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Abstract
We investigate the formation of Turing patterns on regular polygonal domains, as
the number of edges grow, leading to the limiting case of the circle. Using linear
and weakly nonlinear analysis, and evidence by simulations, we demonstrate how the
domain shape can fundamentally change the expected bifurcation structure. Specif-
ically, on the square domain we are able to derive pitchfork bifurcations for stripe
and spot solutions, as well as show that both branches cannot bifurcate to produce
stable patterns. This compares with the case of the equilateral triangle domain that
causes the Turing bifurcation to be generically transcritical and, in some cases, none
of the bifurcating branches are stable. Moreover, we find a monotonically increasing,
but nonlinear relationship, between the minimal bifurcation area and the number of
edges. Thus, patterns can occur on triangles with much smaller areas than circles.
Overall, this work raises questions for researchers who are simulating applications on
domains with simple shapes. Specifically, even small changes to domain geometry
can have large impacts on the produced patterns; thus, domain perturbations should
be considered in any sensitivity analyses.
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1 Introduction

The formation of spatio-temporal complexity from simple rules is a research field with
a long history (Maini et al. 1997, 2012; Krause et al. 2021; Woolley et al. 2017a).
One of the most successful theories stems from one of Alan Turing’s last works ‘On
the chemical basis of morphogenesis’ published over 70 years ago (Turing 1952).
The basic premise is to use the random motion of modelled agents as a destabilising
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mechanism to generate patterns in the agent’s population thatwould otherwise produce
stable spatially homogeneous concentrations. In short, Turing patterns appear due to
a diffusion-driven instability.

The resulting theory has been widely extended to include new phenomena, such
as stochastic interactions, spatio-temporal heterogeneity, and domain growth (Schu-
macher et al. 2013; Cho et al. 2011; Maini et al. 2012; Woolley et al. 2017b; Aragón
et al. 2012; Krause et al. 2020a; Crampin et al. 1999; Woolley et al. 2012). Equally,
the theory has been applied successfully to many situations in biology and chemistry
(Economou et al. 2012; Kondo and Asai 1996; Sheth et al. 2012; De Kepper et al.
1991; Ouyang and Swinney 1991; Fuseya et al. 2021; Tan et al. 2018; Rudovics et al.
1996; Ho et al. 2019; Hans et al. 2021) providing predictive power as to the outcome
of new experiments and an understanding of the limitations of experimental systems.

With any theory with such a legacy, we must often revisit its roots to ensure that no
generalisations have been missed, or to investigate whether new generalisations are
possible due to work in other fields (Woolley et al. 2011a, b; Woolley 2011; Woolley
et al. 2011c, 2021; Diego et al. 2018; Landge et al. 2020; Vittadello et al. 2021; Scholes
et al. 2019). In this vein, we are going to consider a Turing unstable reaction–diffusion
system on domains that are regular polygons and circles. The reason is that there has
been a lot recentwork in understandingwhich regular geometries have instabilities that
are analytically tractable, allowing us to understand links between domain geometry
and patterns better than ever before (McCartin 2011).

Specifically, it has long been known that the square has a tractable Laplacian struc-
ture as any solution can bewritten as a Fourier serieswritten in terms of a trigonometric
basis (Tolstov 2012). However, it has been recently proven that the square, triangle
and derived structures are the only regular polygonal shapes that have a complete
set of eigenfunctions of trigonometric form (McCartin 2011; Práger 1998; Fokas and
Kalimeris 2014;McCartin 2003, 2002;Pockels 1891;Lamé1833;Pinsky1985, 1980).
Although regular polygons will be our main focus, we will also mention non-regular
polygonal half spaces such as the isosceles right triangle (a square halved along its
diagonal) and the hemiequilateral triangle (a halved equilateral triangle, with interior
angles (π/2, π/3, π/6)), which also have tractable solutions in terms of trigonometric
functions.

Moreover, even if we cannot analytically investigate regular polygons with more
than four edges, we are still able to simulate them and extract their bifurcation struc-
ture. This lead us to the limiting shape of the circle, and although the solution to the
Laplacian eigenvalue problem on a circle does not have a trigonometric form, we can
still make analytic headway by using Bessel functions.

But what of irregular shapes? If we were to consider rectangles and ellipses, which
have two degrees of freedom defining their size. We could then easily consider an
arbitrarily thin shape (effectively one-dimensional), which would support a Turing
bifurcation, but have negligible area. Since we will be using bifurcation area as a
means of comparing the polygons, we want to be able to remove such arbitrariness
from discussion. Thus, we only consider regular polygons, circles and the half spaces
mentioned previously.

Our goal is to investigate how the number of edges of a regular polygon influences
the Turing bifurcation.Namely, even if the parameters of the reaction–diffusion system
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are chosen such that the diffusion is able to drive a homogeneous steady state to
instability, we still need the domain to be big enough to allow the instability to occur
(Murray 2003). Thus, through weakly nonlinear analysis and simulation, we aim to
track the minimum bifurcation area of polygons with increasing number of edges.

The reason for this investigation is because, as we will see, the relationship between
number of edges and bifurcation area is certainly not obvious.Moreover, the number of
edges can fully change the expected bifurcation structures that appear. Thus, although
much work is done on square and rectangular domains, this work highlights a need
for us to question our intuition of how the domain influences the patterns we generate.
Further, it emphasises the requirement for researchers applying Turing patterns to
experimental pattern formation systems to not only fully justify their domain of choice
but also perturb it in their sensitivity analyses because as this and previous work has
shown, the boundaries conditions and shape influence pattern formation more that we
perhaps might think (Woolley et al. 2014a; Sheth et al. 2012).

We begin in Sect. 2, where we carefully define how we generate the polygonal
domains on which we are going to simulate our results and how these relate to the
domains on which we are doing derive analytically results. This leads to Sect. 3 where
we revisit the standard partial differential equation theory behind Turing patterns. In
Sects. 4–6, we algebraically investigate the linear and weakly nonlinear dynamics of
Turing systems on equilateral triangular domains, square domains and circles. These
theoretical results are evidenced in Sect. 7 leading to observations about how the bifur-
cation diagramdepends on the number of edges of a regular polygonal domain. Finally,
in Sect. 8, we provide an overarching view of our results concerning Turing structures
on polygonal domains with increasing number of edges; we draw out commonalities,
but more importantly highlight features that are different across the domains, which
lead to future questions regarding the exact nature of the relationship betweenminimal
bifurcation area and number of edges.

2 Geometry

We are going to be primarily considering flat, two-dimensional, regular polygons. As
a means of creation for simulation purposes and for ease of comparison, we are going
to define the vertices of the polygons using the complex roots of unity. Specifically,
the equation zn = 1 over the complex field (where I is defined to be the complex
unit) has n distinct roots of the form exp(2π j I/n), j = 0, 1, . . . , n−1. Using Euler’s
formula

z = exp(2π j I/n) = cos

(
2π j

n

)
+ I sin

(
2π j

n

)
(1)

, we can identify the real and complex components of the solutionswith the coordinates
of the Cartesian plane, (x, y) = (cos (2π j/n) , sin (2π j/n)). The points are equally
spaced around the unit circle, |z| = |x + I y| = 1, and, thus, provide a simple means
of defining the vertices of the regular n-gon, n ≥ 3 (see Fig. 1a). More generally, we
can scale the polygons to be in circles of radius R by multiplying z by R.
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Fig. 1 a Examples of regular polygons, n = 3, . . . , 7. The red circle illustrates the circle of unit radius. The
roots of units of the black points highlighted on the circle and the polygon are then formed by connecting
these points with black lines. b A schematic of one side of a general regular polygon with n sides. Using
this figure and standard geometry, we are able to relate the radius size, R, the side length, S and the area,
A of the polygon (Color figure online)

Critically, we are going to be considering R to be the bifurcation parameter of
interest. Because, as is well known (Murray 2003) and will be highlighted in Sect. 4.2,
it is not enough to ensure that the diffusion and kinetics are interacting in the correct
way to ensure that a patterning instability can occur, wemust also ensure that the space,
on which the kinetics are acting, is large enough to support the intrinsic wavelength
of the pattern. Thus, we will be looking for the minimum value of R (denoted Rc)
at which the Turing instability can occur and a homogeneous steady state is driven
unstable.

Consider now a general regular n-gon that has a circumcircle of radius R. A
schematic of one side of the polygon is highlighted in Fig. 1b. The side length, S,
and area A of the polygon are related to the radius through

S =2R sin(π/n), (2)

A =nR2 sin(2π/n)/2. (3)

Note that as n → ∞, then S → 0 and A → πR2, which is to be expected because
the polygon will begin to approximate a circle of radius R.

It should be noted that although using this definition provides a useful way of
parametrising the domain for simulation purposes. Algebraically, it is easier to deal
with rotated shapes. Namely, in future sections we will be considering Turing bifur-
cation analysis on the equilateral triangle, square and circle domains, as these shapes
have tractable bifurcation structures. However, it is easier to derive these analytical
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bifurcation results if one of the edges of the triangle and/or square is parallel to the
horizontal axis. Since the two-dimensional Laplacian is invariant under rotation (as
well as translation), such a rotation of the solution domain is immaterial.

3 Framework

Consider the following set of reaction–diffusion partial differential equations (PDEs)

∂u

∂t
= Du∇2u + f (u, v), (4)

∂v

∂t
= Dv∇2v + g(u, v), (5)

which we are going to consider on the regular polygons as defined in Sect. 2. The
parameters Du and Dv are positive diffusion constants, u = (u, v) are the morphogen
populations, and f and g describe the nonlinear interaction kinetics of u and v. To
close the system, we need to provide boundary and initial conditions. These are now
discussed at length.

We are going to be assuming that the PDE system presents a Turing instability.
Thus, interaction equations f and g have at least one common root, i.e. (us, vs), such
that f (us, vs) = g(us, vs) = 0, that is stable in the absence of spatial dynamics,
but can be driven unstable by the inclusion of diffusion. As such, we use the assumed
steady-state existence to define the initial conditions for any domain. Namely, for each
point in the spatial discretisation of a domainwe sample a uniform random distribution
with mean 0 and range [−0.1, 0.1], add it to the steady state and take the absolute
value (to ensure that the initial condition is nonnegative).

As for the boundary conditions, we are going to use zero-flux boundary conditions
on all edges of the regular polygons. Few papers justify this choice and it is rarely
questioned, as they are seen as fairly unconstrained boundary conditions (Woolley
2017; Ho et al. 2019; Adamer et al. 2020; Woolley et al. 2012; Winter et al. 2004;
Schumacher et al. 2013;Weber et al. 2019). However, for our interests these conditions
are critical as we want the Turing bifurcation on the square to be a supercritical
pitchfork, which is the standard set up in most papers. Thus, any perturbation to the
standard bifurcation structure will stem from the domain shape only.

Although boundary conditions do not influence the identification of the bifurcation
point, Rc, through linear analysis they can fundamentally change the nonlinear bifur-
cation structure (Woolley 2022; Dillon et al. 1994). Specifically, on a square domain
the Turing bifurcation is generically a pitchfork bifurcation under zero-flux boundary
conditions (zero-Neumann boundary conditions) (Leppänen 2004; Benson et al. 1998;
Crampin 2000; Dutt 2010, 2012; Grindrod 1996; Nicolis 1995; Auchmuty andNicolis
1975; Bozzini et al. 2015; Breña-Medina and Champneys 2014; Dalwadi and Pearce
2022), but transcritical under extinction (zero-Dirichlet) boundary conditions, result-
ing in the possibility of patterns existing in the parameter region R < Rc (Woolley
2022).
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Further,we note that simply choosing zero-flux boundary conditions is not sufficient
to ensure that subcritical patterns cannot exist in R < Rc.Wemust also choose kinetics
that ensure the pitchfork bifurcation is supercritical, rather subcritical. Such kinetics
are not rare and can easily be constructed based on the requirements of nonlinear
analysis (Woolley et al. 2021; Bozzini et al. 2015). Critically, our derivations are
independent of assumptions on the kinetics and the assumption of a supercritical
bifurcation simply assures that the analytically derivable value of Rc is a minimum
(at least on a square domain).

Although the theory is independent of a given set of kinetics, we will be using the
Schnakenberg system for illustrative purposes (Gierer andMeinhardt 1972; Schnaken-
berg 1979). This not to say that the kinetics are particularly relevant to a given
application, just that they are a well-studied set of Turing unstable reaction kinet-
ics that provide the required supercritical pitchfork bifurcation on a square domain
(Winter et al. 2004; Woolley et al. 2010; Adamer et al. 2020).

4 Linear analysis

4.1 Spatially homogeneous stability

The first condition of a Turing instability taking place is that there exists a steady state
that is stable in the absence of diffusion. Since this removes the idea of space from the
system, the derivation of the required conditions is the same over all domain shapes.

We consider a spatially independent perturbation around the steady state,

(
u
v

)
=

(
us
vs

)
+

(
εu
εv

)
exp(λt), (6)

where 0 < |εu |, |εv| � 1. Substituting equation (6) into equations (4) and (5) and
linearising the system, we generate the following eigenvalue problem,

λ

(
εu
εv

)
=

(
fu fv
gu gv

) (
εu
εv

)
= J

(
εu
εv

)
, (7)

where J is the Jacobian matrix. The λ that satisfy equation (7) satisfy the auxiliary
equation,

λ2 − λ( fu + gv) + fugv − fvgu = 0. (8)

From the Routh–Hurwitz condition, the roots of equation (8) have negative real part
(and the steady state is, thus, stable) if and only if

Tr(J) = fu + gv < 0, (9)

Det(J) = fugv − fvgu > 0, (10)

where Tr and Det are the trace and determinant functions acting on J , respectively.
Equations (9) and (10) are the necessary conditions for the spatially homogeneous
state to be stable without diffusion.
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4.2 Spatially heterogeneous stability

Extending our understanding of instability to include spatial perturbations will depend
on converting the Laplacian operator into a linear functional. Namely, wewant to solve

∇2h = −k2h (11)

with appropriate boundary conditions on whatever domain shape we are interested in.
Solving equation (11) numerically is fairly simple formodern computers (Shortley and
Weller 1938) and has applications in understanding vibrational modes of a free elastic
membrane, acoustic ducts with hard walls and in the propagation of electromagnetic
waves (Jones 1986; Sabatini 2018).

There has also been much work done on analytically understanding the eigenvalues
of the Laplace operator (McCartin 2011; Práger 1998; Fokas and Kalimeris 2014;
McCartin 2003, 2002; Pockels 1891; Lamé 1833; Pinsky 1985, 1980) culminating
in a characterisation of all polygonal shapes that have trigonometric eigenfunctions.
Namely, the only polygonal domains that possess a complete set of trigonometric
eigenfunctions that solve the Laplacian with either Dirichlet or Neumann boundary
conditions are the rectangle, the square, the isosceles right triangle, the equilateral
triangle and the hemiequilateral triangle (a halved equilateral triangle, with interior
angles (π/2, π/3, π/6)) (McCartin 2011).Alongside these polygonal domainswewill
also be investigating circular domains, which will require us to make use of Bessel
function, which can be generalised to Mathieu functions should we want to consider
elliptical domains (Gutiérrez-Vega et al. 2003; Khosravian-Arab et al. 2017).

In the next few subsections, we will be going over the details for each domain,
namely what the Laplacian form is, what the general eigenexpansion solution is and
how this defines k. However, presently we can continue under the assumption that in
each case we can solve the Laplacian equation in the form of equation (11). We use a
perturbation of the form

u =
(
u
v

)
=

(
us
vs

)
+

(
εu
εv

)
exp(λt)h(x) (12)

Linearising the equations and substituting in equation (11) provide

λ

(
εu
εv

)
= −k2

(
Du 0
0 Dv

) (
εu
εv

)
+

(
fu fv
gu gv

) (
εu
εv

)
=

(
−k2D + J

) (
εu
εv

)
, (13)

where D is an appropriately defined matrix of diffusion coefficients.
The accompanying auxiliary equation of the eigenvalue problem in equation (13)

is
0 = λ2 − Tr

(
J − k2D

)
λ + Det

(
J − k2D

)
. (14)

Since Tr (J) < 0 is required, we can deduce that Tr
(
J − k2D

)
< 0. Thus, by

applying the Routh–Hurwitz condition, once again, we see that the only way to drive
the system to instability is to ensure that Det

(
J − k2D

)
< 0. Namely,
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(
fu − k2Du

) (
gv − k2Dv

)
− gu fv < 0. (15)

Inequality (15) can be seen as a quartic in k, or a quadratic in k2. Thus, it is possible
to satisfy inequality (15) whenever we can choose k2 that satisfies

k2− < k2 < k2+, (16)

where

k2± = Dugv + Dv fu ± √
(Dugv + Dv fu)2 − 4DuDv( fugv − gu fv)

2DuDv

, (17)

Critically, we note that for k2±, to exist we require

(Dugv + Dv fu) > 2
√
DuDv( fugv − gu fv) > 0,

which is another necessary condition for Turing instabilities to take place. Further,
we note that the values of k± are defined by the reaction and diffusion parameters.
Thus, if these parameters are fixed, then k± is the same in all cases regardless of the
polygonal domain on which the simulation is occurring.

The final necessary condition is to ensure that there exist viable k2 that satisfy
inequality (16). In the cases, where the domain size and k have a tractable relationship,
we note that they are inversely proportional (McCartin 2011). Thus, since we are
considering the domain size to be the bifurcation parameter, then increasing the domain
size is equivalent to reducing k and the Turing bifurcation will happen when the first
nonzero eigenvalue is equal to k+, i.e. k = k+.

Over the next few sections, we investigate the cases in which the values of k have
either a closed-form expression or can be specified as the solution of an algebraic
equation. Critically, we want to compare how these values differ across the domain
geometries, as well as over the possible multiplicity of solutions available.

5 Deriving smallest homogeneous steady-state bifurcation points
over regular two-dimensional domains

In this section, we are going to apply the theory derived in Sect. 4 to Turing systems
on regular polygonal domains. Since we will be varying the number of edges of the
polygonal domains (increasing them to their circular limit), it perhaps makes sense to
start with a triangular domain and increase the number of edges from there. However,
we initially start with a square domain due to the simple form the eigenfunctions and
eigenvalues take, its repeated use in the literature and familiarity the reader may have
for the derivation of the Turing bifurcation on such domains (Murray 2003; Maini and
Woolley 2019; Maini et al. 2016; Woolley et al. 2017b, a; Woolley 2011; Aragón et al.
2012; Maini et al. 2012; Woolley 2022; Krause et al. 2020b; Woolley et al. 2014b;
Krause et al. 2018, 2020a). Having considered the square domain, we then consider
the equilateral triangle and circular domains afterwards.
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Fig. 2 Rotating and translating the polygon formed by the roots of unity provide the domain on which we
will be algebraically deriving the Turing bifurcation point

5.1 Square domain

With respect to the geometry presented in Sect. 2, we are going to consider a square
of side length S in a circumcircle of radius R, centred at the origin. The domain we
are going to analytically work on when compared to the simulation solution domain
is rotated by π/4 radians and then translated be the vector (S/2, S/2)T (see Fig. 2).
Using Pythagoras’ theorem, or equation (2), we can then relate R = S/

√
2.

The reason for this affine transformation is that the Laplacian and zero-flux
boundary conditions have a particularly simple form on the domain [0, S] × [0, S].
Specifically, the Laplacian in the standard Cartesian coordinates is

∇2 = ∂2

∂x2
+ ∂2

∂ y2
(18)

and the zero-flux boundary conditions for u are

∂u

∂x
(0, y) = ∂u

∂x
(S, y) = ∂u

∂ y
(x, 0) = ∂u

∂ y
(x, S) = 0, (19)

with the same boundary conditions for v, mutatis mutandis.
Furthermore, this redefinition of the geometry allows the general solution to have

a particularly simple eigenexpansion solution

(
u
v

)
=

(
us
vs

)
+

∑
m,n

(
cumn

cvmn

)
cos(kmx) cos(kn y), (20)

where k = √
k2m + k2n and km = mπ/S and kn = nπ/S for n,m ∈ N and the

coefficients (cumn, cvmn) are specified in a given application, but kept general here.
Ignoring the homogeneous solution, k0 = 0, the first heterogeneous solution

occurs when k = π/S, which happens when (km, kn) = (k1, k0) = (π/S, 0),
(k0, k1) = (0, π/S). Equating this with equation (17), we get that the first bifurcation
happens when π/S = k+. Thus, the bifurcation length of the square is Sc = π/k+,
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Fig. 3 Illustrating unstable modes and their possible symmetries. a From left to right, we have the first
three possible unstable trigonometric modes: cos(πx/S), cos(π y/S) and (cos(πx/S) + cos(π y/S))/2.
b From left to right, we have the two different fundamental unstable trigonometric modes for when k =
5π/S: cos(5πx/S), cos(3πx/S) cos(4πx/S) and the superposition of the linear solutions (cos(5πx/S) +
cos(5π y/S))/2. The colour bar is consistent across all images and ranges from yellow at 1 to blue at -1
(Color figure online)

or equivalently Rc = π/(
√
2k+). Correspondingly, the minimum area required for a

square to bifurcate is As = S2 = 2R2
c = π2/k2+.

Critically, domains with symmetries will often have multiple solutions. Any solu-
tion with m 	= n can have m and n swapped, providing another solution. This comes
from the symmetry that any solution on the square can be rotated π/2 radians about
the centre of the square and it will still be a solution due to the assumed homogeneity
of the boundary conditions and that the Laplacian is rotationally invariant.

Thus, from the above discussion the fundamental solution on a square can be defined
by the wave modes (π/S, 0) and (0, π/S), which will produce ‘stripe’ patterns, either
horizontal or vertical, and are rotational symmetries of one another. In addition to
these two solutions, there is the third solution which is a superposition of the two
stripe patterns, providing a corner ‘spot’ pattern (see Fig. 3a).

Further, higher-order multiplicities can exist. Namely, values of k that are the same
for different values of km and kn , e.g. (km, kn) = (3π/S, 4π/S) will give the same
k as (km, kn) = (5π/S, 0) or (km, kn) = (0, 5π/S). Moreover, any superposition of
these solutions is also a solution. In Fig. 3b, we illustrate that along with the stripe
solution for k = 5 there are also ‘rhomb’ and ‘square’ lattice spot patterns.
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Enumerating the number of multiplicities requires number theory results (Hardy
and Wright 1979) and is outside the scope of the current work. However, we note
that, at least for the square domain, we can enumerate the multiplicity explicitly by
decomposing (kS/π)2 into its prime factors. The multiplicity of a mode then depends
on the number of prime factors that are of the form 4n + 3 where n ∈ N (see Kuttler
and Sigillito 1984 for details).

This multiplicity of solutions causes the bifurcation diagram to become extremely
complex as we move further from the initial bifurcation point, which is one of the
reasons we are restricting our interests to the minimum bifurcation value, Rc. Equally,
it is one of the reasons why Turing patterns can have defects in their arrangements on
large domains; there are multiple solution modes all interacting, but none of them can
dominate the full solution, thus, we end up with a superposition of modes.

5.2 Equilateral triangular domain

What follows is a manipulation of the excellent work of McCartin (McCartin 2003,
2002, 2004). For expansion on the derivation, please see the collected works in
(McCartin 2011) and further properties can be found in the reviews (Grebenkov and
Nguyen 2013; Kuttler and Sigillito 1984; McCartin 2008).

We, once again, consider a domain rotated from that defined in Sect. 2 as we work
on an equilateral triangle that has a base length that is parallel to the horizontal and of
length S = √

3R. The centroid is placed at the origin (see Fig. 4a).
To construct the Laplacian on this domain, we use a triangular coordinate system

(X ,Y , Z) (McCartin 2002),

X = r − y, (21)

Y =
√
3

2

(
x − S

2

)
+ 1

2
(y − r), (22)

Z =
√
3

2

(
S

2
− x

)
+ 1

2
(y − r), (23)

where r = R/2 = S/(2
√
3) is the radius of the inscribed circle, (see Fig. 4b).

Since we are describing two-dimensions with three coordinates, there must be a
conserved quantity and, indeed, we see that

X + Y + Z = 0. (24)

Further, this coordinate system allows us to simply define and evaluate the boundary
conditions as the boundaries conform to three limiting values of X = r , Y = r and
Z = r , respectively (see Fig. 4b) (McCartin 2002).

From (X ,Y , Z), we then define the orthogonal coordinate system (ζ, η) such that
ζ = X and η = Y − Z . Using the chain rule equation (11) becomes

∂2h

∂x2
+ ∂2h

∂ y2
= 3

∂2h

∂η2
+ ∂2h

∂ζ 2 = −k2h. (25)
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Fig. 4 a Rotating and translating the polygon formed by the roots unity provide the domain on which we
will be algebraically deriving the Turing bifurcation point. b Schematic diagram illustrates the triangular
coordinates (X , Y , Z)

Seeking separable solutions of the form h(ζ, η) = h‖(ζ )h⊥(η), we must satisfy the
equations

h′′‖ = −α2h‖, (26)

h′′⊥ = −β2h⊥, (27)

which are coupled through the requirement that k2 = α2 + 3β2, where the positiv-
ity of the coupling constants is enforced through the requirement of trigonometric
representation.

To ensure that the derivative of h is zero on X = −2r and r , hwill be a superposition
of modes of the following form
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hmn = Csmn cos
(mπ

3r
(X + 2r)

)
cos (βn(Y − Z))

+Camn cos
(mπ

3r
(X + 2r)

)
sin (βn(Y − Z)) , (28)

where m, n ∈ N ∪ 0 and each hmn has a component that is symmetric about the
triangles altitude, Y = Z (the coefficient of the Csmn term), and a component that is
antisymmetric about the triangles altitude (the coefficient of theCamn term) (McCartin
2008).

Critically, to satisfy the zero-flux boundary conditions on Y = r and Z = r , we
need to restrict the possible βn values. Specifically, it has been shown that a solution
requires three symmetric terms and three antisymmetric terms, respectively (McCartin
2011),

hmn = Csmn

[
cos

(
lπ

3r
(X + 2r)

)
cos

(
π(m − n)

9r
(Y − Z)

)

+ cos
(mπ

3r
(X + 2r)

)
cos

(
π(n − l)

9r
(Y − Z)

)

+ cos
(nπ

3r
(X + 2r)

)
cos

(
π(l − m)

9r
(Y − Z)

)]

+ Camn

[
cos

(
lπ

3r
(X + 2r)

)
sin

(
π(m − n)

9r
(Y − Z)

)

+ cos
(mπ

3r
(X + 2r)

)
sin

(
π(n − l)

9r
(Y − Z)

)

+ cos
(nπ

3r
(X + 2r)

)
sin

(
π(l − m)

9r
(Y − Z)

)]
, (29)

where l +m + n = 0. For simplicity, we write this as hmn = Csmnhsmn +Camnhamn

where we define hsmn to be the symmetric terms and hamn to be the antisymmetric
terms.

From equation (29), the eigenvalue can be extracted,

k2 = 4

27

(π

r

)2 (
m2 + mn + n2

)
= 4

27

(
2
√
3π

S

)2 (
m2 + mn + n2

)

= 4

27

(
2π

R

)2 (
m2 + mn + n2

)
. (30)

The minimum of equation (30) occurs when m = 1, n = 0 (or m = 0, n = 1)
and results in a minimum critical circumcircle radius of Rc = 4π/(3

√
3k+). From

equation (3), we can calculate that as R increases the homogeneous steady state on a
triangle bifurcates from stable to unstable at a triangle area of Ac = 4

√
3π2/(9k2+).

Note that we do not specify that Ac is the minimum triangular area that can support
stable heterogeneous solutions (as we could in the square case) because, as we will see
in Sect. 7, although the Turing bifurcation structure is a supercritical pitchfork on the
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Fig. 5 Plots of the symmetric and antisymmetric eigenbases, m = 1, n = 0, l = −1. The images are
symmetric, or antisymmetric, about the vertical altitude of the equilateral triangle. Explicitly, in the right-
hand image, the bottom left corner of the triangle presents a value above zero, whereas the bottom right
corner presents the same value, but negative. The value at the top of the triangle is zero. The colour axis for
both images runs from blue at −3

√
3/2 to yellow at 3

√
3/2 (Color figure online)

square domain (and all polygons with a higher number of edges), it has a transcritical
structure on the triangular domain. Thus, on the triangular domain there is a subcritical
branch of solutions that can support stable patterning solutions for area values below
Ac. Hence, in the triangular case, along side deriving a numerical bifurcation point
to compare against Rc, we will also numerically derive the minimum value of R for
which patterns can form alongside the homogeneous steady patterns being stable.

At this point, we can compare the bifurcation circumcentre radius and polygonal
areas of the triangle and square. We observe that as we increase the number of edges,
we decrease the circumcentre bifurcation radius, since

Rc,tr iangle = 4

3
√
3

π

k+
>

1√
2

π

k+
= Rc,square. (31)

However, the bifurcation value of the polygonal area increases

Ac,tr iangle = 4
√
3

9

(
π

k+

)2

<

(
π

k+

)2

= Ac,square. (32)

We will see later that this trend carries on for both metrics, although these values tend
to limiting constants, given by the circular case, as n increases.

Before we finish this section, we once again take a look at the formula for the
eigenvalues of the Laplacian on a triangular domain, equation (30) and note that its
form leads to several questions that do not have obvious answers. Firstly, what numbers
are representable in the formofm2+mn+n2? Secondly, in howmanydistinctways can
a given eigenvalue, k, be represented? A complete investigation into these questions
and more requires the use of Eisenstein primes (Hardy and Wright 1979) and can be
found in (McCartin 2011).
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5.3 A note on triangular half domains

So far we have demonstrated a complete trigonometric basis for the Laplacian on a
square and equilateral domainwith zero-fluxboundary conditions. Through thiswe can
demonstrate that the triangular half domains, known as of the isosceles, right angled
triangle (square cut along a diagonal) and the 30–60–90 triangle (equilateral triangle
cut along an altitude) also have complete trigonometric bases. Further, the eigenvalues
that correspond to these ‘half spaces’ are exactly the same as the full spaces; thus,
the critical area of instability for the onset of Turing patterns (i.e. the smallest area
for which the homogeneous steady state transitions from stable to unstable) for the
isosceles, right angled triangle and the 30–60–90 triangle is exactly half that of the
square and equilateral triangle, respectively.

Demonstrating this for the 30–60–90 triangle is fairly simple because, by construc-
tion, the trigonometric basis of the equilateral triangle, equation (29), is already split
into terms that are symmetric and antisymmetric about an amplitude (McCartin 2004).
Thus, the restriction from the equilateral triangle to the 30–60–90 triangle just requires
that we use the symmetric terms,

hmn = Csmn

[
cos

(
lπ

3r
(X + 2r)

)
cos

(
π(m − n)

9r
(Y − Z)

)

+ cos
(mπ

3r
(X + 2r)

)
cos

(
π(n − l)

9r
(Y − Z)

)

+ cos
(nπ

3r
(X + 2r)

)
cos

(
π(l − m)

9r
(Y − Z)

)]
, (33)

which have the same eigenvalues as the full equilateral triangle trigonometric basis.
To show that all solutions are of this form,we suppose there are other solutions not of

this form and quickly derive a contradiction, essentially following the work of Práger
(1998) using reflections and restrictions of solutions (Damle and Peterson 2010).
Suppose there is a solution of the Laplacian on a 30–60–90 triangle with Neumann
boundary conditions, hht (x, y), {(x, y)|0 ≤ x ≤ S/2, 0 ≤ y ≤ √

3x}, which cannot
be constructed as the infinite sum of the symmetric basis elements in equation (33).
Reflecting this solution along its longest altitude, we produce a symmetric solution,
ht , to the Laplacian on the equilateral domain with Neumann boundary conditions,

ht (x, y) =
{
hht (x, y), 0 ≤ x ≤ S/2,
hht (S − x, y), S/2 < x ≤ S.

(34)

By construction, ht must then have a solution in the form of an expansion made of the
symmetric basis functions.Whence, by restricting ht to the original 30–60–90 triangle
domain, we recover the original solution, hht , but represented as a trigonometric sum
of the basis functions, whichwas originally assumed not possible. By contradiction, all
solutions to the Laplacian on a 30–60–90 triangle with Neumann boundary conditions
can be represented as a infinite sum of the basis terms in equation (33). By extension,
the eigenvalues of the equilateral triangle and the 30–60–90 triangle are the same, and
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since the 30–60–90 triangle is half the area of the equilateral triangle, the minimum
bifurcation area of the 30–60–90 triangle must occur at half the minimum bifurcation
area of the equilateral triangle.

The case for the isosceles, right angled triangle is not so straight forward because
the original solution basis, equation (20), does not have a similar split into functions
that are symmetric and asymmetric across the diagonal of the square. However, we
are able to use similar reflection and contraction mappings to constructively create the
basis (Práger 1998; Damle and Peterson 2010).

Similar to before, suppose hhs(x, y) is a solution to the Laplacian on an isosceles,
right angled triangle, {(x, y)|0 ≤ y ≤ S, 0 ≤ x ≤ S − y}, with Neumann boundary
conditions. The reflection of hhs along its hypotenuse,

hs(x, y) =
{
hhs(x, y), 0 ≤ x ≤ S − y,
hhs(S − y, S − x), S − y < x ≤ S,

(35)

produces a solution to the Laplacian on the square, {(x, y)|0 ≤ y ≤ S, 0 ≤ x ≤ S},
with Neumann boundary conditions. Further, being a reflection, the solution necessar-
ily satisfies the Neumann boundary condition along the square’s diagonal, too. Thus,
hs(x, y) would have a solution form of one of the components of equation (20). By
equivalently ‘folding’ hs(x, y) along the diagonal of the square domain, we are able to
restrict hs(x, y) to be a solution of the original problem of the isosceles, right angled
triangle, with Neumann boundary conditions,

hhs(x, y) = hs(x, y) + hs(S − y, S − x)

2
. (36)

Thus, since hs can be written as a infinite sum of cos(kmx) cos(kn y) terms with eigen-
value k = √

k2m + k2n , then hhs must have an equivalent form and the same eigenvalues.
Explicitly, the basis elements become,

cos
(mπx

S

)
cos

(nπ y

S

)
+ cos

(
mπ(S − y)

S

)
cos

(
nπ(S − x)

S

)

= cos
(mπx

S

)
cos

(nπ y

S

)
+ (−1)m+n cos

(mπ y

S

)
cos

(nπx

S

)
. (37)

As required, we have demonstrated that the eigenfunction basis and eigenvalues
of the isosceles, right angled triangle correspond to those of a square and, thus, the
critical bifurcation area of a isosceles, right angled triangle is half that of the critical
bifurcation area of a square.

As proven by McCartin (2008), the square and equilateral triangle are the only
regular polygons that have tractable trigonometric eigenfunction bases. Thus, the
isosceles, right angled triangle and the 30–60–90 triangle are the only half spaces
that have tractable trigonometric eigenfunction bases.

In the next section, we consider the circle. Although we can produce an analytical
basis for the circle case the corresponding eigenvectors do not have simple closed-form
expression, althoughweare able tomakeheadwayusingnumerics and approximations.
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5.4 Circular domain

The natural coordinate system for a circular domain is the cylindrical polars, (x, y) =
(ρ cos(θ), ρ sin(θ)), where ρ ∈ (0, R) and θ ∈ [0, 2π). Under this coordinate change
equation (11) becomes

∇2h = 1

ρ

∂

∂ρ

(
ρ

∂h

∂ρ

)
+ 1

ρ2

∂2h

∂θ2
. (38)

Assuming a separable solution, we can solve the Laplacian using a solution of the
form h = B(ρ)�(θ), where � is 2π periodic and B satisfies the Neumann bound-
ary condition, B ′(R) = 0. Further, B and � are assumed to be finite everywhere.
Substituting the separable form into equation (11) gives

B ′′� + 1

ρ
B ′� + 1

ρ2 B�′′ = −k2B�, (39)

where the primes denote derivatives with the respective variables. Dividing through
by B�/ρ2 allows us to decouple the ρ and θ variables,

B ′′ρ2

B
+ B ′ρ

B
+ ρ2k2︸ ︷︷ ︸

Function of ρ

only

= −�′′

�︸ ︷︷ ︸
Function of θ

only

= p2︸︷︷︸
Function of

neither ρ or θ

. (40)

From equation (40) and the desired periodic features, we can show that � must have
the form

�(θ) = a cos(pθ) + b sin(pθ) = c cos(pθ + φ), (41)

where p ∈ N ∪ 0 for � to be periodic 2π . The constants a and b are defined by
the initial conditions and can be written in the condensed form using c and φ. Since
the equations are invariant under rotation, then through judicious rotation of the final
solution we can fix φ = 0.

The equation for B can be rearranged to

B ′′ρ2 + B ′ρ + (ρ2k2 − p2)B = 0 (42)

which is a scaled version of Bessel’s differential equation (Khosravian-Arab et al.
2017). Although there are two families of solutions to this equation, only one of these
families is finite at ρ = 0. Thus, the solution of equation (42) is Bp(kρ), where Bp

is a Bessel function of the first kind of order p and k is defined by the satisfying the
boundary condition, B ′

p(kR) = 0.
Critically, the values of k do not have a simple form, compared to the frequencies

in the square and triangle case (see Fig. 6a). However, we will be most interested in
the first unstable frequency, namely the smallest nonzero value of kR which allows a
spatially heterogeneous solution to exist. Values of kR for the first five values of p are
presented in Table 1 and Fig. 6b.
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Table 1 The value of kR > 0 at
which Bp(kR) has its first zero
derivative for different values of
p

p 0 1 2 3 4

kR to 2 d.p 3.83 1.84 3.05 4.20 5.32

Fig. 6 Illustrating the zero derivatives of the Bessel functions. a First two Bessel functions of the first type
for kρ ∈ [0, 12]. The first three zero derivatives with kρ > 0 are highlighted as circles. Note that the values
of kρ for the zero derivatives of B1 are always smaller than their analogues of B0. b The value of the first
zero derivative for Bessel functions of order p = 0, . . . , 4. For p ≥ 1, the values increase monotonically

We note that, unlike the frequencies in the square and triangle cases, these do
not form a monotonically increasing sequence. Since k+ is fixed by the kinetics and
diffusion parameters, this means that a growing circle will first reach the bifurcation
value set by p = 1 before p = 0.

Further, in the polar case although we have used a solution form that is separable
in the coordinates, the two functions are inextricably linked through p as

h = cBp(kρ) cos(pθ). (43)

This is in contrast to the square domain case, where the frequency in the x- and
y-directions can be altered independently (see equation (20)).

The first three eigenmodes are illustrated in Fig. 7. We note that even though the
eigenbases (Eq. (43)) are more complicated that the trigonometric solutions, the cas-
cade of patterns to which we can bifurcate to are consistent across the regular shapes.
Namely, the first bifurcation will be to a striped pattern (p = 1), and then, edge spots
are able to occur (p = 2), before centralised spots are able to form for larger areas
(p = 0).

Although the zeros of the Bessel function and its derivatives do not have a simple
form, there has been much analytical work deriving bounds on their values, as well
as providing approximations for the zeros (Elbert 1991; Giordano and Laforgia 1983;
Maass and Martin 2018; Watson 1918; Baricz et al. 2018). Since we are looking for
the first zero, we are able to derive a good approximation from using the first few terms
in the Bessel function’s power series expansion (Morgenthaler and Reismann 1963;
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Fig. 7 Illustrations of equation (43) for p = 0, 1 and 2. ρ ∈ [0, R] and the k > 0 value depends on p and
is defined by B′

p(kR) = 0, see text, Table 1 and Fig. 6a for details. The colour axis in all cases is fixed to
be blue at −1 and yellow at 1 (Color figure online)

Harrison 2009). Namely, for nonnegative integer, p,

Bp(x) =
∞∑
n=0

(−1)n

n!(n + p)!
( x
2

)2n+p
. (44)

As discussed above, the smallest value of kR to become unstable will be the solution
to B ′

1(k+Rc) = 0. The quartic order approximation to this value is

B ′
1(x) ≈ 1

2
− 3

16
x2 + 5

384
x4. (45)

Since this is a quadratic in x2, it is trivially solvable, providing four roots of the form

k+Rc = ±2

5

√
45 ± 5

√
21, (46)

where all sign combinations are used. The approximate solution we derive is then

k+Rc = 0.4
√
45 − 5

√
21 ≈ 1.88, to 2 d.p., which we can be compared it to the

tabulated value of k+Rc ≈ 1.84.
Extending the power series allows us to become more accurate, and at the next

order, the approximate equation would be cubic in x2, which again is solvable by
radicals and provides a solution correct to 2 d.p.. However, the accuracy provided by
the quadratic equation solution is good enough to show that once again the critical
area is larger than that of the square. Specifically,

Ac,circle = πR2
c,circle > π

(
1.8

k+

)2

= 1.82

π

(
π

k+

)2

> 1.03

(
π

k+

)2

> Ac,square > Ac,tr iangle, (47)

whilst direct calculation confirms that Rc,circle < Rc,square < Rc,tr iangle. Hence,
we have analytically shown that if we consider growing shapes of equal area, then
the triangle will bifurcate to patterns first, followed by the square and then the circle
following shortly behind. Based on this trend, we can hypothesise that the smallest
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bifurcation areas of all other polygons will lie in the interval set by the triangle and
circle, whilst also conjecturing that as the number of edges increases, the smallest
bifurcation area increases, but the radius of the polygon’s circumcentre will decrease.
These relations will be confirmed in Sect. 7.

6 Nonlinear analysis

At this point, we could simulate the systems and derive the bifurcation points to
compare against the analysis in the previous chapter. However, wewill be going further
than this as we are able to follow the unstable and stable branches of the solution
bifurcations. As we will see in Sect. 7, this leads to an unexpected result; namely,
on a square (or rectangular) domain with zero-flux boundary conditions we expect
the bifurcation structure to be of a pitchfork style, either supercritical or subcritical.
(Leppänen 2004; Benson et al. 1998; Crampin 2000; Dutt 2010, 2012; Grindrod 1996;
Nicolis 1995; Auchmuty and Nicolis 1975; Bozzini et al. 2015; Breña-Medina and
Champneys 2014; Dalwadi and Pearce 2022). Thus, we may expect such a bifurcation
structure on all polygonal domains and this is certainly what is observed for polygons
with larger numbers of edges. However, for the triangle, wewill see that the bifurcation
is actually a transcritical bifurcation.

Since we are able to generate a trigonometric basis for the square and triangle
geometries, we can push our investigation further beyond linear analysis to weakly
nonlinear analysis and derive the bifurcation structure. Specifically, we are going to
expand our solutions about the Turing bifurcation point with smallest circumcentre
radius, Rc. This restriction to the first bifurcation point reduces the number of possible
solutions that will appear and is one of the primary assumptions that will enable
progress (Schneider and Uecker 2017; Uecker et al. 2014; Nicolis 1995; Olver 2014).

Weakly nonlinear analysis depends on the use of an ansatz expansion. Thus, it
is not always applicable (Leppänen 2004; Benson et al. 1998; Crampin 2000; Dutt
2010, 2012; Barrass et al. 2006; Grindrod 1996; Nicolis 1995; Auchmuty and Nicolis
1975; Bozzini et al. 2015; Wollkind et al. 1994). However, the theory presented in
this section is backed up by intuition built on simulations and numerically derived
bifurcation structures. Equally, wewill demonstrate a posteriori that our final algebraic
derivations match the simulated structures.

Another assumption regarding our approach is that we assume that the bifurcations
branches emerge from R = Rc in a connected and continuous manner. We are unable
to identify bifurcation points (analytically, or numerically) if they are not connected via
the homogeneous solution branch, as this is the solution aboutwhichwe are perturbing.
There are deflation techniques which are numerically able to identify such isolated
bifurcation branches. However, we have never observed such isolated branches and
the simulated bifurcation branches produce all patterns that we have simulated. Thus,
we assume that such branches either do not exist or are rare enough to not influence
our approach.

As in Sect. 4, we cover the general theory before specifying to the particular
domains. Once again, we begin with applying our techniques to the square domain,
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which the reader may be more familiar with. Then, we adapt the techniques to the
triangular domain.

Since we are using the spatial scale as the bifurcation parameter, it is easier to work
with if we non-dimensionalise the length scale as (x, y) = (Sx ′, Sy′). This draws out
the dependency of the bifurcation parameter out into the Laplacian,

∇2
(x,y) = ∂2

∂x2
+ ∂2

∂ y2
= 1

S2

(
∂2

∂x ′2 + ∂2

∂ y′2

)
= 1

S2
∇2

(x ′,y′) (48)

We can then perturb around the bifurcation point S = Sc, (or equivalently R = Rc),
in terms of a power series of 0 < ε � 1.

This ε is not the same as the εu and εv used previously. In Sect. 5.1, εu and εu
were undefined small perturbations that included the amplitude dependencies. We
now separate the small perturbation from the amplitude function as it is this function’s
dependency on the kinetics that we are going to derive.

We also expand the solution, u, and the time dependency using ε. The solution is
expanded because of the assumption that it varies continuously on the value of S. The
time dependency is expanded because we assume that close to Sc the full system is
close to steady state and, thus, convergence to the steady state is slow, which requires
new multiscale time variables to be included (Nicolis 1995; Stanley 1987). Overall
the expansions are

S = Sc + εS1 + ε2S2 + . . . , (49)

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+ . . . , (50)

u(x′, t1, t2) =
(
us
vs

)
+ εU1(x′, t1, t2) + ε2U2(x′, t1, t2) + . . . , (51)

Substituting equations (49)-(51) into system equations (4) and (5) (with the rescaled
Laplacian) and expanding in terms of ε allow us to collect the differing orders of ε

into the following cascade of equations:

O(ε) LU1 =0, (52)

O(ε2) LU2 =∂U1

∂t1
+ 2S1

S3c
D∇(x ′,y′)U1 − U 2

1

2

(
fuu
gvv

)
−U1V1

(
fuv

guv

)
− V 2

1

2

(
fvv

gvv

)
,

(53)

O(ε3) LU3 =∂U1

∂t2
+ ∂U2

∂t1
−

(
3S21 − 2S2Sc

Sc4

)
D∇(x ′,y′)U1 + 2S1

S3c
D∇(x ′,y′)U2

123



    5 Page 22 of 44 Journal of Nonlinear Science             (2025) 35:5 

−
(
fuuU1 + fuvV1 fuvU1 + fvvV1
guuU1 + guvV1 guvU1 + gvvV1

)
U2

− 1

6

(
fuuuU 3

1 + fvvvV 3
1

guuuU 3
1 + gvvvV 3

1

)
− U1V1

2

(
fuuv fuvv

guuv guvv

)
U1, (54)

where L is the linear operator

L = 1

S2c
D∇(x ′,y′) + J . (55)

Althoughwe can expand the system up to any order in ε, wewill find that the amplitude
equations are defined at the third order for the square domain and the second order for
the triangular domain.

6.1 Square domain

Due to the spatial non-dimensionalisation, we are now working on the square [0, 1]×
[0, 1]. We have effectively already solved equation (52) in Sect. 5.1 as we are looking
for a null vector of equation (55) near the first bifurcation point. Up to a multiplicative
constant and symmetry of swapping x ′ and y′, the solution is

U1 =
(

�

1

) (
a(t1, t2) cos(πx ′) + b(t1, t2) cos(π y′)

)
, (56)

Note that we used the freedom of the multiplicative constant to normalise the coef-
ficient of the v amplitude in equation (56). Using this form, we can derive that �

satisfies

0 = −Duπ
2

S2c
� + � fu + fv �⇒ � = fvS2c

Duπ2 − S2c fu
. (57)

Since a nontrivial value of U1 exists, L has a nontrivial kernel, and therefore, the
adjoint operator, LT , also has a nontrivial kernel. In the case, we are considering the
adjoint operator is simply the transposition of the matrix corresponding to L, hence
the naming convention. The basis of Ker

(LT
)
is spanned by the two solutions of

LTW = 0, (58)

which are multiples of

W1 =
(

�

1

)
cos(πx ′), and W2 =

(
�

1

)
cos(π y′) (59)

where

� = guS2c
Duπ2 − S2c fu

. (60)
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In order for each of the equations in the expansion cascade to have a solution, the
solution must satisfy that the right-hand side of the equations must be perpendicular
to all solution in Ker

(LT
)
(Ramm 2001), where, by perpendicular, we mean equal to

zero under the following inner product

〈h1, h2〉 =
∫ 1

0

∫ 1

0
h1(x ′, y′) · h2(x ′, y′) dx ′ dy′, (61)

where the dot symbolises the normal vector dot product, or component-wise multipli-
cation.

The right-hand side of equation (52) is trivially perpendicular to all vectors. So, we
now consider the right-hand side of equation (53). Critically, apart from the spatial and
temporal derivative terms the rest of the solution will be made up of quadratic terms in
cos(πx ′) and cos(π y′). Due to standard properties of Fourier series (Kreyszig 2007),
we know that superposition solutions of cos(πx ′) and cos(π y′) will be perpendicular
to their quadratic counterparts. Thus, if we assume there is no t1 dependence in the
solution and S1 = 0, we can guarantee that the equation (53) can be solved. However,
this does mean that we do not gain any restrictions on the amplitude equations a(t1, t2)
and b(t1, t2) from equation (56) and, thus, we must head to the third order expansion,
equation (54).

Having solved equation (53) for U2 (explicit solution can be found in Appendix
A), we can then substitute U1 and U2 into equation (54). From this substitution, we
will see that the right-hand side of equation (54) will have terms that are not naturally
orthogonal to equation (59). Thus, we use Fredholm’s alternative theorem to enforce
that any nonzero coefficients sum together to zero, which will remove secular, or
resonant, terms (Ramm 2001). The solvability criteria is then

〈W1,LU3〉 = 0, and 〈W2,LU3〉 = 0. (62)

Criteria (62) are given explicitly in Appendix A; however, upon rearrangement we can
specify that a and b satisfy equations of the form

da

dt2
= p1a

3 + (b2 p2 + S2 p3)a, (63)

db

dt2
= p1b

3 + (a2 p2 + S2 p3)b, (64)

where the form and signs of p1, p2 and p3 are given by the kinetic and diffusion
parameters. The parameter S2 represents how far from the bifurcation point we are
and whether we are above (S2 > 0) or below (S2 < 0) the bifurcation value.

There are nine steady-state solutions, (as, bs), of equations (63) and (64), and these
are:

1. the homogeneous steady state, (0, 0);
2. stripe patterns, (±a1, 0), (0,±b1);
3. spot patterns, (a2,±a2), (±a2, a2);
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where a1 = b1 = √−p3S2/p1 and a2 = √−p3S2/(p1 + p2). The plus and minus
signs then account for the solution symmetries on the square. Thus, up to symmetry,
there are only three distinct solutions, the homogeneous steady state, (0, 0): a stripe,
(a1, 0), and a spot (a2, a2).

To make further progress, we consider a simple ODE linear stability analysis about
each of the steady states. The eigenvalues of the Jacobian of equations (63) and (64)
at steady state are

1. the homogeneous steady state, λ1,2 = p3S2;
2. stripe patterns, λ1 = −2p3S2, λ2 = p3S2(p1 − p2)/p1);
3. spot patterns, λ1 = −2p3S2, λ2 = 2p3S2(p2 − p1)/(p1 + p2);

Since the homogeneous steady state is stable for S2 < 0 and unstable for S2 > 0 then
wouldmust have that p3 > 0. The signs of p1 and p2 then specifywhether the solutions
bifurcate supercritically or subcritically. Since wewant supercritical bifurcations, then
the stripe solutions tell us that we want p1 < 0 and the spot solution tell us we need
p1 + p2 < 0. Since p1, p1 + p2 < 0, then the signs of the eigenvalues of the stripe
and spot solutions depend on the sign of p1 − p2. However, whatever sign p1 − p2
takes the eigenvalues that depend on p1 − p2 take opposite signs in the two different
cases. Thus, exactly one of the spot or stripe solutions bifurcates in a stable manner
from Rc, whilst the other bifurcates in an unstable manner.

Later, in Sect. 7 we will present the exact values of p1, p2 and p3 in the case of
the Schnakenberg kinetics. We will demonstrate that the maxima and minima of the
solutions derived fromsimulations closelymatch theweaklynonlinear analysis, at least
close to the bifurcation point. Further, we will show that the stability characteristics
and bifurcation structures are as specified from the above analysis

6.2 Equilateral triangular domain

The approach to extracting the bifurcation structure based on a triangular domain
is similar to that shown in Sect. 6.1. However, there are some subtleties that we
first highlight. Critically, the intuition for the following analysis was gained after
simulation; thus, the interested reader may wish to view Sect. 7 before delving into
the algebraic derivation.

In the square domain case, we observed that the solution could bifurcate into a
stripe, or corner spot (see Fig. 3), providing two families of different solutions. Such a
categorisation does not extend to the triangle, because on a triangular domain a stripe
that is parallel to one side naturally produces a corner spot in the opposite corner (see
the left-hand figure of Fig. 5).

The split of the solutions into symmetric and antisymmetric parts naturally produces
two alternative families of solutions. However, when the bifurcation structures were
simulated, there appeared to be nobifurcation branch stemming from the homogeneous
solution that followed the antisymmetric solutions, at least initially.

The weakly nonlinear analysis allows us to understand why this is so. Namely,
we are going to show that the solubility criterion for the triangular domain occurs
at the second order expansion, equation (53) (rather than the third order expansion,
equation (54), which was required for the square domain). This means that the Turing
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bifurcation on the triangle domain is generically transcritical. Furthermore, this also
means that we cannot bifurcate to antisymmetric solutions. The reasonwhy stems from
the form of the right-hand side of equation (53). Namely, all of the solution functions
are quadratic, but if you multiply an antisymmetric solution by scaled version of the
same antisymmetric solution you generate a symmetric solution. Thus, if we were
to run the weakly nonlinear analysis trying to find antisymmetric solution forms, we
would quickly find that we would not be able to solve equation (53) because the left-
hand side would be antisymmetric, whereas the right-hand side would be symmetric.

Now, this argument only works for purely antisymmetric solutions. If we were
to consider a superposition solution, then it is possible not only to solve, equation
(53), but also derive the solvability criterion. Specifically, consider the superposition
solution

U1 =
(

�

1

)
(a(t1)hs10 + b(t1)ha10). (65)

where a(t1) and b(t1) are the amplitude equations. Then by the Fredholm alternative
theorem, the right-hand side of equation (53) must be perpendicular to both

W s =
(

�

1

)
hs10, and Wa =

(
�

1

)
ha10, (66)

where the inner product on the triangular domain is

〈h1, h2〉 =
∫ √

3/2

0

∫ (
√
3−y′)/

√
3

y′/
√
3

h1(x ′, y′) · h2(x ′, y′) dx ′ dy′. (67)

The solubility criteria is, thus, two coupled ODEs for the amplitudes a(t1) and b(t1)

0 = −
(
(η fuu + guu) �2 + (2η fuv + 2guv)� + fvvη + gvv

)
3a2

16

− 4π2S1 (�Duη + Dv) a

3Sc3

+
(
(η fuu + guu) �2 + (2η fuv + 2guv)� + fvvη + gvv

)
3b2

16
+ 3 (η� + 1)

8

da

dt1
,

0 =
(
(η fuu + guu)�2 + (2η fuv + 2guv) � + fvvη + gvv

)
3ba

8

− 4π2S1 (�Duη + Dv) b

3Sc3
+ 3 (η� + 1)

8

db

dt1
,

which can be written in the simplified form

da

dt1
= p1(b

2 − a2) + S1 p2a, (68)

db

dt1
= (2p1a + S1 p2)b, (69)
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where p1 and p2 are appropriately defined. The system of equations (68) and (69) are
then susceptible to standard ODE analysis. There are four steady states,

(0, 0),

(
p2S1
p1

, 0

)
,

(
− S1 p2

2p1
,±

√
3

2

S1 p2
p1

)
, (70)

These correspond to the homogeneous steady state, symmetric heterogeneous solu-
tions and superposition solutions. Since we know that (0, 0)must be stable for S1 < 0,
a simple linear stability analysis argument allows us to deduce that p2 > 0. Further,
for all steady states the stability does not depend on p1 and the patterned solution
steady states are all saddle points for all values of S1 	= 0.

Thus, as we will see in Sect. 7, due to the transcritical nature of the bifurcation
structure that are heterogeneous solution branches that bifurcate into both regions of
S1 < 0 and S1 > 0. However, all branches are unstable. Of course this result is
misleading as it depends only on weakly nonlinear analysis, which is only valid close
to S = Sc. What we will observe is that both branches do transition to produce stable
patterns. Specifically, the subcritical branch stabilises for S < Sc and continues to be
stable for S > Sc; thus, stable heterogeneous solutions do exist for S > Sc.

To provide further information on the bifurcation diagram and generate a solution
that would demonstrate where and when the branches transition to stability, we could
perhaps go to the third order ε expansion, or even higher.However, because the stability
transitions do not occur close to the bifurcation point, it is likely that higher-order
expansions will not generate the required solutions and potentially lead to inaccurate
insights (Bozzini et al. 2015; Becherer et al. 2009). Thus, we leave the theory here
and in the next section apply the theory to a particular set of Turing kinetics and
demonstrate that although our theory is correct, we need numerical simulations to fill
in details far away from the bifurcation point.

7 Results

To derive the bifurcation diagrams, we will use a numerical bifurcation package,
pde2path, version 3.0 (Uecker et al. 2014; Dohnal et al. 2014; Uecker 2021;
Engelnkemper et al. 2019). The evidence provided by pde2path is then sup-
ported by independent simulations, completed using COMSOL Multiphysics 5.1
(Multiphysics 2021). All of the following simulation script and files can be found
at https://github.com/ThomasEWoolley/Tractable_Turing_patterns. Each script con-
tains details regarding the technical aspects of the simulation, e.g. spatial discretisation,
iteration tolerance, etc. Although all tolerances and discretisations were pushed to
their computational limits of accuracy, our final chosen parameters were picked to
allow efficient parameter sweeps over multiple geometries, whilst maintaining accu-
racy through generating simulations that are not dependent on the parameters of the
solution method.
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7.1 Linear analysis of the Schnakenberg kinetics

We will be using the Schnakenberg system to illustrate the derived theory (Gierer and
Meinhardt 1972; Schnakenberg 1979). It is a well-known set of kinetics that produce
Turing patterns over a wide range of parameter values. Moreover, it is known that the
bifurcation structure of the Schnakenberg system on a square domain is a supercritical
pitchfork (Woolley 2022). For demonstrative purposes, we fix all parameter values,
apart the radius of the circumcircle, R, in which we prescribe the polygon. As far as
we have seen from simulations, the theory holds for all tested parameter values. The
ones we choose here simply provide ‘nice’ values for the derivable bifurcation points.
The explicit form we are going to deal with is

∂u

∂t
= ∇2u + 1

10
− u + u2v, (71)

∂v

∂t
= 10∇2v + 9

10
− u2v. (72)

The boundary conditions are zero-flux on all polygonal boundaries. The initial condi-
tion (when simulating time dependent simulations) is random noise about the steady
state of (us, vs) = (1, 9/10). The Jacobian is

J(us, vs) =
(
2usvs − 1 u2s
−2usvs −u2s

)
=

(
4/5 1

−9/5 −1

)
, (73)

and the Hessians of f and g are

H f (us, vs) =
(
fuu fuv

fvu fvv

)
=

(
2v 2u
2u 0

)
=

(
9/5 2
2 0

)
, Hg(us, vs) =

(
guu guv

gvu gvv

)

=
(−2v −2u

−2u 0

)
=

(−9/5 −2
−2 0

)
.

From these, we can check that the trace and determinant of J are negative and positive,
respectively, and, thus, the steady state is stable in the absence of diffusion. Diffusion
is then able to drive the system to instability if there exists some k, for which Det(J −
k2D) < 0. From solving equation (15), this is true for k2− = 1/5 < k2 < 1/2 = k2+.

Having calculated k+, we can explicitly define the smallest critical size of the
equilateral triangle, square and circle that allow the homogeneous steady state to
destabilise. These algebraic and calculated values are collected in Table 2.

We evidence the bifurcation boundaries listed inTable 2 in Fig. 8,wherewe simulate
equations (71) and (72) on the equilateral triangle, square and circular domains of
different sizes. Specifically, we pick values of R where no patterns should exist (R =
2.5, top of Fig. 8) and then about each of the critical values denoted in the Rc row
of Table 2. Clearly, we observe from top to bottom of Fig. 8 that as the area of the
polygon increases, the bifurcation cascade follows the order set out in Table 2, namely
the circle patterns first, then the square and, finally, the triangle.
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Fig. 8 Simulations of equations
(71) and (72) on the equilateral
triangle, square and circular
domains of different sizes. The
radius of the circumcentre, R,
for each row of polygons is
given above each figure. The
colour bar over all figures is
fixed from −0.6 (blue) to 1.5
(yellow). Each simulation is run
for 104 units, after which no
further transitions where
observed (Color figure online)

Alongside Table 2, Fig. 9 fills in the bifurcation points for Rc and Ac for all other
polygons that do not have tractable eigenbases. Specifically, it was constructed using
the numerical software pde2path and provides the smallest value of Rc, or Ac,
at which the homogeneous steady state destabilises (blue circles). For the equilateral
triangle (n = 3) and square cases (n = 4), we compare the numerically derived values
with the algebraically derived values, collated in Table 2 (black diamonds). Clearly,
there is excellent correspondence. Further, as hypothesised in Sect. 5, we see that as
the number of edges of the polygon increases, the circumcentre radius bifurcation

123



    5 Page 30 of 44 Journal of Nonlinear Science             (2025) 35:5 

Fig. 9 Deriving the smallest bifurcation values of the circumcentre (left) and area (right) for which the
homogeneous steady-state solution of equations (71) and (72) destabilises. Alongside the computed values
(blue circles), we compare the analytically derived estimates of the equilateral triangle, square (black
diamonds) and circle (dashed line asymptote). The red square is the numerically derived bifurcation point
on the subcritical patterning branch that generates stable patterns (Color figure online)

point monotonically decreases, whilst the bifurcation area monotonically increases.
In both cases, the curves asymptote at the values derived for the circular domain case
(black dashed line).

7.2 Weakly nonlinear analysis of the Schnakenberg kinetics

As we evidenced in Sect. 6, the bifurcation structure on the triangle domain is trans-
critical. This means that it is possible to have pattern states that are stable for values
of R < Rc. Indeed, this will be shown later. Thus, the red square data points in Fig.
9 represent the actual minimum values of R = 3.34 and A = 14.51 that can sup-
port patterning. They were extracted numerically using pde2path by calculating the
stable/unstable transition bifurcation point on the subcritical bifurcation branch.

So far we have compared only the linear stability analysis and the first bifurcation
point.We now extend this to compare theweakly nonlinear analysis with the computed
bifurcation structure. For the Schnakenberg kinetics on the triangular domain, we find
that the nontrivial steady-state amplitudes of equations (68) and (69) are

(
9S1

√
2

40π
, 0

)
,

(
−9S1

√
2

80π
,±9

√
6S1

80π

)
. (74)

The first term represents a heterogeneous solution made up of only the symmetric
solution, whilst the second and third solutions are mixed superposition solutions.
Critically, as we will see, we only ever observe the symmetric solutions bifurcating
from Rc. The only time the superposition solutions are seen are as a branch of unstable
solutions that switch between symmetric solutions that have the point highest and those
that have the point lowest. Thus, for now it is still an unanswered question as to whywe
never observe superposition solutions bifurcating from Rc. Namely, are the solutions
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Fig. 10 Bifurcation diagram of equations (71) and (72) (black and green) compared with the solution
derived through weakly nonlinear analysis equations (75) and (76) (blue lines). The black lines represent
the maxima and minima of stable solutions, whereas the green lines represent the maxima and minima of
unstable solutions (Color figure online)

there and the numerical simulations not picking them up? Or is there some other
constraint that we are not seeing in the weakly nonlinear analysis at the second order
expansion that means that the superposition solutions never bifurcate from Rc?

Going forward we focus purely on the symmetric solutions only. The maximum
and minimum of hs10 are 3 and -3/2, respectively. Thus, we compare the numerically
derived bifurcation structure, which tracks the maximum andminimum of the solution
u with

u+ =us + 3εS1�
p2
p1

= 1 + εS1
9
√
2

4π
= 1 + εR1

9
√
6

4π
= 1 + (R − Rc)

9
√
6

4π
, (75)

u− =us − 3

2
εS1�

p2
p1

= 1 − εS1
9
√
2

8π
= 1 − εR1

9
√
6

8π
= 1 − (R − Rc)

9
√
6

8π
.

(76)

where � = −10/3 was calculated using Table 2 and equation (57). Note that u+ and
u− swap their roles of maximum and minimum as R1 (or S1) transitions from negative
to positive. Figure 10 illustrates the numerically derived bifurcation diagram (black and
green lines), comparedwith equations (75) and (76). Of course, the blue lines being the
tangents of the bifurcation structure cannot capture its nonlinear complexity. However,
near Rc the blue lineswellmatch the bifurcation lines. Further, as predicted in Sect. 6.2,
all patterns bifurcate in an unstable manner from Rc. The stable patterns that appear
once the homogeneous steady states have destabilised stem from the subcritical branch
stabilising at approximately R = 3.34 (see Fig. 9).
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The results for the square domain are similar. Amplitude equations (63) and (64)
have the exact values

da

dt2
= −125

27
a3 + 135

√
2S2 − 750b2

513π
a, (77)

db

dt2
= −125

27
b3 + 135

√
2S2 − 750a2

513π
b. (78)

The steady states are:

1. (0, 0), which is stable for S < Sc and unstable for S > Sc;

2.

(
3
√
3
√
19

95

√
S2

√
2

π
, 0

)
, which only exists for S > Sc and is unstable;

3.

(
3
√
3

25

√
S2

√
2

π
, 3

√
3

25

√
S2

√
2

π

)
, which only exists for S > Sc and is stable.

The maximum and the minimum of the stripe basis solutions are ±1, respectively,
whereas the maximum and minimum of the spot basis solutions are ±2, respectively,
since we are adding two solutions together. Thus, the maximum and minimum of the
stripe solutions are

u+ = us + ε�
3
√
3
√
19

95

√
S2

√
2

π
= 1 + 10

√
6
√
19

95

√
R − Rc

π
, (79)

u− = us − ε�
3
√
3
√
19

95

√
S2

√
2

π
= 1 + 10

√
6
√
19

95

√
R − Rc

π
, (80)

and the maximum and minimum of the spot solutions are

u+ = us + 2ε�
3
√
3

25

√
S2

√
2

π
= 1 + 20

√
6

25

√
R − Rc

π
, (81)

u− = us − 2ε�
3
√
3

25

√
S2

√
2

π
= 1 + 20

√
6

25

√
R − Rc

π
. (82)

From Fig. 11 and the analysis from Sect. 6.1, we see that the weakly nonlinear analysis
accurately represents the bifurcation structure near Rc in both shape and stability.
Namely, although both bifurcation branches have a pitchfork shape, only one of the
spot and stripe patterns bifurcates stable into R > Rc; in this case, it is the spot solution
that is stable.

7.3 Beyondweakly nonlinear analysis

Having considered the bifurcation structure near Rc, we nowusepde2path to expand
our knowledge of the bifurcation structure for all polygons with less than 10 edges,
with the aim of generalising our understanding as the number of edges increases.
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Fig. 11 Bifurcation diagram of equations (71) and (72) (black and green) compared with the solution
derived through weakly nonlinear analysis equations (79)–(82) (dashed lines). The black lines represent
the maxima and minima of stable solutions, whereas the green lines represent the maxima and minima of
unstable solutions. The blue dashed lines represent equations (79) and (80) and show that these solutions
are unstable, whilst the yellow dashed lines represent equations (81) and (82) and show that the solutions
are stable (Color figure online)

Figure 12 illustrates the bifurcation diagrams for equilateral triangles, squares and
pentagons, aswell as providing simulations along each of stable and unstable branches.
Note that in all bifurcation diagrams we focus on the appearance and subsequent
disappearance of the first branches bifurcating from Rc. If R increases further, the
bifurcation diagram continues to grow in complexity as more and more wave modes
are able to destabilise at the same time.

Going forward we introduce a new piece of nomenclature, which we will use to
describe visual appearance of the patterns during the first bifurcation. We will use the
terms edge-up or corner-up patterns to specifywhen the highest value of the simulation
is seen along an edge or in a corner, respectively. As specific examples, consider the
top row of Fig. 12b. The top left subfigure is a corner-up pattern, whereas the top right
subfigure is an edge-up pattern. This may appear to be a crude description, but we will
see that is can be used to accurately describe most patterns, at least when the number
of edges n < 8. However, as we increase the number of edges, the edges decrease
in size and the corners become more numerous, so specifying whether a pattern is
edge-up or corner-up becomes more difficult, visually.

In the case of the equilateral triangular bifurcation diagram (top of Fig. 12a), we
reproduce the insights from Sect. 7.2; namely, only the symmetric solutions bifurcate
from Rc and the branches bifurcate in an unstable manner through a transcritical
structure. However, we see that at around R = 4.5 the stable branch flips. Using Fig.
12b, we can see that the stability transition occurs between corner-up patterns and
edge-up patterns (compare the top and bottom subfigure of Fig. 12b.

Note that there is a small but nontrivial region around R ≈ 4.5 in which both
orientations are stable and there is an unstable branch of solutions linking the two
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Fig. 12 a Bifurcation diagrams for equilateral triangles, squares and pentagons, top to bottom, respectively.
The n in the title of each subfigure represents the number of edges each regular polygon has. The black lines
represent the maxima and minima of stable solutions. The green lines represent the maxima and minima
of unstable solutions. b–d Patterns simulated on the equilateral triangle, square and pentagon domains,
respectively. The simulations present solutions on the stable and unstable branches at the given values of R
in the subfigure titles. The colour bar is given in the centre of the top row of four simulations (Color figure
online)

stable branches. This unstable linking is a set of antisymmetric solutions which allow
the solutions to transition between these the edge-up and corner-up orientations. Thus,
not only are antisymmetric solutions prohibited frombifurcating at Rc, we observe that
even when they occur their branch is unstable. Thus, the first set of unstable patterns
(whether edge-up or corner-up) are all symmetric, the only choice stems from which
orientation is stable.

A similar structure can be seen over all three bifurcation diagrams in Fig. 12a.
Namely during the first bifurcation there are two branches that appear: one has stable
solutions, and one has unstable solutions. Moreover, there is always a small branch
joining the two initial branches, which causes the stability of the branches to switch.
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This is perhaps most clearly shown in Fig. 12b-d, where in the top row of each figure
we fix a value of R and present the stable and unstable patterns that are present. For the
equilateral triangle, corner-up patterns are stable and the edge-up patterns are unstable.
This is similar to the square domain where we corner-up patterns are stable, whilst
edge-up patterns are unstable. The stability orientation then appears to flip for the
pentagon, where we see that the edge-up patterns are stable, whilst corner-up patterns
are unstable.

If we now consider the bottom row of Fig. 12b–d and compare them to the top row,
we observe the stability transition in Fig. 12a that occurs as R increases. For example,
in Fig. 12b-d, the corner-up pattern that was stable at R = 4 is now unstable at R = 5.
Vice versa, the edge-up pattern that was unstable at R = 4 is not stable at R = 5. This
stability swapping clearly occurs also in Fig. 12c–d.

Although there are similarities in behaviour, we do observe that the bifurcation
diagrams illustrated in Fig. 12a are fairly different. Firstly, as proven, the equilateral
triangles bifurcation structure is fundamentally different from the other two structures
because it presents a transcritical bifurcation and, thus, has subcritical stable patterns
possible, whereas the bifurcations of the square and pentagon are both supercritical.
Equally, we can observe that, as demonstrated in Fig. 9a, the minimum point at which
the homogeneous steady-state destabilises, Rc, decreases with increasing number of
edges. Further, there does not appear to be any consistency between the point of stable
pattern transition, as we observe that the stability transition on the square happens
around R = 3.5, whereas the transition happens later (i.e. R > 4) on the equilateral
triangle and pentagon.

Finally, as the number of edges increases, the higher-order patterning modes begin
to encroach and become entangled with the first bifurcation modes. Namely, for the
triangle the is a region around R = 5.6 where patterns would actually disappear as
the homogeneous steady state stabilises and the initial bifurcation branches has disap-
peared; thus, no patterned states exist. However, for the square we see that the stability
of the first bifurcation branches smoothly transition into higher-order branches, so that
only patterned states exist. Finally, on the pentagon, we get a mixture of these two
features. Firstly, the first bifurcation modes transition smoothly into the higher-order
pattern curves, whilst at the same time, around R = 4.7, there is a small region in
which the homogeneous steady state stabilises alongside the patterned states.

Based on the insights gained from Fig. 12, we might wonder how far observations
can be generalised between bifurcation diagrams of regular polygon domain.However,
once the number of edges is 6, or more, the bifurcation diagrams appear to be fairly
comparative (see Fig. 13a). Note simulations were also run for polygons with edges
n = 7, 9, 100, 101 and 150. However, these bifurcation figures have been omitted as
they do not vary from those illustrated in Fig. 13a. In Fig. 13b–f, we present pattern
simulations on all regular polygons with edges n = 6− 10 as a means of considering
whether the edge-up to corner-up stability transition changes as n becomes larger.

Firstly, we compare the bifurcation structures across Fig. 13a with those in Fig.
12a and we immediately observe that whereas the bifurcation diagrams had more
differences than similarities for polygons with edges n = 2 − 5, the bifurcation
structures for polygons with edges n ≥ 6 are all pretty similar. As before there are
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Fig. 13 a Bifurcation diagrams for equilateral triangles, squares and pentagons, top to bottom, respectively.
The n in the title of each subfigure represents the number of edges each regular polygon has. The black lines
represent the maxima and minima of stable solutions. The green lines represent the maxima and minima
of unstable solutions. b–f Patterns simulated on polygons of increasing number of edges, respectively. The
simulations present solutions on the stable and unstable branches at the given values of R in the subfigure
titles. The colour bar is given in the centre of the top row of four simulations (Color figure online)

two branches of solutions initially. One is stable, and one is unstable; critically, these
two branches practically lie over one another in Fig. 13a.

Specifically, we note that although the stability transition is still visible in the
hexagon bifurcation plot of Fig. 13a, by the time we get to n = 8 and higher the bifur-
cation branches are so close that we can no longer see the transition in the bifurcation
diagrams and must instead use the simulations in Fig. 13d–f.

For domains with relatively low number of edges, n = 6 and 7, say, there two initial
branches appear to present patterns that can be described as edge-up or corner-up and
that the transition between these two pattern orientations still exist. For example, the
top row of Fig. 13b, c demonstrates that edge-up patterns are stable, whilst the corner-
up patterns are unstable, for R = 3; however, the bottom rows Fig. 13b, c show that as
R increases, the corner-up patterns stabilise, whilst the edge-up patterns destabilise.
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For domains with larger numbers of edges, it becomes increasingly more difficult
to specify what an edge-up vs what a corner-up pattern is, because edges become
smaller and more corners are added. Indeed, as suggested in Fig. 13a not only do the
bifurcation diagrams converge, but the difference between an unstable and a stable
pattern becomes negligible. Namely, on a polygonal domainwith large enough number
of edges there is a stable pattern that is practically indiscernible from a given unstable
pattern.

Another common feature across all bifurcation diagrams with n ≥ 6 is that the
bifurcation structure of the first mode is isolated from the destabilisation of the higher
order modes, which is more like the n = 3 case of Fig. 12a, rather than the n = 4 and
n = 5 cases, which we might expect would be more similar to the n ≥ 6 cases since
they are closer in terms of number of edges.

Overall, as the number of edges increases the polygons tend to the shape of a circle,
we would expect an eventual convergence of the bifurcation structures. Of course we
can never present a bifurcation structure for an exact circle because simulations, by
their very nature, are discrete and, thus, the circle would have to be approximated to
a polygon with large number of edges. Thus, the convergence in bifurcation diagrams
for n ≥ 8 offers confidence in the fact that a simulation does not have to be too refined,
before it accurately represents the bifurcation structure of circle.

We should be mindful of the limitations of simulations. Namely, although the sim-
ulations appear to converge, there will be some differences between these bifurcation
diagrams and one of a true circle. Specifically, as shown in Fig. 9 the bifurcation point
heavily depends on the number of edges, and thus, we suggest that you need n ≥ 20
before you are within an acceptable tolerance of bifurcation point calculation.

Further, for any discrete simulation two branches initially appear at Rc, one stable
and one unstable representing the edge-up and corner-up solutions. However, as the
number of edges increases, it becomes increasingly more difficult to discern whether
a pattern in edge-up or corner-up, see Fig. 13f, in particular. Thus, we hypothesise that
in the limit of n → ∞ and the polygons tending to a true circle the unstable branch
will actually disappear because we know that stable patterns exist and there would no
longer be a difference between edge-up and corner-up patterns.

8 Conclusions

We have investigated how regular polygonal domains with zero-flux boundary condi-
tions influence the initial patterning instability of Turing unstable reaction–diffusion
systems. The reason for this is that many theory and application papers frequently
only use simple domains such as squares and rectangles. The reason for this is easy to
understand; the Turing instability is analytically tractable (at least to a weakly nonlin-
ear level) on such domains. However, as Sect. 7 has shown, changing the domain shape
can lead to fundamental changes in the generic structure of the bifurcation diagram
(see Fig. 12a).

Further, we have highlighted the nonlinear relationship between number of polyg-
onal edges and the bifurcation point (see Fig. 9). Of course we should not be surprised
that the circle bifurcates first, as the circumcentre radius grows. The circle has the
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largest area for a given perimeter, and we know that the Turing bifurcation only occurs
if the domain’s size is large enough. However, what was perhaps unexpected was that
even though a larger circumcentre is required before the equilateral triangle bifurcates,
the bifurcation area of the triangle is smaller than that of the circle. Critically, the area
reduction is a nontrivial 32% in the case of the Schnakenberg kinetics.

Note that we specify that the relationships between bifurcation point, edges and
area are nonlinear, but we have been unable to identify the relationship beyond this.
Specifically, the relationships do not appear to be power laws as using logarithmic
scales for the axes fails to return linear relationships. Thus, we leave this relationship
as an open question for the community.

Such relationships and dependencies between size and bifurcation values highlight
the requirement of using a suitable domain shape in applications (Woolley et al. 2010).
Namely, we should be sceptical of any work that uses square geometries and claims
that bifurcations cannot occur because the space is too small, because, as we have
shown, the bifurcation point can easily be reduced by increasing the number of edges.

Luckily, with modern numerical software, it is not too difficult to create more
accurate, complex geometries that go beyond the simple symmetries of the regular
polygons. However, this work is still useful in its ability to theoretically highlight the
need for such accurate domain generation.

Overall, this article can be considered as a partner to (Woolley 2022), which demon-
strates thatminimal changes to the boundary conditions can also fundamentally change
the bifurcation structure, which is not observed in the linear kinetics. Thus, if minor
changes in the boundary conditions and/or shape can lead to extreme changes in
patterning behaviour, application papers must be heavily critical about the solution
domains and we suggest that spatial perturbations in shape and boundary conditions
should become normalised as part of patterning investigations.

Appendix A: Expansion solutions

A.1 Solving the second order expansion on a square domain

If we assume that there is no t1 dependence and that S1 = 0, then upon substitution
of U1 the right-hand side of equation (53) is explicitly

LU2 = −a2

4

(
�2 fuu + 2� fuv + fvv

�2guu + 2�guv + gvv

)
(
cos(2πx) + 4Cs cos(πx) cos(π y) + Cs cos(2π y) + (C2

s + 1)
)

. (A1)

By inspection, U2 must have the form,

U2 =
(
U2c
V2c

)
+

(
U2x
V2x

)
cos(2πx) +

(
U2xy
V2xy

)
cos(πx) cos(π y)

+
(
U2y
V2y

)
cos(2π y) + αU1, (A2)
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where α is an arbitrary constant that could be used to fit the initial conditions. Here,
for simplicity we set it to 0. After substituting equation (A2) into equation (A1), we
can solve for the eight undetermined coefficients of equation (A2),

U2c = −
((

−�2guu − 2�guv − gvv
)
fv + gv

(
�2 fuu + 2� fuv + fvv

)) (
a2 + b2

)
4 fu gv − 4 fvgu

, (A3)

U2x =
((

( fuugv − fvguu)�2 + (2 fuvgv − 2 fvguv)� + gv fvv − fvgvv
)
Sc2 − 4π2Dv

(
�2 fuu + 2� fuv + fvv

))
a2Sc2

(−4 fu gv + 4 fvgu ) Sc4 + 16π2 (Dugv + Dv fu ) Sc2 − 64Du Dvπ4
,

(A4)

U2y =
((

( fuugv − fvguu)�2 + (2 fuvgv − 2 fvguv)� + gv fvv − fvgvv
)
Sc2 − 4π2Dv

(
�2 fuu + 2� fuv + fvv

))
b2Sc2

(−4 fu gv + 4 fvgu ) Sc4 + 16π2 (Dugv + Dv fu ) Sc2 − 64Du Dvπ4
,

(A5)

U2xy =
Sc2b

((
( fuugv − fvguu)�2 + (2 fuvgv − 2 fvguv)� + gv fvv − fvgvv

)
Sc2 − 2π2Dv

(
�2 fuu + 2� fuv + fvv

))
a

(− fu gv + fvgu ) Sc4 + 2π2 (Dugv + Dv fu ) Sc2 − 4Du Dvπ4
,

(A6)

V2c =
(
a2 + b2

) ((
−�2guu − 2�guv − gvv

)
fu + gu

(
�2 fuu + 2� fuv + fvv

))
4 fu gv − 4 fvgu

, (A7)

V2x = −
((

(− fu guu + gu fuu)�2 + (−2 fu guv + 2gu fuv) � + gu fvv − fu gvv
)
Sc2 + 4π2Du

(
�2guu + 2�guv + gvv

))
a2Sc2

(−4 fu gv + 4 fvgu ) Sc4 + 16π2 (Dugv + Dv fu ) Sc2 − 64Du Dvπ4
,

(A8)

V2y = −
((

(− fu guu + gu fuu)�2 + (−2 fu guv + 2gu fuv) � + gu fvv − fu gvv
)
Sc2 + 4π2Du

(
�2guu + 2�guv + gvv

))
b2Sc2

(−4 fu gv + 4 fvgu ) Sc4 + 16π2 (Dugv + Dv fu ) Sc2 − 64Du Dvπ4
,

(A9)

V2xy = −
Sc2b

((
(− fu guu + gu fuu)�2 + (−2 fu guv + 2gu fuv) � + gu fvv − fu gvv

)
Sc2 + 2π2Du

(
�2guu + 2�guv + gvv

))
a

(− fu gv + fvgu ) Sc4 + 2π2 (Dugv + Dv fu ) Sc2 − 4Du Dvπ4

(A10)

These coefficients are then used in the calculation of the solvability criterion, see
equations (A12) and (A13).

A.2 Solvability criterion

Applying Fredholm’s alternative theorem to equation (54) means that we have to
satisfy

〈W ,LU3〉 = 0. (A11)

for each of the basis function W , given in equation (59). Inserting equations (56)
and (A2) into the right-hand side of equation (54) and taking the inner product with
equation (59) mean that we have to satisfy

0 =(�� + 1)
da

dt2
+

(
−1

8
( fuuu� + guuu)�3 − 3

8
( fuuv� + guuv)�2

−3

8
( fuvv� + guvv)� − 1

8
(� fvvv + gvvv)

)
a3

+
((

−1

4
( fuuu� + guuu)�3 + −3

4
( fuuv� + guuv) �2
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−3

4
( fuvv� + guvv) � − 1

4
(� fvvv + gvvv)

)
b2

+
(
1

2

(
− (2U2c +U2x ) fuu − (2V2c + V2x ) fuv − 4

S2π2Du

Sc3

)
�

−1

2
(2U2c +U2x ) guu − 1

2
guv (2V2c + V2x )

)
�

+
(

−1

2
(2U2c +U2x ) fuv − 1

2
(2V2c + V2x ) fvv

)
�

+1

2

(
− (2U2c +U2x ) guv − (2V2c + V2x ) gvv − 4

S2π2Dv

Sc3

))
a

− 1

2

(((
fuvV2xy + fuuU2xy

)
� + guuU2xy + guvV2xy

)
�

+ (
fvvV2xy + fuvU2xy

)
� + gvvV2xy + guvU2xy

)
b, (A12)

0 =(�� + 1)
db

dt2
+

(
−1

8
( fuuu� + guuu)�3 − 3

8
( fuuv� + guuv)�2

−3

8
( fuvv� + guvv)� − 1

8
(� fvvv + gvvv)

)
b3

+
((

−1

4
( fuuu� + guuu)�3 + −3

4
( fuuv� + guuv) �2

−3

4
( fuvv� + guvv) � − 1

4
(� fvvv + gvvv)

)
a2

+
(
1

2

(
− (

2U2c +U2y
)
fuu − (

2V2c + V2y
)
fuv − 4

S2π2Du

Sc3

)
�

−1

2

(
2U2c +U2y

)
guu − 1

2
guv

(
2V2c + V2y

))
�

+
(

−1

2

(
2U2c +U2y

)
fuv − 1

2

(
2V2c + V2y

)
fvv

)
�

+1

2

(
− (

2U2c +U2y
)
guv − (

2V2c + V2y
)
gvv − 4

S2π2Dv

Sc3

))
b

− 1

2

(((
fuvV2xy + fuuU2xy

)
� + guuU2xy + guvV2xy

)
�

+ (
fvvV2xy + fuvU2xy

)
� + gvvV2xy + guvU2xy

)
a (A13)

From Sect. A1, we note that each of the Ui and Vi contains a term of the form a2,
b2, both or ab. Substituting these terms into equations (A12) and (A13), we arrive at
an equations of the form given by equations (63) and (64).
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