217 subgraph vari-
ations, with some potentially over- or under-represented 
in the networks. The literature suggests various methods 
that reduce the catalogue of subgraphs used for evaluation. 
Ribeiro (2011) recommends only searching in the null 
model for subgraphs that appear in the original network 
to reduce execution time (Shutters et al. 2022), however, in 
cases where anti-motifs (where subgraph patterns are dis-
tinct if dis-proportionally under-represented) are also con-
sidered, a complete census must still be performed. Berg 

(7)SRP(Gk) =
Δ(Gk)√∑
Δ(Gk)

2

and Lässig (2004) also suggests that tetrad variations of 
triad subgraphs, such as those with a ‘dangling’ edge (i.e., 
a 3-node subgraph plus one incoming or outgoing edge), 
can also be excluded from searches to reduce execution 
time. Other work uses statistical significance metrics to 
reduce the subgraph catalogue after a full census has been 
completed, through either selecting the top n subgraphs by 
rank (Milo et al. 2004b) or only discussing subgraphs over 
a significance threshold (McMillan and Felmlee 2020).

For our results, we reduce our subgraph catalogue using 
a “Concentration” metric, ( C(Gk) ), which is determined 
by how frequently a subgraph GK appears in comparison 
with other subgraphs of the same size (Milo et al. 2004b). 
Z-scores for all subgraphs will be presented in the Appen-
dix. If there are n number of size-k subgraphs in a network, 
then C(Gki

) of the ith subgraph Gk is defined as:

Table 6  Number of wards (N) 
in which a given subgraph 
meets motif ( N

m
 ) and anti-

motif ( N
a−m ) candidate criteria, 

truncated by non-zero values 
for subgraph concentration 
( C(G

k
) ), mean ( � ), and standard 

deviation ( �)

Full concentration profiles are shown in Figs. 15 and 16. Both the static and static-temporal network con-
struction results are shown. Values equivalent to 0 to 2 decimal places are blocked out

Static Static-temporal

Subgraph Nm Na−m C(Gk) � C(Gk) � Nm Na−m C(Gk) � C(Gk) �

Non-self-loop 0.96 0.01 20 0.82 0.05
Self-loop 0.04 0.01 20 0.18 0.05
Dyad (012) 1 0.02 0.05 13 0.98 0.01
Rec. Dyad (102) 1 0.18 0.38 3 0.02 0.01
021D 1 20 0.01 0.01
021U 1 20 0.01 0.01
021C 20 0.93 0.04
111D 2 0.01 0.02 4 0.02 0.01
111U 2 0.01 0.02 4 0.01 0.01
030C 1 1 0.01 0.01
201 1 0.01 0.02
120C 0.01 0.01
210 1 0.02 0.05
300 1 0.95 0.12
T1 1 20 0.02 0.01
T2 20 0.01 0.01
T5 1 1 0.01 0.01
T11 1 20 0.01 0.01
T12 20 0.86 0.09
T15 20 0.02 0.01
T18 1 1 0.01 0.01
T20 1 0.01 0.01
T34 1 0.01 0.01
T37 1 0.01 0.01
T73 0.01 0.01
T195 1 0.01 0.02
T197 3 0.01 0.04
T198 1 0.93 0.17
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We exclude 0 values (to two decimal places) for subgraph 
concentration mean, ( C(Gk)� ), and standard deviation, 
( C(Gk)� ). This accounts for variation in network size and 
degree when sampling for motifs based on frequency (Ciri-
ello and Guerra 2008).

(8)Creal(Gk) =
freal(Gk)∑n

i=1
freal(Gki

)

3.5.5  Subgraph ratio profiles

We then use the reduced catalogue of subgraphs to define 
an SRP for each ward vital signs observations network. 
This not only presents a clear visual representation of the 
relative strengths of the local patterns within it, but also 
allows us to compare against other networks, including 
those of different types. Here, we conduct an analysis of 
statistical similarity between the profiles of the different 
wards using correlation tests similarly to other types of 
complex networks (e.g., Milo et al. 2004b). The feature 
vectors will firstly be tested for normality using one-sam-
ple Kolmogorov–Smirnov tests to determine whether the 
correlation should use an appropriate parametric or non-
parametric test. Then, dependent on the strength of the 
correlation results, we use the strength and sign of the 
correlations to determine whether ward networks are indi-
vidual, clustered, or form a hospital ward “superfamily” 
profile. External features, which in our case could be ward 
size or specialism, have shown to develop clusters in col-
lections of networks within others non-medical domains 
(Ashford et al. 2019; Tu et al. 2020b) or across domains 
(Milo et al. 2004a; Shutters et al. 2022).

Fig. 10  Truncated SRPs of 
both static and static-temporal 
network constructions. SRPs 
are truncated by excluding sub-
graphs with C(G

k
) � values less 

than 0.01 for their respective 
construction. Subgraph labels 
in bold represent subgraphs 
that pass all motif or anti-motif 
candidate criteria discussed 
in Sect. 3.5. Figures 17 and 
18 illustrate the non-truncated 
SRPs for both the static and 
static-temporal networks

Table 7  Median (Mdn), mean ( � ) and standard deviation ( � ) of 
Spearman’s correlation coefficients, denoted as r, of the static tem-
poral network construction SRP profiles for a selection of subgraph 
groupings

Median, mean, and standard deviation values are calculated from all 
ward comparison tests ( N = 190 ). Figures  19 and 20 show the full 
pairwise test matrices for the static and static-temporal network con-
struction, respectively

Subgraph group rMdn r� r� number of 
tests with 
p < .05

All subgraphs 0.760 0.715 0.147 190
self-loops & dyads 1.000 1.000 0.000 190
triads 0.957 0.941 0.049 190
tetrads 0.692 0.630 0.202 176
self-loops, dyads & triads 0.968 0.962 0.025 190
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4  Results

We divide our results into three subsections; Network 
Structure (4.1), Subgraph Analysis (4.2), and Subgraph 
Ratio Profile Analysis (4.3). We examine network metrics 
(such as density, closeness, and clustering) across the over-
all structure of the networks, and categorise observation 
sequences in the static-temporal construction for a broad 
overview of the staff behaviour patterns. Then, we describe 
the concentration and relative frequency of subgraphs. This 
includes evaluating the execution time required for the fre-
quency analysis, identifying motifs within the network, and 
assessing the strength of these motifs. This is followed by 
a comparison of ward SRPs using pairwise test matrices, 
to determine the extent of any correlation and whether the 
networks are similarly structured. Finally, we summarise the 
key findings.

4.1  Network structure

Table 4 introduces both network constructions using vari-
ous metrics (where Nedges is the number of edges, Rsl is the 
ratio of self-loop to non-self-loop edges, �sl is the density 
inclusive of self-loops, � is network density excluding self-
loop edges,4 clus� is the average network clustering coeffi-
cient and clos� is the average network closeness coefficient). 
All wards appear to be highly interconnected and tend to 
form a connected graph when modelled as a static network 
across extended periods (Fig. 7). High network density with 
( � = 1.02 , � = 0.078 ) and without including self-loops 
( � = 0.98 , � = 0.070 ), clustering ( � = 0.99 , � = 0.026 ), and 
closeness ( � = 0.98 , � = 0.051 ), may obscure any nuance 
in potential behaviour patterns. The static-temporal net-
work is much less interconnected, with low ward network 
density (with self-loops ( � = 0.21 , � = 0.067 ) and without 
self-loops ( � = 0.17 , � = 0.040 )) and closeness ( � = 0 , 
� = 0.004 ), and negligible clustering ( � = 0.20 , � = 0.041 ). 
This is a reflection of the expected short and typically simple 
vital sign observation sequences that make up a clinical staff 
path during a ward round (see Fig. 8). It is clear that there 

is general similarity seen across wards and sites, especially 
in the highly interconnected static network, which will be 
reflected by highly interconnected subgraphs, such as triad 
300 or tetrad T199. On the other hand, the much less inter-
connected static-temporal network maintains some notable 
variability that motivates exploring the substructures further.

The broad structure of routine vital sign observation 
sequences by clinical staff in the static-temporal model was 
categorised by the occurrence of a repeated vital sign obser-
vation within the sequence, or lack thereof. This exercise 
provides context to the volume of clinical staff vital sign 
observation sequences that are complex enough for a vari-
ety of network sub-structures to occur. Figure 9 describes 
five broad observation sequence categories: A, a stand-alone 
vital signs observation, B, a rapidly repeated stand-alone 
vital sign observation, C, a vital sign observation sequence, 
D, a vital sign observation sequence with a single repeated 
vital sign observation for one patient, and E, a vital sign 
observation sequence with multiple repeated vital sign 
observations.

About 75–80% of static-temporal ‘snapshots’ are 
either stand-alone vital sign observations, repeated stand-
alone vital sign observations, or sequential vital signs 
observation sequences (categories A, B, and C in Fig. 9 
respectively). None of these categories can be effectively 
described using subgraph analysis due to their low com-
plexity (see Table 5). Sequences where clinical staff rap-
idly repeat vital sign observations once to one patient 
(category D, Fig. 9) represent 7–13% of all vital signs 
observation sequences, with the rest comprised of high 
complexity sequences (category E, Fig. 9), which are sus-
pected to represent key ‘non-routine’ ward behaviours. 
The distinct relative similarity between all wards for vital 
signs observation sequence type volumes is representative 
of an abstracted operating policy and/or precedent. How-
ever, we also observe a significant spread of D ( � = 9.18% , 
� = 1.79% ) and E ( � = 16.86% , � = 5.46% ) type vital sign 
observation sequence proportions that is indicative of flu-
idity in ward operating behaviour.

Table 8  The mean, � , and the 
standard deviation, � , of the 
execution time to complete a 
census of subgraph frequencies 
for a ward on non-specialised 
computing equipment

Network construction Subgraph census Runtime � (s) Runtime � (s)

Static Self-loops, Dyads, and Triads 0.008 0.04
Tetrads 0.019 0.01
All 0.027 0.014

Static-temporal Self-loops, Dyads, and Triads 0.241 0.091
Tetrads 0.037 0.019
All 0.279 0.108

4 In networks where self loops are counted in the total number of 
edges graphs can have density higher than 1.



Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:55  Page 17 of 37    55 

4.2  Subgraph analysis

4.2.1  Motif identification

Table 6 describes the number of wards (N) in which a given 
subgraph meets all three statistical criteria for motif candidacy 
(Sect. 3.5), truncated by non-zero (to 2 decimal places) values 
for C(Gk) � and C(Gk) � values (Figs. 15, 16 show the full con-
centration profiles for both network constructions). C(Gk) has 
been calculated in four separate groups respective to subgraph 
degree sequence: Nodes and self-loops, dyads, triads, and tet-
rads. These methods exclude motif and anti-motif candidates 
with insignificant C(Gk) scores across all study wards from 
further investigation, since low appearance volumes cannot 
be used to calculate statistical significance reliably. The cal-
culated C(Gk) values reflect the results in Sect. 4.1 and Figs. 7 
and 8. The static network sees high counts for completely 
connected subgraphs (reciprocating dyad, 300, and T198), 
whereas the primary concentrations for the static-temporal 
model represent highly disconnected subgraphs that illustrate 
a chain of observations (012, 021C, and T12).

Subgraphs identified to be motif (or anti-motif) candi-
dates from the criteria detailed in Sect. 3.5 across all or a 
majority of wards likely reflect routine (or highly irregular) 
ward behaviours, and subgraphs identified as motif or anti-
motif candidates across some wards may represent behav-
iours relating to a ward characteristic, such as specialisation 
or site. Considering Table 6, there is low representation for 
both motif and anti-motif candidates in the static network, 
showcasing that the most common subgraphs are not nec-
essarily network motifs, and that uniformity seemingly 
prevents variation in subgraph appearance. Again, in the 
static-temporal construction the most prominent subgraphs 
are also still significantly underrepresented in comparison 
to the null model, however, we successfully identified a set 

of subgraphs in the static-temporal network likely to reflect 
heuristic ward-level operation behaviours; 5 that meet motif 
selection criteria nearly universally in the static-temporal 
network construction (Self-loops, Reciprocating dyads, 
111D, 111U, and 030C) and another 2 tetrads that meet 
motif selection criteria in about half the wards (T12 and 
T34). Additionally, we find 7 subgraphs that meet anti-motif 
criteria in all wards (Non-self-loops, 021D, 021U, 021C, T1, 
T2, and T11) and note that dyads meet anti-motif criteria in 
13 wards. These results are expected as all triad and tetrad 
anti-motifs have weakly connected components, and it is 
impossible for them to occur in real-world data.

4.2.2  Motif strength evaluation

Figures 17 and 18 illustrate SRP profiles for each study ward 
for both network construction methods, with the truncated 
version (inclusive of subgraphs with C(Gk) � values greater 
than 0.01 in either construction, in line with Table 6) shown 
in Fig. 10. Subgraphs that meet all motif selection criteria 
in some wards and the threshold for our chosen statistical 
significance measure, relative abundance ( Δ ), for which 
we consider to be 0.3, can be rightly described as network 
motifs.

Although there are some notable Δ scores for self-loops 
(0.99, 0.93, 0.96, 0.99), 102 (0.42), 111D (0.48, 0.56), 111U 
(0.48), 030C (0.37, 0.50), and 120C (0.43) in the static net-
work SRP profiles, these only occur in a handful of wards, 
and are without supporting significant C(Gk) scores. This 
is likely a reflection of variability in the data rather than 
evidence of motif or anti-motif presence. Conversely, there 
are several prevalent subgraphs within the static-temporal 

Fig. 11  Hospital ward motifs 
(Self-Loop, 102, 111U, 111D, 
and 030C) and anti-motifs 
(021U, 021D, T1, T2, T11, 
and T15) in the static-temporal 
network construction of 
vitals observation recordings 
(Sect. 4.4). Motifs and anti-
motifs have been identified 
based on performance against 
criteria described in Sect. 3.5 
and relative abundance, Δ , 
scores
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network construction that may represent highly regular or 
highly irregular behaviours. Self-loop edges are the only 
subgraph to satisfy all three motif selection criteria and 
exhibit high Δ scores across all study wards. Whilst not 
universally meeting all three motif candidate criteria, recip-
rocating dyads (102), and triads 111D, 111U, and 030C 
all demonstrate significant Δ scores (where Δ is above our 
threshold value of 0.3 across the majority of wards). It is 
therefore worth considering setting a precedent to only 
consider ‘Condition 2: Minimum frequency’ (Ciriello and 
Guerra 2008; Baskerville and Paczuski 2006; Ashford et al. 
2019) for a compelling case in also describing these as net-
work motifs.

Anti-motifs have a broader representation in the prelimi-
nary criteria, with 10 subgraphs meeting anti-motif candi-
dacy criteria. Four of these subgraphs (non-self loops, dyads 
(012), 012C, and T12) have weaker Δ scores. This represents 

a notable variation that suggests they are not strictly anti-
motifs, and may instead be more reflective of behaviours 
dependent on ward specialisation. The remaining 6 sub-
graphs (021D, 021U, T1, T2, T11, and T15) additionally 
maintain significant Δ scores and can therefore be regarded 
as anti-motifs.

4.3  Comparing subgraph ratio profiles 
between wards

One-sample Kolmogorov–Smirnov tests for normality con-
firmed that in both constructions all distributions of sub-
graph ratio profiles were not normally distributed (results 
are described in Table 10, which in all cases reject the null 
hypothesis). Spearman’s Rank-Order Correlation tests were 
therefore used to complete pairwise tests between wards. 
Additionally, a False Discovery Rate (FDR) correction was 

Fig. 12  Significant tetrads 
identified in the static-temporal 
vital sign observation networks 
effectively mirror the identified 
significant triads, accompanied 
by an additional leading or exit-
ing edge. Where ∧ represents 
anti-motifs, ∧∧ motifs, * tetrads 
T12 that demonstrates both a 
lead and exit edge on top of a 
triad 021C, ** tetrad T73, the 
equivalent shape of 030C, and 
*** tetrad T5 which occurs 
twice
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applied to account for type I errors. The results are summa-
rised in Table 7 and full correlation coefficient matrices are 
shown in the Appendix (Figs. 19, 20). The results support 
the visual similarity observed between static-temporal ward 
network SRPs in Fig. 10. The correlation tests were also 
significant in all results for low-order subgraphs, triads, and 
for the combined subgraph catalogue. While correlation tests 
for tetrads weren’t significant in every case, they were also 
still significant in most (in 176 of 190 tests).

These results strongly imply the existence of a higher-
level classification beyond individual networks based on 
the overarching design principles governing the general 
intra-patient ward operational strategy. Overall, the results 
reaffirm the similarities between wards, as evidenced by 
the consistent vital signs observation sequences categories 
(Table 5), and indicate that this level of detail is likely to be 
insufficient to detect influences from features such as spe-
cialism, size, and hospital layout using clustering or graph 
embedding methods as seen in studies examining other types 
of complex networks (Ashford et al. 2019; Tu et al. 2020b).

4.3.1  Execution time for different scenarios

Typical execution times5 to complete different censuses 
for the networks of each ward are summarised in Table 8. 
A complete census was achieved in under 1 s for all sce-
narios, i.e., irrespective of the network construction, the 
types of subgraphs to include, and the ward. Network fre-
quency censuses were also repeated for equal sized ran-
dom networks (see Sect. 3.5), resulting in similar execu-
tion times. The number of random networks used may vary 
depending on the specific applied scenario by a stakeholder 
(Ribeiro and Silva 2010), therefore the total execution 
time for modelling a ward can therefore be estimated as 
Treal census + (Nrandom networks ∗ Treal census) (where T=the time 
taken and N=the number of networks). After the subgraph 
frequency counting stage, each network is described as a 1 
by 217 dimensional vector, and all subsequent calculations 
are then the same irrespective of the scenario.

A breakdown for different scenarios by ward, network 
representation type, and subgraph types is shown in Table 9 
(Appendix). The ward characteristics in this dataset repre-
sent a range of different hospitals, ward specialisms, number 
of beds, and number of staff (Table 3), which are representa-
tive of hospital wards in general (Giancotti et al. 2017). The 
execution times are similar for wards with different non-
network based characteristics (e.g., ward type, number of 
observations, or specialism, as outlined in Table 3) across 
both network representations and different subgraph types.

However, there are notable, relative differences between 
different specific scenarios that may be attributable to net-
work characteristics. For example, for scenarios where a 
static-temporal network representation is used, the subgraph 
frequency analysis takes longer than the static network in all 
cases where all subgraph types are used, and almost all cases 
where subset of subgraph types are used (e.g. W19, tetrads 
only as an exception). This is despite the static-temporal 
network representations having a smaller number of edges 
(as shown in Table 4) than the static network representation.

A potential reason for this is the differences in density 
between the static network and static-temporal representa-
tions in this dataset, where very dense networks may have an 
abundance of a limited number of specific tetrad subgraphs 
that are quicker to determine and count. This presents some 
additional considerations where the methodology may be 
applied to new hospital ward data, or datasets and networks 
representing other types of behaviour or complex systems.

4.4  Key results summary

The four key results described in Fig. 1 can be summarised 
as follows:

1  Uniformity in the static network representation 
motivates using time as a network element. Figures 7 
and 8, and Table 4 demonstrate that when evaluating all 
observations without making adjustments for staff ID 
or period, the static network tends toward a complete 
graph and loses information.

2  Staff vital signs observation sequences typically lack 
subgraph complexity. Most staff members vital signs 
observation sequences are either linear sequences or 
supplementary stand-alone vital signs observations 
(Table 5).

3a  We define 5 motif patterns in staff vital signs obser-
vation sequences: Self-loops, reciprocating dyads 
(102), and triads (111D, 111U, and 030C). Illus-
trated in Fig. 11, the identified highly regular network 
subgraphs demonstrate the processes of clinical staff 
returning to a previous patient within short timeframes.

3b  We define 6 anti-motif patterns in staff vital signs 
observation sequences: 021D, 021U, T1, T2, T11, 
and T15. Illustrated in Fig. 11, the identified highly 
irregular network subgraphs demonstrate movement 
patterns that are not possible to occur when consider-
ing the recording behaviour of individual staff mem-
bers, and therefore are not significant.5 All tests were executed on an 2022 Apple MacBook Pro, with the 

M2 processor and 16 GB RAM.
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4  External ward characteristics have little impact on 
rates of specific staff behaviours for routine vital 
signs observations. Closeness in network structure 
measures (Tables 4 and 5) and local substructures 
(Fig. 10 and Table 7) in the static-temporal represen-
tation show wards produce similar relative rates of 
specific staff movement patterns despite differences in 
ward size, specialism, staffing levels, and architecture.

5  Discussion

The two network representations in this study, static and 
static-temporal (Figs. 7, 8), have demonstrated markedly 
different results. When incorporating all vital signs obser-
vations over the complete 12-month period dataset for each 
ward into a static network, we note that the network pro-
gresses toward a complete graph (Result 1, Fig. 1). This 
is unlike other applied scenarios, such as airline networks, 
where journeys are typically restricted to the terminals for 
which a company has paid for the route. In this case, it may 
signify the flexibility in the allocation of beds where clinical 
staff complete their vital sign observations. This result con-
tributes to RQ1 by motivating static-temporal network rep-
resentations of a vital sign observations using sequences that 
include time and staff elements in order to support higher 
specificity studies, such as describing the patterns that occur 
when clinical staff rapidly repeat routine patient vital signs 
observations.

In the static-temporal network, all wards saw significant 
volumes and C(Gk) scores of 012C and T12 subgraphs and 
high proportions of type A (stand-alone), type B (repeated 
stand-alone observation), and type C (sequential without 
patient return actions) vital sign observation sequences 
(Table 5). This may suggest a managerial precedent to com-
plete ward rounds as a simple vital sign observation sequence 
that include all patients within an individual clinical staff 
member’s scope-partially addressing RQ2. This would still 
allow for the escalation of patient care responsibility of seri-
ous adverse events (such as high NEWS readings) to senior 
or tasked members of staff accordingly. Yet, there is a sig-
nificant fluidity in which clinical staff undertake and record 
vital signs observations within ward rounds, as demonstrated 
by the occurrence of types D and E observation sequences. 
The most common subgraphs 012C and T12 (which repre-
sent simple sequences of vital signs observations) both meet 
anti-motif criteria and maintain significantly low Δ scores 
when measured against a BDE null model. Moreover, we 
see high representation of immediate repetition of vital sign 
observations behaviours reflected in the identified network 
motifs (see Fig. 11)-contributing further to RQ2.

A clinical staff member may rapidly repeat a vital sign 
observation for different reasons. For instance, this may 
be reflective of patients that are on the threshold of a ‘high 
NEWS’ score (where NEWS is considered high when it 
exceeds a score of 5 in total or 3 in one vital sign, RCP 
(2012a)). Alternatively, it may simply be a low stakes 
route alteration caused for instance by a patient fall, a 
patient away from their bed, overseeing a student obser-
vation, or monitoring short-term medication effects. These 
examples highlight the opportunity our method provides to 
model a collection of vital signs observation recordings as 
separate sequences which can support further research into 
the drivers of these repeat observations during specific 
periods of regular ward activities, like rounds and shift 
handovers. Additional vital sign observation information, 
like NEWS and staff concern observation labelling (i.e., ’is 
concerned’ described in Sect. 3.1 and Table 2), may also 
be useful in interpreting the role of motifs within specific 
situational contexts like ward rounds and shift handovers.

The importance of including tetrads when defining an 
SRP profile for ward vital sign observation data was less 
significant than expected. In this study, we suspected that 
ward specialism, architectural artefacts (i.e., wards seg-
regated into smaller rooms of 2, 3, or 4+ beds), or local 
patient flow management practices, may present alterna-
tive patterns when considering tetrads in comparison to 
smaller subgraph types (e.g., dyads or triads). However, 
all highly represented tetrads appear to match highly rep-
resented triad subgraphs in the static-temporal network, 
just with an additional leading or exiting edge (illustrated 
in Fig. 12). In this somewhat common case (Milo et al. 
2004a), it is reasonable to suggest as an additional con-
sideration for RQ1 that tetrads in vital sign observation 
networks reflect the same behavioural traits as triads and 
could be excluded in subsequent studies where execution 
environments have limited computationally capability.

Furthermore, we repeatedly highlight the distinct rela-
tive similarity in which wards operate in all the intra-ward 
comparisons throughout this study-addressing RQ3. The 
significant correlations in observation sequence categories 
distributions (Result 2, Fig. 1) and SRP profiles (Table 7) 
present reasonable evidence that the aggregation of vital 
sign observation sequences in different wards results in 
similar frequencies of network sub-structures (Result 3, 
Fig. 1), and therefore arguably conform to “superfam-
ily” behaviour (Milo et al. 2004a; Result 4, Fig. 1). We 
expected some similarity due to ward adherence to com-
mon health board policies (e.g., ABUHB (2017)), but the 
high level of similarity is worth highlighting given the 
variety in ward specialisms, staff, ward layouts, and geo-
graphical sites. The profile also appears unique to rou-
tine ward vital sign observation networks when compared 
to other works evaluating World Wide Web hyperlink, 
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biological, energy trade, and social networks (Milo et al. 
2004a; Shutters et al. 2022), which typically show much 
lower significance for subgraphs with strongly connected 
components (such as motifs 111D, 111U, and 030C). This 
similarity also presents considerations for future graph 
embedding tasks (e.g., Tu et al. (2020b)) where effective 
network identification using subgraph profiles may be lim-
ited (contributing to RQ1).

Additionally, despite the quick runtime (Sect. 4.3.1) the 
high similarity among the ward SRP profiles presents oppor-
tunities for feature reduction where necessary in the execu-
tion environment. High r values for all subgraph groupings 
(see Table 7) highlight the potential to reduce the SRP fea-
ture vector to a subset of subgraph types. This also con-
tributes to RQ1 by having the obvious benefit of reduced 
computational requirements, while also enabling broader 
comparison with other data and networks (e.g. (Milo et al. 
2004a; Shutters et al. 2022)) where required that may, for 
example, not have self-loops.

5.1  Clinical implications and applications

While the scope of this study surrounds basic research in 
modelling and examining human behaviour in hospital ward 
care settings, the findings and contributions present impli-
cations for clinical practice through the identified similar 
motifs and anti-motifs across the wards. It also provides 
additional considerations for specific, applied use cases of 
the framework. Different hospital stakeholders, from staff on 
wards, to managers on wards and sites, to health boards and 
trusts, can benefit from summarisations of how activities on 
wards are undertaken. The re-purposing of data from key, 
routine ward activities surrounding patient care in vital sign 
observations can provide a basis for this without the practi-
cal challenges and costs of bespoke equipment or third-party 
observers.

The modelling and analysis framework used here can pro-
vide the foundation for the development of future tools that 
summarise and visualise ward behaviour, alongside other 
data relevant to the stakeholder and use case (e.g., alongside 
timeliness, patient outcomes, or other factors highlighted 
in complementary studies (Sect. 2.2)). For example, hospi-
tal managers or policymakers may undertake retrospective 
reviews of ward activity, either routinely, as a result of a 
staffing policy, training change, or as a result of a disruptive 
event, where the results provide a baseline of typical ward 
behaviour. Any deviations thereof could bes identified in the 
network and SRP profiles over the time period in question. 
Additionally, this could and help contextualise instances 
where staff immediately repeat an observation, or repeat an 
observation within the same sequence, to identify and man-
age patients that require additional attention, even if they 
are not presenting threshold NEWS scores. These examples 

are not exhaustive, and the network representation may also 
provide utility in supporting other clinical activities, such as 
summarising the state of ward activity during shift hando-
vers for staff on wards. Any new or changes to policies or 
staff resource allocations built upon this information may 
then impact on other relevant aspects to the use case, such 
as the timeliness and compliance of vital signs observations.

6  Limitations and future work

The dataset used in this study represents vital sign observa-
tions of the period of a year. However, the accuracy of vital 
sign observations is dependent on the point at which they are 
taken, and adherence to regular and timely recordings remains 
variable as observed in the literature (Sect. 2.2). While the 
volume of observations and the observation sequence category 
distributions (Sect. 4.1) are as expected (Sect. 3.1), there is 
potential for some data gaps where, for example, a patient is 
escalated to a doctor and the patient is under constant super-
vision, that observations are no longer documented on the 
devices and may instead be taken using pens and paper (Yeung 
et al. 2012). There may also be unknown cases and data gaps 
where observations were undertaken on paper where no device 
was available (e.g., due to being used or due to low battery, 
for example). The effect of this is mitigated here through the 
aggregation of data over a large time period, however this 
presents considerations for future studies and applications, 
where a further mitigating strategy may be to focus on ‘rou-
tine’ observations (i.e., those taken in, or planned for, ward 
rounds) and their compliance.

Furthermore, the focus of this study has been to present 
the framework and typical observed behaviours over a large 
time period. Future studies, or applied use cases, may wish 
to undertake the modelling and analysis over shorter time 
periods to observe any changes to the identified motifs, anti-
motifs or overall SRPs around potentially severely disrup-
tive events (e.g., sepsis onset) or a less consequential event 
(e.g., student training observations). Further work could 
also explore how ward conditions (namely current patient 
NEWS and TTNOs) leading to the emergence of the promi-
nent self-loop and triad motif subgraphs (111D, 111U, and 
030C) that are reflective of clinical staff rapidly repeating 
vital sign observations (i.e., disruption to ‘typical’ behaviour 
flows), fluctuates before and after their occurrence. The con-
text behind routine ward rounds behaviour, including when, 
why, and to what extent disruption occurs.

6.1  Future applications with machine learning

In Sects. 2.3 and 3.3, we discussed the use of machine 
learning for approximate network motif mining, noting 
that although the primary advantage is speed, given the 
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context of the study and the network sizes, the drawback 
of approximation motivates exact subgraph counting and 
motif extraction in this domain. However, the methodology 
here is flexible for future applications involving significantly 
larger networks, such as health board/trust or governments 
scaling across all hospitals in their remit. Additionally, the 
SRP profiles could serve as feature vectors for graph embed-
ding tasks (e.g., Tu et al. (2020b)), or in other downstream 
applied machine learning tasks such as the prediction of 
related, external factors such as ward observation timeliness, 
or other compliance values. The applicability and utility of 
these tasks will depend on the needs of specific stakeholders 
(Sect. 5.1).

7  Conclusions

Understanding how hospital wards undertake routine tasks 
such as vital signs observations can be a valuable basis for 
supporting decision-making in patient care management. In 
this study, we explore a large dataset of anonymised vital 
sign observations and observe key characteristics and behav-
iours through the development and use of a network model-
ling and analysis framework.

The framework has a number of advantages and disad-
vantages. The primary advantages of this framework are its 
flexibility in being generally agnostic to specific software, 
requiring a limited number of expected data fields (Table 2), 
and time sorted observations. It is also flexible to the type 
of network representation used and the types of subgraphs 
considered. In this study, we show the use of multiple differ-
ent sets of subgraph types together, spanning from self-loops 
to tetrads. A disadvantage, or note of caution for the frame-
work is the potential for the extracted motifs, anti-motifs and 
profile to be influenced by the size of the network forming 

the input data. For instance, hospital wards with a handful 
of beds (such as in some small community hospitals) may 
not produce a distinct profile or motifs relative to random 
networks.

Using the framework, we also provide several additional 
contributions highlighted in the results and discussion 
(Sect. 5) that provide insights and recommendations from 
the dataset used. For example, we show that the inclusion 
of temporal data in the network construction yielded addi-
tional utility for motif extraction and profiling, with a small 
increase in real execution time. This may limit the ability 
to scale to significantly larger networks, but if necessary a 
reduction in the types of subgraph could be used, or sub-
graph/motif approximation techniques could be adopted, 
with the results from the exact count here used for reference 
to help mitigate any potential issues with approximation 
accuracy.

Overall, we find that modelling the data as a static-tem-
poral network and employing statistical criteria to identify 
highly regular and irregular subgraphs is shown to be effec-
tive in encapsulating typical behaviours surrounding vital 
sign observations that occur within wards. Namely, that rou-
tine patient vitals observations are often executed as simple 
sequences supplemented by stand-alone observations when 
repeat observations are required. Additionally, we find that 
ward size, hospital site, and specialisms do not create nota-
bly different behaviours and that the similar, distinct profile 
aligns with the presence of “superfamilies” of complex net-
works in other domains observed in similar works (Milo 
et al. 2004b; Felmlee et al. 2021; Turner et al. 2019).

Appendix: Tables

See Tables 9, 10 and 11.
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Table 9  Execution runtimes to 
generate a subgraph census for 
all wards and for all network 
construction scenarios

Censuses for self-loops, dyads and triads were generated with NetworkX Triadic Census and the tetrad cen-
suses were generated with GTrieScanner

Static network Static-temporal network

Ward Self-loops, 
dyads, triads

Tetrads All subgraphs Self-loops, 
dyads, triads

Tetrads All subgraphs

W1 0.012 0.001 0.013 0.315 0.096 0.411
W2 0.002 0.003 0.005 0.162 0.02 0.182
W3 0.01 0.023 0.032 0.277 0.045 0.322
W4 0.011 0.029 0.04 0.228 0.025 0.253
W5 0.004 0.01 0.014 0.289 0.038 0.327
W6 0.008 0.023 0.031 0.262 0.038 0.3
W7 0.009 0.022 0.031 0.256 0.028 0.284
W8 0.007 0.017 0.023 0.175 0.03 0.205
W9 0.01 0.028 0.038 0.212 0.025 0.237
W10 0.01 0.022 0.032 0.322 0.071 0.393
W11 0.01 0.02 0.03 0.166 0.027 0.193
W12 0.005 0.012 0.017 0.197 0.031 0.227
W13 0.002 0.004 0.006 0.08 0.013 0.093
W14 0.013 0.036 0.049 0.174 0.029 0.203
W15 0.001 0.001 0.002 0.054 0.009 0.063
W16 0.009 0.023 0.032 0.152 0.024 0.176
W17 0.012 0.028 0.04 0.335 0.093 0.428
W18 0.009 0.022 0.03 0.347 0.052 0.399
W19 0.011 0.094 0.105 0.317 0.048 0.366
W20 0.011 0.027 0.038 0.324 0.044 0.367

Table 10  P value results from a one-sample Kolmogorov–Smirnov 
test for normality, applied to the SRP feature vectors determined in 
this study, indicate that in all ward cases and for both network con-
struction methods, the SRP is not likely to be normally distributed

Ward Static Static-temporal

W1 0.000017 0.000021
W2 0.000017 0.000100
W3 0.000084 0.000025
W4 0.000059 0.000145
W5 0.000010 0.000098
W6 0.000049 0.000092
W7 0.000048 0.000111
W8 0.000006 0.000028
W9 0.000049 0.000176
W10 0.000036 0.000059
W11 0.000257 0.000019
W12 0.000054 0.000062
W13 0.000017 0.000168
W14 0.000018 0.000102
W15 0.000017 0.000395
W16 0.000054 0.000151
W17 0.000005 0.000072
W18 0.000006 0.000023
W19 0.000004 0.000079
W20 0.000004 0.000157
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Figures

See Figs. 13, 14, 15, 16, 17, 18, 19, 20.

Fig. 13  Variations of both static directed dyads, 012 and 102 (some-
times described as ‘Reciprocating Dyad’), and all 13 triad subgraphs. 
* marks weakly connected subgraphs (where any node in a subgraph 
cannot be reached by any other node) and ∧ marks subgraphs with 
strongly connected components (where there is a path between all 
vertices in the subgraph). Triads are labelled in line with convention 
(Batagelj and Mrvar 2001)
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Fig. 14  All 199 tetrads with 
labels



Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:55  Page 29 of 37    55 

Fig. 15  Concentration profile for all 217 subgraphs in the static network construction
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Fig. 16  Concentration profile for all 217 subgraphs for static-temporal network construction
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Fig. 17  Non-truncated SRP for all subgraphs for the static network construction
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Fig. 18  Non-truncated SRP for all subgraphs for the static-temporal network construction
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Fig. 19  Spearman’s correla-
tion pairwise test matrix for the 
static network ward representa-
tion
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