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Abstract

The combinatorics of certain tuples of osculating lattice paths is studied, and a

relationship with oscillating tableaux is obtained. The paths being considered have

fixed start and end points on respectively the lower and right boundaries of a rectan-

gle in the square lattice, each path can take only unit steps rightwards or upwards,

and two different paths within a tuple are permitted to share lattice points, but

not to cross or share lattice edges. Such path tuples correspond to configurations of

the six-vertex model of statistical mechanics with appropriate boundary conditions,

and they include cases which correspond to alternating sign matrices. Of primary

interest here are path tuples with a fixed number l of vacancies and osculations,

where vacancies or osculations are points of the rectangle through which respec-

tively no or two paths pass. It is shown that there exist natural bijections which

map each such path tuple P to a pair (t, η), where η is an oscillating tableau of

length l (i.e., a sequence of l+1 partitions, starting with the empty partition, in

which the Young diagrams of successive partitions differ by a single square), and t

is a certain, compatible sequence of l weakly increasing positive integers. Further-

more, each vacancy or osculation of P corresponds to a partition in η whose Young

diagram is obtained from that of its predecessor by respectively the addition or

deletion of a square. These bijections lead to enumeration formulae for tuples of

osculating paths involving sums over oscillating tableaux.
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1. Introduction

The enumeration of nonintersecting lattice paths and of semistandard Young tableaux

are two basic problems in combinatorics. These problems are also closely related since

there exist straightforward bijections between certain tuples of nonintersecting paths and

certain tableaux. Furthermore, the problems are now well-understood, one reason being

that a fundamental theorem, often called the Lindström-Gessel-Viennot theorem (see for

example [30, Theorem 1], [31, Corollary 2] or [59, Theorem 2.7.1]), enables the cardinality

of a set of tuples of such nonintersecting paths to be expressed as the determinant of

a matrix of binomial coefficients, thereby significantly elucidating and facilitating the

enumeration.

More specifically, the paths in this context have fixed start and end points in the lattice Z2,

each path can take only unit steps rightwards or upwards, and different paths within a

tuple cannot share any lattice point. A (non-skew) semistandard Young tableau (see for

example [28], [57], [58] or [60, Ch. 7]) is an array of positive integers which increase weakly

from left to right along each row and increase strictly from top to bottom down each

column, and where the overall shape of the array corresponds to the Young diagram of a

partition. Apart from their intrinsic combinatorial interest, such tableaux are important

in several other areas of mathematics, including the representation theory of symmetric

and general linear groups. Each row of a tableau read from right to left itself constitutes

a partition, and the usual bijections between tableaux and nonintersecting paths (see for

example [30, Sec. 6], [31, Sec. 3] or [60, Sec. 7.16]) essentially involve associating each row

of a tableau with the path formed by the lower and right boundary edges of the Young

diagram of that row, and translated to a certain position in the lattice. The condition

that different paths within a tuple cannot intersect then effectively corresponds to the

condition that the entries of a tableau increase strictly down columns.

It will also be relevant in this paper to consider standard Young tableaux and oscillating

tableaux. A standard Young tableau is a semistandard Young tableau with distinct entries

which simply comprise 1, 2, . . . , n for some n, while an oscillating tableau of length l (see

for example [6, 57, 63, 64]) is a sequence of l+1 partitions which starts with the empty

partition, and in which the Young diagrams of successive partitions differ by a single

square. It can be seen that a standard Young tableau σ corresponds naturally to an

oscillating tableau η in which each Young diagram is obtained from its predecessor by the

addition of a square. More precisely, if σij = k, then the Young diagram of the (k+1)th

partition of η is obtained from that of the kth partition by the addition of a square in

row i and column j. It can also be shown (as will be done for example in Section 18 of

this paper) that a semistandard Young tableau τ corresponds naturally to a pair (t, η) in

which t consists of the entries of τ arranged as a weakly increasing sequence, and η is an

oscillating tableau in which each Young diagram is obtained from its predecessor by the
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addition of a square (i.e., η corresponds to a standard Young tableau).

The primary aim of this paper is to show that these results can essentially be generalized

from tuples of nonintersecting paths to tuples of osculating paths, and from pairs (t, η) in

which the oscillating tableau η corresponds to a standard Young tableau to more general

pairs (t, η) in which each Young diagram of η can be obtained from its predecessor by

either the addition or deletion of a square.

More specifically, tuples of osculating paths are those in which each path can still take

only unit steps rightwards or upwards in Z2, but for which two different paths within

a tuple are now permitted to share lattice points, although not to cross or share lattice

edges. Such path tuples correspond to configurations of the six-vertex model of statistical

mechanics (see for example [5, Ch. 8]). The particular case being considered in this paper

is that in which the paths have fixed start and end points on respectively the lower and

right boundaries of a rectangle in Z2. Referring to points of the rectangle through which

no or two paths pass as vacancies or osculations respectively, the case of primary interest

will be path tuples with a fixed number l of vacancies and osculations. It will then be

found that there exist natural bijections which, using data associated with the positions of

the vacancies and osculations, map any tuple P of such osculating paths to a pair (t, η),

referred to as a generalized oscillating tableau, in which η is an oscillating tableau of

length l, and t is a certain, compatible sequence of l weakly increasing positive integers. A

feature of these bijections is that each vacancy or osculation of P corresponds to a partition

in η whose Young diagram is obtained from that of its predecessor by respectively the

addition or deletion of a square. If P is a tuple of nonintersecting paths, then there is such

a bijection for which the associated generalized oscillating tableau (t, η) corresponds to a

semistandard Young tableau, although the overall correspondence is slightly different from

the usual ones known between nonintersecting paths and semistandard Young tableaux.

Much of the motivation for the work reported in this paper was derived from studies of

alternating sign matrices. An alternating sign matrix, as first defined in [44, 45], is a square

matrix in which each entry is 0, 1 or −1, each row and column contains at least one nonzero

entry, and along each row and column the nonzero entries alternate in sign, starting and

finishing with a 1. For reviews of alternating sign matrices and related subjects, see

for example [10, 11, 16, 17, 50, 51, 70]. Of particular relevance here is that there exist

straightforward bijections between alternating sign matrices, or certain subclasses thereof,

and certain tuples of osculating paths in a rectangle (see for example Section 4 of this paper

and references therein). Relatively simple enumeration formulae are known for such cases,

but all currently-known derivations of these formulae, as given in [15, 27, 41, 42, 47, 68, 69],

are essentially non-combinatorial in nature. Furthermore, it is known that the numbers of

n×n alternating sign matrices, descending plane partitions with no part larger than n (see

for example [1, 39, 43, 44, 45]), and totally symmetric self-complementary plane partitions

in a 2n×2n×2n box (see for example [2, 19, 20, 21, 22, 35, 36, 46, 62]) are all equal,
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and further equalities between the cardinalities of certain subsets of these three objects

have been conjectured or in a few cases proved, but no combinatorial proofs of these

equalities have been found. It is therefore hoped that the bijections between osculating

paths and generalized oscillating tableaux described in this paper may eventually lead to

an improved combinatorial understanding of some of these matters.

Osculating paths have also appeared in a number of recent studies as a special case of

friendly walkers (see for example [7, 26, 34, 40] and references therein). However, all of

these cases use a different external configuration from the rectangle being used here. In

particular, the paths start and end on two parallel lines rotated by 45◦ with respect to the

rows or columns of the square lattice. A general enumeration formula for such osculating

paths has been conjectured in [9].

Overview

A more detailed overview of the main definitions and results of this paper will now be

provided.

As shown in Figure 1, the rectangle of lattice points being considered will have dimen-

sions a and b, with rows labeled 1 to a from top to bottom, columns labeled 1 to b

from left to right, the point in row i and column j labeled (i, j), the points on the lower

boundary at which paths start labeled (a, β1), . . . , (a, βr), and the points on the right

boundary at which paths end labeled (α1, b), . . . , (αr, b), for some α = {α1, . . . , αr} and

β = {β1, . . . , βr}. The notation OP(a, b, α, β, l) will be used for the set of all r-tuples of

osculating paths which have l vacancies and osculations in the a by b rectangle, and in

which the k-th path of the tuple starts at (a, βk) and ends at (αk, b). A running example

throughout the paper will be the element of OP(4, 6, {1, 2, 3}, {1, 4, 5}, 11) depicted in

Figure 2, and for which the vacancies are (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3),

(4, 2) and (4, 3), and the osculations are (2, 5) and (3, 4).

The partition λa,b,α,β := [a]×[b]\(b−β1, . . . , b−βr | a−α1, . . . , a−αr) will be associated with

the a by b rectangle and sets of boundary points α and β, where Frobenius notation is being

used, and for a partition µ with no more than a parts and largest part at most b, [a]×[b]\µ
denotes the complement of µ in the a by b rectangle, [a]×[b]\µ := (b−µa, b−µa−1, . . . , b−µ1).

For example, λ4,6,{1,2,3},{1,4,5} = [4]×[6]\(5, 2, 1 | 3, 2, 1) = [4]×[6]\(6, 4, 4, 3) = (3, 2, 2).

For a partition λ and a nonnegative integer l, OT(λ, l) will denote the set of all oscillating

tableaux of shape λ and length l, i.e., all sequences of l+1 partitions starting with ∅,
ending with λ, and in which the Young diagrams of successive partitions differ by a

square. For any oscillating tableau η = (η0, η1, . . . , ηl), the ‘profile’ of η will be defined as

Ω(η) := (j1−i1, . . . , jl−il), where (ik, jk) is the position of the square by which the Young

diagrams of ηk and ηk−1 differ. For a square at position (i, j), j−i is often known as its
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content. Any oscillating tableau η can be uniquely reconstructed from its profile Ω(η) by

starting with η0 = ∅, and then obtaining the Young diagram of each successive partition ηk

from that of ηk−1 by adding or deleting (with necessarily only one or the other being

possible) a square with content Ω(η)k. An example of an element η of OT((3, 2, 2), 11),

with its Young diagrams and profile, is given in Table 3.

Finally, for a set T of positive integers, a total strict order ≺ on the integers, a partition λ

and a nonnegative integer l, the associated set GOT(T,≺, λ, l) of generalized oscillating

tableaux will be defined as the set of pairs ((t1, . . . , tl), η) ∈ T l×OT(λ, l) in which tk < tk+1,

or tk = tk+1 and Ω(η)k ≺ Ω(η)k+1, for k = 1, . . . , l−1.

The main result of this paper, as given in Theorem 13, is that there is a bijection between

OP(a, b, α, β, l) and GOT({1, . . . , min(a, b)},≺b−a, λa,b,α,β, l), where ≺b−a is any total strict

order on the integers with the property that z ≺b−a z′ whenever integers z and z′ satisfy

z < z′ ≤ b−a or z > z′ ≥ b−a. In this bijection, the generalized oscillating tableau (t, η)

which corresponds to a path tuple P is obtained as follows.

• For each lattice point (i, j), define Lb−a(i, j) :=

{

max(i−a+b, j), a ≥ b

max(i, j+a−b), a ≤ b .

• Order the vacancies and osculations of P as (i1, j1), . . . , (il, jl), where

Lb−a(ik, jk)<Lb−a(ik+1, jk+1), or Lb−a(ik, jk) = Lb−a(ik+1, jk+1) and jk−ik≺b−a jk+1−ik+1,

for k = 1, . . . , l−1.

• Then t = (Lb−a(i1, j1), . . . , Lb−a(il, jl)), and η is the oscillating tableau with profile

Ω(η) = (j1−i1, . . . , jl−il).

A further summary of the bijection between tuples of osculating paths and generalized

oscillating tableaux, including details of the inverse mapping, is given in Section 15.

Applying the bijection to the example of a path tuple in Figure 2, using the total strict

order . . . ≺2 −1 ≺2 5 ≺2 0 ≺2 4 ≺2 1 ≺2 3 ≺2 2, gives the following.

• L2(i, j) = max(i, j−2).

• The ordered list of vacancies and osculations is (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),

(2, 3), (1, 4), (3, 4), (2, 5), (4, 2), (4, 3).

• t = (1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4) and Ω(η) = (0, 1, 2,−1, 0, 1, 3, 1, 3,−2,−1), so η is the

oscillating tableau of Table 3, η =
(

∅, (1), (2), (3), (3, 1), (3, 2), (3, 3), (4, 3), (4, 2),

(3, 2), (3, 2, 1), (3, 2, 2)
)

.

As indicated in Corollary 14, it follows from this bijection that tuples of osculating paths

can be enumerated using a sum over oscillating tableaux,

|OP(a, b, α, β, l)| =
∑

η∈OT(λa,b,α,β ,l)

(

min(a, b) + |A(≺b−a, η)|

l

)

,
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where A(≺b−a, η) = {k | Ω(η)k ≺b−a Ω(η)k+1}. This formula is applied in Section 17 to a

particular example, namely the enumeration of n×n standard alternating sign matrices

whose corresponding path tuples have 3 vacancies and 3 osculations.

Other primary results of this paper appear in Section 16, in which it is shown that in

certain cases, simpler versions of the total strict order ≺b−a and the function Lb−a can

be used to give alternative bijections between tuples of osculating paths and generalized

oscillating tableaux, and in Section 18, in which the bijections are applied to tuples of

nonintersecting paths.

Notation

Throughout this paper, P denotes the set of positive integers, N denotes the set of nonneg-

ative integers, [m, n] denotes the set {m, m+1, . . . , n} for any m, n ∈ Z, with [m, n] = ∅
for n < m, and [n] denotes the set [1, n] for any n ∈ Z. For a finite set T , |T | denotes the

cardinality of T . For a condition C, δC denotes a function which is 1 if C is satisfied and

0 if not, and for numbers i and j, δij denotes the usual Kronecker delta, δij = δi=j. For a

positive odd integer n, the double factorial is n!! = n(n−2)(n−4) . . . 3.1, while (-1)!! is

taken to be 1.

2. Osculating Paths

In this section, the set of tuples of osculating lattice paths in a fixed a by b rectangle,

with the paths starting at points (specified by a subset {β1, . . . , βr} of [b]) along the lower

boundary, ending at points (specified by a subset {α1, . . . , αr} of [a]) along the right

boundary, and taking only unit steps rightwards or upwards, will be defined precisely.

For any a, b ∈ P, the subset [a]×[b] of Z2 will be regarded diagrammatically as a rectangle

of lattice points with rows labeled 1 to a from top to bottom, columns labeled 1 to b

from left to right, and (i, j) being the point in row i and column j. The motivation for

using this labeling is that it will provide consistency with the standard labeling of rows

and columns of matrices and Young diagrams, both of which will later be associated with

path tuples.

The general labeling of the lattice, together with the start and end points of paths, is

shown diagrammatically in Figure 1.

For α ∈ [a] and β ∈ [b], let Π(a, b, α, β) be the set of all paths from (a, β) to (α, b), in
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1 2 j b
1

2

i

a

(α1,b)

(α2,b)

(αr ,b)

(a,β1) (a,β2) (a,βr)

· · · · · ·

...

...

•
(i, j)

...

· · ·
• • •

•

•

•

Figure 1: Labeling of the lattice and boundary points.

which each step of any path is (0, 1) or (−1, 0),

Π(a, b, α, β) :=
{(

(i0, j0)=(a, β), (i1, j1), . . . , (iL−1, jL−1), (iL, jL)=(α, b)
) ∣
∣
∣

(il, jl)−(il−1, jl−1) ∈ {(0, 1), (−1, 0)} for each l ∈ [L]
}

,
(1)

where necessarily L = a−α+b−β. It follows that |Π(a, b, α, β)| =
(
a−α+b−β

a−α

)

.

For α, α′ ∈ [a] and β, β ′ ∈ [b], with α < α′ and β < β ′, paths P ∈ Π(a, b, α, β) and

P ′ ∈ Π(a, b, α′, β ′) are said to be osculating if they do not cross or share lattice edges,

but possibly share lattice points. More precisely, this means that if Pl = P ′
l′ = (i, j) for

some l and l′ (which implies that l = a−i+j−β, l′ = a−i+j−β ′), then Pl−1 = (i, j−1),

Pl+1 = (i−1, j), P ′
l′−1 = (i+1, j) (if l′ 6= 0) and P ′

l′+1 = (i, j+1) (if l′ 6= a−α′+b−β ′). Any

such common point (i, j) will be referred to as an osculation of P .

For r ∈ [0, min(a, b)], α = {α1, . . . , αr} ⊂ [a] and β = {β1, . . . , βr} ⊂ [b], with α1 <. . .<αr

and β1 < . . .<βr, let OP(a, b, α, β) be the set of r-tuples of pairwise osculating paths in

which the k-th path is in Π(a, b, αk, βk) for each k ∈ [r],

OP(a, b, α, β) :=
{

P =(P1, . . . , Pr) ∈ Π(a, b, α1, β1)×. . .×Π(a, b, αr, βr)
∣
∣
∣

Pk and Pk+1 are osculating for each k ∈ [r−1]
}

.
(2)

Also, for any a, b ∈ P, let BP(a, b) be the set of all pairs (α, β) of boundary points,

BP(a, b) :=
{

(α, β)
∣
∣
∣ α ⊂ [a], β ⊂ [b], |α| = |β|

}

. (3)

It follows that |BP(a, b)| =
min(a,b)
∑

r=0

(
a
r

)(
b
r

)

=
(
a+b
a

)

.

Throughout the remainder of this paper, a and b will be used to denote positive integers,

corresponding to the dimensions of a rectangle of lattice points, and (α, β) will denote an

element of BP(a, b).
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Now let OP(a, b) be the set of all tuples of osculating paths in [a]×[b] with any boundary

points,

OP(a, b) :=
⋃

(α,β)∈BP(a,b)

OP(a, b, α, β) . (4)

For P ∈ OP(a, b), any point (i, j) ∈ [a]× [b] through which no path of P passes will be

referred to as a vacancy of P . Define N(P ) to be the set of all vacancies of P , X(P ) to

be the set of all osculations of P and χ(P ) to be the number of osculations of P ,

χ(P ) := |X(P )| . (5)

A tuple of nonintersecting paths is any P for which X(P ) = ∅. Nonintersecting paths will

be considered in more detail in Section 18.

Define also a vacancy-osculation of P ∈ OP(a, b) as either a vacancy or osculation of P ,

and the vacancy-osculation set Z(P ) as the set of all vacancy-osculations of P ,

Z(P ) := N(P ) ∪ X(P ) . (6)

In other words, Z(P ) is the set of points of [a]× [b] through which either zero or two

paths of P pass. It will be of particular interest to consider sets of path tuples with l

vacancy-osculations, for fixed l ∈ N,

OP(a, b, l) :=
{

P ∈ OP(a, b)
∣
∣
∣ |Z(P )| = l

}

OP(a, b, α, β, l) :=
{

P ∈ OP(a, b, α, β)
∣
∣
∣ |Z(P )| = l

}

,
(7)

a primary aim of this paper being to study the properties and cardinality of OP(a, b,

α, β, l).

Finally, note that there are trivial bijections, involving reflection or translation, between

certain sets of path tuples. More precisely, using ≈ to denote the existence of a bijection

between sets,

OP(a, b, α, β, l) ≈ OP(b, a, β, α, l)

≈ OP(ā+a, b̄+b, {ā+α1, . . . , ā+αr}, {b̄+β1, . . . , b̄+βr}, l+ā b̄+ā b+a b̄) ,
(8)

for any a, b ∈ P, ā, b̄ ∈ N and (α, β) = ({α1, . . . , αr}, {β1, . . . , βr}) ∈ BP(a, b). For the

first bijection of (8) each path is reflected in the main diagonal of the lattice, while for

the second bijection of (8) each path is translated by (ā, b̄).

An example of an element of OP(4, 6, {1, 2, 3}, {1, 4, 5}, 11) is P =
((

(4, 1), (3, 1), (3, 2),

(3, 3), (3, 4), (2, 4), (2, 5), (1, 5), (1, 6)
)

,
(

(4, 4), (3, 4), (3, 5), (2, 5), (2, 6)
)

,
(

(4, 5), (4, 6),

(3, 6)
))

, which is shown diagrammatically in Figure 2.
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4

3

2

1

1 2 3 4 5 6

Figure 2: Example of a tuple of osculating paths.

For this case, N(P ) = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (4, 2), (4, 3)},

X(P ) = {(2, 5), (3, 4)} and χ(P ) = 2. This will serve as a running example throughout

this paper.

3. Edge Matrices

In this section, it will be seen that each tuple of osculating paths corresponds naturally

to a pair (H, V ) of {0, 1} matrices, which will be referred to as horizontal and vertical

edge matrices.

For P ∈ OP(a, b, α, β), the correspondence is given simply by the rule that Hij is 0 or

1 according to whether or not P contains a path which passes from (i, j) to (i, j +1),

and that Vij is 0 to 1 according to whether or not P contains a path which passes from

(i+1, j) to (i, j). Thus Hij is associated with the horizontal lattice edge between (i, j) and

(i, j+1), and Vij is associated with the vertical lattice edge between (i, j) and (i+1, j). It

is also convenient to consider boundary edges horizontally between (i, 0) and (i, 1), and

between (i, b) and (i, b+1), for each i ∈ [a], and vertically between (0, j) and (1, j), and

between (a, j) and (a+1, j), for each j ∈ [b], and to include in each path Pk the additional

points (a+1, βk) at the start and (αk, b+1) at the end. Each point (i, j) ∈ [a]×[b] can then

be associated with a vertex configuration which involves the four values Hi,j−1, Vij, Hij

and Vi−1,j, this being depicted diagrammatically as

•

•

• •Hi,j−1 Hij

Vi−1,j

Vij

. (9)

It can be seen that for any tuple of osculating paths there are only six possible path
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configurations surrounding any lattice point, given diagrammatically as:

(10)

Correspondingly, there are six possible vertex configurations:

• • • • • •

• • • • • •

• • • • • •• • • • • •

1

1

1 1

0

0

0 0

0

0

1 1

1

1

0 0

0

1

1 0

1

0

0 1

1 2 3 4 5 6

(11)

The numbers below each vertex configuration will be used to label the six possible types.

Thus, type 1 corresponds to an osculation, and type 2 to a vacancy.

It can also be seen that the six cases of (11) correspond exactly to the simple but important

condition

Hi,j−1 + Vij = Vi−1,j + Hij , (12)

for each (i, j) ∈ [a]×[b].

Accordingly, taking into account all of the previous considerations, sets of edge matrix

pairs for a, b ∈ P and (α, β) ∈ BP(a, b) are defined as

EM(a, b) :=
{

(H, V )
∣
∣
∣ • H and V are matrices with all entries in {0, 1}

• H has rows labeled by [a], columns labeled by [0, b]

• V has rows labeled by [0, a], columns labeled by [b]

• Hi0 = 0 for all i ∈ [a], V0j = 0 for all j ∈ [b]

• Hi,j−1 + Vij = Vi−1,j + Hij for all (i, j) ∈ [a]×[b]
}

(13)

and

EM(a, b, α, β) :=
{

(H, V ) ∈ EM(a, b)
∣
∣
∣ Hib = δi∈α for all i ∈ [a], Vaj = δj∈β for all j ∈ [b]

}

.
(14)

It can be seen that the ‘boundary conditions’ on (H, V ) ∈ EM(a, b, α, β) are that the first

column of H and first row of V are zero, and that the last column of H and last row of V

are specified by α and β respectively.

As already indicated, for any P = (P1, . . . , Pr) ∈ OP(a, b, α, β), a corresponding (H, V ) ∈
EM(a, b, α, β) is given by

Hij =







1, (Pk)l = (i, j) and (Pk)l+1 = (i, j+1) for some k and l,

or i ∈ α and j = b

0, otherwise

(15a)
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Vij =







1, (Pk)l = (i+1, j) and (Pk)l+1 = (i, j) for some k and l,

or i = a and j ∈ β

0, otherwise ,

(15b)

and it can be seen straightforwardly that this mapping is a bijection between OP(a, b, α, β)

and EM(a, b, α, β).

It can also be seen that the number of osculations of P can be expressed in terms of the

corresponding (H, V ) as

χ(P ) =
∑

(i,j)∈[a]×[b]

Hi,j−1 Vij =
∑

(i,j)∈[a]×[b]

Vi−1,j Hij , (16)

since (i, j) is an osculation if and only if Hi,j−1 = Vij = 1, or equivalently Vi−1,j = Hij = 1.

Returning to the running example, the edge matrices are







H10 . . . H16
...

...
H40 . . . H46







=








0 0 0 0 0 1 1
0 0 0 0 1 1 1
0 1 1 1 1 0 1
0 0 0 0 0 1 0








,







V01 . . . V06
...

...
V41 . . . V46







=










0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 1 0
1 0 0 1 0 1
1 0 0 1 1 0










. (17)

The edge matrix representation of osculating paths corresponds to the standard rep-

resentation of configurations of the six-vertex or square ice lattice model in statistical

mechanics (see for example [5, Ch. 8] and references therein). In this model Hij = 0 is

represented by a leftward arrow on the corresponding lattice edge, Hij = 1 by a rightward

arrow, Vij = 0 by a downward arrow, and Vij = 1 by an upward arrow. The osculating

paths then follow the rightward and upward arrows, and condition (12) corresponds to

arrow conservation at each lattice point (i.e., the numbers of arrows into and out of each

point are equal). One of the main quantities of interest for such statistical mechanical

models is the partition function, which is a certain weighted sum over the configurations

of the model. The particular case being considered here is that of configurations of the

six-vertex model on an a by b rectangle with fixed boundary conditions in which on the

upper boundary all arrows point down, on the left boundary all arrows point left, on the

lower boundary arrows point up or down according to whether or not their position is

in β, and on the right boundary arrows point right or left according to whether or not

their position is in α. Note that the six-vertex model has been extensively studied with a

variety of boundary conditions. See for example [5, Ch. 8 & 9] for the details of studies

with periodic (i.e., toroidal) boundary conditions, and [4, 37, 48, 67, 71] for some studies

with other boundary conditions.
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4. Alternating Sign Matrices

In this section, it will be seen that each tuple of osculating paths also corresponds naturally

to a {−1, 0, 1} matrix, which will be referred to as an alternating sign matrix. Although

this representation of osculating paths will not be used in obtaining any of the results of

this paper, it is introduced in order to present some known formulae for the cardinality of

special cases of OP(a, b, α, β) which are usually given in the context of such a representa-

tion. Also, as indicated in Section 1, much of the motivation for this paper was derived

from the studies of alternating sign matrices in which these formulae were obtained.

Note, however, that the enumeration results obtained later in this paper apply to cases of

OP(a, b, α, β, l), i.e., for which the path tuples all have l vacancy-osculations, whereas the

enumeration formulae listed in this section apply to certain cases of OP(a, b, α, β), i.e.,

for which there is no restriction on the number of vacancy-osculations. Note also that the

alternating sign matrices defined in other papers are a special case of those defined here,

and so will be referred to here as ‘standard alternating sign matrices’.

For any a, b ∈ P and (α, β) ∈ BP(a, b) define the associated set of alternating sign matrices

as

ASM(a, b, α, β) :=
{

A
∣
∣
∣ • A is an a×b matrix with all entries in {−1, 0, 1}

• along each row and column of A the nonzero entries,
if there are any, alternate in sign starting with a 1

•
∑b

j=1 Aij = δi∈α for all i ∈ [a]

•
∑a

i=1 Aij = δj∈β for all j ∈ [b]
}

.

(18)

For any (H, V ) ∈ EM(a, b, α, β), a corresponding A ∈ ASM(a, b, α, β) is given simply by

Aij = Hij − Hi,j−1 (19)

or equivalently, due to (12),

Aij = Vij − Vi−1,j , (20)

for each (i, j) ∈ [a]×[b] (i.e., A is the column difference matrix of H and row difference

matrix of V ). Note that under this mapping vertex configurations 1–4 of (11) at (i, j)

give Aij = 0, configuration 5 gives Aij = −1 and configuration 6 gives Aij = 1.

It can be checked that the mapping (19,20) is a bijection between EM(a, b, α, β) and

ASM(a, b, α, β), and that the inverse mapping is

Hij =
j
∑

j′=1

Aij′ , for each (i, j) ∈ [a]×[0, b]

Vij =
i∑

i′=1

Ai′j , for each (i, j) ∈ [0, a]×[b]

(21)
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(i.e., H and V are respectively the partial column and row sum matrices of A).

It follows, using (16) and (21), that the number of osculations of any P ∈ OP(a, b) can

be expressed in terms of the corresponding A ∈ ASM(a, b) as

χ(P ) =
∑

{(i,i′,j,j′)∈[a]2×[b]2 |

i′≥i, j′<j}

Aij Ai′j′ =
∑

{(i,i′,j,j′)∈[a]2×[b]2 |

i′>i, j′≤j}

Aij Ai′j′ . (22)

The alternating sign matrix for the running example is

A =








0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 −1 1
0 0 0 0 1 −1








. (23)

Five previously-studied cases of alternating sign matrices will now be considered, for any

n ∈ P:

• ASM(n, n, [n], [n])

• ASM(n, n+1, [n], [n+1]\{n+1−m}), for m ∈ [0, n]

• ASM(n, n+m, [n], [n−1] ∪ {n+m}), for m ∈ N

• ASM(n, 2n−1, [n], {1, 3, 5, . . . , 2n−1})

• ASM(n, n, {1, 3, 5, . . . , 2dn
2
e−1}, {1, 3, 5, . . . , 2dn

2
e−1})

It can be seen that the third case reduces to the first case for m = 0.

The elements of ASM(n, n, [n], [n]) will be referred to here as standard alternating sign

matrices. They are simply n×n {−1, 0, 1} matrices in which along each row and column

the sum of entries is 1, and the nonzero entries alternate in sign. They were introduced

in [44, 45], in which an enumeration formula was conjectured which gives

|OP(n, n, [n], [n])| =
n−1∏

i=0

(3i+1)!

(n+i)!
. (24)

This was eventually proved in [68] and, using a different method, [41]. The correspondence

between standard alternating sign matrices and edge matrices was first identified in [53],

and is also discussed, at least in the statistical mechanical model version, in [8, 25, 50].

The correspondence between standard alternating sign matrices and osculating paths is

also considered in [8, Sec. 5], [9, Sec. 2], [24, Sec. 9] and [65, Sec. IV].

The six-vertex model boundary conditions for this case, in which all arrows on the upper

and lower boundaries point into the square, and all arrows on the left and right bound-

aries point out of the square, are known as domain wall boundary conditions (see for

example [37]).
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It can be seen that the n×n permutation matrices are included in ASM(n, n, [n], [n]), and,

from (22), that if A is a permutation matrix which corresponds to P ∈ OP(n, n, [n], [n]),

then the number of osculations χ(P ) is simply the inversion number of A. The inversion

number of any A ∈ ASM(a, b) could be defined as I(A) =
∑

{(i,i′,j,j′)∈[a]2×[b]2 | i′>i, j′<j} Aij

Ai′j′, this being consistent with a definition of inversion number for standard alternating

sign matrices given in [45]. It then follows (see for example [53, Theorem 2c]) that

I(A) = χ(P ) + µ(A), where P ∈ OP(a, b) corresponds to A, and µ(A) is the number

of −1 entries in A.

It can be seen that in any standard alternating sign matrix, there is a single 1 in each of the

first and last row and column. Furthermore, using elementary symmetry considerations,

it follows that the number of (n+1)×(n+1) standard alternating sign matrices A with

Aij = 1 is the same for (i, j) taken to be any of the eight cases (1, m+1), (1, n+1−m),

(m+1, 1), (n+1−m, 1), (m+1, n+1), (n+1−m, n+1), (n+1, m+1) or (n+1, n+1−m), for fixed

m ∈ [0, n]. Focussing on the case (n+1, n+1−m), i.e., matrices with the 1 of their last row

in column n+1−m, so that An+1,j = δj,n+1−m, it follows from (21) that Hn+1,j = δj≥n+1−m,

and then from Vn+1,j = 1 and (12) that Vnj = δj 6=n+1−m, which implies that the submatrices

formed by the first n rows of such A comprise ASM(n, n+1, [n], [n+1]\{n+1−m}).
Obtaining the cardinality of this and the seven related sets is known as refined alternating

sign matrix enumeration, and, following conjectures in [44, 45], was achieved in [69] and

more recently in [15, 27], giving

|OP(n, n+1, [n], [n+1]\{n+1−m})| =
(2n−m)! (n+m)!

(2n)! m! (n−m)!

n−1∏

i=0

(3i+1)!

(n+i)!
. (25)

The related case of ASM(n, n+m, [n], [n−1]∪{n+m}) was considered in [27], in which an

enumeration formula gives

|OP(n, n+m, [n], [n−1]∪{n+m})|

=
n−1∑

i=0

|OP(n−1, n, [n−1], [n]\{n−i})|
(
m+i

i

)

=
1

(n−1)! m!

n−2∏

i=0

(3i+1)!

(n+i)!

n−1∑

i=0

(2n−2−i)! (n−1+i)! (m+i)!

i!2 (n−1−i)!
.

(26)

A matrix is horizontally-symmetric if it is invariant under reflection about the horizontal

line through its center, and horizontally-and-vertically symmetric if it is invariant under

reflection about both the horizontal and vertical lines through its center. It can be seen

that for standard alternating sign matrices, such symmetries can only occur for odd-sized

matrices.

Considering horizontally-symmetric (2n+1)×(2n+1) standard alternating sign matrices A,

i.e., those for which Aij = A2n+2−i,j for each (i, j) ∈ [2n+1]×[2n+1], it can be seen that the
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first and last columns always have their 1’s in the middle row, Ai1 = Ai,2n+1 = δi,n+1, and

that the middle row always consists entirely of alternating 1’s and −1’s, An+1,j = (−1)j+1.

Proceeding to the corresponding edge matrices, it is then found that along the first column

of vertices Hi0 = 0, Vi1 = δi≥n+1 and Hi1 = δi,n+1, along the last column of vertices

Hi,2n = δi6=n+1, Vi,2n+1 = δi≥n+1 and Hi,2n+1 = 1, and along the middle row of vertices

Vnj = δj even, Hn+1,j = δj odd and Vn+1,j = δj odd. It follows that each such A is uniquely

determined by the submatrix formed by the first n rows of A with their first and last

columns deleted (i.e., Aij with (i, j) ∈ [n]×[2, 2n]), and that these submatrices comprise

ASM(n, 2n−1, [n], {1, 3, . . . , 2n−1}). Following conjectures in [51, 52], an enumeration

formula was proved in [42], giving

|OP(n, 2n−1, [n], {1, 3, . . . , 2n−1})| =
n∏

i=1

(6i−2)!

(2n+2i)!
. (27)

Considering horizontally-and-vertically-symmetric (2n+3)×(2n+3) standard alternating

sign matrices A, i.e., those for which Aij = A2n+4−i,j = Ai,2n+4−j for each (i, j) ∈ [2n+3]×
[2n+3], it follows, since both A and At are horizontally symmetric, that each such A is

uniquely determined by the submatrix formed by Aij with (i, j) ∈ [2, n+1]× [2, n+1],

and that these submatrices comprise ASM(n, n, {1, 3, . . . , 2dn
2
e−1}, {1, 3, . . . , 2dn

2
e−1}).

Following conjectures in [51, 52], an enumeration formula was proved in [47], giving

|OP(n, n, {1, 3, . . . , 2dn
2
e−1}, {1, 3, . . . , 2dn

2
e−1})| =

(b3n
2
c+1)!

3b
n
2
c (2n+1)! bn

2
c!

n∏

i=1

(3i)!

(n+i)!
.

(28)

5. Vacancy-Osculation Sets and Matrices

In this section, the vacancy-osculation set Z(P ) associated with each path tuple P ∈
OP(a, b) will be studied further, and it will be shown that, for fixed a and b, P is uniquely

determined by Z(P ).

For any a, b ∈ P, (α, β) ∈ BP(a, b) and l ∈ N, define sets of vacancy-osculation sets as

VOS(a, b) := Z(OP(a, b)), VOS(a, b, α, β) := Z(OP(a, b, α, β)),

VOS(a, b, l) := Z(OP(a, b, l)), VOS(a, b, α, β, l) := Z(OP(a, b, α, β, l)) ,
(29)

where for each subset Q of OP(a, b), Z(Q) := {Z(P ) | P ∈ Q}.

It is sometimes convenient to represent or visualize a vacancy-osculation set S ∈ VOS(a, b)

as a vacancy-osculation matrix M(S). This is an a × b {0, 1} matrix defined simply by

M(S)ij : = δ(i,j)∈S , for each (i, j) ∈ [a]×[b] . (30)
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Note that in a vacancy-osculation matrix, the positions of the nonzero entries correspond

to the positions of vertex configurations of types 1 and 2 in (11), whereas in an alternating

sign matrix they correspond to the positions of configurations of types 5 and 6.

By examining the six possibilities (11) for each vertex configuration (9), it can be seen

that if S = Z(P ) is the vacancy-osculation set of P ∈ OP(a, b), and (H, V ) ∈ EM(a, b) is

the edge matrix pair which corresponds to P , then

M(S)ij = δHi,j−1 ,Vij
= δVi−1,j ,Hij

. (31)

The vacancy-osculation set and matrix for the running example are

S = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 5), (3, 4), (4, 2), (4, 3)} (32)

and

M(S) =








1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 1 0 0 0








. (33)

Lemma 1. Each tuple of osculating paths in OP(a, b) is uniquely determined by its

vacancy-osculation set.

In other words, (6) gives an injective, and hence by (29) bijective, mapping from OP(a, b)

to VOS(a, b). It immediately follows that OP(a, b, α, β), OP(a, b, l) and OP(a, b, α, β, l)

are bijectively related to VOS(a, b, α, β), VOS(a, b, l) and VOS(a, b, α, β, l) respectively,

for any (α, β) ∈ BP(a, b) and l ∈ N.

Proof. The relations of (31) can also be written

Vij = δHi,j−1 ,M(S)ij
and Hij = δVi−1,j ,M(S)ij

, (34)

which can be regarded as recursion relations for (H, V ). Therefore, if S is the vacancy-

osculation set of P ∈ OP(a, b), and (H, V ) ∈ EM(a, b) is the edge matrix pair which

corresponds to P , then (H, V ), and hence P , can be uniquely recovered from S using (34)

together with the initial conditions Hi0 = V0j = 0 for all i ∈ [a], j ∈ [b]. 2

In fact (31) or (34) can also be written

Hi,j−1 + Vij = Vi,j−1 + Hij ≡ δ(i,j)/∈S ≡ M(S)ij + 1 (mod 2) , (35)
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so that, using this with the initial conditions, (H, V ) can be expressed explicitly in terms

of S as

Hij ≡
∣
∣
∣

(

{(i−k, j−k) | k∈ [0, min(i, j)−1]} ∪

{(i−k−1, j−k) | k∈ [0, min(i−1, j)−1]}
)∖

S
∣
∣
∣ (mod 2)

≡ δi≤j +
min(i,j)−1
∑

k=0

M(S)i−k,j−k +
min(i−1,j)−1

∑

k=0

M(S)i−k−1,j−k (mod 2)

for each (i, j) ∈ [a]×[0, b]

(36a)

Vij ≡
∣
∣
∣

(

{(i−k, j−k) | k∈ [0, min(i, j)−1]} ∪

{(i−k, j−k−1) | k∈ [0, min(i, j−1)−1]}
)∖

S
∣
∣
∣ (mod 2)

≡ δi≥j +
min(i,j)−1
∑

k=0

M(S)i−k,j−k +
min(i,j−1)−1

∑

k=0

M(S)i−k,j−k−1 (mod 2)

for each (i, j) ∈ [0, a]×[b] ,

(36b)

where each Hij and Vij is taken to be 0 or 1.

It can be seen that for any a, b ∈ P, ∅ and [a]×[b] are both in VOS(a, b), ∅ corresponding

to the path tuple P ∈ OP(a, b, [min(a, b)], [min(a, b)]) in which path Pi passes vertically

from (a, i) to (i, i), and then horizontally from (i, i) to (i, b), for each i ∈ [min(a, b)], e.g.,

,

and [a]×[b] corresponding to the single empty path tuple in OP(a, b, ∅, ∅), e.g.,

.

Finally, for any S ∈ VOS(a, b) corresponding to P ∈ OP(a, b), a vacancy or osculation

of P will also be referred to as a vacancy or osculation of S, and the same notation will

be used for the sets of vacancies and osculations, X(S) := X(P ) and N(S) := N(P ), and

for the number of osculations, χ(S) := χ(P ).
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6. Partitions

In the previous sections, four bijectively-related sets, OP(a, b), EM(a, b), ASM(a, b) and

VOS(a, b), have been described, and the aim of forthcoming sections will be to obtain a

further, intrinsic characterization of VOS(a, b) which facilitates the enumeration of these

sets. The first step in this process will involve a transformation between a boundary

point pair (α, β) ∈ BP(a, b) and a partition, so in this section the relevant notation for

partitions is outlined.

A partition λ = (λ1, λ2, . . .) is an infinite sequence of nonnegative integers in weakly

decreasing order, λ1 ≥ λ2 ≥ . . ., which has only finitely-many nonzero terms. The

nonzero terms are the parts of λ, and the number of parts is the length of λ, denoted `(λ).

If the sum of parts is n, then λ is said to be a partition of n, denoted |λ| = n. The set of

all partitions will be denoted as Par. When writing a partition as an explicit sequence of

terms, some or all of the zero terms will be omitted. The unique partition of zero will be

denoted by ∅ and called the empty partition.

For any partition λ define

Y (λ) := {(i, j) ∈ P
2 | i ≤ `(λ), j ≤ λi} . (37)

The Young diagram of λ is then a depiction of λ in which a unit square is centered at

each (i, j) ∈ Y (λ), using matrix-type labeling of the rows and columns of the lattice. The

conjugate of λ, denoted λt, is the partition whose Young diagram is related to that of λ

by reflection in the main diagonal, Y (λt) = {(j, i) | (i, j) ∈ Y (λ)}. It follows immediately

that |λ| = |λt| = |Y (λ)|, `(λt) = λ1 and λt t = λ.

A running example will be the partition λ = (3, 2, 2), for which |λ| = 7, `(λ) = 3, λt =

(3, 3, 1), Y (λ) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2)}, and the Young diagram is

.

The rank of a partition λ is defined as

ρ(λ) := |{i ∈ [`(λ)] | λi ≥ i}| , (38)

and is thus the number of squares on the main diagonal of the Young diagram of λ,

ρ(λ) = |{(i, j) ∈ Y (λ) | i = j}|.

The Frobenius notation for a partition λ is

λ = (γ1, . . . , γr | δ1, . . . , δr), where r = ρ(λ), γi = λi−i and

δi = λt
i−i for each i ∈ [r] .

(39)
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Thus, γi is the number of squares in row i of the Young diagram to the right of the main

diagonal, and δi is the number of squares in column i of the Young diagram below the

main diagonal. It can be seen that each pair of tuples of nonnegative integers (γ1, . . . , γr)

and (δ1, . . . , δr), with γ1 > . . . > γr and δ1 > . . . > δr, corresponds to a unique partition

(γ1, . . . , γr | δ1, . . . , δr) with rank r. For the example (3, 2, 2), the rank is 2, and the

Frobenius notation is (2, 0 | 2, 1).

For any (i, j) ∈ Z
2, let the content of (i, j), or of a unit square centered at (i, j), be j−i.

Then, for any d ∈ Z and any subset T of Z2, let the d-diagonal of T be the set of points

of T with content d,

Dd(T ) := {(i, j) ∈ T | j−i = d} , (40)

and let the d-rank of T be the number of points in the d-diagonal of T ,

Rd(T ) := |Dd(T )| . (41)

For a partition λ, define

ρd(λ) := Rd(Y (λ)) . (42)

It can be seen that ρ0(λ) = ρ(λ) and

ρd(λ) =







|{i ∈ [ρ(λ)] | δi ≥ −d}|, d ≤ 0

|{i ∈ [ρ(λ)] | γi ≥ d}|, d ≥ 0 ,
(43)

where (γ1, . . . , γρ(λ) | δ1, . . . , δρ(λ)) is the Frobenius notation for λ. For the running example,

ρd(3, 2, 2) =







1, d ∈ {−2, 1, 2}
2, d ∈ {−1, 0}
0, otherwise .

(44)

Partitions λ and µ will be said to differ by a square, denoted λ∼ µ, if and only if there

exists i ∈ P such that |λk−µk| = δki for each k ∈ P. Partitions λ and µ thus differ by a

square if and only if there exists (i, j) ∈ P2 such that Y (λ) is the disjoint union of Y (µ)

and {(i, j)}, or Y (µ) is the disjoint union of Y (λ) and {(i, j)}, and in such a case the

diagonal difference between λ and µ is defined as

∆(λ, µ) := j−i . (45)

In other words, for λ∼µ, ∆(λ, µ) is the content of the square by which the Young diagrams

of λ and µ differ. It can be seen that given a partition λ and a positive integer i, there

exists a partition µ with λ∼µ and Y (λ) = Y (µ) ∪ {(i, λi)} if and only if λi > λi+1, and

there exists a partition µ with λ∼µ and Y (µ) = Y (λ)∪{(i, λi+1)} if and only if i = 1

or λi−1 > λi. It follows that for any partition λ, the number of partitions µ with λ∼ µ

is 2¯̀(λ)+1, where ¯̀(λ) is the number of distinct parts of λ. It can also be seen that for

fixed λ, each µ with λ∼µ is uniquely determined by the diagonal difference ∆(λ, µ).
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Define a change diagonal of a partition λ to be any integer d for which there exists a

(necessarily unique) partition µ with λ∼µ and ∆(λ, µ) = d. It can be checked straight-

forwardly that

d is a change diagonal of λ if and only if

(

ρd(λ) − ρd−1(λ), ρd+1(λ) − ρd(λ)
)

=







(1, 0) or (0, 1), d < 0

(1,−1) or (0, 0), d = 0

(0,−1) or (−1, 0), d > 0 .

(46)

Within each of the three cases of d in (46), the first and second alternatives correspond

to the existence of µ ∼ λ with respectively |µ| = |λ|− 1 and |µ| = |λ|+1. For the

example λ = (3, 2, 2), the change diagonals are −3, −1, 1, 2 and 3, and the corresponding

partitions µ∼λ are (3, 2, 2, 1), (3, 2, 1), (3, 3, 2), (2, 2, 2) and (4, 2, 2) respectively.

Finally, for any a, b ∈ P, define Par(a, b) to be the set of all partitions whose Young

diagram fits into an a by b rectangle,

Par(a, b) := {λ ∈ Par | `(λ) ≤ a and λ1 ≤ b} . (47)

By associating a partition in Par(a, b) with the path formed by the lower and right

boundary edges of its Young diagram, it can be seen that |Par(a, b)| =
(
a+b
a

)

. For

any λ ∈ Par(a, b), the (a, b)-complement of λ, denoted [a]× [b]\λ, is defined to be the

partition

[a]×[b]\λ := (b−λa, b−λa−1, . . . , b−λ1) , (48)

where, as always, λi is 0 for i > `(λ). It can be seen that

Y ([a]×[b]\λ) = {(a+1−i, b+1−j) | (i, j) ∈ [a]×[b]\Y (λ)} (49)

and

ρd([a]×[b]\λ) = Rd([a]×[b]) − ρb−a−d(λ) . (50)

An example of a complement of λ = (3, 2, 2) is [4]×[6]\λ = (6, 4, 4, 3).

7. Correspondence Between Boundary Point Pairs and Partitions

Returning to the case of osculating paths OP(a, b), it will be shown in this section that

each boundary point pair in BP(a, b) corresponds naturally to a partition in Par(a, b),

and that the correspondence leads to an important property for osculating paths.

For any (α, β) = ({α1, . . . , αr}, {β1, . . . , βr}) ∈ BP(a, b), the corresponding partition is

defined to be

λa,b,α,β := [a]×[b]\(b−β1, . . . , b−βr | a−α1, . . . , a−αr) , (51)
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where the definitions (39) of Frobenius notation and (48) of the (a, b)-complement for

partitions are being used, and α1 < . . . < αr, β1 < . . . < βr.

It can be checked straightforwardly that for fixed a and b this mapping is a bijection

between BP(a, b) and Par(a, b), and that for λ ∈ Par(a, b) the inverse mapping is given

by
(αa,b,λ, βa,b,λ) = ({a−δ1, . . . , a−δr}, {b−γ1, . . . , b−γr}) ,

where [a]×[b]\λ = (γ1, . . . , γr | δ1, . . . , δr) .
(52)

It can also be seen that

λb,a,β,α = (λa,b,α,β)t , |λa,b,α,β| = ab − (a+b+1)r +
r∑

i=1

(αi+βi) , (53)

and that some special cases of (51) are

λa,b,[min(a,b)],[min(a,b)] = ∅ , λa,b,∅,∅ = ( b, . . . , b
︸ ︷︷ ︸

a

)

λa,b,[a],β = (βa−a, . . . , β2−2, β1−1) , λa,b,α,[b] = (αb−b, . . . , α2−2, α1−1)

λa,a,α,β = (a−ᾱ1, . . . , a−ᾱr̄ | a−β̄1, . . . , a−β̄r̄) ,

where {ᾱ1, . . . , ᾱr̄}=[a]\α , {β̄1, . . . , β̄r̄}=[a]\β .

(54)

For a = 4, b = 6 and (α, β) = ({1, 2, 3}, {1, 4, 5}), as used for the running example of

a tuple of osculating paths, the corresponding partition is λ4,6,{1,2,3},{1,4,5} = [4]× [6] \
(5, 2, 1 | 3, 2, 1) = [4]×[6] \(6, 4, 4, 3) = (3, 2, 2), which was used as the running example of

a partition.

For the five special cases of a, b, α and β used in Section 4 to give previously-studied

cases of alternating sign matrices, the corresponding partitions are given in Table 1.

a, b, α, β λa,b,α,β

n, n, [n], [n] ∅

n, n+1, [n], [n+1]\{n+1−m} (m)t

n, n+m, [n], [n−1]∪{n+m} (m)

n, 2n−1, [n], {1, 3, . . . , 2n−1} (n−1, n−2, . . . , 1)

n, n, {1, 3, . . . , 2dn
2
e−1}, {1, 3, . . . , 2dn

2
e−1} (n−1, n−2, . . . , 1)

Table 1: Partitions for alternating sign matrix cases.
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Lemma 2. For any tuple of osculating paths P ∈ OP(a, b, α, β) and integer d,

Rd(N(P )) − Rd(X(P )) = ρd(λa,b,α,β) . (55)

Here, N(P ) and X(P ) are the sets of vacancies and osculations for P as defined in Sec-

tion 2, and Rd and ρd are d-ranks as defined in (41) and (42). In other words, the difference

between the numbers of vacancies and osculations on any diagonal of the lattice is inde-

pendent of the path tuple P , and equal to the number of squares on the corresponding

diagonal of the Young diagram of λa,b,α,β.

Lemma 2 implies that for a path tuple P ∈ OP(a, b, α, β), the partition λa,b,α,β can be

obtained geometrically by first marking on the lattice the vacancies N(P ), and marking

differently the osculations X(P ), then along each diagonal Dd([a]× [b]) removing all of

the osculation marks together with an equal number of vacancy marks, and finally along

each diagonal moving, if necessary, the remaining vacancy marks diagonally upwards and

leftwards so that they occupy adjacent positions starting from the upper or left boundary

of the lattice. The occupied points then correspond to Y (λa,b,α,β).

Proof. As usual, let (α, β) = ({α1, . . . , αr}, {β1, . . . , βr}) with α1 < . . . < αr and β1 <

. . . < βr. Now let Jd(a, b, α, β) be the number of paths of P which pass through the

d-diagonal Dd([a]×[b]). Since path Pi passes continuously by upward or rightward steps

from (a, βi) to (αi, b), it can be seen by placing a line through the points of Dd([a]×[b])

that Jd(a, b, α, β) is the number of start points (a, βi) on or to the left of (a, a+d) for

d ≤ b−a, and the number of end points (αi, b) on or above (b−d, b) for d ≥ b−a. Therefore,

as suggested by the notation, Jd(a, b, α, β) is independent of P ∈ OP(a, b, α, β), and given

explicitly as

Jd(a, b, α, β) =







|{i ∈ [r] | βi ≤ a+d}|, d ≤ b−a

|{i ∈ [r] |αi ≤ b−d}|, d ≥ b−a .
(56)

Defining I(P ) to be the number of points of [a]× [b] through which a single path of P

passes (i.e., points with vertex configurations of types 3–6 in (11)), so that [a]×[b] is the

disjoint union of I(P ), X(P ) and N(P ), and using the fact that an osculation is a point

through which two paths pass, it follows that

Rd([a]×[b]) = Rd(I(P )) + Rd(X(P )) + Rd(N(P ))

Jd(a, b, α, β) = Rd(I(P )) + 2Rd(X(P )) .
(57)

Eliminating Jd(a, b, α, β) and Rd(I(P )) from (56) and (57) now gives

Rd(N(P ))−Rd(X(P )) = Rd([a]×[b]) −







|{i ∈ [r] | βi ≤ a+d}|, d ≤ b−a

|{i ∈ [r] |αi ≤ b−d}|, d ≥ b−a .
(58)
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Finally, using (50) with λ = (b−β1, . . . , b−βr | a−α1, . . . , a−αr), and then using (43) on

the second term from the RHS of (50), it is found that the RHS of (58) is ρd([a]×[b]\(b−
β1, . . . , b−βr | a−α1, . . . , a−αr)) as required. 2

It follows from Lemma 2, by summing (55) over all d ∈ [1−a, b−1], that

|N(P )| = |λa,b,α,β| + χ(P ) , for any P ∈ OP(a, b, α, β) , (59)

and therefore that

|S| = |λa,b,α,β| + 2χ(S) , for any S ∈ VOS(a, b, α, β) . (60)

Note that in (59) or (60), |λa,b,α,β| can be obtained directly from a, b, α and β using (53).

Lemma 2 can be verified for the running example by observing that

Rd(N(P )) =







1, d ∈ {−2, 2, 3}
2, d ∈ {−1, 0, 1}
0, otherwise

and Rd(X(P )) =

{

1, d ∈ {1, 3}
0, otherwise ,

and that ρd(λ4,6,{1,2,3},{1,4,5}) is given by (44).

8. Vacancy-Osculation Sets which Differ by a Vacancy-Osculation

In this section, the relationship between two vacancy-osculation sets which differ by a

single element will be examined, and it will be seen that the corresponding partitions

then differ by a square.

Vacancy-osculation sets S, S ′ ∈ VOS(a, b) will be said to differ by the vacancy-osculation

(i, j) if and only if the sets differ by the single element (i, j), i.e., S is the disjoint union

of S ′ and {(i, j)}, or S ′ is the disjoint union of S and {(i, j)}. Furthermore, in such a case

the diagonal difference between S and S ′ will be defined as

∆(S, S ′) := j−i . (61)

The actual position of (i, j) will sometimes be unimportant, so S, S ′ ∈ VOS(a, b) will

be said simply to differ by a vacancy-osculation, denoted S ∼ S ′, if there exists some

(i, j) ∈ [a]× [b] such that S and S ′ differ by (i, j). It can be seen that ∼ and ∆ for

vacancy-osculation sets have been defined analogously to ∼ and ∆ for partitions, and the

reason for this will become apparent in Lemma 6.

In terms of the associated vacancy-osculation matrices, S, S ′ ∈ VOS(a, b) differ by a

vacancy-osculation if and only if the entries of the matrices match at all positions except

a single (i, j) ∈ [a]×[b], |M(S)kl−M(S ′)kl| = δ(i,j),(k,l) for each (k, l) ∈ [a]×[b].
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Note that if vacancy-osculation sets S and S ′ differ by a vacancy-osculation, it does not

necessarily follow that N(S) and N(S ′), or X(S) and X(S ′), individually differ by a single

element, it being possible that N(S) ∩ X(S ′) or X(S) ∩ N(S ′) are nonempty.

Define a deletion point of S ∈ VOS(a, b) to be any (i, j) ∈ S for which there exists

S ′ ∈ VOS(a, b) with S ∼ S ′ and S ′ = S \ {(i, j)}, and define an addition point of

S ∈ VOS(a, b) to be any (i, j) ∈ [a]× [b]\S for which there exists S ′ ∈ VOS(a, b) with

S ∼ S ′ and S ′ = S ∪ {(i, j)}. Define a change point of S to be any deletion point or

addition point of S.

For the running example, with S given by (32), it can be seen in Figure 3 and Table 2

that S has deletion points (4, 3), (2, 3), (3, 4), (1, 4) and (2, 5), and addition points (4, 5),

(3, 5), (4, 6) and (3, 6). In Figure 3, the vacancy-osculation matrix M(S) and diagram of

the original path tuple, as already given in (33) and Figure 2, are shown first, followed

by the vacancy-osculation matrix M(S ′) and diagram of the corresponding path tuple

for each change point (i, j), where S ′ is the vacancy-osculation set which differs from S

by (i, j). In each M(S ′), the (i, j) entry is highlighted, and in each path diagram the

sections of paths which differ from the original are shown in red. In Table 2, the change

points are listed together with the diagonal differences ∆(S, S ′) = j−i, the α′ and β ′ for

which VOS(4, 6, α′, β ′) contains S ′, and the partitions λ4,6,α′,β′.





1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 1 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0









1 1 1 1 0 0
1 1 0 0 1 0
0 0 0 1 0 0
0 1 1 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 0 0 0
0 1 1 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 1 0 1 0





original (4,3) (2,3) (3,4) (4,5)





1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 1 0
0 1 1 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 1 0 0 1









1 1 1 0 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 1 0 0 0









1 1 1 1 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 1 1 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 1

0 1 1 0 0 0





(3,5) (4,6) (1,4) (2,5) (3,6)

Figure 3: Change points for the running example.

A series of lemmas on the properties of change points and of vacancy-osculation sets which
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(i, j) j−i α′ β ′ λ4,6,α′,β′

(4, 3) −1 {1, 2, 3} {1, 3, 5} (3, 2, 1)

(2, 3), (3, 4), (4, 5) 1 {1, 2, 3} {1, 4, 6} (3, 3, 2)

(3, 5), (4, 6) 2 {1, 2, 3, 4} {1, 4, 5, 6} (2, 2, 2)

(1, 4), (2, 5), (3, 6) 3 {1, 2, 4} {1, 4, 5} (4, 2, 2)

Table 2: Partitions for the change points of the running example.

differ by a vacancy-osculation will now be presented. In these lemmas, B(a, b, i, j) for any

(i, j) ∈ P2 will denote the set of points of the diagonal Dj−i([a]×[b]) weakly below and to

the right of (i, j),

B(a, b, i, j) :=
{

(i+k, j+k)
∣
∣
∣ k ∈ [0, min(a−i, b−j)]

}

. (62)

This set is depicted using symbols ◦ in Figure 4.

1

i

i+1

a

1 j j+1 b

�

�

�

�

5

5

5

5

4

4

4

4

�

�

�

◦

◦

◦

◦

�

�

�

�

2

2

2

· · · · · ·

...

...

Figure 4: Diagram for Lemmas 3–7.

Lemma 3. Consider a vacancy-osculation set S ∈ VOS(a, b) and a point (i, j) ∈ [a]×[b].

• If (i, j) ∈ S, then (i, j) is a deletion point of S if and only if

S ∩ (B(a, b, i, j+1) ∪ B(a, b, i+1, j)) = ∅.

• If (i, j) /∈ S, then (i, j) is an addition point of S if and only if

S ∩ (B(a, b, i, j+1) ∪ B(a, b, i+1, j)) = ∅ and Hij = Vij, where

(H, V ) ∈ EM(a, b) is the edge matrix pair which corresponds to S.

The sets B(a, b, i, j+1) and B(a, b, i, j+1) are depicted in Figure 4 using the symbols �
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and 2 respectively. Note that the following conditions are all equivalent.

• S ∩ (B(a, b, i, j+1) ∪ B(a, b, i+1, j)) = ∅.

• The vertex configuration at each point of B(a, b, i, j+1) ∪ B(a, b, i+1, j)

is of type 3, 4, 5 or 6.

• A single path of P passes through each point of B(a, b, i, j+1)∪
B(a, b, i+1, j), where P ∈ OP(a, b) corresponds to S.

• Hkl 6= Vk,l+1, for each (k, l) ∈ B(a, b, i, j)\{(b+i−j, b)}, and

Vkl 6= Hk+1,l, for each (k, l) ∈ B(a, b, i, j)\{(a, a+j−i)}.

(63)

Also, for any (k, l) ∈ [a]×[b], the following are equivalent.

• Hkl = Vkl.

• Hk,l−1 = Vk−1,l.

• The vertex configuration at (k, l) is of type 1, 2, 5 or 6.

(64)

It can be seen using Lemma 3 that the points given in Figure 3 and Table 2 comprise all

of the change points for the vacancy-osculation set (32).

Proof. Let (H, V ) ∈ EM(a, b) correspond to S, and let S ′ be the set which differs from

S by (i, j),

S ′ =

{
S \{(i, j)} , (i, j) ∈ S

S ∪ {(i, j)} , (i, j) /∈ S .

It thus needs to be checked whether or not S ′ is a vacancy-osculation set. First, define H ′

and V ′ by (36), using S ′. It then follows directly from (36) that (H, V ) and (H ′, V ′) are

related by (67), which appears in the forthcoming Lemma 4. The positions of the edges

corresponding to Hkl with (k, l) ∈ B(a, b, i, j), Hkl with (k, l) ∈ B(a, b, i+1, j), Vkl with

(k, l) ∈ B(a, b, i, j), and Vkl with (k, l) ∈ B(a, b, i, j+1) are shown in Figure 4 using the

symbols �, �, 4 and 5 respectively. It now follows that S ′ ∈ VOS(a, b) if and only if

(H ′, V ′) ∈ EM(a, b). The first four conditions on the RHS of (13), which define EM(a, b),

are automatically satisfied due to the definition of (H ′, V ′) via (36), so it is only the last

condition, which now reads

H ′
k,l−1 + V ′

kl = V ′
k−1,l + H ′

kl , (65)

for each (k, l) ∈ [a]×[b], that needs to be checked here. Since (H, V ) ∈ EM(a, b),

Hk,l−1 + Vkl = Vk−1,l + Hkl (66)

is satisfied for all (k, l) ∈ [a]×[b]. The condition (65) will now be examined for five separate

cases:

(1) (k, l) ∈ B(a, b, i+1, j+1)
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(2) (k, l) ∈ B(a, b, i, j+1)

(3) (k, l) ∈ B(a, b, i+1, j)

(4) (k, l) = (i, j)

(5) All other (k, l) ∈ [a]×[b] .

In Case (1), (67) gives H ′
k,l−1 = 1−Hk,l−1, V ′

kl = 1−Vkl, V ′
k−1,l = 1−Vk−1,l and H ′

kl = 1−Hkl.

It thus follows from (66) that in this case (65) is satisfied for all S ∈ VOS(a, b).

In Case (2), (67) gives H ′
k,l−1 = 1−Hk,l−1, V ′

kl = 1−Vkl, V ′
k−1,l = Vk−1,l, and H ′

kl = Hkl.

By examining the six possibilities for (Hk,l−1, Vkl, Vk−1,l, Hkl) in (66), it is found that in

this case (65) is satisfied if and only if (Hk,l−1, Vkl, Vk−1,l, Hkl) 6= (1, 1, 1, 1) or (0, 0, 0, 0), or

equivalently (k, l) /∈ S. Thus, Case (2) leads to the condition S ∩ B(a, b, i, j+1) = ∅.

Case (3) is analogous to Case (2), and leads to the condition S ∩ B(a, b, i+1, j) = ∅.

In Case (4), (67) gives H ′
i,j−1 = Hi,j−1, V ′

ij = 1−Vij, V ′
i−1,j = Vi−1,j and H ′

ij = 1−Hij. It

follows that in this case (65) is satisfied if and only if (Hi,j−1, Vij, Vi−1,j, Hij) 6= (1, 0, 0, 1) or

(0, 1, 1, 0) (i.e., the vertex configuration at (i, j) is not of type 3 or 4 in (11)), which leads

to the condition Hij = Vij if (i, j) /∈ S.

In Case (5), (67) gives H ′
k,l−1 = Hk,l−1, V ′

kl = Vkl, V ′
k−1,l = Vk−1,l and H ′

kl = Hkl, so it follows

from (66) that (65) is satisfied for all S ∈ VOS(a, b).

Overall then, the set S ′ is in VOS(a, b) if and only if the conditions arising from Cases 2

to 4 are satisfied, which gives the conclusions of Lemma 3. 2

Lemma 4. Consider vacancy-osculation sets S, S ′ ∈ VOS(a, b), with corresponding edge

matrix pairs (H, V ), (H ′, V ′) ∈ EM(a, b), and a point (i, j) ∈ [a]× [b]. Then S and S ′

differ by the vacancy-osculation (i, j) if and only if

|Hkl−H ′
kl| = δ(k,l)∈B(a,b,i,j)∪B(a,b,i+1,j), for each (k, l) ∈ [a]×[0, b],

and |Vkl−V ′
kl| = δ(k,l)∈B(a,b,i,j)∪B(a,b,i,j+1), for each (k, l) ∈ [0, a]×[b].

(67)

The positions of the edges corresponding to Hkl or H ′
kl with (k, l) ∈ B(a, b, i, j), Hkl or

H ′
kl with (k, l) ∈ B(a, b, i+1, j), Vkl or V ′

kl with (k, l) ∈ B(a, b, i, j), and Vkl or V ′
kl with

(k, l) ∈ B(a, b, i, j+1) are shown in Figure 4 using the symbols �, �, 4 and 5 respectively.

Proof. If S and S ′ differ by the vacancy-osculation (i, j), then (67) follows directly

from (36). Conversely, if (67) is satisfied, then, by considering the same five cases for

(k, l) ∈ [a]×[b] as in the proof of Lemma 3, it is found, using arguments similar to those
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used in that proof, that in Case (4) (k, l) = (i, j) is an element of exactly one of S or S ′,

while in each of the other four cases (k, l) is an element of both or neither of S and S ′, so

that S and S ′ differ by (i, j). 2

Lemma 5. Consider a vacancy-osculation set S ∈ VOS(a, b), with corresponding edge

matrix pair (H, V ) ∈ EM(a, b), and a point (i, j) ∈ [a]× [b]. Then the following are all

equivalent.

• (i, j) is a change point of S.

• S ∩ (B(a, b, i, j+1) ∪ B(a, b, i+1, j)) = ∅ and there exists (k, l) ∈ B(a, b, i, j) such

that Hkl = Vkl.

• S ∩ (B(a, b, i, j+1)∪B(a, b, i+1, j)) = ∅ and Hkl = Vkl for each (k, l) ∈ B(a, b, i, j).

•
• •

•

•

Hk+1,l

Hkl

Vkl Vk,l+1 = • •

•

•

0

1

1 0 or • •

•

•

1

0

0 1 ,

for each (k, l) ∈ B(a, b, i, j)\{(a, a+j−i), (b+i−j, b)} ,

(68)

and

• •

•
Ha,a+j−i

Va,a+j−i Va,a+j−i+1

=
• •

•
1

1 0

or
• •

•
0

0 1

, if j−i < b−a ,

•

• Hab

Vab

=
•

• 1

1

or
•

• 0

0

, if j−i = b−a ,

•

•

•Vb,b+i−j

Hb+i−j,b

Hb+i−j+1,b

=
•

•

•1

1

0

or
•

•

•0

0

1

, if j−i > b−a .

(69)

Note that (69) can be regarded as the boundary case of (68) for

(k, l) = (i+min(a−i, b−j), j+min(a−i, b−j)) =







(a, a+j−i), j−i < b−a

(a, b), j−i = b−a

(b+i−j, b), j−i > b−a .

(70)

Proof. It will first be shown that the second condition implies the third. So, let the

second condition be satisfied. If (k+1, l+1) ∈ B(a, b, i, j) (i.e., k 6= a and l 6= b), then,

using the first diagram of Figure 5 to visualize the positions of the relevant edge matrix
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•

•

•

•

•k+1

k

l l+1

Hk+1,l

Hkl

Hk+1,l+1

Vkl Vk,l+1

Vk+1,l+1

•

•

•

•

•

•k

k−1

l−1 l

Hk,l−1

Hk−1,l−1

Hkl

Vk−1,l−1 Vk−1,l

Vkl

Figure 5: Diagrams for the proof of Lemma 5.

entries, Vk,l+1 = 1−Hkl (since (k, l+1) /∈ S) and Hk+1,l = 1−Vkl (since (k+1, l) /∈ S), so that

Hk+1,l = Vk,l+1, and therefore (using (64)) Hk+1,l+1 = Vk+1,l+1. By repeating this process,

moving in a downward-rightward direction from (k, l), it follows that Hk′l′ = Vk′l′ for all

(k′, l′) ∈ B(a, b, k, l).

Similarly, if (k−1, l−1) ∈ B(a, b, i, j) (i.e., (k, l) 6= (i, j)), then, using the second diagram

of Figure 5 to visualize the positions of the relevant edge matrix entries, Hk,l−1 = Vk−1,l

(using (64)), Hk−1,l−1 = 1−Vk−1,l (since (k−1, l) /∈ S) and Vk−1,l−1 = 1−Hk,l−1 (since (k, l−1) /∈
S), and therefore Hk−1,l−1 = Vk−1,l−1. By repeating this process, moving in a upward-

leftward direction from (k, l), it follows that Hk′l′ = Vk′l′ for all (k′, l′) ∈ B(a, b, i, j)\
B(a, b, k+1, l+1).

Overall then, it follows that Hk′l′ = Vk′l′ for all (k′, l′) ∈ B(a, b, i, j), as required.

Having now shown that the second condition implies the third, the equivalence between

the second and third conditions follows immediately, while the equivalence of these con-

ditions with the first condition follows from Lemma 3.

Finally, it can be seen that the third and fourth conditions are equivalent, using the

equivalence between the first and fourth conditions of (63). 2

It follows immediately from Lemma 5 that if (i, j) is a change point of S ∈ VOS(a, b),

then all elements of B(a, b, i+1, j+1) are change points of S as well.

It also follows from Lemmas 4 and 5 that if S, S ′ ∈ VOS(a, b) differ by the vacancy-

osculation (i, j), then whichever of the two alternatives occurs on any RHS of (68) or the

RHS of (69) for the edge matrix pair corresponding to S, the other alternative occurs on

that RHS for the edge matrix pair corresponding to S ′.

Lemma 6. Consider vacancy-osculation sets S ∈ VOS(a, b, α, β) and S ′ ∈ VOS(a, b,

α′, β ′). If S and S ′ differ by a vacancy-osculation, then λa,b,α,β and λa,b,α′,β′ differ by a

square, and

∆(S, S ′) = ∆(λa,b,α,β, λa,b,α′,β′) . (71)
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For S ′ ∈ VOS(4, 6, α′, β ′) corresponding to each change point (i, j) of the running exam-

ple S, Lemma 6 states that (3, 2, 2) ∼ λ4,6,α′,β′ and ∆(S, S ′) = j−i = ∆((3, 2, 2), λ4,6,α′,β′),

which can be observed in Table 2. It can also be seen in Table 2 and Figure 3 that for

cases of Lemma 6, it does not always follow that |S| − |S ′| = |λa,b,α,β| − |λa,b,α′,β′|.

Proof. Let S and S ′ differ by the vacancy-osculation (i, j), so that ∆(S, S ′) = j− i,

and let (H, V ) ∈ EM(a, b, α, β) and (H ′, V ′) ∈ EM(a, b, α′, β ′) correspond to S and S ′

respectively. Focussing on the edge matrix entries along the right and lower boundaries

of the rectangle, it follows from Lemmas 4 and 5 that (67) and (69) are satisfied, which

gives, for each k ∈ [a] and l ∈ [b]:

• Hkb = H ′
kb, |Val−V ′

al| = δl∈{a+j−i, a+j−i+1} and

(Va,a+j−i, Va,a+j−i+1, V
′
a,a+j−i, V

′
a,a+j−i+1) = (1, 0, 0, 1) or (0, 1, 1, 0), if j−i < b−a.

• |Hkb−H ′
kb| = δak, |Val−V ′

al| = δbl and

(Hab, Vab, H
′
ab, V

′
ab) = (1, 1, 0, 0) or (0, 0, 1, 1), if j−i = b−a.

• |Hkb−H ′
kb| = δk∈{b+i−j, b+i−j+1}, Val = V ′

al and

(Hb+i−j,b, Hb+i−j+1,b, H
′
b+i−j,b, H

′
b+i−j+1,b) = (1, 0, 0, 1) or (0, 1, 1, 0), if j−i = b−a.

This gives six separate cases, each of which leads to the conclusions of Lemma 6. The

details of the case j−i < b−a with (Va,a+j−i, Va,a+j−i+1, V
′
a,a+j−i, V

′
a,a+j−i+1) = (1, 0, 0, 1) will

now be outlined, the other cases being reasonably similar. Setting α = {α1, . . . , αr},
α′ = {α′

1, . . . , α
′
r′}, β = {β1, . . . , βr} and β ′ = {β ′

1, . . . , β
′
r′}, with the elements of each set

labeled in ascending order, it can be seen for the case under consideration that r = r ′,

α = α′, and that there exists m ∈ [r] such that βm = a+j−i, β ′
m = a+j−i+1 and β ′

l = βl, for

all l ∈ [r]\{m}. Now setting µ = (b−β1, . . . , b−βr | a−α1, . . . , a−αr) and µ′ = (b−β ′
1, . . . , b−

β ′
r | a−α′

1, . . . , a−α′
r), it can be seen using (39) that µm = m+b−βm = m−a+b+i−j = µ′

m+1

and µk = µ′
k, for all k ∈ P \{m}. Therefore, Y (µ) is the disjoint union of Y (µ′) and

{(m, m−a+b+i−j)}. Finally, since λa,b,α,β = [a]×[b]\µ and λa,b,α′,β′ = [a]×[b]\µ′ from (51),

it follows that Y (λa,b,α′,β′) is the disjoint union of Y (λa,b,α,β) and {(a−m+1, a−i+j−m+1)},
so that λa,b,α,β ∼ λa,b,α′,β′ and ∆(λa,b,α,β, λa,b,α′,β′) = j−i = ∆(S, S ′), as required. 2

Lemma 7. Consider a vacancy-osculation set S ∈ VOS(a, b, α, β) and a point (i, j) ∈
[a]× [b]\S. Then (i, j) is an addition point of S if and only if S ∩ (B(a, b, i, j +1) ∪
B(a, b, i+1, j)) = ∅ and j−i is a change diagonal of λa,b,α,β.

Proof. If (i, j) is an addition point of S, then it follows from Lemma 3 or 5 that

S ∩ (B(a, b, i, j +1) ∪ B(a, b, i+1, j)) = ∅, and it follows from Lemma 6 that j− i is a

change diagonal of λa,b,α,β (since (i, j) being an addition point of S means that there exists

S ′ ∈ VOS(a, b, α′, β ′) with S ∼ S ′ and S ′ = S ∪ {(i, j)}, for some (α′, β ′) ∈ BP(a, b), and

Lemma 6 then implies that λa,b,α,β ∼ λa,b,α′,β′ and ∆(λa,b,α,β, λa,b,α′,β′) = ∆(S, S ′) = j−i).
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Conversely, if j−i is a change diagonal of λa,b,α,β and S∩(B(a, b, i, j+1)∪B(a, b, i+1, j)) = ∅,
then it follows from Lemma 5 that (i, j) is an addition point of S provided that Hkl = Vkl

for some (k, l) ∈ B(a, b, i, j), where (H, V ) ∈ EM(a, b) corresponds to S. It will be shown

that Hkl = Vkl is satisfied for (k, l) given by (70). First, it follows from (55) and (58) that,

for any d ∈ Z,

ρd(λa,b,α,β) = Rd([a]×[b]) −







|{i ∈ [r] | βi ≤ a+d}|, d ≤ b−a

|{i ∈ [r] |αi ≤ b−d}|, d ≥ b−a .
(72)

This can be rewritten as

ρd(λa,b,α,β) =







min(a, b, a+d, b−d), d ∈ [−a, b]

0, d /∈ [−a, b]
−







∑a+d
l=1 Val, d ≤ b−a

∑b−d
k=1 Hkb, d ≥ b−a ,

(73)

the first terms on each RHS of (72) and (73) being equal by elementary geometry of the

rectangle.

Next, it can be shown using (46) and (73) that only the possibilities

• (Va,a+j−i, Va,a+j−i+1) = (1, 0) or (0, 1), if j−i < b−a

• (Hab, Vab) = (1, 1) or (0, 0), if j−i = b−a

• (Hb+i−j,b, Hb+i−j+1,b) = (1, 0) or (0, 1), if j−i > b−a ,

(74)

can occur for the edge matrix entries at the two edges adjacent to the diagonal Dj−i([a]×[b])

on the right or lower boundary. The details of the case −a < j− i < min(b−a, 0) will

now be outlined, all other cases being similar. For this case, (73) gives ρj−i−1(λa,b,α,β) =

a+j− i−1−
∑a+j−i−1

l=1 Val, ρj−i(λa,b,α,β) = a+j− i−
∑a+j−i

l=1 Val and ρj−i+1(λa,b,α,β) = a+j−
i+1−

∑a+j−i+1
l=1 Val. Therefore, (ρj−i(λa,b,α,β)− ρj−i−1(λa,b,α,β), ρj−i+1(λa,b,α,β)− ρj−i(λa,b,α,β)) =

(1−Va,a+j−i, 1−Va,a+j−i+1). But, using (46), this must be (1, 0) or (0, 1), implying that

(Va,a+j−i, Va,a+j−i+1) = (1, 0) or (0, 1), as required.

It can now be seen that, as required, Hkl = Vkl for (k, l) given by (70), this following

from (74) and (a, a+j−i+1) /∈ S (since (a, a+j−i+1) ∈ B(a, b, i, j+1)) if j−i < b−a, from (74)

alone if j−i = b−a, and from (74) and (b+i−j+1, b) /∈ S (since (b+i−j+1, b) ∈ B(a, b, i+1, j))

if j−i > b−a. 2

9. Progressions for Vacancy-Osculation Sets

In this section, it will be shown that the elements of any vacancy-osculation set S can be

ordered in such a way that, for each k ∈ [|S|], the first k elements themselves constitute

a vacancy-osculation set.

the electronic journal of combinatorics 15 (2008), #R7 31



For a finite set T , let an ordering of T be any permutation, represented as a tuple,

of all the elements of T . If T is a subset of Z2, let a canonical ordering of T be any

ordering ((i1, j1), . . . , (i|T |, j|T |)) for which if k < l, with k, l ∈ [|T |], then ik < il or

jk < jl. Furthermore, let the lexicographic ordering of T be the unique canonical ordering

((i1, j1), . . . , (i|T |, j|T |)) which satisfies ik < ik+1, or ik = ik+1 and jk < jk+1, for each

k ∈ [|T |−1]. (For example, in (32) the points of S are written in such an order.)

For a vacancy-osculation set S ∈ VOS(a, b, l), define a progression for S to be any ordering

s = (s1, . . . , sl) of S which satisfies {s1, . . . , sk} ∈ VOS(a, b) for each k ∈ [0, l]. A

progression s for S therefore satisfies ∅ ∼ {s1} ∼ {s1, s2} ∼ . . . ∼ {s1, . . . , sl}, with sk

being a deletion point of {s1, . . . , sk} and an addition point of {s1, . . . , sk−1} for each

k ∈ [l].

Lemma 8. Any canonical ordering of a vacancy-osculation set is a progression for that

set.

Proof. Let s = (s1, . . . , sl) = ((i1, j1), . . . , (il, jl)) be a canonical ordering of S ∈
VOS(a, b, l), and consider {s1, . . . , sm} for any m ∈ [l]. Since s is canonical, ik < im
or jk < jm for each k ∈ [m−1], from which it follows, due to (62), that {s1, . . . , sm} ∩
(B(a, b, im, jm+1)∪B(a, b, im+1, jm)) = ∅. Therefore, if {s1, . . . , sm} ∈ VOS(a, b), then, by

Lemma 3, sm is a deletion point of {s1, . . . , sm}, and so {s1, . . . , sm−1} ∈ VOS(a, b). Since

{s1, . . . , sl} = S ∈ VOS(a, b), it follows by repeated application of this result starting

with m = l that {s1, . . . , sm} ∈ VOS(a, b) for each m ∈ [0, l], so that s is a progression

for S. 2

Corollary 9. There is at least one progression for any vacancy-osculation set.

Proof. Since the lexicographic ordering of a vacancy-osculation set is a canonical ordering,

it follows from Lemma 8 that it is a progression for that set. 2

An example of a canonical, but non-lexicographic, ordering of the vacancy-osculation

set (32) of the running example, and hence a progression for that set, is

s = ((1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (1, 4), (3, 4), (2, 5), (4, 2), (4, 3)) . (75)

In Figure 6, each sk for this example is shown together with M({s1, . . . , sk}) and the

diagram of the path tuple corresponding to {s1, . . . , sk}, for k ∈ [0, 11]. In each matrix,

the sk entry is highlighted, and in each path diagram the sections of paths which differ

from the previous diagram are shown in red.

Note that the converse of Lemma 8 is false. For example, the ordering obtained from (75)

by interchanging (1, 4) and (2, 5) is no longer canonical, but is still a progression for the

vacancy-osculation set (32).
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









1 1 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









1 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





(1,1) (1,2) (1,3) (2,1) (2,2)





1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









1 1 1 1 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









1 1 1 1 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0









1 1 1 1 0 0
1 1 1 0 1 0
0 0 0 1 0 0
0 1 1 0 0 0





(2,3) (1,4) (3,4) (2,5) (4,2) (4,3)

Figure 6: A progression for the running example.

10. Ordering Pairs

In this section, it will be shown that progressions can be systematically obtained for any

vacancy-osculation set by using a function on P
2 and an order on Z which satisfy certain

properties.

A total strict order on a set T is a binary relation ≺ on T for which:

(1) Exactly one of t1 ≺ t2, t1 = t2 or t2 ≺ t1 holds for each t1, t2 ∈ T.

(2) If t1, t2, t3 ∈ T satisfy t1 ≺ t2 and t2 ≺ t3, then t1 ≺ t3.
(76)

Of primary interest here will be total strict orders on Z. The standard less-than relation <

is one example of a total strict order on Z, while another example is that defined, for each

z, z′ ∈ Z, by

z ≺ z′ if and only if |z−2| > |z′−2| or z−2 = 2−z′ < 0 , (77)

which gives . . . ≺ −1 ≺ 5 ≺ 0 ≺ 4 ≺ 1 ≺ 3 ≺ 2.

Let an ordering pair (L,≺) be any pair comprised of a function L : P2 → P and a total

strict order ≺ on Z, which satisfy the property, for (i, j), (i′, j ′) ∈ P
2, that

If L(i, j) < L(i′, j ′), or L(i, j) = L(i′, j ′) and j−i ≺ j ′−i′,

then i < i′ or j < j ′ .
(78)

The function L will be referred to as a level function, and L(i, j) will be referred to as the

level of (i, j) ∈ P2. The full motivation for the use in (78) of a total strict order on the
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diagonals of P
2 (i.e., the use of j−i ≺ j ′−i′ rather than a more general condition for the

case L(i, j) = L(i′, j ′)) will become apparent in Section 13.

It follows, for an ordering pair (L,≺), and (i, j), (i′, j ′) ∈ P2, that

If L(i, j) = L(i′, j ′) and j−i = j ′−i′, then (i, j) = (i′, j ′) . (79)

In other words, each point (i, j) ∈ P2 is uniquely determined by its level L(i, j) and content

j−i. Property (79) can be derived as follows. Let L(i, j) = L(i′, j ′) and j−i = j ′−i′,

and consider, for example, the point (i, j ′). By applying (78) to (i, j ′) and (i, j), and to

(i, j ′) and (i′, j ′), it can be seen that none of the possibilities L(i, j ′) < L(i, j) = L(i′, j ′),

L(i, j) = L(i′, j ′) < L(i, j ′), L(i, j ′) = L(i, j) = L(i′, j ′) and j ′− i ≺ j− i = j ′− i′, or

L(i, j ′) = L(i, j) = L(i′, j ′) and j−i = j ′−i′ ≺ j ′−i, can occur, leaving only j ′−i = j−i =

j ′−i′, and therefore (i, j) = (i′, j ′).

It follows from (78) and (79) that for an ordering pair (L,≺) and a vacancy-osculation

set S ∈ VOS(a, b, l), there exists a unique canonical ordering s = ((i1, j1), . . . , (il, jl)) of S

which satisfies

L(ik, jk) < L(ik+1, jk+1), or L(ik, jk) = L(ik+1, jk+1) and jk−ik ≺ jk+1−ik+1 , (80)

for each k ∈ [l− 1]. (Alternatively, a total strict order ≺ on P2 can be defined by

(i, j) ≺ (i′, j ′) if and only if L(i, j) < L(i′, j ′), or L(i, j) = L(i′, j ′) and j−i ≺ j ′−i′, and

s = ((i1, j1), . . . , (il, jl)) is then the unique ordering of S which satisfies (ik, jk) ≺ (ik+1, jk+1)

for each k ∈ [l−1].) By Lemma 8, this s is a progression for S. Accordingly, s will be

referred to as the progression for S induced by the ordering pair (L,≺).

An example of an ordering pair is (L̂, <), where the level function is

L̂(i, j) = i, for each (i, j) ∈ P
2 , (81)

and the total strict order is the standard less-than relation, since it can be seen imme-

diately that these satisfy (78). The progression for a vacancy-osculation set induced by

(L̂, <) is the lexicographic ordering of the set, and accordingly (L̂, <) will be referred to as

the lexicographic ordering pair. Similarly, another example of an ordering pair is (Ľ, >),

where the level function is

Ľ(i, j) = j, for each (i, j) ∈ P
2 , (82)

and the total strict order is the standard greater-than relation. This will be referred to

as the antilexicographic ordering pair.

A third example of an ordering pair is (L,≺), where the level function is

L(i, j) = max(i, j−2), for each (i, j) ∈ P
2 , (83)

the electronic journal of combinatorics 15 (2008), #R7 34



and the total strict order is given by the example (77). In checking that these satisfy (78),

it may be useful to visualize (83) as






L(1,1) L(1,2) . . .
L(2,1) L(2,2)

...
. . .




 =







1 1 1 2 3

2 2 2 2 3

3 3 3 3 3 . . .







. (84)

It can be seen that the progression for the running example (32) induced by this ordering

pair is that of (75).

11. Oscillating Tableaux

In this section, oscillating tableaux will be introduced, in preparation for the consideration

in subsequent sections of their relationship with vacancy-osculation sets.

For a partition λ and a nonnegative integer l, an oscillating tableau of shape λ and length l

is a sequence of l+1 partitions starting with ∅, ending with λ, and in which successive

partitions differ by a square. Let OT(λ, l) denote the set of all such oscillating tableaux,

OT(λ, l) :=
{

η = (η0 =∅, η1, . . . , ηl−1, ηl =λ) ∈ Parl+1
∣
∣
∣ ηk−1 ∼ ηk for each k ∈ [l]

}

. (85)

Oscillating tableaux are sometimes called up-down tableaux, and were first introduced

in [6]. Oscillating tableaux, or certain generalizations thereof, are studied in the context

of Robinson-Schensted-Knuth-type correspondences in [6, 13, 14, 18, 23, 29, 33, 49, 54,

55, 56, 63, 64, 66], and in the context of nonintersecting lattice paths in [3, 38]. They are

also discussed in, for example, [57], [60, Exercise 7.24] and [61, Sec. 9].

Let a deletion of an oscillating tableau η ∈ OT(λ, l) be a value k ∈ [l] for which |ηk| =

|ηk−1|−1. Denoting the number of deletions in η as D(η), it can be seen that

D(η) = (l−|λ|)/2 , for each η ∈ OT(λ, l) , (86)

and that OT(λ, l) = ∅ unless (l−|λ|)/2 is a nonnegative integer.

For an oscillating tableau η of length l, define

Ω(η)k := ∆(ηk−1, ηk), for each k ∈ [l], (87)

and define the profile Ω(η) of η to be the sequence of these diagonal differences,

Ω(η) := (Ω(η)1, Ω(η)2, . . . , Ω(η)l) = (∆(η0, η1), ∆(η1, η2), . . . , ∆(ηl−1, ηl)). (88)

In other words, Ω(η) is the sequence of contents of the squares by which the Young di-

agrams of successive partitions of η differ. The association of such a sequence with an
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oscillating tableaux has not previously appeared in the literature, but will be of consid-

erable significance in the rest of this paper.

It can be seen that an oscillating tableau η is uniquely determined by its profile Ω(η),

since η0 is always ∅ and, as indicated in Section 6, for a fixed partition µ, each partition µ′

with µ∼µ′ is uniquely determined by ∆(µ, µ′). Indeed, an oscillating tableau η of length l

can be uniquely reconstructed from its profile Ω(η) by starting with η0 = ∅, and then

obtaining the Young diagram of each successive partition ηk from that of ηk−1 by adding

or deleting (only one or the other being possible) a square with content Ω(η)k, for each

k ∈ [l].

It can also be seen that, for any η ∈ OT(λ, l),

For each d ∈ [−`(λ)+1, λ1−1], there exists k ∈ [l] with Ω(η)k = d . (89)

It can be deduced straightforwardly that, for any η ∈ OT(λ, l) and k ∈ [l],

• If Ω(η)k < 0, then there exists k′ ∈ [k−1] with Ω(η)k′ = Ω(η)k+1.

• If Ω(η)k > 0, then there exists k′ ∈ [k−1] with Ω(η)k′ = Ω(η)k−1.

• If Ω(η)k < −`(λ), then there exists k′ ∈ [k+1, l] with Ω(η)k′ = Ω(η)k+1.

• If Ω(η)k > λ1, then there exists k′ ∈ [k+1, l] with Ω(η)k′ = Ω(η)k−1.

(90)

For an oscillating tableau η of length l, and a total strict order ≺ on Z, define the set of

ascents of η with respect to ≺ as

A(≺, η) := {k ∈ [l−1] | Ω(η)k ≺ Ω(η)k+1} . (91)

Also define the distribution of the number of ascents on OP(λ, l) with respect to ≺ as

N (λ, l,≺, i) := |{η ∈ OT(λ, l) | |A(≺, η)| = i}|, for each i ∈ [0, l−1] . (92)

An example of an oscillating tableau η of shape (3, 2, 2) and length 11 is

η =
(

∅, (1), (2), (3), (3, 1), (3, 2), (3, 3), (4, 3), (4, 2), (3, 2), (3, 2, 1), (3, 2, 2)
)

. (93)

The Young diagrams for each partition of η, and the terms of the profile of η, are given

in Table 3. It can be seen that 8 and 9 are the deletions of η, and that for the total strict

order on Z given in (77),

A(≺, η) = {1, 2, 4, 5, 6, 8, 10}. (94)
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k 0 1 2 3 4 5 6 7 8 9 10 11

ηk ∅ (1) (2) (3) (3,1) (3,2) (3,3) (4,3) (4,2) (3,2) (3,2,1) (3,2,2)

∅

Ω(η)k 0 1 2 −1 0 1 3 1 3 −2 −1

Table 3: Example of an oscillating tableau.

The enumeration of oscillating tableaux, and their relationship with standard Young

tableaux, will now be discussed. For a partition λ and a finite subset T of P with |T | = |λ|,
define the corresponding set of standard Young tableaux as

SYT(T, λ) :=
{

σ
∣
∣
∣ • σ is an array of entries σij ∈ T with (i, j) ∈ Y (λ)

• σij < σi,j+1 for each i ∈ [`(λ)], j ∈ [λi−1]

• σij < σi+1,j for each i ∈ [`(λ)−1], j ∈ [λi+1]
}

.

(95)

For the case T = [|λ|], define

SYT(λ) := SYT([|λ|], λ) . (96)

A standard Young tableau σ ∈ SYT(T, λ) is usually shown by writing each σij within the

unit square centered at (i, j) in the Young diagram of λ. These entries thus increase along

each row and down each column, and together comprise T . It follows immediately that

|SYT(T, λ)| is independent of T , this number usually being denoted as f λ. A well-known

formula for fλ is the hook-length formula (see for example [60, Corollary 7.21.6]). An

example of an element of SYT((4, 2, 2)) is

σ =
5

4

1

8

6

2 3 7

. (97)

It can be seen that each oscillating tableau η of shape λ with zero deletions, i.e., η ∈
OT(λ, |λ|), can be bijectively associated with a standard Young tableau σ ∈ SYT(λ),

where, for (i, j) ∈ Y (λ) and k ∈ [|λ|], Y (ηk) = Y (ηk−1) ∪ {(i, j)} if and only if σij = k.

For example, the oscillating tableau η ∈ OT((4, 2, 2), 8) which corresponds to σ of (97) is

shown in Table 4.

Now define the set of ascents A(σ) for any σ ∈ SYT(λ) to be the set of integers k ∈ [|λ|−1]

for which k+1 appears in σ in the same or a higher row than does k. For example,

A(σ) = {1, 2, 5, 6} for σ of (97). It can be seen that if σ ∈ SYT(λ) corresponds to

η ∈ OT(λ, |λ|), then A(σ) = A(<, η).

In [63, 64], the general case of oscillating tableaux with n deletions is considered, and it

is shown that OT(λ, l), with l = |λ|+2n, can be bijectively mapped to the set of pairs
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k 0 1 2 3 4 5 6 7 8

ηk ∅ (1) (2) (3) (3,1) (3,1,1) (3,2,1) (4,2,1) (4,2,2)

∅

Ω(η)k 0 1 2 −1 −2 0 3 −1

Table 4: The oscillating tableau η which corresponds to σ of (97).

(M, σ) in which M is a matching on a set T (i.e., a decomposition of T as a disjoint union

of 2-element subsets), for any T ⊂ [l] with |T | = 2n = l − |λ|, and σ is a standard Young

tableau in SYT([l]\T, λ). The number of such sets T is
(

l
|λ|

)

and, for any T , the number

of matchings M is (l−|λ|−1)!! and number of standard Young tableaux σ is f λ, which

gives

|OT(λ, l)| =
(

l
|λ|

)

(l−|λ|−1)!! fλ , (98)

for (l−|λ|)/2 ∈ N.

12. Progressions and Oscillating Tableaux

In this section, it will be shown that any progression for a vacancy-osculation set can be

simply and naturally associated with an oscillating tableau.

Theorem 10. Consider a progression s = ((i1, j1), . . . , (il, jl)) for a vacancy-osculation

set S ∈ VOS(a, b, α, β, l). Then there exists an oscillating tableau η(s) of shape λa,b,α,β

and length l with the profile

Ω(η(s)) = (j1−i1, . . . , jl−il) . (99)

Furthermore, η(s) has the same number of deletions as the number of osculations of S,

D(η(s)) = χ(S) , (100)

and if s is a canonical ordering, then, for each k ∈ [l], k is a deletion of η(s) if and only

if (ik, jk) is an osculation of S.

As indicated in Section 11, any oscillating tableau is uniquely determined by its profile,

so that (99) defines a unique oscillating tableau η(σ) for the progression s. This will be

referred to as the oscillating tableau associated with s.
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Proof. For each k ∈ [0, l], denote {(i1, j1), . . . , (ik, jk)} as Sk, and let (αk, βk) ∈ BP(a, b)

be the boundary point pair for which Sk ∈ VOS(a, b, αk, βk). Now define the sequence of

partitions

ν = (ν0, . . . , νl) := (λa,b,α0,β0, . . . , λa,b,αl,βl) . (101)

Since s is a progression for S, it follows that Sk−1 ∼ Sk, so Lemma 6 implies that

λa,b,αk−1,βk−1 ∼ λa,b,αk,βk , i.e., νk−1 ∼ νk, for each k ∈ [l]. The boundary point pair for

S0 = ∅ is (α0, β0) = ([min(a, b)], [min(a, b)]), so (54) gives ν0 = λa,b,α0,β0 = ∅, and the

boundary point pair for S is (αl, βl) = (α, β), so νl = λa,b,αl,βl = λa,b,α,β. Therefore,

∅ = ν0 ∼ ν1 ∼ . . . ∼ νl−1 ∼ νl = λa,b,α,β, so ν is an oscillating tableau of shape

λa,b,α,β and length l. Applying (71) and (87) to Sk−1 and Sk for each k ∈ [l] gives

Ω(ν) = (j1−i1, . . . , jl−il), which matches the RHS of (99), implying, since any oscillating

tableau is uniquely determined by its profile, that η(s) = ν. The result (100) now follows

by applying (60) and (86) to S and η(s).

Finally, consider a fixed k ∈ [l]. Then applying (60) to Sk and Sk−1 gives k = |η(s)k| +
2χ(Sk) = 1+|η(s)k−1|+ 2χ(Sk−1), so that k is a deletion of η(s), i.e., |η(s)k| = |η(s)k−1|−1,

if and only if χ(Sk) = χ(Sk−1)+1. Now it follows from Lemma 4 that a point of Sk−1 is an

osculation of Sk−1 and a vacancy of Sk, or a vacancy of Sk−1 and an osculation of Sk, if and

only if the point is in Sk−1 ∩B(a, b, ik, jk), i.e., (X(Sk−1)∩N(Sk))∪ (N(Sk−1)∩X(Sk)) =

Sk−1 ∩ B(a, b, ik, jk). However, if s is a canonical ordering, then Sk−1 ∩ B(a, b, ik, jk) = ∅.
It can now be seen that for this case the following statements are all equivalent: k is a

deletion of η(s), χ(Sk) = χ(Sk−1)+1, X(Sk) is the disjoint union of X(Sk−1) and {sk},
sk ∈ X(Sk), sk ∈ X(Sk) ∩ X(Sk+1) ∩ . . . ∩ X(Sl), sk ∈ X(S) (where sk = (ik, jk)). 2

For the example of a progression s = {(i1, j1), . . . , (i11, j11)} of (75) and Figure 6, (j1−
i1, . . . , j11−i11) = (0, 1, 2,−1, 0, 1, 3, 1, 3,−2,−1). This matches the profile for the example

of an oscillating tableau of (93) and Table 3, which is therefore the oscillating tableau

associated with s. Also, by Theorem 10, since s is a canonical ordering, the deletions 8

and 9 of the oscillating tableau correspond to the osculations (i8, j8) = (3, 4) and (i9, j9) =

(2, 5) of the vacancy-osculation set.

13. Generalized Oscillating Tableaux

It was seen in the previous section that a vacancy-osculation set can be associated, via

a progression, with an oscillating tableau. However a progression is not, in general,

uniquely determined by its associated oscillating tableau. In this section, a generalization

of oscillating tableaux will be introduced, and it will be shown that, via the progression

induced by an ordering pair, a vacancy-osculation set can then be uniquely associated

with such a generalized oscillating tableau.
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For a subset T of P, a total strict order ≺ on Z, a partition λ and a nonnegative integer l,

define the corresponding set of generalized oscillating tableaux as

GOT(T,≺, λ, l) :=
{

(t, η) = ((t1, . . . , tl), η) ∈ T l× OT(λ, l)
∣
∣
∣ tk < tk+1,

or tk = tk+1 and k ∈ A(≺, η), for each k ∈ [l−1]
}

=
{

(t, η) ∈ T l× OT(λ, l)
∣
∣
∣ tk < tk+1, or tk = tk+1 and

Ω(η)k ≺ Ω(η)k+1, for each k ∈ [l−1]
}

,

(102)

where the definition (91) of A(≺, η) has been used in the second line.

It follows that, for finite T ,

|GOT(T,≺, λ, l)| =
∑

η∈OT(λ,l)

(

|T | + |A(≺, η)|

l

)

=
l−1∑

i=0

N (λ, l,≺, i)

(

|T | + i

l

)

,

(103)

where the definition (92) of N (λ, l,≺, i) has been used in the second line.

Using the example (93) of an oscillating tableau η, and the example (77) of a total strict

order ≺ on Z, for which A(≺, η) is given by (94), it can be seen that an example of a

generalized oscillating tableau in GOT([4],≺, (3, 2, 2), 11) is

(t, η) =
(

(1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4),

(∅, (1), (2), (3), (3, 1), (3, 2), (3, 3), (4, 3), (4, 2), (3, 2), (3, 2, 1), (3, 2, 2))
)

.
(104)

Theorem 11. Consider a, b ∈ P, (α, β) ∈ BP(a, b), l ∈ N, and an ordering pair (L,≺).

For each vacancy-osculation set S ∈ VOS(a, b, α, β, l), let s be the progression for S

induced by (L,≺) and η(s) be the oscillating tableau associated with s, and define

Θ(L,≺)(S) :=
(

(L(s1), . . . , L(sl)), η(s)
)

. (105)

Then Θ(L,≺) is an injective mapping from VOS(a, b, α, β, l) to the set of generalized oscil-

lating tableaux GOT(L([a]×[b]),≺, λa,b,α,β , l), where L([a]×[b]) := {L(i, j) |(i, j) ∈ [a]×[b]}.

Proof. The definition of L([a]× [b]) immediately gives (L(s1), . . . , L(sl)) ∈ L([a]× [b])l,

while Theorem 10 gives η(s) ∈ OT(λa,b,α,β, l). Also, (80), (91) and (99) give L(sk) <

L(sk+1), or L(sk) = L(sk+1) and k ∈ A(≺, η(s)), for each k ∈ [l−1]. Therefore, by (102),

Θ(L,≺)(S) ∈ GOT(L([a]×[b]),≺, λa,b,α,β, l) for each S ∈ VOS(a, b, α, β, l).
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Now consider S, S ′ ∈ VOS(a, b, α, β, l) for which Θ(L,≺)(S) = Θ(L,≺)(S
′). It follows that

L(sk) = L(s′k) for each k ∈ [l], where s and s′ are the progressions for S and S ′ induced

by (L,≺). The associated oscillating tableaux are also equal, η(s) = η(s′), so setting

sk = (ik, jk) and s′k = (i′k, j
′
k), (99) gives jk − ik = j ′k − i′k for each k ∈ [l]. Therefore,

by (79), (ik, jk) = (i′k, j
′
k) for each k ∈ [l], giving s = s′ and S = S ′, and implying that

Θ(L,≺) is injective. 2

For an ordering pair (L,≺), Θ(L,≺): VOS(a, b, α, β, l) → GOT(L([a]× [b]),≺, λa,b,α,β , l) as

defined by (105) will be referred to as the mapping induced by (L,≺), and, for any vacancy-

osculation set S ∈ VOS(a, b, α, β, l), Θ(L,≺)(S) will be referred to as the generalized oscil-

lating tableau associated with S via (L,≺).

For the vacancy-osculation set S of (32) and the ordering pair (L,≺) given by (77)

and (83), it has already been seen that the progression for S induced by (L,≺) is s

of (75), and that the oscillating tableau associated with s is that of (93). It can now be

seen that the generalized oscillating tableau associated with S via (L,≺) is that of (104).

14. Bijections Between Vacancy-Osculation Sets and Generalized

Oscillating Tableaux

It was seen in the previous section that any ordering pair (L,≺) leads to an injective

mapping from any set VOS(a, b, α, β, l) of vacancy-osculation sets to the set GOT(L([a]×
[b]),≺, λa,b,α,β, l) of generalized oscillating tableaux, and it will be seen in this section that

there exist certain ordering pairs for which this mapping is always bijective.

Lemma 12. Consider a, b ∈ P, (α, β) ∈ BP(a, b), l ∈ N, an ordering pair (L,≺), and

(t, η) ∈ GOT(L([a]×[b]),≺, λa,b,α,β , l). If, for each k ∈ [l], there exists sk = (ik, jk) ∈ [a]×[b]

such that L(sk) = tk and jk−ik = Ω(η)k, then sk is unique, the set S = {s1, . . . , sl} is

in VOS(a, b, α, β, l), and (t, η) is the generalized oscillating tableau associated with S via

(L,≺).

Proof. For each k ∈ [l], let there exist sk = (ik, jk) ∈ [a]× [b] with L(sk) = tk and

jk−ik = Ω(η)k, Then sk is unique due to (79). Also, since (t, η) ∈ GOT(L([a]× [b]),≺,

λa,b,α,β, l), it follows that tk < tk′, or tk = tk′ and Ω(η)k ≺ Ω(η)k′, for each k, k′ ∈ [l] with

k < k′, and hence that L(sk) < L(sk′), or L(sk) = L(sk′) and jk−ik ≺ jk′−ik′ . Therefore,

by (78), ik < ik′ or jk < jk′, from which it follows, due to (62), that for each m ∈ [0, l−1],

{s1, . . . , sm} ∩ (B(a, b, im+1, jm+1+1) ∪ B(a, b, im+1+1, jm+1)) = ∅ . (106)

Now consider any m ∈ [0, l−1], and assume that {s1, . . . , sm} ∈ VOS(a, b, αm, βm) and

λa,b,αm,βm = ηm for some (αm, βm) ∈ BP(a, b). It will be shown that, in this case,
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{s1, . . . , sm+1} ∈ VOS(a, b, αm+1, βm+1) and λa,b,αm+1 ,βm+1 = ηm+1 for some (αm+1, βm+1) ∈
BP(a, b). Since ηm ∼ ηm+1 and Ω(η)m+1 = jm+1 − im+1, jm+1 − im+1 is a change diago-

nal of λa,b,αm,βm. Using this and (106), it follows by Lemma 7 that sm+1 is an addi-

tion point of {s1, . . . , sm}. Therefore, {s1, . . . , sm+1} ∈ VOS(a, b, αm+1, βm+1) for some

(αm+1, βm+1) ∈ BP(a, b), and Lemma 6 implies that λa,b,αm,βm ∼ λa,b,αm+1 ,βm+1 and jm+1−
im+1 = ∆(λa,b,αm,βm, λa,b,αm+1 ,βm+1), so that (since any partition µ with λa,b,αm,βm ∼ µ is

uniquely determined by ∆(λa,b,αm,βm , µ)) λa,b,αm+1,βm+1 = ηm+1.

Since ∅ ∈ VOS(a, b, [min(a, b)], [min(a, b)]) and, from (54), λa,b,[min(a,b)],[min(a,b)] = ∅ = η0,

it follows by repeated application of the result from the previous paragraph starting with

m = 0 that, for each m ∈ [0, l], {s1, . . . , sm} ∈ VOS(a, b, αm, βm, m) for some (αm, βm) ∈
BP(a, b) with λa,b,αm,βm = ηm. Taking m = l gives S = {s1, . . . , sl} ∈ VOS(a, b, α, β, l). It

can also be seen that (s1, . . . , sl) is the progression for S induced by (L,≺), that η is the

oscillating tableau associated with s, and that therefore (t, η) is the generalized oscillating

tableau associated with S via (L,≺). 2

For any q, i, j ∈ Z, define

Lq(i, j) :=

{
max(i+q, j), q ≤ 0

max(i, j−q), q ≥ 0 ,
(107)

or, more compactly, Lq(i, j) = max(min(i, i+q), min(j, j−q). Usually, Lq will be regarded

as a level function from P
2 to P for some fixed q, and in this case it can be visualized as






L(1,1) L(1,2) . . .
L(2,1) L(2,2)

...
. . .




 =
















q

{
1 2 3...

...
...

1 2 3

2 2 3

3 3 3 . . .










, q ≤ 0







1 . . . 1 2 3

2 . . . 2 2 3

3 . . . 3
︸ ︷︷ ︸

q

3 3
. . .







, q ≥ 0 .

(108)

It will also be seen that for the case of osculating paths in an a by b rectangle, q is taken

to be b−a.

It follows from (78) that for q ∈ Z and a q-dependent total strict order ≺q on Z, (Lq,≺q)

is an ordering pair if and only if ≺q satisfies the property that, for z, z′ ∈ Z,

If z < z′ ≤ q or z > z′ ≥ q, then z ≺q z′ , (109)

i.e., . . . ≺q q−2 ≺q q−1 ≺q q and . . . ≺q q+2 ≺q q+1 ≺q q. Any total strict order ≺q

on Z which satisfies (109) will be referred to as a q-order.
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A specific example of a q-order is that defined, for any z, z ′ ∈ Z, by

z ≺q z′ if and only if |z−q| > |z′−q| or z−q = q−z′ < 0 , (110)

i.e., . . . ≺q q−2 ≺q q+2 ≺q q−1 ≺q q+1 ≺q q.

Any ordering pair (Lq,≺q) in which the level function Lq is given by (107) (and ≺q is

therefore a q-order) will be referred to as a complete ordering pair. It can be seen that

the example of an ordering pair (L,≺) given by (77) and (83) is the complete ordering

pair (L2,≺2) with ≺2 given by (110).

Now define, for any q, u, z ∈ Z,

Gq(u, z) :=







(u−z, u) , q ≤ min(0, z)

(u−q, u−q+z) , z ≤ q ≤ 0

(u+q−z, u+q) , 0 ≤ q ≤ z

(u, u+z) , q ≥ max(0, z) .

(111)

It can be checked straightforwardly that for q, i, j, u, z ∈ Z,

(Lq(i, j), j−i) = (u, z) if and only if (i, j) = Gq(u, z) . (112)

Finally, in preparation for Theorem 13 define, for any q ∈ Z, T ⊂ P, total strict order ≺
on Z, λ ∈ Par, l ∈ N and (t, η) ∈ GOT(T,≺, λ, l),

Φq(t, η) := {Gq(t1, Ω(η)1), . . . , Gq(tl, Ω(η)l)} . (113)

Theorem 13. Consider a, b ∈ P, (α, β) ∈ BP(a, b), and l ∈ N. Then the mapping

Θ(Lb−a,≺b−a) induced by any complete ordering pair (Lb−a,≺b−a) is a bijection from VOS(a, b,

α, β, l) to GOT([min(a, b)],≺b−a, λa,b,α,β, l), and the inverse mapping is Φb−a.

Proof. The mapping Θ(Lb−a,≺b−a) induced by a complete ordering pair (Lb−a,≺b−a) is

given by (105). By Theorem 11, it is an injective mapping from VOS(a, b, α, β, l) to

GOT([min(a, b)],≺b−a, λa,b,α,β, l), with Lb−a([a]×[b])=[min(a, b)] following from (107). Thus

it only remains to be shown that it is a surjective mapping and that its inverse is Φb−a.

This will now be done explicitly for the case a ≤ b, i.e., min(a, b) = a. The case b ≤ a

follows from the case a ≤ b by reflection of the lattice in the main diagonal using the first

bijection of (8).

Consider any (t, η) ∈ GOT([a],≺b−a, λa,b,α,β, l), and abbreviate Ω(η)k as Ωk for each k ∈ [l].

By (102), 1 ≤ t1 ≤ . . . ≤ tl ≤ a, and for n, n′ ∈ [l],

If n < n′, and Ωn′ ≺b−a Ωn or Ωn = Ωn′ , then tn < tn′ . (114)
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Now, for each k ∈ [l], define sk = (ik, jk) by

sk = Gb−a(tk, Ωk) =

{
(tk, tk+Ωk) , Ωk ≤ b−a

(tk−Ωk+b−a, tk+b−a) , Ωk ≥ b−a ,
(115)

the explicit form here following immediately from the definition (111) of Gq, with q =

b−a ≥ 0. It will first be shown that sk ∈ [a]× [b] for each k ∈ [l]. It can be seen

straightforwardly that 1 ≤ tk ≤ a ≤ b implies that ik ≥ 1 for Ωk ≤ b−a, jk ≥ 1 for Ωk ≥ 0,

ik ≤ a and jk ≤ b. Therefore it only remains to be checked that ik ≥ 1 for Ωk > b−a, and

jk ≥ 1 for Ωk < 0. If Ωk > b−a, then, by applying the second property of (90) Ωk−b+a times

in succession, it follows that there exist integers 1 ≤ n0 < n1 < . . . < nΩk−b+a = k such that

Ωnm
= b−a+m for each m ∈ [0, Ωk−b+a]. Since, by (109), Ωk ≺b−a Ωk−1 ≺b−a . . . ≺b−a b−a,

it follows using (114) that tnm
≥ m+1 for each m ∈ [0, Ωk−b+a] and so, taking m = Ωk−b+a,

that tk ≥ Ωk−b+a+1, i.e., by (115), that ik ≥ 1 as required. Similarly, if Ωk < 0, then,

by applying the first property of (90) −Ωk times in succession, it follows that there exist

integers 1 ≤ n0 < n1 < . . . < n−Ωk
= k such that Ωnm

= −m for each m ∈ [0,−Ωk].

Since, by (109), Ωk ≺b−a Ωk+1 ≺b−a . . . ≺b−a 0, it follows using (114) that tnm
≥ m+1 for

each m ∈ [0,−Ωk] and so, taking m = −Ωk, that tk ≥ −Ωk+1, i.e., by (115), that jk ≥ 1

as required.

Having now verified that sk ∈ [a]×[b], and observing from (112) and (115) that Lb−a(sk) =

tk and jk − ik = Ωk for each k ∈ [l], it follows by Lemma 12 that {s1, . . . , sl} ∈
VOS(a, b, α, β, l) and that Θ(Lb−a,≺b−a)({s1, . . . , sl}) = (t, η), so that Θ(Lb−a ,≺b−a) is surjective,

with the inverse mapping being Φb−a. 2

Returning to the running example, if it were not already known that (t, η) of (104) is the

generalized oscillating tableau associated with the vacancy-osculation matrix S of (32)

via the complete ordering pair (L,≺) of (77) and (83), then S could be obtained by

simply evaluating the profile for η, as done in Table 3, and then applying Φ2 to give

S = {G2(t1, Ω(η)1), . . . , G2(t11, Ω(η)11)}.

Corollary 14. Consider a, b ∈ P, (α, β) ∈ BP(a, b), l ∈ N, and a (b−a)-order ≺b−a.

Then

|OP(a, b, α, β, l)| =
∑

η∈OT(λa,b,α,β ,l)

(

min(a, b) + |A(≺b−a, η)|

l

)

. (116)

Proof. This result follows immediately from Theorem 13, (103), and the bijection between

OP(a, b, α, β, l) and VOS(a, b, α, β, l). 2

It was seen in Theorem 13 that there is a bijection between each set of vacancy-osculation

sets VOS(a, b, α, β, l) and a set of generalized oscillating tableaux, and it will now be seen
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in Theorem 15 that there is a bijection between each set of generalized oscillating tableaux

GOT([n],≺q, λ, l) with n ≥ Lq(`(λ), λ1) and a set of vacancy-osculation sets.

Theorem 15. Consider n ∈ P, q ∈ Z, a q-order ≺q, λ ∈ Par, and l ∈ N. Then for

n < Lq(`(λ), λ1), GOT([n],≺q, λ, l) is empty, while for n ≥ Lq(`(λ), λ1), the mapping Φq

is a bijection from GOT([n],≺q, λ, l) to VOS(a(n, q), b(n, q), αa(n,q),b(n,q),λ, βa(n,q),b(n,q),λ, l),

where a(n, q) = max(n, n− q) and b(n, q) = max(n, n + q), and the inverse mapping

is Θ(Lq ,≺q).

Here, Lq is defined in (107), and (αa(n,q),b(n,q),λ, βa(n,q),b(n,q),λ) is the boundary point pair

in BP(a(n, q), b(n, q)) which corresponds to λ, as given explicitly by (52). It can be

checked straightforwardly that λ ∈ Par(a(n, q), b(n, q)), for n ≥ Lq(`(λ), λ1), so that

(αa(n,q),b(n,q),λ, βa(n,q),b(n,q),λ) is well-defined. Note also that (a(n, q), b(n, q)) is simply (n−
q, n) for q ≤ 0, or (n, n+q) for q ≥ 0. It can be seen that if q and λ are regarded as fixed

and n as variable, then a(n, q), b(n, q), αa(n,q),b(n,q),λ and βa(n,q),b(n,q),λ represent a sequence

of rectangles and boundary points with a fixed difference q between the length and width

of the rectangle, and a fixed corresponding partition λ. This occurs, for example, in the

first three cases of Table 1 if m is regarded as fixed and n as variable.

Proof. For n ≥ Lq(`(λ), λ1), the result follows immediately from Theorem 13. For

n < Lq(`(λ), λ1), the case λ 6= ∅ and 0 ≤ q ≤ λ1−1 will now be considered in detail, all

other cases being similar. Assume that there exists (t, η) ∈ GOT([n],≺q, λ, l). It can be

seen, using (89) and the first two properties of (90), that there exist integers 1 ≤ k0 <

k1 < . . . < kλ1−q−1 ≤ l and 1 ≤ m0 < m1 < . . . < m`(λ)−1 ≤ l such that Ω(η)ki
= q+ i,

for each i ∈ [0, λ1−q−1], and Ω(η)mi
= −i, for each i ∈ [0, `(λ)−1]. Since, by (109),

λ1−1 ≺q . . . ≺q q+1 ≺q q, it follows that tki
≥ i+1 for each i ∈ [0, λ1−q−1], and so that

tkλ1−q−1
≥ λ1−q. Also, −`(λ)+1 ≺q . . . ≺q −1 ≺q 0, from which it follows that tmi

≥ i+1 for

each i ∈ [0, `(λ)−1], and so that tm`(λ)−1
≥ `(λ). But tkλ1−q−1

≤ n and tm`(λ)−1
≤ n must both

hold, giving n ≥ max(`(λ), λ1−q), which contradicts n < Lq(`(λ), λ1) = max(`(λ), λ1−q)

(since q ≥ 0), and implies that GOT([n],≺q, λ, l) is empty. 2

Theorem 15 and (103) give

l−1∑

i=0

N (λ, l,≺q, i)

(

n + i

l

)

=

{
0, n < Lq(`(λ), λ1)

|OP(a(n, q), b(n, q), αa(n,q),b(n,q),λ, βa(n,q),b(n,q),λ, l)|, n ≥ Lq(`(λ), λ1).

(117)

Since the RHS of (117) is independent of the q-order ≺q, it follows that the distribution

of the number of ascents on any fixed OP(λ, l) is the same with respect to any q-order,

the electronic journal of combinatorics 15 (2008), #R7 45



i.e., if ≺q and ≺′
q both satisfy (109) for q ∈ Z, then

N (λ, l,≺q, i) = N (λ, l,≺′
q, i) , (118)

for any λ ∈ Par, l ∈ N and i ∈ [0, l−1].

It also follows from (117), the first equation of (53) and the first bijection of (8) that

N (λ, l,≺q, i) = N (λt, l,≺−q, i) , (119)

for any λ ∈ Par, l ∈ N, q ∈ Z, q-order ≺q, −q-order ≺−q and i ∈ [0, l−1].

15. Summary

The demonstration that there exist bijections between tuples of osculating paths and

generalized oscillating tableaux is one of the main components of this paper. However,

since the details of these bijections are scattered across many of the previous sections,

they will be restated in this section as a summary.

Starting with mappings from path tuples to generalized oscillating tableaux, consider

a, b ∈ P, l ∈ N, and a boundary pair (α, β) ∈ BP(a, b), with BP(a, b) defined in (3).

Then, for any total strict order ≺b−a on Z which satisfies (109) for q = b−a, there is a

bijection from the set OP(a, b, α, β, l) of path tuples, as defined in (7) using (2) and (6),

to the set GOT([min(a, b)],≺b−a, λa,b,α,β, l) of generalized oscillating tableaux, as defined

in (102) using (45), (51), (85) and (87). For any path tuple P ∈ OP(a, b, α, β, l), the

corresponding generalized oscillating tableau (t, η) ∈ GOT([min(a, b)],≺b−a, λa,b,α,β, l) can

be obtained as follows.

• Find the set S of l points of [a]× [b] which are vacancies or osculations of P , i.e.,

points through which pass zero or two paths of P respectively.

• Order the points of S as the unique tuple s = ((i1, j1), . . . , (il, jl)) which satis-

fies (80), with L taken to be Lb−a, as defined in (107), and ≺ taken to be ≺b−a.

• Obtain the unique oscillating tableau η(s) whose profile, as defined in (88), is given

by (99). This step can be performed by simply starting with η(s)0 = ∅, and then

obtaining the Young diagram of each successive partition η(s)k from that of η(s)k−1

by adding or deleting (only one or the other being possible) a square with content

jk−ik, for each k ∈ [l].

• The generalized oscillating tableau (t, η) is then ((Lb−a(i1, j1), . . . , Lb−a(il, jl)), η(s)).

In this mapping, for each k ∈ [l], k is a deletion of η(s), i.e., a value for which |η(s)k| =

|η(s)k−1|−1, if and only if (ik, jk) is an osculation of P .
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For the example of Figure 2, S, s, η(s) and (t, η) are given in (32), (75), (93) and (104)

respectively.

Proceeding to mappings from generalized oscillating tableaux to path tuples, consider

n ∈ P, q ∈ Z, a total strict order ≺q on Z which satisfies (109), l ∈ N, and a partition λ,

with n ≥ Lq(`(λ), λ1), where Lq is defined in (107). Then there is a bijection from the

set GOT([n],≺q, λ, l) of generalized oscillating tableaux to the set OP(a(n, q), b(n, q),

αa(n,q),b(n,q),λ, βa(n,q),b(n,q),λ, l) of path tuples, where a(n, q) = max(n, n− q), b(n, q) =

max(n, n+ q), and (αa(n,q),b(n,q),λ, βa(n,q),b(n,q),λ) is defined using (52). For any general-

ized oscillating tableau (t, η) ∈ GOT([n],≺q, λ, l), the corresponding path tuple P ∈
OP(a(n, q), b(n, q), αa(n,q),b(n,q),λ, βa(n,q),b(n,q),λ, l) can be obtained as follows.

• Obtain the profile Ω(η), as defined in (88) using (45) and (87), of the oscillating

tableau η.

• Obtain the vacancy-osculation set S = Φq(t, η), where Φq is defined in (113) us-

ing (111).

• Use (36) to obtain the edge matrix pair (H, V ) corresponding to S.

• The path tuple is then the unique P ∈ OP(a(n, q), b(n, q)) which satisfies (15).

For the example of (104), Ω(η), S, (H, V ) and P are given in Table 3, (32), (17) and

Figure 2 respectively.

For two sets related bijectively by one of mappings described here, the other mapping is

the inverse mapping, where the same total strict order on Z is used throughout.

16. Lexicographic and Antilexicographic Ordering Pairs

In this section, the lexicographic and antilexicographic ordering pairs (L̂, <) and (Ľ, >),

with L̂ and Ľ defined in (81) and (82), will be considered further, and it will be seen

that in certain cases these lead to alternative bijections to those described in the previous

section.

By Theorem 11, for any a, b ∈ P, (α, β) ∈ BP(a, b), and l ∈ N, the mappings in-

duced by (L̂, <) or (Ľ, >) are injective from VOS(a, b, α, β, l) to GOT([a], <, λa,b,α,β, l)

or GOT([b], >, λa,b,α,β, l) respectively. These mappings are not always bijective, but it will

be seen in Theorem 16 that Θ(L̂,<) is bijective if α = [a] and that Θ(Ľ,>) is bijective if

β = [b]. Note that α = [a] implies that a ≤ b, and that β = [b] implies that b ≤ a. The

partitions for these cases are given in (54), and it can be seen that

• α = [a] if and only if (λa,b,α,β)1 ≤ b−a

• β = [b] if and only if `(λa,b,α,β) ≤ a−b .
(120)
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Theorem 16. Consider a, b ∈ P, (α, β) ∈ BP(a, b), and l ∈ N. If α = [a], then

the mapping Θ(L̂,<) induced by the lexicographic ordering pair (L̂, <) is a bijection from

VOS(a, b, [a], β, l) to GOT([a], <, λa,b,[a],β, l), and if β = [b], then the mapping Θ(Ľ,>) in-

duced by the antilexicographic ordering pair (Ľ, >) is a bijection from VOS(a, b, α, [b], l)

to GOT([b], >, λa,b,α,[b], l). The inverse mappings for these cases are respectively

Ψ̂(t, η) = {(t1, t1+Ω(η)1), . . . , (tl, tl+Ω(η)l)} , (121)

for each (t, η) ∈ GOT([a], <, λa,b,[a],β, l), and

Ψ̌(t, η) = {(t1−Ω(η)1, t1), . . . , (tl−Ω(η)l, tl)} , (122)

for each (t, η) ∈ GOT([b], >, λa,b,α,[b], l).

Proof. The proof is similar to that of Theorem 13. Due to Theorem 11, it only needs to

be shown that Θ(L̂,<) and Θ(Ľ,>) are surjective, with inverses Ψ̂ and Ψ̌. This will now be

done explicitly for the case α = [a]. The case β = [b] follows from the case α = [a] by

reflection of the lattice in the main diagonal using the first bijection of (8).

Consider any (t, η) ∈ GOT([a], <, λa,b,[a],β, l), and again abbreviate Ω(η)k as Ωk for each

k ∈ [l]. By (102), 1 ≤ t1 ≤ . . . ≤ tl ≤ a, and for n, n′ ∈ [l],

If n < n′ and Ωn ≥ Ωn′ , then tn < tn′ . (123)

For each k ∈ [l], define sk = (ik, jk) by

sk = (tk, tk+Ωk) . (124)

It will now be shown that sk ∈ [a]× [b] for each k ∈ [l]. It can be seen immediately

that ik ∈ [a], jk ≥ 1 for Ωk ≥ 0, and jk ≤ b for Ωk ≤ b−a, so it only remains to be

checked that jk ≥ 1 for Ωk < 0, and jk ≤ b for Ωk > b−a. If Ωk < 0, then, by applying

the first property of (90) −Ωk times in succession, it follows that there exist integers

1 ≤ n0 < n1 < . . . < n−Ωk
= k such that Ωnm

= −m for each m ∈ [0,−Ωk]. It then

follows using (123) that tnm
≥ m+1 for each m ∈ [0,−Ωk] and so, taking m = −Ωk,

that tk ≥ −Ωk +1, i.e., by (124), that jk ≥ 1 as required. Similarly, if Ωk > b−a,

then abbreviating (λa,b,[a],β)1 = βa−a as λ1, noting that λ1 ≤ b−a, and applying the

fourth property of (90) Ωk −λ1 times in succession, it follows that there exist integers

k = nΩk−λ1 < . . . < n1 < n0 ≤ l such that Ωnm
= m+λ1 for each m ∈ [0, Ωk−λ1]. It then

follows using (123) and tl ≤ a that tnm
≤ a−m for each m ∈ [0, Ωk−λ1] and so, taking

m = Ωk−λ1, that tk ≤ a−Ωk+λ1, i.e., by (124), that jk ≤ a+λ1 ≤ b as required.

Having now verified that sk ∈ [a] × [b], and observing from (81) and (124) that L̂(sk) =

tk and jk − ik = Ωk for each k ∈ [l], it follows by Lemma 12 that {s1, . . . , sl} ∈
VOS(a, b, [a], β, l) and that Θ(L̂,<)({s1, . . . , sl}) = (t, η), so that Θ(L̂,<) is surjective, with

the inverse mapping Ψ̂. 2
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Corollary 17. Consider a, b ∈ P, (α, β) ∈ BP(a, b), and l ∈ N. If α = [a], then

|OP(a, b, [a], β, l)| =
∑

η∈OT(λa,b,[a],β ,l)

(

a + |A(<, η)|

l

)

, (125)

and if β = [b], then

|OP(a, b, α, [b], l)| =
∑

η∈OT(λa,b,α,[b],l)

(

b + |A(>, η)|

l

)

. (126)

Proof. This follows immediately from Theorem 16, (103), and the bijection between

OP(a, b, α, β, l) and VOS(a, b, α, β, l). 2

It follows from (125) that |OP(a, b, [a], β, l)| is independent of b. This can also be seen

by examining the paths directly since, for any P ∈ OP(a, b, [a], β, l) and k ∈ [a], path Pk

must end with a segment from (k, βa) to (k, b). Similarly, |OP(a, b, α, [b], l)| is independent

of a, as can be seen from (126) or from the fact that, for any P ∈ OP(a, b, α, [b], l) and

k ∈ [b], path Pk starts with a segment from (a, k) to (αb, k).

It also follows from (116), (120), (125) and (126) that the distribution of the number of

ascents on OP(λ, l) is the same with respect to < or any q-order ≺q with q ≥ λ1, and the

same with respect to > or any q-order ≺q with q ≤ −`(λ),

N (λ, l, <, i) = N (λ, l,≺q, i) for any q ≥ λ1

N (λ, l, >, i) = N (λ, l,≺q, i) for any q ≤ −`(λ),
(127)

with any λ ∈ Par, l ∈ N and i ∈ [0, l−1].

17. Further Example

In this section, a further example, that of enumerating OP(n, n, [n], [n], 6) for any n ∈ P,

will be considered.

As seen in Section 4, the path tuples of OP(n, n, [n], [n]) correspond to n × n standard

alternating sign matrices, and, as seen in Table 1, λn,n,[n],[n] = ∅. By (59), any path tuple

of OP(n, n, [n], [n]) has equal numbers of vacancies and osculations, so OP(n, n, [n], [n], 6)

is the set of all path tuples of OP(n, n, [n], [n]) which have 3 osculations and 3 vacancies.
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In this case, (116), (125) or (126) can be used, giving

|OP(n, n, [n], [n], 6)| =
∑

η∈OT(∅,6)

(

n + |A(≺0, η)|

6

)

=
∑

η∈OT(∅,6)

(

n + |A(<, η)|

6

)

=
∑

η∈OT(∅,6)

(

n + |A(>, η)|

6

)

,

(128)

where ≺0 is any 0-order.

By (98), |OT(∅, 6)| = 5!! = 15. These 15 oscillating tableaux are shown in Table 5. In

this table, the Young diagrams of each partition of η, the terms of the profile of η, and the

sets of ascents A(≺0, η), A(<, η) and A(>, η) are shown for each η ∈ OT(∅, 6), where ≺0

is taken to be the specific 0-order of (110), so that −2 ≺0 2 ≺0 −1 ≺0 1 ≺0 0.

It can be seen from Table 5 that

N (∅, 6,≺0, i) = N (∅, 6, <, i) = N (∅, 6, >, i) =







1, i = 0

7, i = 1

6, i = 2

1, i = 3

0, otherwise ,

(129)

so using this in (128) gives

|OP(n, n, [n], [n], 6)| =

(

n

6

)

+ 7

(

n+1

6

)

+ 6

(

n+2

6

)

+

(

n+3

6

)

. (130)

Finally, note that in addition to the equalities between the three distributions of (129),

the equalities of (127) also give N (∅, 6,≺q, i) = N (∅, 6, <, i) = N (∅, 6, >, i) for any q-

order ≺q, q ∈ Z and i ∈ [0, 5].

18. Nonintersecting Paths and Semistandard Young Tableaux

In this section, the special case of tuples of nonintersecting paths in an a by b rectangle,

with the paths starting and ending at points (specified by (α, β) ∈ BP(a, b)) along the

lower and right boundaries, and taking only unit steps rightwards or upwards, will be

considered. It will be seen that, using the lexicographic ordering pair, there is a bijection

between such path tuples and certain semistandard Young tableaux. Three different

enumeration formulae will then be obtained, the derivations of two of which involve using

the Lindström-Gessel-Viennot theorem.
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η0 η1 η2 η3 η4 η5 η6 Ω(η)1 Ω(η)2 Ω(η)3 Ω(η)4 Ω(η)5 Ω(η)6 A(≺0, η) A(<, η) A(>, η)

∅ ∅ ∅ ∅ 0 0 0 0 0 0 ∅ ∅ ∅

∅ ∅ ∅ 0 1 1 0 0 0 {3} {1} {3}

∅ ∅ ∅ 0 −1 −1 0 0 0 {3} {3} {1}

∅ ∅ ∅ 0 0 0 1 1 0 {5} {3} {5}

∅ ∅ ∅ 0 0 0 −1 −1 0 {5} {5} {3}

∅ ∅ 0 1 1 1 1 0 {5} {1} {5}

∅ ∅ 0 −1 −1 −1 −1 0 {5} {5} {1}

∅ ∅ 0 1 1 −1 −1 0 {5} {1, 5} {3}

∅ ∅ 0 −1 −1 1 1 0 {3, 5} {3} {1, 5}

∅ ∅ 0 1 −1 −1 1 0 {4, 5} {1, 4} {2, 5}

∅ ∅ 0 −1 1 1 −1 0 {2, 5} {2, 5} {1, 4}

∅ ∅ 0 1 −1 1 −1 0 {3, 5} {1, 3, 5} {2, 4}

∅ ∅ 0 −1 1 −1 1 0 {2, 4, 5} {2, 4} {1, 3, 5}

∅ ∅ 0 1 2 2 1 0 {4, 5} {1, 2} {4, 5}

∅ ∅ 0 −1 −2 −2 −1 0 {4, 5} {4, 5} {1, 2}

Table 5: The oscillating tableaux of shape ∅ and length 6.

A tuple of nonintersecting paths, P ∈ OP(a, b, α, β), is a path tuple which has no oscula-

tions, i.e., X(P ) = ∅, χ(P ) = 0 and Z(P ) = N(P ), and so, by (59), |Z(P )| = |λa,b,α,β|.
Accordingly, the set of tuples of nonintersecting paths in [a]×[b] with boundary point pair

(α, β) ∈ BP(a, b) is defined as

NP(a, b, α, β) := OP(a, b, α, β, |λa,b,α,β|) . (131)

It also follows from (100) that for any S ∈ VOS(a, b, α, β, |λa,b,α,β|) and any progression s

for S, the oscillating tableau η(s) associated with s has no deletions. Therefore, as

indicated in Section 11, η(s) corresponds to a standard Young tableau. Of primary interest

here will be the progression s = ((i1, j1), . . . , (il, jl)) for S induced by the lexicographic

ordering pair (L̂, <) (i.e., the lexicographic ordering of S), where l = |λa,b,α,β|. In this case,
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the generalized oscillating tableau associated with S via (L̂, <) is, using (81) and (105),

Θ(L̂,<)(S) = ((L̂(s1), . . . , L̂(sl)), η(s)) = ((i1, . . . , il), η(s)) ∈ GOT([a], <, λa,b,α,β, l).

An example of a tuple P of nonintersecting paths in NP(4, 6, {1, 2, 4}, {1, 4, 5}) is shown

diagrammatically in Figure 7.

4

3

2

1

1 2 3 4 5 6

Figure 7: Example of a tuple of nonintersecting paths.

The progression for the vacancy-osculation set S of P induced by the lexicographic order-

ing pair (i.e., the lexicographic ordering of the vacancies of P ) is s = ((i1, j1), . . . , (i8, j8)) =

((1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (3, 3), (3, 6), (4, 3)). It can be seen that (j1−i1, . . . , j8−
i8) = (0, 1, 2,−1,−2, 0, 3,−1) matches the profile of the oscillating tableau of Table 4,

implying that this is the oscillating tableau η(s) associated with s, and that the cor-

responding standard Young tableau is σ of (97). The generalized oscillating tableau

associated with S via (L̂, <), Θ(L̂,<)(S) = ((i1, . . . , i8), η(s)), is therefore

(t, η) =
(

(1, 1, 1, 2, 3, 3, 3, 4),

(∅, (1), (2), (3), (3, 1), (3, 1, 1), (3, 2, 1), (4, 2, 1), (4, 2, 2))
)

.
(132)

For a subset T of P, and a partition λ, define the corresponding set of semistandard Young

tableaux as

SSYT(T, λ) :=
{

τ
∣
∣
∣ • τ is an array of entries τij ∈ T with (i, j) ∈ Y (λ)

• τij ≤ τi,j+1 for each i ∈ [`(λ)], j ∈ [λi−1]

• τij < τi+1,j for each i ∈ [`(λ)−1], j ∈ [λi+1]
}

.

(133)

As with standard Young tableaux, τ ∈ SSYT(T, λ) is usually shown by writing each τij

within the unit square centered at (i, j) in the Young diagram of λ. These entries now

increase weakly along each row and increase strictly down each column.

It can be checked that, for any n ∈ P and partition λ, each generalized oscillating

tableau (t, η) ∈ GOT([n], <, λ, |λ|) can be bijectively associated with a semistandard

Young tableau τ ∈ SSYT([n], λ) where, for each k ∈ [|λ|], if Y (ηk) = Y (ηk−1) ∪ {(i, j)},
then τij = tk. For the inverse mapping from τ to (t, η), the points of Y (λ) should
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first be ordered as (i1, j1), . . . , (i|λ|, j|λ|) such that τikjk
< τik+1jk+1

, or τikjk
= τik+1jk+1

and

jk−ik < jk+1−ik+1, for each k ∈ [|λ|−1]. Then (t, η) is given by tk = τikjk
and Ω(η)k = jk−ik

for each k ∈ [|λ|]. For example, the semistandard Young tableau which corresponds to

the generalized oscillating tableau of (132) is

τ =
3

2

1

4

3

1 1 3

. (134)

It follows from this bijection between GOT([n], <, λ, |λ|) and SSYT([n], λ), the bijection

between OT(λ, |λ|) and SYT(λ), and (103) that

|SSYT([n], λ)| =
∑

σ∈SYT(λ)

(

n + |A(σ)|

|λ|

)

, (135)

where A denotes the set of ascents for standard Young tableaux, as defined in Section 11.

This result, which could have been derived directly rather than by using oscillating

tableaux, is contained in [60, Proposition 7.19.12]. Note that there also exists a sim-

pler formula for |SSYT([n], λ)|, namely the hook-content formula (see for example [60,

Corollary 7.21.4]).

Now define, for any S ∈ VOS(a, b, α, β, |λa,b,α,β|), Υ(S) to be the semistandard Young

tableau associated with the generalized oscillating tableau Θ(L̂,<)(S). Thus, for the

vacancy-osculation set S corresponding to the path tuple of Figure 7, Υ(S) is given

by (134).

Also define, for any a, b ∈ P and λ ∈ Par,

SSYT(a, b, λ) := {τ ∈ SSYT([a], λ) | τi,λi
≤ b−λi+i for each i ∈ [`(λ)]} . (136)

Note that the condition τi,λi
≤ b−λi+i places an additional constraint on the largest (i.e.,

rightmost) entry of row i of τ whenever λi−i > b−a.

By Theorem 11, Υ is an injective mapping from VOS(a, b, α, β, |λa,b,α,β|) to SSYT([a],

λa,b,α,β), and it can be shown, using arguments similar to those used in previous sec-

tions, that Υ is a bijection from VOS(a, b, α, β, |λa,b,α,β|) to SSYT(a, b, λa,b,α,β). Also, by

Theorem 16, if α = [a], then SSYT(a, b, λa,b,[a],β) = SSYT([a], λa,b,[a],β).

Note too that in addition to Υ, which involves the lexicographic ordering pair and gives a

bijection from VOS(a, b, α, β, |λa,b,α,β|) to a set of semistandard Young tableaux, there is

also an analogous bijection which involves the antilexicographic ordering pair, and gives

a bijection from VOS(a, b, α, β, |λa,b,α,β|) to a set of row-strict Young tableaux (i.e., arrays

whose entries increase strictly along each row and increase weakly down each column).
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It now follows using the bijection Υ and Corollary 14 that

|NP(a, b, α, β)| = |SSYT(a, b, λa,b,α,β)| =

∑

η∈OT(λa,b,α,β ,|λa,b,α,β |)

(

min(a, b) + |A(≺b−a, η)|

|λa,b,α,β|

)

,
(137)

for any (b−a)-order. The sum over oscillating tableaux in (137) can instead be regarded

as a sum over standard Young tableaux SYT(λa,b,α,β). For the case α = [a], it follows that

|NP(a, b, [a], β)| = |SSYT([a], λa,b,[a],β)|, so NP(a, b, [a], β) can alternatively be enumerated

using (135) or the hook-content formula.

The Lindström-Gessel-Viennot theorem (see for example [30, Theorem 1], [31, Corollary 2]

or [59, Theorem 2.7.1]) states that the number of tuples of nonintersecting paths with

certain fixed endpoints can be expressed as the determinant of a matrix of binomial

coefficients. For r paths, i.e., |α| = |β| = r, this theorem then gives an alternative

formula for |NP(a, b, α, β)| as the determinant of an r×r matrix,

|NP(a, b, α, β)| = det

((

i+j

i

))

i=a−α1,...,a−αr , j=b−β1,...,b−βr

, (138)

where as usual the elements of α and β are labeled in increasing order.

Finally, as indicated in Section 1, semistandard Young tableaux can also be associated

with tuples of nonintersecting paths using a method in which each row of a tableau is

regarded as a partition, by reading the row’s entries from right to left, and then associated

with the path formed by the lower and right boundary edges of the Young diagram of that

partition. By translating these paths appropriately on the lattice, this gives a bijection

between SSYT(a, b, λa,b,α,β) and a certain set of `(λa,b,α,β)-tuples of nonintersecting paths,

which is therefore in bijection with NP(a, b, α, β). Using [31, Theorem 3], which combines

this bijection with [31, Corollary 2], then gives a third formula for |NP(a, b, α, β)| as the

determinant of an `(λa,b,α,β)×`(λa,b,α,β) matrix,

|NP(a, b, α, β)| =

det

((

(λa,b,α,β)i−i+j+min(b−(λa,b,α,β)i+i, a)−1

(λa,b,α,β)i−i+j

))

i,j=1,...,`(λa,b,α,β)

.
(139)

19. Discussion

All of the results of this paper have now been presented, so in this final section, the scope

for additional, related work will be discussed.

Some possible directions for further research are:
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(1) Studying the combinatorics of tuples of osculating paths with external configura-

tions other than fixed start and end points on the lower and right boundaries of a

rectangle.

(2) Investigating whether the generalized oscillating tableaux defined in this paper can

be interpreted within a representation theoretic context.

(3) Applying further bijections to generalized oscillating tableaux, with the aim of ob-

taining bijections between tuples of osculating paths and other known combinatorial

objects.

With regard to (1), some obvious possibilities for other external configurations are fixed

start points on the lower and left boundaries, and end points on the upper and right

boundaries of a rectangle, boundary conditions which correspond to previously-studied

subclasses of alternating sign matrices other than those outlined in Section 4 (see for

example [42, 47]), boundary conditions which correspond to previously-studied cases of

the six-vertex model of statistical mechanics (see for example [4, 5, 37, 48, 67, 71]), and

the configuration used in studies of friendly walkers in which the paths start and end on

parallel lines at 45◦ to the rows or columns of the lattice (see for example [7, 9, 26, 34, 40]).

With regard to (2), oscillating tableaux have often been studied in the context of the

representation theory of the symplectic group or Brauer algebra (see for example [6, 18,

49, 63, 64, 66]). Certain generalizations of oscillating tableaux have also been introduced

(see for example [13, 14, 23, 29, 38, 55]), but these all appear to differ from the general-

ization used in this paper. It would therefore seem worthwhile to investigate whether the

generalized oscillating tableaux used here can be related to representation theory. Further

motivation for seeking representation-theoretic interpretations of aspects of this paper is

that it is shown in [47] that enumeration formulae for standard alternating sign matrices,

and various subclasses thereof, can be obtained using determinantal formulae which are

related to characters of irreducible representations of classical groups.

With regard to (3), it would seem natural to combine the bijections obtained in this pa-

per, between tuples of osculating paths and generalized oscillating tableaux, with further

bijections involving oscillating tableaux. Certain such bijections, which can be regarded

as analogs of the Robinson-Schensted-Knuth correspondence (see for example [28], [58]

and [60, Ch. 7]), are already known (see for example [6, 13, 14, 18, 23, 49, 54, 55, 56, 63,

64]), although these need to be generalized in order to be applicable to the generalized

oscillating tableaux being used here. It is expected that the results of such work will

be reported in a sequel to this paper. In particular, it is hoped that it will be possi-

ble to exhibit bijections between certain tuples of osculating paths and certain tuples of

nonintersecting paths.

In conclusion, an example of such a result, and its consequences, will now be outlined.

For any n ∈ P and l ∈ N, there appears to be a bijection between the set of tuples
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of osculating paths OP(n, n, [n], [n], 2l), and the set of tuples of nonintersecting paths

∪λ|= l,λ1<n NP(n, n, αn,n,D(λ), βn,n,D(λ)), where (52) is being used, ∪λ|= l,λ1<n denotes the

union over all strict (i.e., with distinct parts) partitions λ of l with largest part less

than n, and D(λ) is the double of λ, defined using Frobenius notation to be the partition

(λ1, . . . , λr |λ1−1, . . . , λr−1), where r is the length of λ. Note that OP(n, n, [n], [n], 2l)

corresponds to the set of n × n standard alternating sign matrices whose corresponding

path tuples have l vacancies and l osculations. Such a bijection is related to the analog of

the Robinson-Schensted-Knuth correspondence described in [12, Sec. 4]. Applying (138)

to the individual sets of nonintersecting paths gives a formula for |OP(n, n, [n], [n], 2l)| as

a sum of determinants, and then summing over all possible values of l, with weight xl for

a parameter x, and combining these determinants into a single determinant, gives

n(n−1)/2
∑

l=0

|OP(n, n, [n], [n], 2l)| xl = xn(n−1)/2 det

(

x−i

(

i+j

i

)

− δi,j+1

)

i,j=0,...,n−1

. (140)

Setting x = 1 gives a determinantal formula for |OP(n, n, [n], [n])|, or equivalently the

number of n × n standard alternating sign matrices, which was obtained in [32, Re-

mark 5.2] by transforming the determinant used in [1] for the enumeration of descending

plane partitions. However, it is hoped that the method being used here will clarify the

underlying combinatorics.
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