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ABSTRACT: Herein, we report an iron-catalyzed transfer hydro-
genation of allylic alcohols. The operationally simple protocol
employs a well-defined bench stable (cyclopentadienone)iron(0)
carbonyl complex as a precatalyst in combination with K2CO3 (4
mol %) and isopropanol as the hydrogen donor. A diverse range of
allylic alcohols undergo transfer hydrogenation to form the
corresponding alcohols in good yields (33 examples, ≤83% isolated
yield). The scope and limitations of the method have been
investigated, and experiments that shed light on the reaction mechanism have been conducted.

The borrowing hydrogen approach, which combines
transfer hydrogenation with a reaction on the in situ-

generated reactive intermediate, has undergone a renaissance
over the past decade.1 Most commonly, this strategy has been
utilized to diversify the synthetic utility of commodity alcohols,
particularly benzylic alcohols and aliphatic alcohols, which can
be employed as alkylating agents whereby the sole byproduct
of this one-pot reaction is water.2 Allylic alcohols, which are
privileged motifs in synthetic chemistry due to their wide-
spread availability and diverse reactivity profile,3 have received
comparatively less attention in this domain. Dehydrogenation
of allylic alcohols generates synthetically versatile α,β-
unsaturated carbonyl compounds, which can undergo either
1,2- or 1,4-addition by nucleophiles (Scheme 1A). The 1,2-
addition pathway has been utilized for the N-allylation of
amines4 and sulfinamides5 and the C-allylation of ketones6 and
oxindoles.7 Conversely, the 1,4-addition pathway has enabled
various regioselective alkene hydrofunctionalization methods.8

The 1,4-addition of hydrogen results in the redox isomer-
ization of allylic alcohols to form carbonyl compounds,9,10

which can undergo further hydrogenation in the presence of a
hydrogen donor to complete the formal transfer hydrogenation
of allylic alcohols.11 This powerful one-pot transformation has
been predominantly explored using a variety of heterogeneous
and homogeneous catalyst systems based on precious metals
(e.g., Rh, Ru, Pd, and Ir),12 alongside a few examples that
employ catalysts based on more earth-abundant transition
metals (e.g., Fe, Ni, and Mo).13 Most pertinent to this study, in
2018, de Vries and co-workers reported the isomerization of
secondary allylic alcohols to ketones catalyzed by a well-
defined iron PNP pincer catalyst, employing KOt-Bu as the
base and toluene as the solvent.14 During optimization of the
reaction with a model substrate, the authors observed
competitive transfer hydrogenation when 2-propanol was

employed as the reaction solvent (Scheme 1B). Building
upon our interest in the development of borrowing hydrogen
transformations that employ catalysts based on earth-abundant
3d transition metals,15 herein, we report the use of an air stable
phosphine-free (cyclopentadienone)iron(0) carbonyl com-
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Scheme 1. Background and Context
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plex16,17 as a precatalyst for the transfer hydrogenation of
allylic alcohols, with isopropanol as the hydrogen donor.18

The transfer hydrogenation of (E)-2-methyl-3-phenylprop-
2-en-1-ol (1) to form 2-methyl-3-phenylpropan-1-ol (2) was
selected as the model system for reaction optimization due to
facile determination of conversion data via 1H nuclear
magnetic resonance (NMR) analysis of the crude reaction
mixtures (Table 1).19 It was found that Renaud’s

(cyclopentadienone)iron(0) carbonyl complex 3 (4 mol
%),20 Me3NO (8 mol %), and K2CO3 (4 mol %) in i-PrOH
([1] = 0.5 M) at 130 °C for 18 h under N2 in a sealed tube
enabled the transfer hydrogenation of 1, which formed product
2 in 93% NMR yield (entry 1). Control experiments confirmed
that no product was formed in the absence of iron precatalyst 3
or K2CO3 (entry 2 or 3, respectively). It was found that
precatalyst 4, which contains a less electron-rich cyclo-
pentadienone framework, gave product 2 in a reduced NMR
yield of 72% (entry 4). A selection of other structurally related
(cyclopentadienone)iron carbonyl precatalysts 5−7 did not
enable product formation in significant quantities (entry 5).
Substituting K2CO3 for KOH or Na2CO3 as the base decreased
the observed NMR yield of 2 (entry 6 or 7, respectively).
Altering the concentration (entries 8 and 9), decreasing the
reaction temperature (entry 10), reducing the reaction time
(entry 11), and decreasing the catalyst loading (entry 12) all

reduced the efficiency of the transfer hydrogenation of 1 to
form 2. The quantity of K2CO3 could be decreased to 2 mol %
without a significant reduction in conversion (entry 13);
however, a small amount of unreacted 1 (7%) was observed,
which is challenging to separate from 2 via silica gel flash
chromatography. Furthermore, it was found that Me3NO was
not required (entry 14) and that the NMR yield of 2 could be
increased to >98% by extending the reaction time to 24 h
(entry 15).
With the optimized reaction conditions in hand (Table 1,

entry 15), we attempted to establish the scope and limitations
of this synthetic method (Scheme 2). Initially, it was found
that the reaction could be performed successfully on an
increased scale (Scheme 2A), using 5.5 mmol of allylic alcohol
1, which provided access to 0.66 g of product 2 (80% isolated
yield). Next, the impact of various substituents on the aromatic
ring within the allylic alcohol scaffold upon conversion was
investigated. It was found that methyl substituents could be
incorporated at positions 4, 3, and 2 of the aromatic ring,
providing access to hydrogenated products 8−10, respectively,
in high isolated yields (71−83%). At position 4, fluorine and
chlorine substituents were tolerated, which gave 11 and 12 in
61% and 76% isolated yields, respectively. However, the
incorporation of an aryl bromide motif resulted in reduced
conversion (33%) to the corresponding product 13. A
selection of electron-releasing (4-OMe and 4-NMe2) and
electron-withdrawing (4-CF3) aromatic substituents could be
present within the allylic alcohol substrates to afford products
14−16, respectively, in high yields. In some cases, the reaction
time was extended to 48 h to ensure full consumption of allylic
alcohol starting materials and to facilitate product purification
via silica gel flash chromatography. Benzylic alcohol and
styrene functionalities were preserved during the transfer
hydrogenation process, as demonstrated by the formation of
hydrogenated products 17 and 18. Extended aromatic systems
(1-naphthyl and 2-naphthyl) and various heteroaromatics
(indole, furans, thiophenes, and pyridines) were well tolerated,
which provided access to 19−27 in good yields. It was found
that the presence of an aromatic ring at position 3 within the
allylic alcohol scaffold was not essential for reactivity. Allylic
alcohols bearing benzyl, homobenzyl, and cyclohexyl groups at
position 3 all successfully underwent transfer hydrogenation to
give reduced products 28−30, respectively, in 58−72%
isolated yields. Furthermore, cinnamyl alcohol and a selection
of derivatives containing 4-F, 4-OMe, and 4-CF3 aromatic
substituents could be converted into hydrogenated products
31−34, respectively, with high conversion (66−88%). These
results demonstrated that the 2-methyl substituent within the
allylic alcohols was also not required for successful transfer
hydrogenation. 2-Methylprop-2-en-1-ol was converted into
aliphatic alcohol 35 in 62% NMR yield using the optimized
reaction conditions. A 3,3-disubstituted cinnamyl alcohol
derivative gave only 24% conversion to product 36 after 48
h, whereas the naturally occurring monoterpenoid geraniol
gave 37 in 61% NMR yield using the same reaction conditions.
Within geraniol, the allylic alcohol functionality underwent
selective hydrogenation, with the other alkene left untouched.
Gratifyingly, a secondary allylic alcohol gave 76% conversion to
hydrogenated product 38. It was found that an allylic alcohol,
which contained a 4-CO2Me aromatic substituent, underwent
both transfer hydrogenation and transesterification, giving 88%
conversion to product 39 (Scheme 2B). Allylic alcohols that
contained a 2-phenyl substitution or those that contained two

Table 1. Reaction Optimizationa

entry variation from the standard conditions yieldb (%)

1 none 93
2 no [Fe] precatalyst <2
3 no K2CO3 <2
4 [Fe] precatalyst 4 (4 mol %) instead of 3 72
5 [Fe] precatalysts 5−7 (4 mol %) instead of 3 <7
6 KOH (4 mol %) instead of K2CO3 44
7 Na2CO3 (4 mol %) instead of K2CO3 86
8 [1] = 0.25 M 80
9 [1] = 1 M 79
10 110 °C 36
11 8 h 86
12c [Fe] precatalyst 3 (2 mol %) 78
13 K2CO3 (2 mol %) 92
14 no Me3NO 94
15 no Me3NO, 24 h >98 (80)

aPerformed using 1 mmol of 1 and reagent grade i-PrOH. [1] = 0.5
M. bDetermined by 1H NMR analysis of the crude reaction mixture
with 1,3,5-trimethylbenzene as the internal standard. Isolated yield in
parentheses. cWith 4 mol % Me3NO.

The Journal of Organic Chemistry pubs.acs.org/joc Note

https://doi.org/10.1021/acs.joc.4c01701
J. Org. Chem. 2024, 89, 14571−14576

14572

https://pubs.acs.org/doi/10.1021/acs.joc.4c01701?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01701?fig=tbl1&ref=pdf
pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.4c01701?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


methyl substituents at position 1, 2, or 3 were found to be
incompatible with the transfer hydrogenation protocol
(Scheme 2C), with significant quantities of recovered starting
materials and/or complex reaction mixtures observed in each
case. This indicated that the transfer hydrogenation protocol is
somewhat sensitive to the degree and type of substitution on
the allylic alcohol scaffold.
A range of experiments were performed to gain insight into

the reaction mechanism (Scheme 3). First, it was found that
alkene 40 and tertiary allylic alcohol 41 were both unreactive
when subjected to the optimized reaction conditions, with no
observable formation of reduced products 42 and 43 (Scheme
3A). In combination with the previous observation of
preserved alkenes within products 18 and 37 (cf., Scheme
2), this confirmed that primary or secondary allylic alcohol
functionalities are required for successful transfer hydro-
genation to occur. Next, employing the optimized reaction
conditions, enal 44 and aldehyde 45 were each converted into
hydrogenated alcohol 2 in 90% and 43% NMR yields,
respectively, which validated both 44 and 45 as plausible
reaction intermediates (Scheme 3B). The progress of the
reaction with time was monitored for the transfer hydro-
genation of allylic alcohol 1.19 Product 2 was initially formed
slowly, with an only 13% conversion to 2 observed after 2 h.
Beyond 2 h, the rate of formation of 2 increased, with 46%
conversion observed after 4 h and 86% conversion after 8 h.

Trace quantities of enal 44 (<2%) were observed throughout
the reaction monitoring, until 18 h. Conversion to 2 reached
>98% at 24 h. The initial slow formation of product 2 during
the reaction over the first 2 h may be attributed to activation of
precatalyst 3.18 When toluene was employed as the reaction
solvent (no i-PrOH hydrogen donor), a complex mixture of
products that consisted of allylic alcohol 1 (35%), enal 44
(33%), aldehyde 45 (2%), and alcohol 2 (20%) was observed.
Further mechanistic information was provided by deuterium
labeling studies (Scheme 3C). Subjecting allylic alcohol 1 to
the standard reaction conditions, except for isopropanol-d8 as
the solvent, resulted in the formation of product 46 with
significant deuterium incorporation at positions 1−3. The
reaction of allylic alcohol 47, which was deuterated at position
1 (75% D), also formed product 46 with deuterium
incorporation at positions 1 and 3. Altogether, the incorpo-
ration of deuterium at positions 1 and 3 indicated the
involvement of an iron hydride species in the reaction
mechanism, which would be formed upon dehydrogenation
of allylic alcohol 1 or isopropanol. The incorporation of
deuterium at position 2 can be explained by the protonation of
enolate intermediates. In line with these observations and
related previous works,18 the proposed mechanism proceeds
via initial conversion of precatalyst 3 to 48 in the presence of
K2CO3 and i-PrOH (Scheme 4). Complex 48 promotes
dehydrogenation of allylic alcohol 1 and isopropanol in the

Scheme 2. Scope of Iron-Catalyzed Transfer Hydrogenation of Allylic Alcoholsd

aWith 5.5 mmol of allylic alcohol as the starting material. bAs determined by 1H NMR analysis of the crude reaction mixture with 1,3,5-
trimethylbenzene as the internal standard. cFor 48 h. dReactions performed using 1 mmol of allylic alcohol starting material and reagent grade i-
PrOH. Isolated yields after chromatographic purification unless stated otherwise. RSM = recovered starting material.
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presence of K2CO3 to form enal 44 and acetone, respectively.
Hydrogenation of 44 by iron−hydrogen complex 49 gives
aldehyde 45, which can undergo further hydrogenation to form
alcohol 2 with the regeneration of 48.
In summary, an operationally simple and efficient iron-

catalyzed transfer hydrogenation of allylic alcohols has been
developed (33 examples, ≤83% isolated yield). The protocol
employs a bench stable precatalyst based on an earth-abundant
transition metal, a carbonate base, and isopropyl alcohol as the
hydrogen donor.
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