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Interpretable surface-based detection of focal 
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One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key 
application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are 
difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open- 
source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous 
structural MRI data from epilepsy surgery centres worldwide.
The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 
1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. 
We created a neural network for FCD detection based on 33 surface-based features. The network was trained and 
cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. 
Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance.
Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their  
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imaging features and relative saliency to the classifier. On a restricted ‘gold-standard’ subcohort of seizure-free 
patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface- 
based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and 
specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders 
of manually delineated lesion masks, the sensitivity was 67%.
This multicentre, multinational study with open access protocols and code has developed a robust and inter-
pretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians 
greater confidence in the identification of subtle MRI lesions in individuals with epilepsy.
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Introduction
The application of machine learning algorithms for diagnostics in 
biomedical imaging forms a spectrum from automating high- 
throughput imaging analysis to assisting diagnosis in rarer, clinical-
ly challenging pathologies. One barrier to clinical translation is the 
limited interpretability of these algorithms, leading to a common 
perception of them as impenetrable ‘black boxes’. Identifying focal 
epileptogenic abnormalities on MRI is an outstanding clinical chal-
lenge in patients undergoing presurgical evaluation for 
drug-resistant focal epilepsy (DRFE). In DRFE, 16–43% of individuals 
are ‘MRI-negative’, i.e. no relevant abnormality is visually identified 
on their MRI scans.1–3 A leading cause of DRFE and the most com-
mon histopathology in operated ‘MRI-negative’ cohorts is a malfor-
mation of cortical development, called focal cortical dysplasia 
(FCD).4 As post-surgical seizure freedom is affected by whether 
the FCD can be identified on preoperative structural MRI,1,5 there 
has been considerable effort placed in improving the detection of 
these lesions. However, machine-learning approaches provide little 
insight into factors determining classification. In clinically ambigu-
ous images, where the need for algorithms is greatest, such insight 
would enable physicians to determine whether features identified 
by the classifiers are likely to be lesional in origin.

Radiologically, FCDs are characterized by alterations in cortical 
thickness, blurring at the grey–white matter boundary, folding ab-
normalities and T2 or fluid-attenuated inversion recovery (FLAIR) 
signal intensity changes.3 Approaches to improving the detection 

of FCDs have involved improved scanner protocols6 and field 
strengths7,8 as well as automated volumetric-9–13 and surface- 
based14–17 post-processing methods.

Despite extensive retrospective work to improve FCD detection, 
few automated methods have been used prospectively in the pre-
surgical evaluation of patients with epilepsy. Alongside lack of in-
terpretability, there are many additional reasons for this. Initially, 
many of the frameworks were developed at single epilepsy centres, 
resulting in small sample sizes and homogeneous datasets, where 
all patients have been scanned on the same MRI scanner with the 
same protocol, which reduces the likelihood of robustness of the re-
sults and the ability of the method to generalize. Many of these fra-
meworks are not openly available and therefore difficult to 
reproduce. Although there has been some important research rep-
licating previous methods,15,18,19 there was a need to develop and 
validate automated FCD detection tools on multicentre data. 
Recently, the field has progressed with two large multicentre stud-
ies,11,12 which successfully trained neural networks on voxel-based 
MRI data from 13 and 11 MRI scanners, respectively, to detect FCDs. 
However, neither of these studies included any patients with FCD 
type I lesions, which are particularly difficult to diagnose and re-
present some of the complex, challenging patients who present 
to epilepsy surgery centres.

Here, as part of the Multi-centre Epilepsy Lesion Detection 
(MELD) Project,20 we aimed to collate a heterogeneous cohort of pa-
tients from multiple epilepsy surgery centres, across multiple MRI 
scanners including both 1.5 and 3 T field strengths; create protocols 
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for decentralized MRI post-processing; and develop an open- 
access, robust and interpretable surface-based classifier to detect 
FCD.

Materials and methods
MELD project consortium

The MELD project (https://meldproject.github.io/) involves 22 re-
search centres across 5 continents. Each centre received approval 
from their local institutional review board (IRB) or ethics committee 
(EC). IRB/EC waived the need for individual patient consent as this 
was a retrospective study using fully anonymized, routinely avail-
able data only.

Participants

Patients were included if they were over age 3, had a 3D preopera-
tive T1-weighted MRI brain scan (1.5 or 3 T) and a radiological diag-
nosis of FCD or were MRI-negative with histopathological 
confirmation of FCD. Participants were excluded if they had previ-
ous surgery, large structural abnormalities in addition to the FCD or 
T1 scans with gadolinium enhancement. Controls were included if 
they were over age 3, did not have epilepsy or another neurological 
condition and had a T1-weighted MRI brain scan (1.5 or 3 T). 
Patients scanned for headache could be included as controls if 
they had no other neurological conditions and the MRI was normal. 
The patients and controls included were a retrospective conveni-
ence sample. Centres, patients and controls were given 
pseudo-anonymized ID codes.

Methods overview

Fig. 1 is an overview of the MELD FCD processing pipeline, which is 
explained in more detail in the sections below.

Site-level data collection and post-processing

Each site followed the protocols for site-level data collection and 
post-processing that are available at https://www.protocols.io/ 
researchers/meld-project and detailed in the following sections 
‘Participant demographics’, ‘MRI data collection and cortical sur-
face reconstruction’, ‘FCD lesion masking’ and ‘Morphological/in-
tensity features’. Structural MRI post-processing protocols were 
adapted from openly available ENIGMA-epilepsy protocols.21

Participant demographics

The following data were collected for all patients: age at preopera-
tive scan, sex, age of epilepsy onset, duration of epilepsy (time from 
age of epilepsy onset to age at preoperative scan), ever reported 
MRI-negative and histopathological diagnosis (ILAE three-tiered 
classification system),22 seizure freedom (Engel class I or other) 
and follow-up time in operated patients.

MRI data collection and cortical surface reconstruction

3D T1-weighted and FLAIR (where available) MRI scans were col-
lected at the 22 participating centres for all participants. We in-
cluded MRI data acquired on Siemens, GE and Philips MRI 
scanners at either 1.5 or 3 T field strengths. Cortical surfaces were 
reconstructed using FreeSurfer.23 Sites could process their data 
using either Linux or Mac operating systems and use either 
FreeSurfer v5.3 or v6.

FCD lesion masking

FCD lesions were delineated on the T1-weighted MRI scans at each 
site according to our lesion masking protocol.24 For patients with a 
radiological diagnosis of FCD, a volumetric lesion mask was created 
using the preoperative T1 scan and 3D FLAIR (where available). For 
MRI-negative patients but with histopathological confirmation of 
FCD, the postoperative scan was used to identify the location of 
the FCD on the preoperative T1 or FLAIR. A volumetric lesion 
mask was then created on the preoperative MRI data. In both cases, 
masks were created by a neuroradiologist, neurologist or experi-
enced epilepsy researcher at each site. Volumetric lesion masks 
were mapped to cortical reconstructions and small defects were 
filled in using five iterations of a dilation–erosion algorithm. 
Patients’ lesions were registered to fsaverage_sym.

Interrater reliability in lesion masking was assessed by three ex-
pert neuroradiologists independently masking on 10 randomly 
chosen FCD lesions from one site.

Morphological/intensity features

The following measures were calculated in native space per vertex 
across the cortical surface in all participants: (i) cortical thickness; 
(ii) grey–white contrast; (iii) mean curvature; (iv) sulcal depth; and 
(v) intrinsic curvature. Thickness was calculated as the mean min-
imum distance (in millimetres) between each vertex on the pial and 
white matter surfaces.25 Grey–white contrast was calculated as the 
ratio of the T1 grey matter signal intensity (at 30% of the cortical 
thickness) to the white matter signal intensity (1 mm below the 
grey–white matter boundary).26 Mean curvature was calculated at 
the grey–white matter boundary as 1/r, where r is equal to the 
mean of the principal curvatures k1 and k2.27 The dot product of 
the movement vector of the cortical surface during inflation is 
used to calculate the sulcal depth. Intrinsic curvature was calcu-
lated as the dot product of the principal curvatures k1 and k2.28

In participants with FLAIR data, FLAIR signal intensity was 
sampled at 25%, 50%, and 75% of the cortical thickness (GM FLAIR 
25%, 50%, 75%), as well as at the grey–white matter boundary and 
0.5 and 1 mm subcortically (WM FLAIR 0.5 mm, 1 mm).

To increase the stability of per-vertex measures, the following 
features were smoothed with a 5 mm Gaussian kernel: mean curva-
ture and sulcal depth; and 10 mm Gaussian kernel: cortical thick-
ness, grey–white contrast and FLAIR intensities at all cortical and 
subcortical depths. Intrinsic curvature was smoothed with a 
20 mm Gaussian kernel to provide a measure of folding pattern ab-
normalities that is stable across adjacent gyri and sulci. All features 
were registered to bilaterally symmetrical template space, fsavera-
ge_sym. Only anonymized participant demographic details and 
data matrices of anonymized features and lesion masks were 
shared with the MELD Project coordinators for multicentre 
analysis.

Centralized quality control and post-processing

Quality control and data harmonization of surface-based 
data

Automated quality control was performed on the surface-based 
features to identify subjects with extreme structural and intensity 
values across multiple features and cortical areas, likely caused 
by imaging artefacts such as signal biases or FreeSurfer segmenta-
tion errors. A feature was considered an outlier if, in more than 
10 non-lesional regions (from the Desikan–Killiany atlas), it was 
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greater or less than 2.7 times the standard deviation from the mean 
of all participants’ values.21 Participants were considered outliers if 
they had multiple extreme features, two if features from 
T1-weighted scans only and three if FLAIR MRI scans available. 
Participants identified as outliers were excluded from all subse-
quent analyses. For further details see Supplementary Fig. 1.

Due to heterogeneity in MRI scanner hardware, scanner field 
strength, operating systems and FreeSurfer versions, which can all 
affect morphological and intensity feature values,29 features were 
harmonized using ComBat30 to control for non-biological variance 
while retaining biological covariates (age, sex and disease status; 
Supplementary Fig. 2). Independent test sites were harmonized to 
the main cohort (Supplementary Fig. 2B). The harmonized data 
set features are henceforth referred to as ‘ComBat’ features.

Three-stage normalization of features

Surface-based MRI features underwent three normalization proce-
dures to highlight feature abnormalities.

Step 1: To account for interindividual shifts in feature distribu-
tions, such as age and sex-related changes, features were normal-
ized using intrasubject z-scoring. For example, the cortex is 
thicker in a 3-year-old than in a 60-year-old (Supplementary Fig. 
2A). After intrasubject z-scoring, thickness metrics for both partici-
pants will all have a mean of 0 and a standard deviation of 1.

To account for interregional variability in features, two further 
normalization steps were carried out: interhemispheric asymmetry 
and per-vertex normalization by controls.

Step 2: Interhemispheric asymmetry maps of features were cre-
ated by subtracting right hemisphere vertex values from left 

hemisphere values and vice versa. This procedure leverages the nor-
mal symmetry of cortical morphometric features and quantifies a key 
heuristic used to detect FCDs on radiological review, highlighting ver-
tices that are significantly different from the contralateral side.

Step 3: The outputs from steps 1 and 2 were z-scored by the 
mean and standard deviation of features at each vertex from 
healthy controls to adjust for normal interregional variability. For 
example, the cortex in frontal regions is normally thicker than in 
the occipital cortex. By normalizing by the control values at each 
vertex, we can account for this normal variability to accentuate fea-
tures that are abnormal for their position in the cortex.

The output of these normalization steps is a set of intrasubject 
and intersubject normalized features (henceforth ‘normalized’ fea-
tures) and a set of intrasubject, asymmetry and intersubject nor-
malized featured (henceforth ‘asymmetry’ features).

Characterization of focal cortical dysplasia features on MRI

Surface-based morphological features were calculated within the 
lesion masks of all patients. For controls, data were sampled from 
similarly sized regions for comparison. T1-derived features, avail-
able in all subjects, underwent Uniform Manifold Approximation 
and Projection (UMAP) embedding,31 a non-linear dimensionality 
reduction where similar examples are plotted closer together. 
Lesions were clustered into groups according to their UMAP loca-
tions using a Gaussian mixture model.

Border zones

Lesion masks were drawn conservatively, to maximize the propor-
tion of lesional vertices within the mask. There is inherent 

Figure 1 MELD processing pipeline. (A) Local sites extract surface-based morphological features from structural T1 and FLAIR MRI, along with manually 
delineated lesion masks. These were coregistered to a symmetric template surface and anonymized data matrices are shared with the MELD team. 
(B) Central preprocessing: the MELD team carried out outlier detection and data harmonization to minimize interscanner feature differences. 
(C) Morphological features underwent intrasubject, interhemispheric and intersubject normalization. (D) The full cohort was randomly subdivided 
50:50 into training/validation cohorts and withheld test cohort. To avoid overfitting, all optimization experiments were carried out on the training/val-
idation cohort prior to final testing on the test cohort and new site cohorts. (E) The neural network classifier was trained to identify lesional vertices 
from MRI features. Vertex-wise predictions were collected into connected clusters. (F) Classifier predictions mapped to cortical surfaces, lesional fea-
tures and their relative saliency were plotted; lesional features across the cohort were analysed.
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uncertainty in the precise borders of manually delineated lesion 
masks. Feature abnormalities extended approximately 40 mm be-
yond the lesion (Supplementary Fig. 3). To account for this uncer-
tainty, border zones were created around each lesion mask 
extending 20 and 40 mm across the cortical surface. Vertices be-
tween 0 and 40 mm from the lesion mask were excluded from train-
ing to reduce training on mislabelled data. Predicted lesion clusters 
within 20 mm of the lesion masks classified as detected for the sen-
sitivity+ metric (see network evaluation section).

Network training, testing and interpretation

Cohort splitting

An artificial neural network was trained on per-vertex post- 
processed MRI features (ComBat, Asymmetry and Normalized), 
after border zones had been removed (33 total input features). 
The full cohort (excluding two independent test sites) of patients 
and controls were randomly assigned to either the train cohort 
(278 patients, 180 controls) or the test cohort (260 patients, 193 con-
trols) (Table 1). All experiments to determine the optimal data pro-
cessing and network parameters were carried out through 10-fold 
cross-validation on the train cohort. The 10 folds were determined 
by a random partition of subjects in the train cohort. 
Hyperparameters were selected according to the aggregated per-
formance metrics of each of the 10 cross-validation models on their 
respective validation set.

Network hyperparameters and training

The neural network architecture had two hidden layers 
(with 40 and 10 nodes, respectively) and one output node and 
used a dropout of 0.4 on the input layer for learning more robust re-
presentations. To adjust for the class imbalance between healthy 
and lesional examples, for each patient 2000 random lesional and 
non-lesional vertices were sampled per epoch. If a patient had 
less than 2000 lesional vertices, existing lesional vertices were ran-
domly drawn multiple times. A focal loss32 was used to concentrate 
network training on difficult examples. After training, the network 
predictions were thresholded using an optimal threshold deter-
mined based on the Dice (F1) score on the train cohort. For the 
full list of optimized parameters see Supplementary Table 1.

The following experiments were conducted to evaluate the im-
pact of smoothing kernel size and feature normalization on classi-
fier performance: (i) morphological and intensity features were 
smoothed with Gaussian kernels ranging from 3 to 25 mm and 
models were retrained using these smoothed features; and (ii) three 
models were retrained using (a) ComBat, (b) ComBat and normal-
ized and (c) ComBat, normalized and asymmetry features. For these 
experiments, analyses were restricted to the train cohort. On each 
of 10 folds, a classifier was trained 10 times with random initializa-
tions and an ensemble of the 10 models was evaluated on the fold’s 
validation cohort. Results were aggregated across the 10 folds.

For the final training and testing of the model after data and hy-
perparameter optimization, a classifier was trained five times with 
different random initializations on each of 10 training folds. The re-
sulting 50 models were combined into one final ensemble mod-
el33,34 by averaging the individual models’ predictions. For every 
input, the final model will therefore run each of the 50 individual 
models and output the average lesional probability predicted by 
these models to increase predictive performance and stability. 
This final model was evaluated on the test cohort. To calculate in-
dividual performance statistics for subjects in the train cohort, a 

second ensemble network was trained in a similar manner on the 
test cohort and evaluated on the train cohort.

Evaluation metrics

Per-vertex lesion predictions for each individual were grouped into 
spatially connected clusters on the surface mesh. Clusters smaller 
than 100 vertices (approximately 0.5 cm2) were filtered out as these 
are disproportionately false positives (Supplementary Fig. 4). The 
following outcome measures were calculated: (i) sensitivity, de-
fined as the proportion of patients where a predicted lesion cluster 
overlapped the manual lesion mask; (ii) sensitivity+, defined as the 
proportion of patients where a predicted lesion cluster overlapped 
the manual lesion mask or the border zone; (iii) specificity, defined 
as the proportion of controls with zero clusters; (iv) average number 
of clusters per patient; and (v) average number of clusters per 
control.

Network performance evaluation

Three complementary methods to understand and interrogate 
classifier performance and behaviour were used.

To determine how demographic and clinical factors influenced 
whether lesions were successfully detected by the classifier, two lo-
gistic regression models were used. The first included presurgically 
available variables: sex, scanner field strength, lesion hemisphere, 
FLAIR availability. The second included post-surgical variables 
(histopathological diagnosis and seizure freedom) and was applied 
on the cohort of patients who had undergone surgery. Statistical 
significance was determined through repeating regression analysis 
on randomly permuted cohorts (1000 permutations). Correction for 
multiple comparisons used the Benjamini–Hochberg procedure.35

To understand classifier predictions, MRI features from pre-
dicted clusters were transformed into the UMAP embedded space 
described above.

To understand which specific features drove network predic-
tions, integrated gradients saliency was computed.36 This method 
computes which features are important to the network by looking 
at the integral (Riemann approximation) of the gradients computed 
from a baseline input (0 for each feature) to the actual feature va-
lues for each vertex.

Data availability

All data analysis was performed in Python. All protocols and code 
are available to download from https://www.protocols.io/ 
researchers/meld-project and www.github.com/MELDProject/ 
meld_classifier. Requests for access to the MELD dataset can be 
made through the project website https://meldproject.github.io//.

Results
Participant demographics

After excluding patients with missing lesion labels (n = 37) and out-
liers (n = 14), a total of 571 FCD patients were included (Table 1). 
Each epilepsy surgery centre contributed 6–87 patients. Four hun-
dred and nineteen patients underwent surgical intervention (73%) 
and histopathological diagnosis was available in 384 patients 
(92% of operated patients). Post-surgical outcome data were avail-
able in 361 patients (86% of operated patients); 68% were 
seizure free (Engel class 1) at last follow-up (median follow up = 2 
years).
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Interrater agreement in lesion masking

A set of three expert-defined lesion masks were created for 10 ran-
domly selected subjects from one site (Supplementary Fig. 5). The 
mean fraction mask overlap between rater–rater pairs was 42%, in-
dicating that lesion annotations are likely to be heterogeneous. 
However, adding a border zone of 20 and 40 mm to the first rater’s 
mask led to the overlap increasing to 82% and 94%, respectively. In a 
binary test of whether masks overlapped, with a border zone of 
20 mm, there was at least one vertex overlap between all pairs of 
masks.

Focal cortical dysplasia lesion characterization

UMAP embedding of surface-based features from manual lesion 
masks and equivalent healthy cortex in the full cohort is shown 
in Fig. 2A. Compared to healthy control cortex, many lesions exhib-
ited a distinct set of MRI features. There was heterogeneity in the 
set of abnormal features, with three distinct groups emerging 
(Fig. 2B). Group 1 was predominantly composed of FCD type IIA, 
IIB and unoperated lesions. These lesions were generally located 
at the bottom of a sulcus and characterized by increased intrinsic 
curvature, increased cortical thickness, decreased grey–white mat-
ter contrast and increased FLAIR in the white matter. Group 2 le-
sions were characterised by increased intrinsic curvature, 
decreased grey–white matter contrast and decreased intracortical 
FLAIR. Group 3 lesions, in which the lesional features overlapped 
with healthy cortex, were more heterogeneous and had less ex-
treme feature values.

Classifier performance

Impact of feature preprocessing on classifier performance

Performance of the classifier on the test cohort, full cohort and two 
independent sites are listed in Table 2. For the 278 patients in the 
train cohort, we assessed the impact of feature normalization pro-
cedures and smoothing kernels on classifier performance to estab-
lish the optimal input data for the classifier. There is an 
improvement in sensitivity+ (from 54% to 65%), sensitivity (from 
44% to 59%) and in specificity (from 17% to 44%) following the three- 
stage normalization of the data (Supplementary Table 2). As 
Gaussian smoothing kernel size increased in size (Supplementary 
Fig. 6), classifier sensitivity decreased. However, the number of de-
tected clusters in patients and controls also decreased 
(Supplementary Fig. 6). Based on these experiments we decided 
that using a 5 mm Gaussian kernel for sulcal depth and mean 
curvature, 10 mm for cortical thickness, grey–white contrast and 
FLAIR intensities at all cortical and subcortical depths and 20 mm 
for intrinsic curvature represents an acceptable trade-off between 
falling sensitivity and rising specificity.

Detection in the test cohort

For the 260 patients in the test cohort, the classifier predicted a 
median of 2 (interquartile range: 1–3) clusters (Table 2). These 
clusters overlapped with the manual lesion mask in 154 patients 
(sensitivity = 59%) and overlapped with the extended lesion mask 
(including border zones) in 174 patients (sensitivity+ = 67%). For 
the 193 controls in the test cohort, the classifier predicted a median 
of 0 (interquartile range: 0–1) clusters. No cluster was predicted in 
105/193 controls (54% specificity). Examples of individual predic-
tions for detected and undetected lesions are presented in Fig. 3.T
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Detection in the full cohort

In the full cohort (538 patients, 373 controls), i.e. including predic-
tions from training the network on the test dataset and testing on 
the train dataset, results were similar to those on the test cohort 
only. Sensitivity was 58%, sensitivity+ was 65% and specificity 
was 52% (Table 2). The classifier predicted a median of two clusters 
in patients and zero clusters in controls. Out of the 178 patients who 
were ‘ever reported MRI-negative’, clusters overlapped with the ex-
tended lesion mask (including border zones) in 112 patients (sensi-
tivity+ = 62.9%, Table 3). On a restricted cohort of patients with T1 

and FLAIR data, who had histopathologically confirmed FCD type 
IIB and were seizure-free, sensitivity was 85% (Table 3). Classifier 
performance according to histopathology is presented in Table 3. 

One hundred and thirty-five of 364 histopathologically confirmed 
FCDs were ‘ever reported MRI-negative’, indicating a ‘human false 
negative’ rate of 37%. The classifier was able to detect 69% of these 
challenging cases.

Detection on independent test sites

When testing the classifier on the two independent sites (Table 
2), sensitivity was 88% for site 1 (sensitivity+ 94%) and 56% for 
site 2 (sensitivity+ 62%). Specificity for site 1 was 17%, lower 
than expected compared to the full cohort. Performance variabil-
ity is likely due to small sample sizes, which lead to large uncer-
tainty in estimations of predictive performance.37 Nevertheless, 
these data suggest that, after data harmonization, the algorithm 

Table 2 Classifier performance

Sensitivity+ (percentage 
of patients detected)

Sensitivity (percentage 
of patients detected)

Number of clusters in 
patients [median 

(IQR)]

Specificity (percentage of 
controls with zero 

clusters)

Number of clusters in 
controls [median 

(IQR)]

Test cohort 67% (174/260) 59% (154/260) 2 (1.0–3.0) 54% (105/193) 0 (0.0–1.0)
Full cohort 65% (350/538) 58% (314/538) 2 (1.0–3.0) 52% (194/373) 0 (0.0–1.0)
Independent site 1 94% (16/17) 88% (15/17) 2 (2.0–4.0) 17% (3/18) 1 (1.0–2.0)
Independent site 2 62% (10/16) 56% (9/16) 2 (2.0–3.25) NA NA

Performance of the classifier on the test cohort, full cohort and the two independent sites.

Figure 2 Non-linear 2D UMAP embedding of lesional T1 features. (A) Manual lesion masks of patients (black) compared to equivalent cortex on healthy 
controls (grey). Lesions differ from control cortex and exhibit different patterns of structural abnormality. (B) Data-driven clustering of UMAP embed-
ding reveals three distinct groups of lesions. Colour-associated pie charts describe the proportion of each histopathological subtype present in each 
group. (C) Patient lesions coloured by intra- and intersubject normalized features. Group 1 is predominantly FCD IIA and IIB, along with unoperated 
patients. It is characterized by increased intrinsic curvature, increased cortical thickness, decreased grey–white matter contrast, bottom of sulcus 
and increased FLAIR in the white matter. Group 2 is characterized by increased intrinsic curvature, decreased grey–white matter contrast and de-
creased intracortical FLAIR. It contains proportionally more FCD I and III lesions. Group 3 largely overlaps healthy control clusters. Lesional features 
in this cluster are more heterogeneous and less extreme.
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can generalize to detect FCDs on data from new, previously un-
seen sites.

Evaluating network performance across the full 
cohort

Demographic and clinical factors affecting network 
sensitivity

The first logistic regression model (Supplementary Fig. 7A), based 
on presurgical factors, showed that lesions were more likely to be 
detected in patients who were operated (β= 0.43, P = 0.04) and those 
that had FLAIR data available if they were scanned on a 1.5 T MRI 
scanner (β= 1.10, P = 0.01). Lesions were less likely to be detected 
in patients scanned on 1.5 T scanners (β= −0.60, P = 0.02) and 
when located in the left hemisphere (β= −0.41, P = 0.02). However, 
these did not survive correction for the number of factors in the lo-
gistic regression model. There was no association with age, i.e. 
there was no significant difference in detection rates between 
paediatric and adult patients. Among post-surgical factors 
(Supplementary Fig. 7B), detection rates differed across histopatho-
logical subtypes, with 76.8% of FCD type IIB lesions detected, 64.6% 
of FCD type IIA, 72.7% in FCD type III and only 50.0% in FCD type 
I. FCD type I was significantly less likely (β= −0.53, P = 0.01) and 
FCD 2B more likely (β= 0.57, P = 0.02) to be detected than other 
histologies. Detection rates were non-significantly positively asso-
ciated with post-surgical seizure freedom (β= 0.51, P = 0.04). 
Patients who are not seizure-free may have more subtle lesions, 
which may contribute to both incomplete resections and the 

classifier not being able to detect them. Alternatively, the lesions 
in patients who are not seizure-free may have been incorrectly 
masked.

MRI features of predicted lesion clusters

The MRI features within the manually defined lesion masks clus-
tered into three distinct groups (Fig. 4A). Groups 1 and 2 were asso-
ciated with high detection rates (96.0% and 82.8%, respectively), 
whereas group 3, which largely overlapped healthy cortex, had 
much lower rates of detection (56.3%). A lower percentage of oper-
ated patients in group 3 were seizure-free (59.0% compared to 78% 
in groups 1 and 2). Predicted lesion clusters superimposed on this 
UMAP embedding entirely overlapped groups 1 and 2 (Fig. 4B) and 
no predicted lesion clusters were similar to group 3, which was in-
distinguishable from healthy cortex. For those manual lesion 
masks in group 3 that were correctly detected, the predicted lesion 
clusters exhibited features closer to those in groups 1 or 2 (Fig. 4C). 
This indicates that while the manual lesion masks for lesions in 
group 3 did not capture areas of cortical surface that exhibited char-
acteristically abnormal MRI features, the neural network learned to 
identify an overlapping set of vertices that did exhibit abnormal 
feature characteristics.

Characterizing features salient to the network in 
segmenting focal cortical dysplasia lesions

In all patients, mean feature values and network saliencies were 
calculated for each feature within the predicted cluster. This en-
ables the creation of a patient-specific report containing the pre-
dicted lesion location, which features are abnormal within that 
predicted cluster and how much weight those features had in driv-
ing the classifier prediction, which we illustrate in Fig. 5 with two 
examples. Patient 1’s predicted lesion has decreased FLAIR in the 
grey matter, blurring at the grey–white matter boundary on T1 

and moderately increased intrinsic curvature (Fig. 5B). From these 
features, the computed saliency scores indicate that the neural net-
work considers the decreased grey matter FLAIR and grey–white 
contrast most important for its prediction of lesional vertices. 
Patient 2 is an example of an FCD type IIB lesion without FLAIR fea-
tures (Fig. 5). The predicted lesion has high intrinsic curvature, high 
cortical thickness and low grey–white matter boundary contrast. 
These are also the three features with positive saliency scores, i.e. 
feature values driving the classifier’s ‘lesion’ prediction.

Discussion
We present an interpretable, fully automated pipeline for surface- 
based detection of FCDs, which has been validated on a large with-
held test cohort, incorporating data from 20 sites, and two inde-
pendent sites. The sensitivity to detect lesions in the test cohort 
was 67%, with sensitivities of 94% and 62% in the independent sites, 
85% in subcohort with T1 and FLAIR data who were seizure-free 
with confirmed FCD IIB and 69% within patients with histologically 
confirmed FCD but had at some point been reported ‘MRI-negative’. 
Logistic regression analyses indicated that FCD type IIB lesions had 
higher detection rates, whereas FCD type I lesions had lower detec-
tion rates. Multidimensional analysis of lesional cortex revealed 
groups of lesions characterized by different MRI features, histolo-
gies, post-surgical outcomes and detection rates. Individual patient 
reports provide a map of the predicted lesion locations alongside 

Figure 3 Neural network predictions. Classifier predictions for six pa-
tients are displayed. Patients 1–4 are examples where the classifier has 
correctly identified the lesion. In Patient 4 there is an additional cluster 
in the left insula. Patient 5 is an example where the classifier detects an 
area in the border zone. Patient 6 is an example of where the neural 
network has not identified the lesion. An additional cluster is detected 
in the right post-central gyrus. Left column = lateral view, middle column 
= medial view, right column = enlarged view around lesion mask. Black 
= lesion mask; red = border zone; burgundy = classifier-predicted 
clusters.
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the quantified lesional features and how salient they were consid-
ered by the classifier.

This study extends previous work on FCD detection in the lar-
gest MRI cohort of FCDs to date. Previous surface-based work has 
identified features that differentiate lesional cortex and developed 
machine-learning frameworks for the incorporation of these fea-
tures.14,15,17,19,38 However, being limited by small numbers of pa-
tients and data acquired from only one or two MRI scanners can 
lead to large error bars on estimates of sensitivity and specificity37

and limited generalizability due to lack of diversity in training data. 

Progress is also being made on automated volumetric MRI meth-
ods.11–13 Both Gill et al.12 and David et al.11 report high sensitivities 
of 83% and 81%, respectively, on their independent test data. 
Within the MELD dataset, on a comparable ‘gold-standard’ subco-
hort of seizure-free patients with FCD type IIB who had T1 and 
FLAIR MRI data, the algorithm had a competitive sensitivity of 
85%. In addition, this work differs from these studies in the follow-
ing key aspects. First, this study has a more representative, hetero-
geneous inclusion criteria. We aimed to develop an algorithm 
capable of detecting all FCD histopathological subtypes including 
some of the more challenging FCD type I cases. Second, our classi-
fier predicts on average two clusters per patient in our independent 
test sites, compared to on average six clusters per patient reported 
by Gill et al.12 Third, in comparison to David et al.,11 we make the 
code and trained model openly available, therefore fostering 
collaboration and clinical uptake of the work. In addition, our train-
ing dataset included lesions masked by different radiologists/ 
researchers at different institutes. This heterogeneity in lesion 
masking reduced overfitting of the network to one individual 
neuroradiologist’s opinion. This large multisite, multiscanner co-
hort, including paediatric and adult data and all FCD histopatho-
logical subtypes, provided reliable and reproducible estimates of 
classifier performance that generalized well to two independent 
cohorts.

Our data-driven clustering of FCD lesions revealed three distinct 
groups of lesions. Group 1 had ‘classical’ radiological features of 
FCD type II; increased cortical thickness, blurring of the grey–white 
matter boundary, abnormal folding, FLAIR hyperintensity in the 
white matter and were often located at the bottom of sulci. They 
were associated with high detection rates by the neural network 
(96%) and had good seizure freedom rates (78%). Group 2 had more 
subtle features: blurring of the grey–white matter boundary, FLAIR 
hypointensity in the grey matter and some folding changes. 
However, our classifier was still able to detect 82.8% of these lesions 
and the patients in this group who had been operated on still had 
good seizure freedom rates (78%). In contrast, lesions in group 3 
were difficult to differentiate from healthy cortex, they did not dem-
onstrate characteristic FCD ‘fingerprints’ and only 59% of these pa-
tients were seizure-free after surgery. For group 3 lesions that were 
detected by the classifier (56.3%), the classifier identified a subset of 
vertices that exhibited MRI features more consistent with groups 1 
and 2 (Fig. 4C). This suggests that these lesions are more subtle or dif-
ficult to delineate or structurally heterogeneous39 on MRI.

Table 3 Classifier performance grouped according to 
demographic factors

% Detected Patients (n)

Age group
Adult 62.4 282
Paediatric 68.0 256

Ever-reported MRI-negative
Visible 66.1 360
MRI negative 62.9 178

Seizure freedom
Seizure-free 69.9 229
Not 
seizure-free

58.6 111

Scanner: 
sequence
1.5 T: T1 only 46.0 63

1.5 T: T1 and 
FLAIR

82.4 34

3 T: T1 only 63.9 233
3 T: T1 and 

FLAIR
69.2 208

Histology
FCD I 50.0 44
FCD IIA 64.6 113
FCD IIB 76.8 185
FCD III 72.7 22
Not available 55.7 174

Restricted cohort
T1 and FLAIR, 
FCD IIB, 
seizure free

85.0 40

Detection rate per age group, MRI status, seizure freedom, scanner strengths, MRI 

modality, and histopathology.

Figure 4 UMAP embedding of classifier predictions. (A) Data-driven clustering of UMAP embedding of lesional T1 features reveals three distinct groups 
of lesions. (B) True positive and false positive clusters derived from the neural network superimposed on A. Feature values in true positive and false 
positive clusters are similar to either group 1 or 2. Clusters are not similar to healthy cortex or group 3. (C) Predicted clusters overlapping lesion masks 
from group 3 lesions are superimposed. The feature values in the predicted clusters are similar to group 1 or 2, i.e. the network has identified vertices 
exhibiting characteristically abnormal MRI features in FCD.
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One challenge in incorporating machine-learning algorithms in 
clinical practice is their perception as being ‘black boxes’, with lim-
ited feedback on what data have informed a prediction. Saliency 
aims to interrogate which specific input features drive neural net-
work predictions. Our individual patient reports provide informa-
tion on which features are abnormal within the predicted 
clusters, accompanied by their impact on classifier prediction 
(Fig. 5). A neuroradiologist or multidisciplinary team could use 
this tool to confirm their hypotheses in ‘MRI-visible’ lesions, to re- 
review the scans of ‘MRI-negative’ patients or motivate more de-
tailed investigations, such as 7 T MRI, PET or stereo EEG.19 They 
will obtain putative lesion locations identified by the classifier, 
equipped with an understanding of what features were considered 
suspicious and how they were abnormal, thus opening the ‘black 
box’. In addition, by ‘flagging’ suspicious areas, this artificial intel-
ligence radiological assistant may reduce the time taken for a neu-
roradiologist to review MRI scans or increase confidence in the 
radiological diagnosis of patients with suspected FCDs.

Limitations and future work

This study used multisite real-world data, which, while facilitating 
algorithm generalizability to new data and the utility of the devel-
oped tool, are heterogeneous. This heterogeneity arises from inter-
site differences in MRI scanners, sequences, field strengths as well 
as from variable post-processing operating systems and software 
versions and may have affected morphological and intensity fea-
ture values. These were partially mitigated through harmonization 
procedures but may still have impacted on algorithm sensitivity 

and specificity. Participating MELD sites manually masked FCD le-
sions and only surface-based data were shared with the project co-
ordinators. While preserving a greater level of anonymity and 
facilitating data sharing, this preprocessing prevented comparison 
of predicted lesions with patients’ volumetric MRIs. As with other 
FCD detection algorithms, false positives were common in both pa-
tients and controls. This neural network classifies individual cor-
tical vertices; future work using incorporating neighbourhood 
information and incorporation with volumetric approaches may 
help to reduce the false positives. Furthermore, volumetric ap-
proaches would extend the detection of focal epilepsy pathology 
beyond the neocortex, in areas such as the hippocampus. This 
would enable the detection of hippocampal sclerosis in FCD type 
IIIa. Additionally, integrating electrophysiology might help to 
identify which structural abnormalities are epileptogenic. One 
challenge in all FCD detection work is deciding which patients 
are considered ‘MRI-negative’. The measure ‘ever reported 
MRI-negative’ will vary based on the level of neuroradiological ex-
pertise at the individual site as well as the MRI scanner and se-
quences acquired. However, it should provide a measure of the 
more challenging lesions to detect. Lastly, drug-resistant focal epi-
lepsy is caused by multiple pathologies of which FCDs are a signifi-
cant subset. Invaluable future studies would extend the inclusion 
criteria to a wider spectrum of focal epilepsies.

Conclusions
We demonstrate how through open-science practices and decen-
tralized MRI post-processing, one can create a dataset; and train 

Figure 5 Individual patient reports. Example classifier predictions with saliency scores for ‘Patient 1’ (an example with FLAIR data) and ‘Patient 2’ (with-
out FLAIR data). (A) Classifier predictions (dark red) and manual lesion mask (black line) visualized on brain surfaces (only lesional hemisphere is 
shown). Classifier predictions (dark red) visualized on T1 volume. (B) Z-scored mean feature values within predicted lesions coloured with 
Integrated Gradients saliency scores. Positive saliency scores indicate feature values driving the classifier’s ‘lesion’ prediction. Negative scores indicate 
feature values that are inconsistent with the prediction. (C) Lesional cortex highlighted on the patients’ MRI scans exhibit salient features automatic-
ally identified by the classifier.
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and validate a machine-learning framework to assist in the diagno-
sis of a rare, clinically challenging pathology. The MELD FCD classi-
fier is a fully automated, open-access surface-based tool that can be 
run on any patient with a suspicion of having an FCD who is over 
the age of 3 years and has a 1.5 or 3 T T1 scan, with or without 
FLAIR data. The classifier is available on GitHub as a user-friendly 
Python package and can output a patient specific report detailing 
suspected structural abnormalities, which features are abnormal 
within these clusters and their impact on classifier prediction.
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