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Abstract
Purpose Thyroid nodules are highly prevalent in the general population, posing a clinical challenge in accurately distin-
guishing between benign and malignant cases. This study aimed to investigate the diagnostic performance of different
strategies, utilizing a combination of a computer-aided diagnosis system (AmCAD) and shear wave elastography (SWE)
imaging, to effectively differentiate benign and malignant thyroid nodules in ultrasonography.
Methods A total of 126 thyroid nodules with pathological confirmation were prospectively included in this study. The
AmCAD was utilized to analyze the ultrasound imaging characteristics of the nodules, while the SWE was employed to
measure their stiffness in both transverse and longitudinal thyroid scans. Twelve diagnostic patterns were formed by
combining AmCAD diagnosis and SWE values, including isolation, series, parallel, and integration. The diagnostic per-
formance was assessed using the receiver operating characteristic curve and area under the curve (AUC). Sensitivity,
specificity, accuracy, missed malignancy rate, and unnecessary biopsy rate were also determined.
Results Various diagnostic schemes have shown specific advantages in terms of diagnostic performance. Overall, integrating
AmCAD with SWE imaging in the transverse scan yielded the most favorable diagnostic performance, achieving an AUC of
72.2% (95% confidence interval (CI): 63.0–81.5%), outperforming other diagnostic schemes. Furthermore, in the subgroup
analysis of nodules measuring <2 cm or 2–4 cm, the integrated scheme consistently exhibited promising diagnostic per-
formance, with AUCs of 74.2% (95% CI: 61.9–86.4%) and 77.4% (95% CI: 59.4–95.3%) respectively, surpassing other
diagnostic schemes. The integrated scheme also effectively addressed thyroid nodule management by reducing the missed
malignancy rate to 9.5% and unnecessary biopsy rate to 22.2%.
Conclusion The integration of AmCAD and SWE imaging in the transverse thyroid scan significantly enhances the diag-
nostic performance for distinguishing benign and malignant thyroid nodules. This strategy offers clinicians the advantage of
obtaining more accurate clinical diagnoses and making well-informed decisions regarding patient management.

Keywords Thyroid nodule ● Computer-aided diagnosis ● Shear wave elastography ● Ultrasound

Introduction

Thyroid carcinoma, characterized as a spectrum of symp-
tomatic or asymptomatic thyroid nodules, represents the
predominant endocrine malignancy worldwide [1]. The
prevalence of thyroid cancer has shown a noticeable upward
trend, with a recent study demonstrating a gradual increase
in morbidity rates by 32.4% in men and 13.1% in women
between 2019 and 2030 [2, 3]. Additionally, a 2024 study
indicates that thyroid cancer now ranks among the top five
cancers in China, particularly among women, with inci-
dence rates rising by 15.7% in females and 16.9% in males
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from 2000 to 2018 [4]. Furthermore, the incidence of
thyroid cancer has also increased among adolescents, par-
ticularly those aged 15–19, with annual growth rates of
4–5% since 1998 [5]. This notable surge in thyroid cancer
incidence can be primarily attributed to significant
advancements in diagnostic imaging methodologies, char-
acterized by enhanced sensitivity, as well as the increased
utilization of fine needle aspiration cytology (FNAC) [6–8].
Despite the remarkable rise in global thyroid cancer inci-
dence in the recent years, its impact on mortality rates has
been minimal [9, 10]. Additionally, it is crucial to
acknowledge that only a small fraction, approximately 10%,
of thyroid nodules demonstrate malignancy [11]. This stark
reality underscores the paramount importance of precise
diagnosis for thyroid nodules, in order to avoid unnecessary
overdiagnosis of benign nodules and futile invasive proce-
dures, while also advocating for early detection of malig-
nancy and prompt treatment.

Ultrasound is the preferred first-line diagnostic imaging
modality for distinguishing between benign and malignant
thyroid nodules [12]. Diagnosis through ultrasound is based
on the morphological features of nodules, such as compo-
sition, echogenicity, calcification, margins, and size. To
standardize the evaluation process and improve diagnostic
accuracy, several risk stratification systems, known as
Thyroid Imaging Reporting and Data System (TI-RADS),
have been developed. These systems categorize thyroid
nodules based on sonographic features and assign risk
levels of malignancy. Among the most widely used TI-
RADS are the American College of Radiology (ACR) TI-
RADS, European (EU) TI-RADS, and American Thyroid
Association (ATA) TI-RADS, each differing slightly in
terms of classification criteria and diagnostic thresholds
[13–15]. While these guidelines help to standardize nodule
assessment and improve consistency across clinical settings,
ultrasound evaluations remain operator-dependent, leading
to potential variability in diagnostic accuracy [16, 17].

Recent studies have compared the diagnostic perfor-
mance of various TI-RADS systems. For example, Borlea
et al. conducted a comparative analysis of the ACR, EU,
Horvath, and French TI-RADS—and identified consider-
able differences in diagnostic metrics [18]. The ACR and
EU TI-RADS exhibited higher sensitivity but relatively
lower specificity, whereas the Horvath TI-RADS was more
accurate but had reduced sensitivity. The French TI-RADS,
developed by Russ et al., demonstrated superior overall
diagnostic performance but requires further clinical valida-
tion. A meta-analysis by Piticchio et al. further compared
ACR, EU, and Korean TI-RADS (K-TIRADS) and identi-
fied key differences in risk categorization [19]. The ACR
TI-RADS often classifies a higher proportion of nodules as
moderate risk, reducing unnecessary FNAC but potentially
underestimating high-risk cases. In contrast, K-TIRADS

tends to classify a larger percentage of nodules as high-risk,
making it suitable for clinical settings where aggressive
intervention is necessary, though it may also lead to a
higher false-positive rate. The EU TI-RADS offers a more
balanced risk distribution but tends to classify more nodules
into mild-risk categories. These comparative studies
underscore the need for further research to optimize diag-
nostic tools and strategies for thyroid nodule assessment,
ensuring that the most effective approach is utilized in
clinical practice.

The exponential growth of biomedical data, coupled with
rapid advancements in medical and information technology,
has driven significant progress in medical imaging analysis
and led to remarkable advancements in computer-aided
diagnosis (CAD) [20, 21]. This innovative approach
involves extracting multiple features from imaging data to
enable quantitative assessment of diseases, particularly
tumors, which effectively addresses the challenge of eval-
uating both benign and malignant lesions [22, 23].
AmCAD, an FDA-approved CAD software device, enables
real-time classification of thyroid nodules according to
diverse TI-RADS guidelines [24]. Previous studies have
extensively evaluated the performance of AmCAD in dis-
tinguishing benign and malignant thyroid nodules. Despite
AmCAD demonstrates a diagnostic efficiency which is
comparable to physicians, its diagnostic performance
remains limited [25–27]. Shear wave elastography (SWE),
an advanced non-invasive imaging technique, has garnered
increasing applications in clinical practice due to its com-
prehensive and quantitative assessment of tissue stiffness
[28]. This innovative modality operates by inducing shear
waves in tissues through acoustic radiation force pulses. By
precisely quantifying the shear wave propagation speed or
converting it into Young’s modulus, accurate evaluation of
tissue physical properties become possible [29]. Extensive
research has validated the clinical significance of SWE in
distinguishing benign and malignant thyroid nodules
[30, 31]. Moreover, the integration of SWE with grayscale
ultrasound in multimodal investigation has yielded pro-
mising results, and significantly enhances the diagnostic
accuracy beyond the use of grayscale ultrasound alone
[32, 33]. Despite these advancements, the potential syner-
gistic impact of combining SWE with AmCAD on diag-
nostic efficacy remains uncertain. Further research is needed
to explore the possible benefits and limitations of such a
combination.

Thus, in the present study, we intend to comprehensively
evaluate the diagnostic efficiency of various diagnostic
patterns through the combination of AmCAD and SWE.
This was accomplished by employing a range of diagnostic
strategies, including (1) utilizing AmCAD and SWE inde-
pendently, (2) combining them in parallel, (3) combining
them sequentially, and (4) combining them in integration.
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The study protocol also encompassed the assessment of
thyroid nodule elasticity obtained from both transverse and
longitudinal ultrasound scans, as well as the consideration
of diverse sizes of thyroid nodules. To the best of our
knowledge, this investigation represents the first exploration
of distinct diagnostic schemes that leverage AmCAD and
SWE for thyroid nodule differentiation.

Material and methods

Ethics and consent

This prospective cross-sectional study was conducted at a
single center, adhering to the principles outlined in the
Declaration of Helsinki. The research study was approved
by the Institutional Review Board of our institution
(Reference number: HSEARS20190123004), and written
consent was obtained from each participating patient.

Study population

During the period of May 2019 to August 2021, patients
with thyroid nodules were prospectively and consecutively
enrolled. Each patient underwent grayscale ultrasound and
two-dimensional shear wave elastography (2D-SWE)
examinations, followed by preoperative FNAC and/or
postoperative histopathological evaluation of the thyroid
nodules. The inclusion criteria were as follows: (1) patients
aged 18 years or older; (2) patients who underwent grays-
cale ultrasound and 2D-SWE examinations prior to FNAC
and/or thyroidectomy; and (3) confirmation of thyroid
nodule status by FNAC or histopathology. The exclusion
criteria included: (1) patients with a history of thyr-
oidectomy; (2) nodules with indeterminate or nondiagnostic
results; and (3) cases with poor image quality. In situations

involving multiple nodules within the same thyroid lobe,
the nodule exhibiting the highest suspicion of malignancy
or the largest nodule observed on ultrasound was chosen for
subsequent analysis. The patient recruitment process was
conducted by an independent, experienced thyroid surgeon
who did not participate in any subsequent ultrasound
examinations, image acquisition, or data analysis, thereby
ensuring objectivity and minimizing potential biases in
the study.

Grayscale ultrasound and 2D-SWE examinations

Patients underwent grayscale ultrasound and 2D-SWE
examinations in the week preceding FNAC or surgical
procedures. All ultrasound imaging assessments were per-
formed independently by a single sonographer with over
three years of experience in thyroid ultrasound imaging. To
ensure impartial and unbiased interpretations, the sono-
grapher remained blind to the patients’ clinical information.
All thyroid ultrasound examinations were performed using
the Aixplorer Ultrasound imaging system (SuperSonic
Imagine, Aix-en-Provence, France) equipped with a linear
array probe (SL15-4, 4–15MHz).

Grayscale ultrasound was first used to measure the largest
diameter of the thyroid nodule. The transverse scan showing
the largest cross-sectional area of the nodule was saved for
further analysis. Real-time 2D-SWE was then performed, with
the sonographer positioning a region of interest (ROI) that
included the entire thyroid nodule and surrounding tissue. The
inbuilt quantification tool (Q-Box™) was utilized to calculate
the mean elasticity of the nodule, excluding cystic areas, cal-
cifications, and regions without color coding (Fig. 1). To ensure
high measurement accuracy, the SWE measurements were
conducted at three different transverse (referred to as SWET)
and longitudinal (referred to as SWEL) images of the nodule,
respectively. The arithmetic mean of the three measurements

Fig. 1 Representative shear wave elastography images of a thyroid
nodule, presented in both transverse section (A) and longitudinal
section (B). The elastography procedure employs the Q-box, guided in

real-time by B-mode ultrasound, to trace the outline of the nodule.
Simultaneously, the elastic value of the nodule is automatically cal-
culated and displayed on the right side of the screen
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was considered as the nodule’s elasticity at the corresponding
scan plane.

Detailed procedural information for grayscale ultrasound
and 2D-SWE examinations is available in the supplemen-
tary materials.

CAD analysis

After the data collection, the same sonographer performed
the CAD analysis of the grayscale ultrasound images using
the AmCAD software (AmCAD BioMed Corp., Taipei,
Taiwan, China) following one month of training in the
software. The transverse scan image of the thyroid nodule
was imported into AmCAD software for analysis. In the
image analysis, AmCAD software automatically delineated
the nodule boundary, establishes an ROI, and extracted
ultrasound-based morphological characteristics (Fig. 2).
These distinctive features, including echogenicity, echo-
genic foci, margin, tumor shape, taller-than-wider config-
uration, texture, and composition, were identified and
quantified using a diverse array of color-coded parameters.

Leveraging these discernible traits, AmCAD software
generated a comprehensive report of evaluating malignancy
risk and providing recommendations for thyroid nodules
following eight TI-RADS guidelines. Given the findings
from our prior investigation, wherein the EU-TIRADS
exhibited better diagnostic performance than other TI-
RADS guidelines [24], the present study adopted the EU-
TIRADS guideline as the standardized approach in the
image evaluation.

Diagnostic strategy

The data analysis was independently performed by a radi-
ologist with more than 5 years of experience in the field.
The present study established twelve distinct diagnostic
schemes as outlined below:

(1) Isolated utilization of AmCAD;
(2) Sole employment of SWET;
(3) Exclusive implementation of SWEL;
(4) Parallel amalgamation of AmCAD with SWET;
(5) Parallel amalgamation of AmCAD with SWEL;
(6) Parallel amalgamation of AmCAD, SWET, and

SWEL;
(7) Serial fusion of AmCAD with SWET;
(8) Serial fusion of AmCAD with SWEL;
(9) Serial fusion of AmCAD, SWET, and SWEL;

(10) Integration employment of AmCAD with SWET;
(11) Integration employment of AmCAD with SWEL;
(12) Integration employment of AmCAD, SWET, and

SWEL.

In the isolated scheme, AmCAD, SWET, or SWEL were
used individually to differentiate between benign and malignant
thyroid nodules. The parallel strategy classified a thyroid nodule
as malignant if any of the diagnostic variables indicated
malignancy. In contrast, the serial strategy identified a thyroid
nodule as malignant only when all diagnostic variables con-
curred with this classification. The integrated strategy utilized a
logistic regression algorithm to incorporate all diagnostic

Fig. 2 Interactive interface of the AmCAD diagnosis system, demonstrating its automated identification and precise quantification of ultrasound
attributes, while also providing an accurate assessment of TI-RADS grade in thyroid nodule
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variables for calculating the patient’s risk probability and pro-
vided diagnostic outcomes based on a pre-determined
threshold.

Statistical analysis

Data analyses were performed using SPSS 26.0 software
(SPSS Inc., Chicago, IL, USA) and R statistical software
(version 4.2.0; http://www.R-project.org). Continuous
variables were presented as mean ± standard deviation or
as median (interquartile range), while categorical variables
were reported as frequencies (percentage). The receiver
operating characteristic (ROC) curve was constructed to
evaluate the performance of different diagnostic schemes
in differentiating between benign and malignant thyroid
nodules, with pathology results serving as the reference
standard. The area under the ROC curve (AUC) was cal-
culated to measure performance, and a Delong test was
used to compare AUCs for different diagnostic schemes.

The DeLong test was chosen because it is a non-parametric
method specifically designed to compare the AUCs of
correlated ROC curves, which is the case in our study
since the same set of nodules is being evaluated by dif-
ferent diagnostic schemes. This method accounts for the
paired nature of the data, providing a robust and unbiased
comparison of the diagnostic performances. The Youden
index, derived from ROC analysis, was employed to
identify the optimal cutoff value for the diagnostic
schemes by locating the point of maximum tangent.
Additionally, sensitivity, specificity, accuracy, missed
malignancy rate, and unnecessary biopsy rate were deter-
mined. The missed malignancy rate represents the pro-
portion of nodules identified as benign despite being
malignant among currently total biopsy-required nodules.
The unnecessary biopsy rate is defined as the proportion of
misdiagnosed benign nodules among the currently total
biopsy-required nodules. Furthermore, the overall rate,
which is the average of the sum of the missed malignancy
rate and unnecessary biopsy rate, was also calculated. To
assess the impact of thyroid nodule size on the diagnostic
strategy, a subgroup analysis was conducted based on the
Tumor, node and metastasis (TNM) staging for thyroid
cancer, categorizing the nodules into two distinct groups:
those with a size smaller than 2 cm and those measuring
between 2 cm and 4 cm [34]. Statistical significance was
defined as a two-sided P value of less than 0.05.

Result

Baseline characteristics of study population

A total of 126 thyroid nodules involving 122 patients
were included in this study. Among these nodules, 80
(63.5%) were pathologically confirmed as benign, while
46 (36.5%) were identified as malignant. The size of
benign nodules ranged from 0.53 cm to 5.25 cm, with an
average size of 2.55 ± 1.21 cm. Conversely, the malignant
nodules ranged from 0.57 cm to 5.63 cm, with an average
size of 1.89 ± 1.28 cm. Based on their size, the nodules
were distributed as follows: 64 nodules (50.8%) were
smaller than 2 cm, 48 nodules (38.1%) fell within the 2 to
4 cm range, and 14 nodules (11.1%) exceeded 4 cm in
size. The benign nodules exhibited a SWET value of
14.40 kPa (9.80–18.88 kPa), significantly lower than the
SWET value found in malignant nodules, which measured
18.81 kPa (11.85–30.10 kPa) (P= 0.009). Similarly, the
SWEL value for benign nodules was 16.47 kPa
(11.64–22.71 kPa), demonstrating a lesser measurement
compared to malignant nodules, which recorded 19.87
kPa (14.26–36.71 kPa) (P= 0.027). Detailed baseline

Table 1 Baseline characteristics of patients and thyroid nodules

Characteristic Total Benign Malignant

Patients 122 80 42

Sex (Male/
Female)

21/101 14/66 7/35

Age (years) 54.01 ± 12.13 53.81 ± 12.21 54.38 ± 12.10

Masses 126 80 (63.5) 46 (36.5)

Maximum
diameter (cm)

2.31 ± 1.27 2.55 ± 1.21 1.89 ± 1.28

range (cm) 0.53–5.63 0.53–5.25 0.57–5.63

<2 cm 64 31 (48.4) 33 (51. 6)

2–4 cm 48 39 (81.2) 9 (18.8)

>4 cm 14 10 (71.4) 4 (28.6)

AmCAD

EU TI-
RADS 2

4 2 (50.0) 2 (50.0)

EU TI-
RADS 3

31 27 (87.1) 4 (12.9)

EU TI-
RADS 4

16 12 (75.0) 4 (25.0)

EU TI-
RADS 5

75 39 (52.0) 36 (48.0)

SWET value
(kPa)

15.08
(10.30–22.37)

14.40
(9.80–18.88)

18.81
(11.85–30.10)

SWEL value
(kPa)

17.89
(12.62–24.84)

16.47
(11.64–22.71)

19.87
(14.26–36.71)

Categorical variables are presented as n (%) and continuous variables
as mean ± standard deviation or median (interquartile range), as
appropriate. SWET indicates elastic value measures in the transverse
section. SWEL indicates elastic value measures in the longitudinal
section

SWE shear wave elastography
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characteristics of the study cohort are presented in
Table 1.

Performance of different diagnosis strategies

Optimal thresholds

The optimal threshold was established based on the Youden
index, resulting in the designation of EU-TIRADS 5 for
AmCAD, and the cutoff values of 19.28 kPa for SWET and
28.2 kPa for SWEL, respectively.

AUC

The integrated scheme combining AmCAD and SWET

demonstrated significant diagnostic efficacy, with an
AUC of 72.2% (95% confidence interval (CI):
63.0–81.5%). This performance significantly exceeded
that of other diagnostic schemes (P values: 0.004–0.054),
except for the parallel scheme (AmCAD + SWEL) and
alternative integrated schemes, which showed AUCs
ranging from 67.4 to 72.1% (P values: 0.136–0.856)
(Fig. 3).

Sensitivity and specificity

Both parallel schemes, AmCAD+SWET and AmCAD
+SWET+ SWEL, achieved identical and notable sensitivity
of 87.0% (95% CI: 73.7–95.1%), while the serial scheme
(AmCAD+SWET+ SWEL) yielded superior specificity of
91.3% (95% CI: 82.8–96.4%).

Diagnostic accuracy

Among all diagnostic strategies, SWEL demonstrated the
highest diagnostic accuracy of 70.6% (95% CI: 61.9–78.4%).

The performance of all the diagnosis strategies is detailed
in Table 2 and Fig. 4.

Performance of different diagnosis strategies in
nodules size < 2 cm
AUC

When compared with other strategies, the three integrated
schemes showed comparable and remarkable diagnostic
performance, achieving AUCs ranging from 74.0 to 74.2%.
These values exceeded those of all other schemes, which

Fig. 3 Comparison of receiver
operating character curves for
the leading diagnostic strategies
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Table 2 Comparison of diagnostic performance between various schemes

Index Sensitivity %
(95% CI)

Specificity %
(95% CI)

Accuracy % (95% CI) AUC % (95% CI) P value

AmCAD 78.3 (63.6–89.1) 51.3 (39.8–62.6) 61.1 (52.0–69.7) 64.8 (55.0–74.6) 0.026

SWET modality 50.0 (34.9–65.1) 77.5 (66.8–86.1) 67.5 (58.5–75.5) 63.8 (53.4–74.1) 0.041

SWEL modality 39.1 (25.1–54.6) 88.8 (79.7–94.7) 70.6 (61.9–78.4) 63.9 (53.4–74.4) 0.054

Parallel scheme (AmCAD+ SWET) 87.0 (73.7–95.1) 42.5 (31.5–54.1) 58.7 (49.6–67.4) 64.7 (55.1–74.4) 0.024

Parallel scheme (AmCAD+ SWEL) 84.8 (71.1–93.7) 50.0 (38.6–61.4) 62.7 (53.6–71.2) 67.4 (57.9–76.9) 0.136

Parallel scheme (AmCAD+
SWET+ SWEL)

87.0 (73.7–95.1) 42.5 (31.5–54.1) 58.7 (49.6–67.4) 64.7 (55.1–74.4) 0.024

Serial scheme (AmCAD+ SWET) 41.3 (27.0–56.8) 86.3 (76.7–92.9) 69.8 (61.0–77.7) 63.8 (53.3–74.2) 0.014

Serial scheme (AmCAD+ SWEL) 32.6 (19.5–48.0) 90.0 (81.2–95.6) 69.0 (60.2–77.0) 61.3 (50.7–71.9) 0.006

Serial scheme (AmCAD+
SWET+ SWEL)

30.4 (17.7–45.8) 91.3 (82.8–96.4) 69.0 (60.2–76.7) 60.8 (50.2–71.5) 0.004

Integrated scheme (AmCAD+ SWET) 73.9 (58.9–85.7) 65.0 (53.5–75.3) 68.3 (59.4–76.3) 72.2 (63.0–81.5) /

Integrated scheme (AmCAD+ SWEL) 80.4 (66.1–90.6) 55.0 (43.5–66.2) 64.3 (55.3–72.6) 71.7 (62.4–81.0) 0.796

Integrated scheme (AmCAD+
SWET+ SWEL)

80.4 (66.1–90.6) 56.3 (44.7–67.3) 65.1 (56.1–73.4) 72.1 (62.8–81.4) 0.856

SWET indicates elastic value measures in the transverse section. SWEL indicates elastic value measures in the longitudinal section. P value
indicates the comparison of AUCs between integrated scheme (AmCAD + SWET) and other diagnostic strategies. The bold value signifies the
highest diagnostic performance in this metric.

SWE shear wave elastography, AUC area under the curve, CI confidence interval.

Fig. 4 A comparison of diagnostic metrics for each diagnostic strategy
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had AUCs varying from 58.8 to 66.3% (P values ranging
from 0.004 to 0.165).

Sensitivity and specificity

Both parallel schemes, AmCAD+SWET and AmCAD
+SWET+ SWEL, achieved identical and optimal sensitivity
of 97.0% (95% CI: 84.2–99.9%). The SWEL scheme,
together with the serial schemes, AmCAD+SWEL and
AmCAD+SWET+ SWEL, attained the same highest spe-
cificity of 90.3% (95% CI: 74.3–98.0%).

Diagnostic accuracy

Among all schemes, the integrated scheme (AmCAD
+SWET) exhibited the highest accuracy of 73.4% (95% CI:
60.9–83.7%).

The performance of all diagnostic strategies is summar-
ized in Table 3 and Fig. S1-2.

Performance of different diagnosis strategies in
nodules size 2–4 cm

AUC

The integrated scheme, involving AmCAD and SWET,
exhibited notable diagnostic efficacy, supported by an AUC
of 77.4% (95% CI: 59.4–95.3%), outperforming other

diagnostic patterns (AUCs varying from 59.0 to 77.1%, P
values ranging from < 0.001 to 0.944).

Sensitivity, specificity, and accuracy

The SWET scheme, as well as the parallel schemes,
demonstrated the highest sensitivity of 77.8% (95% CI:
40.0–97.2%). The serial scheme (AmCAD+SWET+
SWEL) showed the highest specificity of 89.7% (95% CI:
75.8–97.1%) and accuracy of 83.3% (95% CI:
69.8–92.5%).

An overview of the performance results for all diagnostic
strategies is presented in Table 4 and Figs. S3–4.

Performance of different diagnosis strategies in
missed malignancy rate and unnecessary
biopsy rate

Missed malignancy rate

Both parallel schemes, specifically AmCAD+SWET and
AmCAD+SWET+ SWEL, exhibited a consistent and
minimal missed malignancy rate of 4.8%.

Unnecessary biopsy rate

The serial scheme (AmCAD+SWET+ SWEL) demon-
strated the lowest unnecessary biopsies rate at 5.6%.

Table 3 Comparison of diagnostic performance between various schemes for nodule size <2 cm

Index Sensitivity % (95% CI) Specificity % (95% CI) Accuracy % (95% CI) AUC % (95% CI) P value

AmCAD 87.9 (71.8–96.6) 38.7 (21.9–57.8) 64.1 (51.1–75.7) 63.3 (49.5–77.1) 0.062

SWET modality 45.5 (28.1–63.7) 77.4 (58.9–90.4) 60.9 (47.9–72.9) 61.4 (47.6–75.3) 0.032

SWEL modality 36.4 (20.4–54.9) 90.3 (74.3–98.0) 62.5 (49.5–74.3) 63.3 (49.7–77.0) 0.056

Parallel scheme (AmCAD+ SWET) 97.0 (84.2–99.9) 29.0 (14.2–48.0) 64.1 (51.1–75.7) 63.0 (49.1–76.9) 0.043

Parallel scheme (AmCAD+ SWEL) 93.9 (79.8–99.3) 38.7 (21.9–57.8) 67.2 (54.3–78.4) 66.3 (52.8–79.9) 0.165

Parallel scheme (AmCAD+
SWET+ SWEL)

97.0 (84.2–99.9) 29.0 (14.2–48.0) 64.1 (51.1–75.7) 63.0 (49.1–76.9) 0.043

Serial scheme (AmCAD+ SWET) 36.4 (20.4–54.9) 87.1 (70.2–96.4) 60.9 (47.9–72.9) 61.7 (47.9–75.5) 0.011

Serial scheme (AmCAD+ SWEL) 30.3 (15.6–48.7) 90.3 (74.3–98.0) 59.4 (46.4–71.5) 60.3 (46.4–74.2) 0.010

Serial scheme (AmCAD+
SWET+ SWEL)

27.3 (13.3–45.5) 90.3 (74.3–98.0) 57.8 (44.8–70.1) 58.8 (44.8–72.8) 0.004

Integrated scheme (AmCAD+ SWET) 81.8 (64.5–93.0) 64.5 (45.4–80.8) 73.4 (60.9–83.7) 74.2 (61.9–86.4) /

Integrated scheme (AmCAD+ SWEL) 90.9 (75.7–98.1) 48.4 (30.2–66.9) 70.3 (57.6–81.1) 74.0 (62.0–86.1) 0.971

Integrated scheme (AmCAD+
SWET+ SWEL)

90.9 (75.7–98.1) 51.6 (33.1–69.9) 71.9 (59.2–82.4) 74.2 (62.1–86.3) > 0.999

SWET indicates elastic value measures in the transverse section. SWEL indicates elastic value measures in the longitudinal section. P value
indicates the comparison of AUCs between integrated scheme (AmCAD + SWET) and other diagnostic strategies. The bold value signifies the
highest diagnostic performance in this metric

SWE shear wave elastography, AUC area under the curve, CI confidence interval
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Overall rate

The SWEL scheme achieved the lowest overall rate of 14.7%,
followed by the serial schemes ranging from 15.1 to 15.5%, and
the integrated scheme (AmCAD+SWET) with a rate of 15.9%.

Table 5 and Fig. 5 provide a comprehensive summary of
the performance evaluation of various diagnostic strategies.

Discussion

In the present study, we leveraged a CAD device known as
AmCAD in conjunction with the SWE technique to dis-
tinguish malignant thyroid nodules from benign nodules.
Different diagnostic schemes were employed, utilizing a
variety of combinations of these two techniques, including

Table 4 Comparison of diagnostic performance between various schemes for nodule size 2–4 cm

Index Sensitivity % (95% CI) Specificity % (95% CI) Accuracy % (95% CI) AUC % (95% CI) P value

AmCAD 66.7 (29.9–92.5) 51.3 (34.8–67.6) 54.2 (39.2–68.6) 59.0 (38.5–79.4) <0.001

SWET modality 77.8 (40.0–97.2) 74.4 (57.9–87.0) 75.0 (60.4–86.4) 76.1 (58.3–93.8) 0.818

SWEL modality 66.7 (29.9–92.5) 87.2 (72.6–95.7) 83.3 (69.8–92.5) 76.9 (57.5–96.4) 0.944

Parallel scheme (AmCAD+ SWET) 77.8 (40.0–97.2) 43.6 (27.8–60.4) 50.0 (35.2–64.8) 60.7 (41.0–80.3) 0.003

Parallel scheme (AmCAD+ SWEL) 77.8 (40.0–97.2) 51.3 (34.8–67.6) 56.3 (41.2–70.5) 64.5 (45.4–83.7) 0.023

Parallel scheme (AmCAD+
SWET+ SWEL)

77.8 (40.0–97.2) 43.6 (27.8–60.4) 50.0 (35.2–64.8) 60.7 (41.0–80.3) 0.003

Serial scheme (AmCAD+ SWET) 66.7 (29.9–92.5) 82.1 (66.5–92.5) 79.2 (65.0–89.5) 74.4 (54.8–93.9) 0.321

Serial scheme (AmCAD+ SWEL) 55.6 (21.2–86.3) 87.2 (72.6–95.7) 81.3 (67.4–91.1) 71.4 (50.4–92.3) 0.298

Serial scheme (AmCAD+
SWET+ SWEL)

55.6 (21.2–86.3) 89.7 (75.8–97.1) 83.3 (69.8–92.5) 72.6 (51.7–93.6) 0.406

Integrated scheme (AmCAD+ SWET) 66.7 (29.9–92.5) 59.0 (42.1–74.4) 60.4 (45.3–74.2) 77.4 (59.4–95.3) /

Integrated scheme (AmCAD+ SWEL) 66.7 (29.9–92.5) 51.3 (34.8–67.6) 54.2 (39.2–68.6) 74.2 (56.2–92.3) 0.369

Integrated scheme (AmCAD+
SWET+ SWEL)

66.7 (29.9–92.5) 51.3 (34.8–67.6) 54.2 (39.2–68.6) 77.1 (59.3–94.8) 0.780

SWET indicates elastic value measures in the transverse section. SWEL indicates elastic value measures in the longitudinal section. P value
indicates the comparison of AUCs between integrated scheme (AmCAD + SWET) and other diagnostic strategies. The bold value signifies the
highest diagnostic performance in this metric

SWE shear wave elastography, AUC area under the curve, CI confidence interval

Table 5 Comparison of missed
malignancy rate and
unnecessary biopsy rate between
various schemes

Index Missed malignancy
rate, %

Unnecessary biopsy
rate, %

Overall
rate, %

AmCAD 7.9 (10/126) 31.0 (39/126) 19.4

SWET modality 18.3 (23/126) 14.3 (18/126) 16.3

SWEL modality 22.2 (28/126) 7.1 (9/126) 14.7

Parallel scheme (AmCAD+ SWET) 4.8 (6/126) 36.5 (46/126) 20.6

Parallel scheme (AmCAD+ SWEL) 5.6 (7/126) 31.7 (40/126) 18.7

Parallel scheme (AmCAD+
SWET+ SWEL)

4.8 (6/126) 36.5 (46/126) 20.6

Serial scheme (AmCAD+ SWET) 21.4 (27/126) 8.7 (11/126) 15.1

Serial scheme (AmCAD+ SWEL) 24.6 (31/126) 6.3 (8/126) 15.5

Serial scheme (AmCAD+
SWET+ SWEL)

25.4 (32/126) 5.6 (7/126) 15.5

Integrated scheme (AmCAD+
SWET)

9.5 (12/126) 22.2 (28/126) 15.9

Integrated scheme (AmCAD+
SWEL)

7.1 (9/126) 28.6 (36/126) 17.9

Integrated scheme (AmCAD+
SWET+ SWEL)

7.1 (9/126) 27. 8 (35/126) 17.5

SWET indicates elastic value measures in the transverse section. SWEL indicates elastic value measures in
the longitudinal section. The bold value signifies the best performance in this metric

SWE shear wave elastography
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isolation, parallel utilization, serial implementation, and
integration. In addition, the study assessed tissue elasticity
of the thyroid nodules in both transverse and longitudinal
scan images, as well as the impact of different nodule sizes
on diagnostic strategies. The different diagnostic schemes
demonstrated specific advantages in terms of diagnostic
performance. Some schemes excelled in determining
malignant nodules, while others showed proficiency in
identifying benign nodules and reducing the rate of unne-
cessary biopsies. Additionally, the diagnostic performance
of various strategies varied depending on the size of the
nodule. The comprehensive evaluation of the present study
revealed that the integrated scheme, in which AmCAD and
SWET were combined, provided favorable diagnostic per-
formance for discriminating between benign and malignant
thyroid nodules, with an AUC of 72.2% (95% CI:
63.0–81.5%), exceeding other diagnostic strategies. Parti-
cularly, in the subcategories of nodules smaller than 2 cm
and between 2 cm and 4 cm, the AUC values were 74.2%
(95% CI: 61.9–86.4%) and 77.4% (95% CI: 59.4–95.3%),
respectively, also showing promising diagnostic perfor-
mance. Moreover, in the evaluation of missed malignancies
and unnecessary biopsies, the integrated scheme yielded a
favorable overall result of 15.9%.

CAD diagnostic system demonstrates its capability to
perform ROI segmentation, feature extraction, and model
construction. This is done by extracting a lot of relevant
information from ultrasound images. Through the compre-
hensive mining and analysis of image data, the CAD system
facilitates more accurate and efficient diagnoses, emerging
as a novel diagnostic scheme in clinical practice [35, 36]. In
this study, we employed the AmCAD detection system,
which serves as an auxiliary diagnostic tool for thyroid

ultrasound examination. This innovative system seamlessly
integrates thyroid ultrasound image processing with nodule
morphological characteristics analysis, offering valuable
insights for accurate diagnosis. Previous studies exploring
the implementation of AmCAD for diagnosing thyroid
nodules have demonstrated comparable or superior diag-
nostic performance in comparison to junior radiologists.
Nevertheless, the clinical utility has been limited, because
of the low overall diagnostic accuracy with an AUC ranging
from 58.5 to 74.8% [25, 26, 37]. These findings are con-
sistent with our study in which AmCAD alone yielded a
sensitivity of 78.3%, specificity of 51.3%, accuracy of
61.1%, and AUC of 64.8%. The limited diagnostic efficacy
of AmCAD alone is primarily due to the fact that numerous
grayscale ultrasound features were common and demon-
strated in both benign and malignant nodules [11]. While
AmCAD can potentially distinguish between benign and
malignant nodules, it relies exclusively on morphological
assessment and its diagnostic efficacy depends on the pre-
sence of distinct morphological features characteristic of
benignity and malignancy [38, 39]. Consequently, despite
artificial intelligence-based CAD software assistance, the
differential diagnosis of thyroid nodules remains
challenging.

Carcinogenesis is a multifaceted process involving
changes in stiffness, morphological characteristics, and
vascular dynamics [40]. Tissue elasticity, a fundamental
parameter of physical property, undergoes significant
influence from pathophysiological mechanisms. Malignant
lesions often demonstrate increased stiffness, whereas
benign lesions exhibit lower elasticity [28]. In the context of
thyroid cancer, the increased stiffness can be attributed to
fibroblast reactions, the presence of granular structures, and

Fig. 5 The numbers of missed
malignancy nodules and
unnecessary biopsy nodules
obtained from each diagnostic
strategy
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cellular compaction resulting from invasive cancer growth
[41, 42]. The application of SWE imaging as an adjunct tool
for evaluating thyroid nodule stiffness has emerged as a
valuable biomarker for thyroid cancer [30]. Various inves-
tigations have demonstrated that the combined utilization of
SWE and grayscale ultrasound, capitalizing on both the
physical properties and morphological characteristics of
thyroid nodules, enhances the diagnostic efficacy in
detecting thyroid malignancies, surpassing the isolated use
of grayscale ultrasound or SWE [32, 33, 43]. However, our
study further contributes to the field by exploring the
diagnostic variability based on nodule size and scanning
orientation, providing a more nuanced understanding of the
strengths and limitations of this integrated approach.

The SWE values obtained in thyroid nodules exhibited
inconsistencies between transverse and longitudinal scans.
Although the overall diagnostic performance was similar
between the two, there were still noticeable differences. We
hypothesize that these discrepancies are primarily due to
two factors: First, the spatial heterogeneity of tumor tissue
plays a crucial role in this phenomenon. Tumor cells exhibit
variations in collagen fiber structure and density depending
on their growth direction [44]. This biological complexity
leads to different mechanical properties being displayed in
different directions. Consequently, SWE measurements
may yield different elasticity values depending on the scan
plane. Specifically, certain regions of the tumor may appear
stiffer in one direction while being softer in another. This
spatial heterogeneity reflects the intricate internal structure
of tumor tissues, where variations in fiber orientation and
density can result in differing elasticity measurements
between transverse and longitudinal scans [45]. Second, the
anatomical differences in thyroid nodules between trans-
verse and longitudinal planes, as well as the variation in
acoustic push pulses, could also contribute to the incon-
sistency in elasticity measurements. SWE relies on the
ultrasound probe emitting acoustic push pulses to excite the
tissue. The anatomical structures surrounding the nodule
(e.g., blood vessels, muscle tissues) and their relative
positions to the ultrasound probe vary between different
planes [46]. These variations can affect the propagation path
and focusing of the sound waves, leading to inconsistent
elasticity measurements. Specifically, during transverse and
longitudinal scans, the probe’s position on the nodule may
differ, causing variations in wave focusing, scattering, and
attenuation, thereby impacting the measurement results
[47]. While further clinical trials are needed to validate
these hypotheses, exploring combined diagnostic strategies
from different measurement planes is also essential.

This study employed a combination of AmCAD and
SWE imaging to develop diverse diagnostic strategies,
aiming to emphasize specific advantages of different com-
binations of these diagnostic tools. The parallel combination

exhibited improved sensitivity but reduced specificity,
while the serial combination offered enhanced specificity at
the expense of sensitivity. Overall, the integration of
AmCAD with SWET demonstrated the most favorable
diagnostic performance, with an AUC of 72.2% (95% CI:
63.0–81.5%), significantly surpassing other combined
diagnostic strategies. Moreover, in the subgroup analysis of
thyroid nodules measuring <2 or 2–4 cm, the integration of
AmCAD with SWET consistently showed promising diag-
nostic performance, with AUCs of 74.2% (95% CI:
61.9–86.4%) and 77.4% (95% CI: 59.4–95.3%) respec-
tively, outperforming other diagnostic strategies. This inte-
grated scheme also effectively addresses thyroid nodule
management by reducing missed malignancy rates and
unnecessary biopsy rates. By employing a combination of
two assessment methods, the integrated strategy maximizes
the analytical information obtained from available resour-
ces, thereby enhancing and optimizing diagnostic cap-
abilities to support clinical decision-making [48].
Additionally, this strategy may be applicable to other areas
of CAD-based ultrasound diagnostics, such as breast lesions
[49], suggesting a broader impact on clinical practice
beyond thyroid nodules.

Although this study has made noteworthy progress, it is
important to acknowledge certain inherent limitations. First,
the relatively small sample size in our study emphasizes the
need for a more extensive prospective study on a larger
scale to further substantiate and reinforce our findings.
Second, the single-center design could introduce site-
specific biases, such as differences in operator expertise or
patient demographics, which may limit the generalizability
of our results. A multicenter study would be needed to
address these concerns and validate our findings across
diverse clinical settings. Third, our study population con-
sisted exclusively of patients undergoing thyroid biopsy or
surgery, which may have introduced selection bias by
excluding patients with less suspicious or indeterminate
nodules. This could have affected the estimation of the
diagnostic performance of the AmCAD software. Future
research should include a broader spectrum of thyroid
nodules to better reflect real-world clinical practice. Fourth,
variability in ultrasound equipment and image resolution
across different manufacturers could impact the diagnostic
accuracy of the CAD software, highlighting the need for
standardization and further investigation into the general-
izability of the CAD system in different clinical
environments.

Conclusion

This study demonstrated the effectiveness of integrating
AmCAD and SWET to enhance diagnostic performance in
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distinguishing between benign and malignant thyroid
nodules. This approach offers significant potential for
improving clinical diagnoses and decision-making. How-
ever, to confirm these findings and broaden their applic-
ability, larger multi-center studies are needed. Future
research should also evaluate the long-term impact of this
diagnostic approach on clinical outcomes, including its role
in reducing unnecessary biopsies and missed malignancies.
Expanding the study population and assessing the diag-
nostic utility across diverse clinical settings will further
elucidate its clinical value.
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