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A B S T R A C T

Algorithm aversion occurs when organizations or individuals reject optimal analytical decision support in favour 
of informal, subjective decisions. This phenomenon has been observed in many practical decision-making sce-
narios and is generally believed to negatively impact decision quality. However, its existence and effect in 
volatile supply chain environments has not been empirically tested in the literature. Safety stock buffering de-
mand volatility is an important decision in supply chain management, making it an ideal lens to observe algo-
rithm aversion. In this paper, we empirically investigate algorithm aversion behaviour in the context of safety 
stock settings. We collect data from a case retail company across a range of stockkeeping units (SKUs), 
encompassing both pre-disruption and post-disruption time stages with varying levels of volatility. We introduce 
a simulation model to determine whether algorithm aversion exists for safety stock decisions and to assess how 
algorithm adoption and adaptation affects performance. Our findings indicate that algorithm aversion occurs 
during supply chain disruptions, with algorithmic decisions significantly outperforming human judgment. Based 
on interview results and theories of information systems, we propose a theory to explain and generalize the above 
findings. This theory attributes algorithm aversion behaviour to reduced sense of fitness among algorithm users 
and lack of slack resources for both users and developers. It also offers insights into how the adoption and 
adaptation of algorithms influence decision performance during disruptive events.

1. Introduction

Algorithm aversion is a phenomenon where humans tend to trust 
their intuition more than analytical algorithms when making manage-
rial decisions (Dietvorst et al., 2015). This aversion suggests that human 
decision-makers exhibit greater tolerance for errors made by human 
peers than for those made by computer codes and analytical models. 
Algorithm aversion has been observed in various contexts, including 
demand forecasting (Fildes et al., 2009), online sales recommendation 
(Yeomans et al., 2019), medical diagnosis and prescription (Longoni 
et al., 2019) and legal settings (Lowens, 2020). However, research on 
algorithm aversion behaviour in the context of operations management 
and supply chain management remains limited (Feng and Gao, 2020).

Supply chain resilience during disruptions has received considerable 
attention in recent years (Katsaliaki et al., 2022). By definition, supply 
chain disruptions refer to abrupt internal or external events that affect 
supply chain operations. Typical events triggering supply chain dis-
ruptions include natural disasters—such as earthquakes, volcanic 
eruptions, and pandemics—or human-made disruptions, such as 

economic crises, wars, and strikes (ibid.). A recent disaster illustrating 
the detrimental impact of supply chain disruptions is the COVID-19 
pandemic. Disruptions like COVID-19 significantly increased supply 
chain risk. For instance, COVID-19 disruptions greatly increased the 
likelihood of supply chains experiencing the bullwhip effect and ripple 
effect (Scarpin et al., 2022). On the demand side, disruptions related to 
COVID-19 include increased demand, shortages, and disrupted demand 
patterns. These patterns have been some of the most significant supply 
chain challenges (Schleper et al., 2021; Seuring et al., 2022; Rinaldi 
et al., 2022). Supply chain risk during disruptions tends to follow a 
heteroskedastic pattern, meaning that the amplitude of the risk (e.g., 
forecast error) changes as the event unfolds over time (Browning et al., 
2023).

High-quality decisions enable businesses to seize opportunities and 
address threats during disruptive events (Nikookar and Yanadori, 2022). 
Thus, given the increased frequency of disruptive events worldwide and 
the growing reliance on computer- and algorithm-based operational 
decision making, several critical questions emerge: Do decision-makers 
tend to avoid using algorithms during disruptive events? What are the 
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consequences of such behaviour? What factors drive this behaviour? 
Laboratory evidence suggests that humans exhibit algorithm aversion 
when the external environment is risky and volatile (Dietvorst and 
Bharti, 2020). However, this hypothesis has not been tested using actual 
supply chain scenarios and data, nor is there a comprehensive business 
or organizational theory to explain such behaviour. Understanding these 
questions is crucial because humans are the ultimate decision-makers in 
supply chains. This understanding can guide businesses in building 
robust data analytics capabilities and subtly influencing managerial 
decision-making processes. By doing so, businesses and supply chains 
can achieve better performance and enhance their resilience during 
disruptions.

Among the various types of supply chain decisions, the inventory 
replenishment decision—the determination of order quantity for indi-
vidual SKUs (stockkeeping units)—is crucial in regulating physical and 
information flows. Decision support algorithms for calculating order 
quantity is widely adopted by manufacturing and retail businesses. Most 
of these inventory replenishment algorithms, such as the well-known 
order-up-to policy, are heuristic in nature (De Kok et al., 2018). In 
these algorithms, the order quantity for future periods is determined 
using inputs from various system functions, including demand and sales 
forecast, safety stock levels, and current stock levels (ibid.). The rec-
ommended order quantity is then calculated using these inputs.

Among these input variables, safety stock serves as a buffer to 
manage supply chain risks, particularly the risk of inaccurate demand 
forecasts (Krupp, 1997). The safety stock level is influenced by the 
decision-maker’s prediction of future uncertainty (Gonçalves et al., 
2020). Safety stock decisions become especially important during 
disruptive supply chain events, as uncertainty levels can fluctuate 
drastically in a short period (Christopher and Holweg, 2011). Thus, we 
choose this decision task to explore the phenomenon of algorithm 
aversion. Whether the decision-makers bypass algorithmic recommen-
dations regarding safety stock levels reflects their trust in the algorithm 
and their assessment of risk.

We aim to address three key questions in this research study: (1) Is 
there algorithm aversion during supply chain disruptions? (2) Does al-
gorithm aversion improve or worsen the performance of the algorithm? 
(3) Why do decision-makers exhibit algorithm aversion behaviour dur-
ing disruptive events? To evaluate these questions, we utilise case study 
and simulation methodologies, along with a theoretical approach. The 
justification for these methodological approaches stems from limitations 
of previous studies. The case study method allows us to observe actual 
user behaviour recorded in the business database, ensures that the be-
haviours studied are realistic (Stuart et al., 2002). This method is 
particularly suitable for evaluating the first question. We considered a 
real-life case study where we collected operational data from a retail 
company for the year of 2020, during which many countries imposed 
full or partial lockdown measures in response to the COVID-19 
pandemic. We also gathered data from a year before the disruption. 
This longitudinal case study approach, comparing pre- and 
post-disruption periods, provides insights into how algorithm aversion 
behaviour relates to changes in the disruptive environment.

Furthermore, simulation methodologies complement the case study 
approach in investigating the algorithm adoption and aversion behav-
iours. Under an experimental approach, the algorithmic performance is 
easy to observe or calculate, but the actual decision behaviour is un-
known prior to the experiment (Castelo et al., 2019). Conversely, under 
a case study approach, reconstructing algorithmic recommendations 
and performance poses a significant methodological challenge. Addi-
tionally, the psychological constructs of trust and tolerance, which are 
key in behavioural research on algorithm aversion (Dietvorst et al., 
2015), are difficult to retrospectively observe in real-world settings. 
Therefore, we need to shift our focus to adoption and adjustment 
behaviours—specifically, how much and how often actual decisions 
deviate from the algorithm’s recommendations. Simulation is essential 
for evaluating what-if questions—for example, what happens if human 

decision makers strictly follow or alter the algorithmic decisions? This 
approach allows us to measure the performance of algorithmic recom-
mendations under strict adherence, making it suitable for evaluating 
research question two.

This study contributes to the literature both normatively and 
empirically. First, we evaluate the existence of algorithm aversion dur-
ing a real-life disruption, observed as intensified adjustments to algo-
rithmic recommendations. These observations and evaluations 
complement the experimental evidence of algorithm aversion in the 
literature (Filiz et al., 2023). Second, using simulation, we show that 
algorithm aversion behaviour negatively impacts decision-making per-
formance, building on findings from previous studies. Additionally, we 
demonstrate the superiority of alternative algorithms based on hetero-
skedasticity over the incumbent algorithm. This demonstration repre-
sents the first attempt to apply heteroskedastic models to inventory 
control and safety stock setting to counter supply chain disruptions. 
Lastly, we propose a theoretical framework to explain the existence and 
performance of algorithm aversion during disruptions, drawing from 
multiple theoretical perspectives. Based on this framework, we propose 
testable hypotheses for further validation, providing a foundation for 
future research to build upon.

This paper is organized as follows. In Section 2, we present the 
theoretical background of this research. Section 3 presents methodology 
including information on the case study and the data used for simula-
tion. Section 4 gives the simulation results. Section 5 introduces a 
theoretical framework to explain the adoption and adaptation behav-
iours observed in this case study. Section 6 concludes the paper 
including study limitations and future research directions.

2. Literature review

The relevant literature of this research is reviewed in this section. 
This research contributes to the literature of algorithm aversion and 
inventory theory, in particular dynamic safety stock methods.

2.1. Algorithm aversion

Dietvorst et al. (2015) first introduced this term “algorithm aver-
sion”. The authors found that decision-makers exhibit lower tolerance 
towards algorithmic errors compared to human errors. This finding was 
supported by additional studies (e.g. Prahl and Van Swol, 2017). A 
comprehensive review of algorithm aversion (Mahmud et al., 2022) 
revealed that most existing studies on this phenomenon rely on exper-
imentation. Algorithm aversion may also manifest as more frequent 
adjustments to algorithm recommendations. For instance, Fildes and 
Goodwin (2021) observed that managers often make frequent adjust-
ments to algorithmic recommendations when making forecasts, result-
ing in reduced forecast accuracy and increased management burden.

Several proposed explanations exist for algorithmic aversion 
behaviour. Dietvorst and Bharti (2020) attributed this phenomenon to 
the diminishing sensitivity of decision-makers to forecast errors. Task 
mismatch has also been used as an antecedent factor for algorithm 
aversion (Lowens, 2020). Task mismatch occurs when decision-makers 
perceive the task, such as subjective evaluations, to be beyond the ca-
pabilities of the algorithm, leading them to be more averse to its use. 
Additionally, there are propositions that algorithm aversion is influ-
enced by bias in evaluating others—both users and their peers—rather 
than being solely due to the algorithm (Morewedge, 2022). These 
contextual factors suggest that algorithm aversion is more likely to occur 
if the task is central to the user’s identity or if performance measures are 
more ambiguous and subjective.

Studies have also explored methods to mitigate managerial algo-
rithm aversion, under the assumption that aversive behaviour reduces 
decision quality. One approach involves providing social proof of algo-
rithm superiority, which has been shown to effectively persuade people 
to adopt algorithms (Alexander et al., 2018). Alternatively, 
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implementing policies that limit decision maker adjustments can in-
crease the propensity to use algorithms without compromising perfor-
mance (Dietvorst et al., 2018).

The primary approach in algorithm aversion studies has predomi-
nantly been experimental. One of the few exceptions focused on forecast 
adjustments (Fildes and Goodwin, 2021). In this study, algorithmic 
forecasts were generated by inputting actual data into the forecasting 
system. And their accuracy was compared with judgmental or judg-
mentally adjusted forecasts. We have adopted a similar 
simulation-based approach in our study, but with some modifications to 
enhance analysis. Firstly, our simulation model is customized for each 
individual SKU, considering their unique operational characteristics 
such as shipping lead-time and shelf-life. In contrast, forecasting algo-
rithms are typically assumed to be applicable to all SKUs, without ac-
counting for their specific characteristics. Secondly, our study diverges 
from the main objective of forecasting research, which typically focuses 
on accuracy. In inventory control, multiple objectives of similar or equal 
importance, such as availability, stock level, and waste, must be 
considered (see Section 3.4).

Several gaps exist in the current literature on the topic of algorithm 
aversion. First, existing studies on algorithm aversion in volatile envi-
ronments predominantly focus on psychological dimensions of decision- 
makers, neglecting important managerial and organizational factors 
(Dietvorst and Bharti, 2020). Second, the algorithm aversion literature 
lacks investigation into an important operations and supply chain 
management decision—the inventory replenishment decision. Third, 
most research on algorithm aversion is conducted in laboratory settings, 
where subjects make decisions under controlled conditions. Actual 
empirical evaluation is missing, which is important to capture the 
complexities and imperfections of practical settings.

2.2. Risk, heteroskedasticity, and safety stock

In supply chain disruptive events, the level of risk can fluctuate over 
time (Christopher and Holweg, 2011). Heteroskedasticity, which in-
volves time series with updating conditional variance, is a model that 
accounts for the time-varying volatility. During supply chain disrup-
tions, time series of forecast errors can exhibit heteroskedasticity. The 
GARCH model (Generalized Auto-Regressive Conditional Hetero-
skedasticity, Bollerslev, 1986) is commonly used for modelling and 
predicting heteroskedastic time series. While the GARCH model has 
been applied in demand forecasting, it typically models the demand 
series itself, rather than the forecast error, to be heteroskedastic (e.g. see 
Zhang, 2007).

When the forecast error exhibits heteroskedasticity, dynamic safety 
stock algorithms tend to outperform constant or static algorithms, given 
that safety stock serves as a buffer to hedge against risk (Kanet et al., 
2010; Stößlein et al., 2014). As the level of risk fluctuates over time, 
safety stock buffer should change accordingly. However, previously 
developed models aimed at optimizing safety stock in such environ-
ments often rely on simplifying assumptions and overlook inventory 
update processes. Some studies have addressed this issue (see e.g., 
Trapero et al., 2019) by employing GARCH for setting safety stock, 
similar to our research design. Although the GARCH model has 
demonstrated strong performance, these studies typically focus on 
general demand time series without explicitly considering disruptive 
events. For a comprehensive review of safety stock setting methods and 
techniques, including their advantages and limitations, see Gonçalves 
et al. (2020) and Barros et al. (2021).

Decision-maker attitude towards risk significantly influences safety 
stock setting given that safety stock serves to hedge against demand and 
supply risks. Individuals have been found to typically be risk averse, 
preferring small but certain payoffs over large but uncertain ones 
(Kanheman and Tversky, 1979). Although some differences may exist. 
For example, MacCrimmon and Wehrung (1990) surveyed over 500 
top-level business executives and discovered that successful executives, 

in terms of wealth, position, and income, tend to be more risk-seeking, 
whereas mature executives, in terms of age, seniority, and the number 
of dependents, tend to be more risk-averse. Also, research suggests that 
female decision-makers exhibit greater risk aversion compared to their 
male counterparts (Eckel and Grossman, 2008).

Contradictory evidence exists regarding how risk propensity in-
fluences ordering behaviour and safety stock levels. In the context of 
newsvendor model, Eeckhoudt et al. (1995) analytically demonstrated 
that risk-averse newsvendors should decrease their order quantity, as 
larger orders lead to greater variability in payoff, regardless of the 
product’s profit margin. This finding was experimentally confirmed by 
Becker-Peth et al. (2018). However, alternative perspectives suggest the 
opposite effect, indicating that risk aversion is associated with larger 
order sizes and higher inventory levels. Corbett and Fransoo (2007)
conducted a survey among small business owners and entrepreneurs, 
revealing that subjects exhibit risk aversion toward gains but are 
risk-seeking toward losses, consistent with prospect theory. Moreover, 
they found that risk aversion is associated with higher inventory levels, 
particularly for high-margin products. Similarly, Cannella et al. (2019)
observed a positive association between risk aversion and increased 
inventory level in a Beer Game experiment. These conflicting findings 
may stem from variations in the measurement of risk attitude. For 
instance, Becker-Peth et al. (2018) employed the incentivized 
Holt-Laury lottery, while Cannella et al. (2019) utilized a 
non-incentivized psychological inventory.

The research gap in the safety stock literature can be summarized as 
follows. While several dynamic safety stock algorithms based on tech-
niques such as exponential smoothing or GARCH have been developed, 
their performance during supply chain disruptions have not been 
empirically evaluated. Furthermore, there has been limited investiga-
tion into user decision behaviour in the presence of safety stock algo-
rithms. Existing research on the relationship between risk attitudes and 
order behaviour predominantly relies on experimental and interview 
approaches, lacking empirical support from actual operational data.

3. The case study and methodology

In this section, we present an overview of the case data and sources. 
The safety stock methods, the inventory simulation model, and the 
performance metrics adopted in the simulation are also defined.

3.1. The case and data overview

The case study conducted in this research focuses on a distribution 
centre (DC) operated by company X, a prominent online grocery retailer 
located in Europe. Company X offers a wide range of products, including 
perishable and non-perishable items such as food, beverages, personal 
care, and home care products. Each DC in company X’s distribution 
network serves a specific geographical zone and is responsible for 
making replenishment and inventory management decisions indepen-
dently. While some lateral transhipment occurs between DCs, it is 
negligible and can be disregarded for analysis purposes. Suppliers 
deliver products directly to the DCs, with most suppliers located within 
regional distances, resulting in short replenishment lead-times. How-
ever, some suppliers from neighbouring countries may have longer lead- 
times. Additionally, certain suppliers require orders to be placed in 
batch sizes, especially for non-perishable products, meaning that the 
order quantity must be a multiple of the specified batch size.

The company has implemented a demand management system 
comprising forecast models, an order assistance system, and order 
quantity recommendations. Daily, the forecasting system generates de-
mand forecasts for each SKU for the next 30 days. The system utilizes 
both time-series and regressive forecasting methods. However, opti-
mizing forecasting methods is not within the scope of this paper. The 
order recommendation system employs an order-up-to algorithm, which 
determines the recommended order quantity as the difference between 

X. Wang et al.                                                                                                                                                                                                                                   International Journal of Production Economics 278 (2024) 109442 

3 



the order-up-to level and the current inventory position. The order-up-to 
level is calculated as the sum of the lead-time demand forecast and the 
safety stock. The lead-time demand forecast is generated by the fore-
casting system, while the safety stock is determined as a multiple of the 
standard deviation of historical forecast errors. Further details on this 
algorithm are provided in Section 3.3.

Purchasing managers can manually adjust input variables to modify 
the order quantity based on their judgment. However, we have observed 
variations in the difficulty and complexity of adjusting these variables. 
The demand forecasts, generated by an independent forecasting system 
employing multiple forecasting algorithms, are relatively rigid and 
challenging for users to manually modify. Moreover, adjustments to 
demand forecasts primarily focus on enhancing forecast accuracy rather 
than optimizing inventory control. Stock level information, derived 
from inbound and outbound quantities or recorded directly from peri-
odical inventory reviews, presents additional challenges for adjustments 
due to its utilization in auditing and financial reporting processes. In 
contrast, while an algorithm is employed to determine safety stock, 
purchasing managers typically possess greater flexibility in adjusting 
safety stock levels. By increasing or decreasing the safety stock, they can 
modify the recommended order quantity generated by the algorithm, 
allowing for deviations from algorithmic recommendations in the final 
purchasing decision.

The data utilized in this study comprises two datasets, each con-
sisting of daily entries. The first dataset span from October 1, 2018 to 
September 30, 2019, while the second dataset covers the entire year of 
2020, from 1 January to 31 December. Both datasets encompass one 
year of operational data, ensuring comparability in size. The dataset for 
2020, reflecting the effects of the COVID lockdown disruption, is 
referred to as the post-disruption period (POST), while the dataset for the 
pre-disruption period is labelled as PRE.

The PRE dataset comprises 17 SKUs of fresh vegetables and fruits, 
while the POST dataset comprises 28 SKUs encompassing various food 
and grocery products such fruits, vegetables, raw meat, beverages, and 
personal hygiene items. These datasets were compiled from multiple 
attempts to extract data from the company’s information system, 
ensuring comparability in terms of product category and characteristics. 
Recorded daily, the data fields include sales volume, order quantity, 
inventory level, received quantity and demand forecast. To mitigate 
scaling issues and preserve confidentiality, all data fields are normalized 
by dividing the annual average sales volume of each SKU over the year.

Fixed operational data for each SKU, including transportation lead- 
time and shelf life, is also collected. This data is relatively stable and 
with few, if any, changes. Hence, it is assumed that both the lead-time 
and shelf life remain constant. The transportation lead-time (referred 
to as lead-time) is defined as the time difference between when an order 
is placed to a supplier and when the products are received, measured in 
days. SKU lead-times range from one day to 14 days. Shelf life refers to 
the number of days an item can remain in the DC since arrival and ranges 

from two days to infinity, assumed for non-perishable products.
The dataset cannot be made publicly available due to confidentiality 

considerations.

3.2. Estimating heteroskedasticity

We commence with a descriptive analysis of the demand risk, spe-
cifically concentrating on evaluating variational shifts. Demand risk is 
quantified by the forecast error of sales during the lead-time period. 
Fig. 1 illustrates the daily fluctuations in demand forecast error for two 
example SKUs during the PRE and POST periods. Clearly, hetero-
skedasticity in forecast error becomes more pronounced following the 
disruption, with volatility seemingly aligning with the spread of the 
pandemic.

Given these characteristics, we apply Engle’s ARCH test to the lead- 
time demand forecast error of all SKUs in both the PRE and POST 
datasets. Higher Engle’s ARCH test statistic values indicate greater 
heteroskedasticity. As shown in Fig. 2, the POST dataset shows signifi-
cant heteroskedasticity.

These initial observations inspired us to simulate algorithms for 
estimating the future variance of the forecast error, which is used for 
dynamically setting the safety stock. Three algorithms are simulated, 
including HIST, SES and GARCH. HIST uses historically observed fore-
cast error variance as the estimation; SES estimates the variance with an 
exponential smoothing approach between the historical estimate and 
the newly observed forecast error; under GARCH, the forecast error 
series is modelled as a GARCH process, and the variance estimate is 
generated accordingly. The equations for these algorithms are provided 

Fig. 1. The standardized forecast error of sample SKUs in PRE and POST. (a) SKU #6 in PRE; (b) SKU #26 in POST.

Fig. 2. Engle test statistics of forecast error in PRE and POST datasets.
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later in this section. The results of these algorithms are compared to the 
original order quantities (ORIG)—which are the actual orders made to 
the suppliers, as provided in the corporate datasets. It is important to 
note that although the SES and GARCH algorithms can be applied to 
predict the demand series, they are exclusively used to estimate the 
forecast error variance in this research. The demand forecasts are 
included in the datasets, and the discussion of demand forecasting 
methods is beyond the scope of this research.

The algorithms differ in estimating the future standard deviation of 
the lead-time demand forecast error, σ̂ t+1, which is used to set the safety 
stock. The time arrow assumption is not violated in the simulation—that 
is, all the information used in the forecasts and decisions are available 
prior to the time of evaluation.

The first algorithm is based on the historical forecast error (HIST), is 
to set the safety stock based on the historical forecast error, e.g., the past 
30 days. It can be represented as (1): 

σ̂2
t+1 =

1
30

∑t

k=t− 29
(εk − εk)

2 (1) 

Let dt be the sales of day t, and d̂t,k the sales forecast made at period k for 
period t. Therefore, 

∑L
k=1 dt− k is the total sales over lead-time L and 

∑L
k=1 d̂t− k,t− L− 1 is the sum of forecast made on period t− L− 1 for the 

same span. εt =
∑L

k=1 dt− k −
∑L

k=1 d̂t− k,t− L− 1 is the lead-time forecast 
error calculated at period t, and εt =

( ∑t
k=t− 29εk

)
/30 is the average 

forecast error over the last 30 periods.
Although the HIST method can detect long-term increasing and 

decreasing volatility trends, there is a lag between the actual and esti-
mated change in volatility. We conjecture this algorithm is the incum-
bent safety stock policy currently adopted in the system. The evidence 
comes from two sources. First, the description of the interviewee of the 
incumbent policy matches a HIST policy. Second, we plot the order 
quantities recommended by HIST against the original quantities (see 
Fig. 3). HIST aligns with the original quantities better in PRE than in 
POST, suggesting that less adjustment is made during the PRE period. 
Meanwhile in POST, the diagonal fitting line shows an obvious upward 
bias, so much so that R2 becomes negative. This can be attributed to the 
positive adjustment to the recommended order quantity.

The second algorithm (SES) is simple exponential smoothing which 
is used to predict the variance of forecast error. In other words, the 
variance of the forecast error in the next period equals a weighted 
average of the estimated forecast error variance in the current period 
and the square of current forecast error as in expression (2): 

σ̂2
t+1 =(1 − β)σ̂2

t + βε2
t (2) 

β is the smoothing parameter defined by the user. This method has been 
proposed by Bretschneider (1986) due to its simplicity. Boudoukh et al. 

(1997) discussed the use of SES and GARCH to forecast volatilities in 
financial data. They found that SES outperforms GARCH. In this 
research, we automatically update the β value in each period such that it 
is optimal to minimize the forecast error up to the current period under 
the SES method—equation set (3). Let βT be the β value to be used in 
period T, then: 

βT = argmin
∑T

t=1
ε2

t

s.t. εt = dt − d̂t− L,L

d̂t,L = βTdt− 1 + (1 − βT)d̂t− 1,t

(3) 

d̂t,k is the demand forecast made at t for k periods later. The updating 
mechanism ensures that the β value for estimating the variance in every 
period is the retrospect optimal value for the L-step-ahead forecast in the 
past T days. However, we have found that using an arbitrarily constant 
smoothing value β, for instance, β = 0.5, generates comparable per-
formance.

Lastly, we adopt the GARCH model to predict the future changes in 
variability. The GARCH model is suitable for the forecasting of hetero-
skedastic time-series. The general GARCH (p, q) model is given as fol-
lows. Let the forecast error be {εt}, with εt |ϑt− 1 following a normal 
distribution with changing variance, N

(
0,σ2

t
)
, where ϑt− 1 is the set of all 

available information up until t − 1. The variance σ2
t follows the auto- 

regressive process (4): 

σ2
t =ω + φ1εt− 1 + ⋯ + φqεt− q + θ1σ2

t− 1 + ⋯ + θpσ2
t− p (4) 

In this study, we adopt the GARCH(1,1) model and automatically update 
the φ1 and θ1 values using the estimate function in MATLAB R2019 
(MATLAB, 2018).

As an example, Fig. 4 shows the safety stock generated by the four 
estimation methods, along with the demand series for SKU #26 post- 
COVID. It can be seen how the ORIG estimation method exaggerates 
the variance of forecast error, hence the safety stock.

3.3. The inventory model

We adopt the order-up-to policy as the ordering policy in the system 
model. This policy is widely adopted in both academia and industry due 
to its simplicity. This choice is also consistent with the case company. 
We will show here that under this policy, the safety stock should depend 
on the standard deviation of the forecast error. The linear order-up-to 
policy can be expressed as follows (5): 

ot =
∑L

k=1

d̂t,k + sst − ipt (5) 

Fig. 3. Goodness-of-fit of HIST algorithm using logarithmic scales. (a) PRE; (b) POST.
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∑L
k=1 d̂t,k is the lead-time demand forecast. sst is the safety stock. Due to 

the heteroskedastic nature of demand and supply risk, the safety stock is 
time varying. ipt is the inventory position, which equals the sum of in-
ventory level, it, and work-in-process level, wt. They satisfy the balance 
equation (6)(7): 

it = it− 1 + ct − dt (6) 

and 

wt =wt− 1 + ot− 1 − ct , (7) 

where L is the lead-time (the time difference between placing and 
receiving an order) which is assumed to be constant in our study. This is 
a valid assumption based on our observations of the case company, as 
the lead-time did not change during the disruptive period. ct is the 
completed (arrived) quantity. If the supply-side uncertainty risk is ab-
sent, then ct = ot− L. The work-in-process can also be expressed as the 
sum of incoming orders, wt =

∑L− 1
k=1ot− k. The inventory position thus 

satisfies the balancing relationship (8): 

ipt = ipt− 1 + ot− 1 − dt . (8) 

Equation (5) can be expressed verbally as “the order quantity equals 
the forecast of lead-time demand plus the safety stock minus the in-

ventory position”. It can be further rewritten as ot = d̂t,L + sst −
(

it +
∑L− 1

k=1ot− k −
∑L− 1

k=1 d̂t,k

)
, where î t,L = it +

∑L− 1
k=1ot− k −

∑L− 1
k=1 d̂t,k is the 

forecasted inventory level at t + L based on the current inventory level at 
t, the incoming orders and the forecasted demand. The order-up-to 
policy can then be expressed as “the order quantity equals to the fore-
cast demand minus the forecasted inventory, plus the safety stock”.

On the other hand, from Equation (5), we have it =
∑L

k=1 d̂t,k −
∑L

k=1 ot− L+k + sst. From (5), we also have it+L = it +
∑L

k=1 ot− L+k −
∑L

k=1 dt+k. Combining these two equations, we have 

it+L = sst +
∑L

k=1

d̂t,k −
∑L

k=1

dt+k (9) 

Equation (9) means that the inventory level equals to the safety stock 
minus the forecast error of the lead-time demand. Therefore, the optimal 
safety stock should be set in a newsvendor fashion based on the estimate 
of the standard deviation of lead-time demand forecast error σ̂ t+L =

std
( ∑L

k=1 d̂t,k −
∑L

k=1 dt+k
)
. This is the L-step-ahead estimate since only 

the forecast error up until the current period, 
∑L

k=1 d̂t− L,k −
∑L

k=1 dt− L+k, 
can be observed. This estimate can be generated with the HIST, SES and 
GARCH algorithms given in Section 3.2. It should be noted that under 
HIST and SES methods, the estimate of σ̂ t+L does not change with L. The 
safety stock is then set as sst = qα σ̂ t+L, where qα is the α-quantile of 
standard normal distribution, and α is the target availability (Beutel and 
Minner, 2012; also see Section 3.4).

There are several complicating factors in real operations that may 
affect the validity of the above result. First, the order quantity ot and the 
inventory level it cannot take negative values in practice because the 
retail business cannot return excessive inventory to the supplier, nor can 
they keep the undelivered customer orders until the product becomes 
available. These situations are referred to as “forbidden returns” and 
“lost sales” in the inventory management literature. To represent these 
situations mathematically, the right-hand side of (5) and (6) should be 
wrapped with the nonnegative constraint max {•,0}.

Second, the inventory balance equation (8) can only be applied to 
non-perishable products or those with a sufficiently long life. For 
perishable products with a short life, we use Nahmias (1982)’s perish-
able inventory model to simulate the inventory update process. This 
model uses the inventory compartmentalization technique, where in-
ventory is divided into parts (compartments) according to the remaining 
life. Each compartment updates via a unique balance equation. Let m̂ be 
the largest remaining life, and m̌ as the smallest remaining life. Denote imt 
as the inventory level with m days remaining life at the end of t, then it 

Fig. 4. Safety stock levels for SKU #26. (a) ORIG; (b) HIST; (c) SES; (d) GARCH.
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follows the following balance equations: 

imt = max

[

im+1
t− 1 − max

(

dt −
∑m

k=1
ikt− 1,0

)

,0

]

, for m < m̂

imt = max

[

ot− L − max

(

dt −
∑m

k=1

ikt− 1,0

)

,0

]

, for m = m̂

(10) 

We offer an intuitive explanation of the above equation (10) as fol-
lows: the demand (dt) will be satisfied by the inventory older than m+ 1 
first. The unsatisfied demand will be then satisfied by the inventory with 
the remaining life of m+ 1. Any leftovers will become inventory with 
remaining life of m in the next period. The amount of waste due to 
expiration is thus (11): 

vt =max
(
i
m̌ − dt ,0),
t− 1 (11) 

which means that if the shortest life inventory is not sold, it expires.
Equation (10) assumes a first-in-first-out (FIFO) assumption, where 

the retailer will distribute the oldest items to consumers before they start 
to distribute newer ones. The validity of this assumption is greater for 
online retailers, as it is easier to achieve FIFO when the picking and 
distribution is managed centrally ((Nahmias, 1982); Barto et al., 2024). 
For brick-and-mortar stores, various complicating factors exist, such as 
filling the shelf from the DC, and consumers’ picking behaviour at the 
shelf.

When these complicating factors exist, the optimal safety stock is no 
longer a multiple of the standard deviation of the forecast error. None-
theless, the relationship still holds that the larger the variance of the 
forecast error, the higher the safety stock should be. This assumption is 
sufficient for our analysis, which focuses on decision maker perception 
and prediction about the demand uncertainty (variance of forecast 
error) and their response.

Finally, we make a note on supply uncertainty—defined as the 
phenomenon that the received quantity at the retailer is different 
(usually smaller) than the ordered quantity and the difference is un-
certain. Supply uncertainty is an important component of supply chain 
risks, and we have observed the increase of supply uncertainty during 
the pandemic. Although the supply uncertainty is not the focus of this 
research, we nonetheless include it in our simulation model. Specif-
ically, we assume that the received quantity of a particular order is 
proportional to the order quantity, and the proportion is determined in 
the original dataset: 

calg
t+L

oalg
t

=
corig

t+L

oorig
t

(12) 

The superscript alg represents the respective quantities based on the 
alternative algorithms, while orig represents the original quantity 
included in the dataset. This assumption holds if the supplier adopts the 
linear allocation policy to allocate the limited supply across retailers 
(Cachon and Lariviere, 1999). This assumption ensures that all candi-
date strategies suffer from the same level of supply uncertainty.

3.4. Performance metrics

We adopt three performance measures which are all commonly used 
in the inventory control practices. The first measure (and perhaps the 
most important one in retail) is product availability (αc) defined as the 
proportion of periods in which no shortage occurs. In our simulation, it 
is calculated as the proportion of days when the inventory level after 
demand fulfilment stays above zero, since a positive inventory level 
indicates no shortage. 

αc =

∑T

t=1
1{it> 0}

T
(13) 

In equation (13), 1{ • } is an indicator function which equals to one 
when the argument is positive, and zero otherwise. Availability affects 
retailer profit and goodwill, hence an important metric for inventory 
management. The second measure is on-hand inventory level after de-
mand fulfilment (i) averaged over days. It increases with availability 
since a high inventory level reduces the likelihood of shortage (14). 

i=

∑T

t=1
it

T
(14) 

The inventory level metric is important due to holding cost. In 
practice, high DC utilization forces the retailer to exploit other solutions, 
such as external storage, resulting in additional holding costs. As the 
actual inventory data is normalized by the average annual sales, the 
measure obtained from (14) should be interpreted as the average in-
ventory coverage, i.e., the number of days that the inventory can cover 
the demand.

The final performance measure is average daily waste gen-
erated—defined as unsold inventory with a shelf life of zero (15). 

v=

∑T

t=1
vt

T
(15) 

This metric directly relates to food waste—given that most perish-
able products are within the food category. This metric has economic, 
social, and environmental consequences. Food waste reduces the profit 
of the retailer, general social food availability, and unnecessarily in-
creases natural resources use (material and energy) in production and 
distribution.

When calculating these metrics, we also note that for both PRE and 
POST datasets, we exclude the initial 30 days from the reporting to 
reduce initialization effects.

4. Simulated inventory performance

In this section we present the simulation results, summarized in 
Fig. 5 and Table 1. The result from the PRE dataset is colour coded as 
grey and the POST dataset as black. The subfigures 5(a), 5(b) and 5(c) 
show achieved availability, inventory level, and waste, respectively. The 
bars represent the 95% confidence interval across all SKUs in the 
respective datasets. We compare the performance of the actual order 
quantity decisions with judgmental adjustments (ORIG), and the three 
algorithms introduced in Section 3.2 (HIST, SES and GARCH).

In looking at Fig. 5(a) we see that before disruption the benefit of 
algorithms to availability is not significant. The one-way ANOVA anal-
ysis across the four solutions shows no significant difference between 
any pair, with F(3,64) = 0.16, p = 0.92. This result is an indication of 
homoskedasticity in the pre-disruption era. Hence, the benefit of algo-
rithms is not obvious.

After disruption takes place, each algorithm led to significant 
availability performance improvement when compared to the baseline 
(original) solution, F(3, 108) = 10.42, p < 0.001. Paired t-tests for 
comparisons between the policies appears in Table 1. We observe that 
the availability increases by 10.6% if the safety stock settings follow the 
current algorithm (HIST), and 16.2% if the SES and GARCH methods are 
adopted. Moreover, the SES and GARCH show superiority to HIST, with 
availability increases 5.1%. There is no significant difference between 
SES and GARCH.

The ANOVA analysis shows that the algorithm adoption and adap-
tation have a significant impact on the average inventory level perfor-
mance in the PRE period (F = 9.91; p < 0.001), but not the POST period 
(F = 0.52; p = 0.67). Pairwise, in the PRE period, algorithm adaptation 
(SES vs. HIST) can reduce the inventory level, to an extent of 39.2%, 
compared with the original judgment. Likewise, GARCH can reduce the 
inventory level to a lesser extent (27%). In the POST period, the algo-

X. Wang et al.                                                                                                                                                                                                                                   International Journal of Production Economics 278 (2024) 109442 

7 



rithms can reduce inventory level but not significantly. For the waste 
generated, the algorithms do not have a significant impact in either the 
PRE (F = 0.05; p = 0.98) or the POST (F = 1.95; p = 0.13). The sig-
nificance level in the POST period is slightly higher. Between pairs of 
algorithms, the HIST, SES and GARCH algorithms can reduce waste in 
the POST period for 67.1%, 52.0% and 17.1% respectively, compared 
with judgment.

Algorithms (incumbent and alternative) can either increase avail-
ability and reduce waste (in the case of POST) or reduce inventory level 
(in the case of PRE), without harming the inventory performance in the 
other fronts. Overall, the current algorithm HIST outperforms the 
judgmental decisions represented by the original order quantities. 
Further, SES outperforms the judgmental decisions in all three metrics in 
POST, and its performance is not worse than GARCH. In the PRE period, 
SES is not worse than judgmental decisions or HIST. Given the compu-
tational resources needed in running the GARCH model for estimating 
the volatility, and the fact that SES requires even less data storage than 
HIST, we can conclude that SES is an effective and efficient algorithm for 
safety stock setting during disruptive events.

5. Slack-fitness considerations

We have established that algorithm aversion behaviour is present 
during disruptions, and it tends to deteriorate inventory management 
performance. Additionally, algorithms like SES and GARCH can improve 
performance compared with the incumbent algorithm (HIST). These 
findings align with previous experimental results on algorithm aversion 
in volatile environments (Dietvorst and Bharti, 2020). The next impor-
tant question is why decision-makers drift away from algorithmic rec-
ommendations and rely more on subjective judgement. In this section, 
we aim to generalize our findings and theoretically elucidate algorithm 
adoption behaviour during disruptions. The proposed slack-fitness the-
ory integrates technology acceptance model (TAM, Davis, 1989), 
task-technology fit (TTF, Goodhue, 1995; Goodhue and Thompson, 
1995) and slack resources theory (Rahrovani and Pinsonneault, 2012). 
This theoretical framework integrates information systems and behav-
ioural theories and encompasses both individual and organizational 
levels.

Information systems theories and technology adoption theories—-
where algorithms can be seen as a special type of decision support 
technology—can inform our understanding of the algorithm aversion 

Fig. 5. Comparison of performance measures between the policies (grey: pre-disruption; black: post-disruption; bars: 95% CI).

Table 1 
Pair comparison of simulation results under alternative decisions.

PRE POST

HIST SES GARCH HIST SES GARCH

Availability Orig. 0.033 0.033 0.060 0.089 0.136 0.136
[0.006, 0.059] [− 0.027, 0.134] [− 0.018, 0.138] [0.003, 0.148] [0.065, 0.207] [0.066, 0.206]
p = 0.02 p = 0.18 p = 0.12 p = 0.005 p < 0.001 p < 0.001

HIST – 0.021 0.027 – 0.047 0.047
[− 0.039, 0.080] [− 0.030, 0.084] [0.020, 0.074] [0.021, 0.073]
p = 0.48 p = 0.33 p = 0.002 p = 0.001

SES – – 0.007 – – 0.000
[− 0.003, 0.016] [− 0.004, 0.004]
p = 0.16 p = 0.95

Average Inventory Orig. − 0.153 − 0.473 − 0.373 − 2.337 − 1.017 − 0.494
[− 0.313, 0.008] [− 0.638, − 0.309] [− 0.544, − 0.203] [− 4.321, − 0.353] [− 3.884, 1.851] [− 3.431, 2.443]
p = 0.061 p < 0.001 p < 0.001 p = 0.02 p = 0.47 p = 0.73

HIST – − 0.321 − 0.221 – 1.320 1.843
[− 0.450, − 0.191] [− 0.337, − 0.105] [− 0.434, 3.075] [− 0.018, 3.705]
p < 0.001 p < 0.001 p = 0.13 p = 0.05

SES – – 0.100 – – 0.523
[0.056, 0.144] [0.306, 0.741]
p < 0.001 p < 0.001

Average Waste Orig. 0.015 0.008 0.005 − 0.017 − 0.006 − 0.004
[− 0.017, 0.046] [− 0.027, 0.042] [− 0.034, 0.044] [− 0.029, − 0.044] [− 0.028, 0.016] [− 0.027, 0.018]
p = 0.34 p = 0.64 p = 0.79 p = 0.009 p = 0.59 p = 0.70

HIST – − 0.007 − 0.009 – 0.011 0.012
[− 0.029, 0.015] [− 0.034, 0.015] [− 0.007, 0.028] [− 0.005, 0.030]
p = 0.52 p = 0.43 p = 0.21 p = 0.16

SES – – − 0.003 – – 0.002
[− 0.008, 0.003] [− 0.002, 0.006]
p = 0.32 p = 0.43
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phenomenon. The technology acceptance model (TAM) and task- 
technology fit (TTF) theories are particularly pertinent to this study. 
TAM is a popular theory to explain users’ acceptance of a technology. 
Core TAM constructs include ease-of-use and usefulness of technologies, 
which influence adoption behaviour (Davis, 1989). On the other hand, 
TTF focuses on whether technology adoption improves decision per-
formance. It argues that both task characteristics and technology charac-
teristics determine the task-technology fit, which in turn affects technology 
use and performance benefits (Goodhue, 1995; Goodhue and Thompson, 
1995). Evidently, TAM by itself is insufficient to explain the perfor-
mance of adopting technology but must be combined with fitness 
models such as TTF (Dishaw and Strong, 1999; Smith and Mentzer, 
2010).

Neither TAM nor TTF can address user behaviour during supply 
chain disruptions, as they do not contain relevant constructs. Hence, we 
adapt the theory of slack resources (Rahrovani and Pinsonneault, 2012). 
The theory of slack resources posits that the value of IT in a business 
depends on the IT slack, defined as extra actual or potential IT resources, 
which supports IT or organizational adaptation to internal and external 
pressure. IT slack resources may include time, human resources, and IT 
artifacts. Slack resources, in general, are defined as unused resources 
that can be invested. Slack resources are critical for firms to overcome 
crises (Tognazzo et al., 2016). It can be used to counter threats, explore 
opportunities, and cope with uncertainty (Cyert and March, 1963; 
Bourgeois III, 1981; Weinzimmer, 2000). Organizational slack has been 
identified as a strong antecedent of firm resilience and financial per-
formance in crises (Pal et al., 2014; Li, 2021).

The slack-fitness theory contains the following constructs and fac-
tors. We define disruption as a severe deviation from the current internal 
or external operating state. Two kinds of slack are involved: user slack 
and developer slack, defined as the slack resources (time) of algorithm 
users and algorithm developers respectively. A key distinction between 
the proposed slack-fitness theory and traditional technology adoption 
theories (TAM and TTF) is a recognition that both algorithm users and 
developers play parts in algorithm adoption. Asimakopoulos and Dix 
(2013) recognize the roles of both the designer and the user in fore-
casting support system adoption, and list lack of training and insufficient 
knowledge as barriers of adoption in a disruptive event. Users’ perceived 
algorithm fitness is defined as users’ understanding of how well the al-
gorithm will fit the current circumstance. It is adapted from the use-
fulness construct in TAM. The other construct in TAM, the ease-of-use 
property of the algorithm, is unlikely to vary before and after the 
disruptive event. The actual algorithm fitness refers to how well the al-
gorithm will fit in practice. This construct is similar to technology-task 
fit in TTF. We distinguish between perceived and actual performance 

to acknowledge users’ limited cognitive ability to comprehend the 
technical details of the algorithm; it is the perceived performance that 
affects the adoption, defined as the rate (or likelihood) of the algorithmic 
recommendation being implemented in decision-making. Finally, per-
formance improvement measures managerial performance (e.g., avail-
ability and inventory level) before and after the adoption behaviour.

Fig. 6 shows the theoretical relationships among these various con-
structs. The plus or minus symbols represent the theorized same- 
direction or opposite-direction relationships of constructs, respec-
tively. Question marks indicate indeterminate relationships.

A disruption environment negatively affects user adoption behav-
iour. First, disruptions reduce user and developer slack time, primarily 
due to increased worker absence and the need to address crises. The 
effect of increased employee workload is observed during the COVID 
pandemic (Pamidimukkala and Kermanshachi, 2021), often caused by 
employee absence due to sickness, quarantine, or family responsibilities. 
Personnel may also spend more time on firefighting activities during 
disruptions (Dello Russo et al., 2023).

Reduced slack time, in turn, negatively impacts user familiarity with 
current algorithms, as comprehensive training requires input from both 
developers and users. Achieving holistic training is challenging during 
disruptions. We posit that lack of slack resources during the disruption 
(e.g., time and infrastructure) hampers algorithm users’ ability to un-
derstand the algorithms. Similarly, developer constraints impede their 
capacity to provide user training and develop more suitable algorithms. 
Rahrovani and Pinsonneault (2015) demonstrated that information 
systems slack (in terms of technology, knowledge, personnel and time) 
influences employees’ proactive innovation in information technology.

Disruptions may influence adoption by directly diminishing users’ 
belief in the algorithm’s task performance. This belief stems not from 
reduced slack time, but rather from perceived environmental changes 
resulting from disruptions. Experimental studies have demonstrated that 
individuals are inclined to reject even superior algorithms if the decision 
domain and environment are risky and volatile (Dietvorst and Bharti, 
2020). The actual performance of algorithms is impacted by the severity 
of the disruption and developer slack. Developer slack can be utilized to 
understand the current situation, develop improved algorithms, and 
update the system for enhanced performance. The disruption alters the 
environment and the task, thereby influencing the eventual actual 
performance.

We contend that user adoption behaviour hinges on their perception 
or comprehension of whether the algorithm fits the current situation. 
User understanding of the algorithm proves to be a significant precursor 
to their adoption behaviour. As noted by Yeomans et al. (2019), “It is not 
enough for [recommendation] systems to be accurate, they must also be 

Fig. 6. Algorithm adoption and performance -in-disruption based on Slack-Fitness.

X. Wang et al.                                                                                                                                                                                                                                   International Journal of Production Economics 278 (2024) 109442 

9 



understood.” Several factors contribute to this: (1) individuals are more 
averse to decisions based on complex algorithms than those based on 
simple algorithms; (2) awareness of algorithm expertise, accuracy, and 
other pertinent attributes motivate individuals to place greater reliance 
on algorithms; and (3) individuals are inclined to use algorithms if they 
are trained in statistical techniques and algorithms (Mahmud et al., 
2022). User lay theories—based on their understanding and percep-
tions—regarding how an algorithm functions are also pivotal to their 
adoption behaviour (Jarupathirun, 2007; Logg et al., 2019).

Furthermore, the actual algorithmic performance plays a crucial role 
in decision-making. We posit that the actual performance of the algo-
rithm serves as a moderator between adoption and performance, as it 
determines whether adoption or aversion ultimately proves beneficial. 
Drawing on TTF theory, we argue that the relations between algorithm 
aversion and operational performance are contingent on algorithmic fit. 
This theoretical perspective accommodates counterexamples from 
published studies that demonstrate algorithm aversion may, at times, 
improve performance (Fildes et al., 2009).

The slack-fitness theory predicts a reduction in adoption behaviour 
as the disruptive event unfolds, driven by various mechanisms. How-
ever, the resulting performance stemming from this lack of adoption is 
uncertain and contingent upon the actual fitness of the incumbent al-
gorithm. This theory underscores the significance of user and developer 
slack as key variables in enhancing algorithmic performance during 
supply chain disruptions. Moreover, it is worth noting that much of these 
hypothesized relationships draw support from our initial evidence and 
insights gleaned from algorithms and decision-making literature. 
Clearly, further investigation is warranted to validate and refine these 
theoretical propositions. Consequently, grappling with these complex-
ities can lead to effective decision policies and organizational learning 
strategies that are adaptable to various types of firms and disruptions.

6. Discussion and conclusions

In this paper, using analytical case study data and simulations akin to 
a pseudo-natural experiment, we considered the presence and ramifi-
cations of algorithm aversion during supply chain disruptions, particu-
larly within the context of safety stock setting. Our findings indicate the 
following: (1) algorithm aversion changes during supply chain disrup-
tions, lead to disproportionately increased safety stock decisions as risk 
levels increase; (2) while algorithm aversion detrimentally impacts in-
ventory control performance, simple algorithms demonstrate the po-
tential for significant performance improvement; (3) the propensity for 
algorithm aversion behaviour during disruptive events can be attributed 
to information systems slack.

Theoretically, we provide insights into the phenomenon of algorithm 
aversion. Due to the ex-post nature of our operational data collection, we 
could not directly measure decision-maker risk attitudes. Therefore, our 
explanation for algorithm aversion centres on risk estimation rather 
than risk attitude. Human decision-makers find it more challenging to 
perceive and predict the changes in the magnitude of uncertainty, 
measured by second-order metrics such as the variance (Wickens et al., 
2020). In our proposed slack-fitness model, we attribute algorithm 
aversion behaviour to user’s diminishing trust in the algorithm and 
reduced slack of both users and designers during disruptions. The actual 
fitness of the algorithm acts as a moderator between algorithm adoption 
(or aversion) behaviour and decision performance. In other words, 
whether algorithm aversion is beneficial depends on whether the algo-
rithm fits the current situation. However, our study’s results imply that 
users may prematurely disengage from algorithms without fully 
grasping their suitability for the existing circumstances. This explana-
tion also sheds light on finding by Chae et al. (2014) suggesting that 
firms with robust IT planning resources (such as mathematical pro-
gramming, simulation, statistical analysis and machine learning algo-
rithms) tend to achieve higher customer satisfaction.

We have also showcased the effectiveness of pseudo-natural 

simulation experiment as an assessment tool for algorithms and judg-
ment, complementing traditional laboratory experiments in algorithm 
aversion research. Given the challenge of directly observing distrust of 
algorithmic recommendations in practical settings, researchers must 
focus on revealed effects of trust and distrust, such as the adoption ra-
tios, to measure the extent of algorithm aversion. This approach ne-
cessitates in-depth algorithmic understanding and comprehensive 
environmental variable data to accurately simulate algorithmic recom-
mendations. Additionally, there needs to be clear definitions of decision 
objectives, such as forecast accuracy or availability. Therefore, this 
method is well-suited for problems where researchers have access to the 
necessary information, albeit requiring refinements and adjustments for 
missing data.

Practically, we propose algorithms that businesses can adopt to more 
accurately estimate demand risk. It is well-established that firms should 
increase their safety stock and inventory level during disruptive events 
due to their mitigating role in hedging against risk (Azadegan et al., 
2021; Baghersad and Zobel, 2022). The practical question is how much 
safety stock should be increased. In this study, we found that the SES and 
GARCH algorithms demonstrate relatively equal performance in main-
taining a high availability level. They outperform both the incumbent 
algorithm (based on the historical rolling forecast errors) and the 
judgemental ordering decision in the original dataset. The fact that SES 
can perform as well as GARCH is particularly promising, given the ease 
of development and use of SES. Alternatively, advanced forecasting and 
planning techniques such as GARCH are seldom used in practice (Kanet 
et al., 2010). The SES smoothing parameter does not significantly affect 
algorithm performance, further reducing computational complexities. 
Additionally,Reich et al. (2023) found that if the users are more willing 
to adopt algorithms if they know the algorithm is adaptive and learning. 
We suspect that the SES algorithm can enhance user trust due to its 
highly adaptive nature (SES is otherwise referred to as adaptive 
smoothing). This observation implies that designers should provide 
sufficient training to users about the dynamic adjusting ability of the 
new algorithm, where organizational learning through training is 
elemental to fit development.

This paper uses a single case study methodology. Several authors 
argued that the use of single case studies, especially exemplar case 
studies with unique characteristics, are valuable for scientific develop-
ment and theory building (Flyvbjerg, 2011; (Yin, 2017)). For the theory 
proposed herein, this case is an exemplar in terms of: (1) the range of 
SKUs managed by the case company and its requirement of superior 
stock management capabilities; (2) the deep penetration of demand 
forecasting, replenishment, and inventory control techniques and algo-
rithms within the case company; and (3) the COVID-19 pandemic as a 
representative disruptive event for all supply chain participants. These 
characteristics increase the generalizability of the proposed theory.

One limitation of this research is the issue of censored demand. In 
retail contexts, the actual demand is often not directly observable. The 
observable sales volume is constrained (censored) by the available stock 
level. Therefore, when the ordering policy is adjusted (e.g., from the 
incumbent algorithm to SES), the sales volume is likely to change, 
especially when the stock level is low. In this study, we used the sales 
data to represent demand across all simulation scenarios. Future 
research can address the challenge of demand censorship and attempt to 
estimate the true demand from observable data, thus providing more 
accurate insights into inventory management strategies during 
disruptions.

Additionally, the complexities of the slack-fitness theoretical model 
may require simplification to fully grasp its benefits for organizational 
policy and decision-making. Currently, the numerous relationships and 
moderations are only theoretically proposed. While some of these 
theoretical relationships are demonstrated in our study, others are based 
on literature and prior research. Given the diversity of environmental 
contexts—across industries, product types, supply chain structures, and 
disruption events—further investigation is needed to understand the 
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nuances fully. The pseudo-natural experiment provided by the COVID 
pandemic disruptions lays an initial foundation for exploring algorithm 
aversion and its outcomes during crises. These crises may manifest at 
global, regional, or local levels, but they existence underscores the 
importance of understanding potential reactions for effective organiza-
tional operational planning. It also sets the stage for algorithms of all 
types including tactical and even strategic planning—and will depend 
on the scope of disruptions in addition to algorithm and slack 
considerations.
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