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Neurofeedback allows individuals to monitor and self-regulate
their brain activity, potentially improving human brain function.
Beyond the traditional electrophysiological approach using primarily
electroencephalography, brain haemodynamics measured with functional
magnetic resonance imaging (fMRI) and more recently, functional
near-infrared spectroscopy (fNIRS) have been used (haemodynamic-
based neurofeedback), particularly to improve the spatial specificity of
neurofeedback. Over recent years, especially fNIRS has attracted great
attention because it offers several advantages over fMRI such as increased
user accessibility, cost-effectiveness and mobility—the latter being the
most distinct feature of fNIRS. The next logical step would be to
transfer haemodynamic-based neurofeedback protocols that have already
been proven and validated by fMRI to mobile fNIRS. However, this
undertaking is not always easy, especially since fNIRS novices may
miss important fNIRS-specific methodological challenges. This review
is aimed at researchers from different fields who seek to exploit the
unique capabilities of fNIRS for neurofeedback. It carefully addresses
fNIRS-specific challenges and offers suggestions for possible solutions.
If the challenges raised are addressed and further developed, fNIRS
could emerge as a useful neurofeedback technique with its own unique
application potential—the targeted training of brain activity in real-world
environments, thereby significantly expanding the scope and scalability of
haemodynamic-based neurofeedback applications.

This article is part of the theme issue ‘Neurofeedback: new territories
and neurocognitive mechanisms of endogenous neuromodulation’.
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1. Functional near-infrared spectroscopy neurofeedback: a promising but challenging neuromodulation
approach

Functional neuroimaging exploiting brain haemodynamics has advanced rapidly over the past three decades, allowing
neuroscientists to delve deeper into the understanding of the human brain than ever before possible [1]. A fascinating develop-
ment in this context is the provision of individuals with haemodynamic (i.e. functional near-infrared spectroscopy (fNIRS)- or
functional magnetic resonance imaging (fMRI)-based) neurofeedback—a representation of (an aspect of) the haemodynamic
brain response—that indirectly allows monitoring and modification of ongoing brain activity [2]. The main purpose of this
approach is for individuals to learn to self-regulate their own brain activity in a desired direction by interpreting and
responding appropriately to the neurofeedback information (cf. figure 1b—neurofeedback loop). Possible areas of application
range from ‘neurotherapy’ of psychiatric and neurological diseases to ‘neuroenhancement’, that is, improving brain function
in healthy populations. The specific generation and type of neurofeedback information provided may vary. Comprehensive
overviews of the haemodynamic-neurofeedback methodology can be found in several review articles [2–5].

The beginnings of neurofeedback as a neuromodulation technique go back to the use of electroencephalography (EEG), in
which electrical potentials of neurons in the brain are directly measured [6,7]. In most cases, EEG neurofeedback results in
the modulation of spontaneous brain rhythms, which are characterized primarily by their frequency [8,9]. As an alternative to
using electrophysiological signals, the haemodynamic approach gained increasing attention in the field of neurofeedback in the
early 2000s. FMRI, which is based on the blood oxygen level-dependent (BOLD) effect, emerged as a popular choice due to its
significantly higher spatial resolution compared to EEG. The innovation of fMRI made it possible to provide neurofeedback
information from a more locally specific brain region of interest (ROI) [10]. Since its introduction, research has primarily focused
on further developing the fMRI-neurofeedback method, which ultimately led to this technique now being used in first clinical
trials with the aim of demonstrating its effectiveness in patient populations [11–15]. However, the inherent limitations of fMRI,
particularly its significant cost, overall complexity and immobility, represent significant barriers to widespread application of
fMRI neurofeedback and reduce the prospects for its future integration into routine clinical practice.

Parallel to these developments, fNIRS emerged as an alternative non-invasive haemodynamic brain-imaging technique with
the first description of an fNIRS device published in 1993 [16]. The functional principle of fNIRS is based on NIRS developed by
Jöbsis in the 1970s [17]. FNIRS uses two or more wavelengths in the NIR range and sends them into the scalp, skull and finally
the brain to measure changes in the concentrations of certain chromophores, namely oxygenated (Δ[HbO]) and deoxygenated
(Δ[HbR]) haemoglobin in the small blood vessels within the superficial cortical layers [18–20]. These concentration changes are
derived from the amount of light backscattered to one or more detector optodes typically located at a distance of about 3 cm
from the source optode [18]. FNIRS has evolved significantly, especially in recent years, and has become a widely used research
tool in basic and various applied neuroscience disciplines [16,21–25]. Generally, fNIRS offers several unique advantages over
fMRI that have led to its increased application. Foremost, fNIRS allows measuring haemodynamic brain signals in real-world
environments [26] and during natural behaviour (cf. figure 1a) [27]. This is possible due to its portability/mobility (cf. figure 1c),
simple operating principles and lower sensitivity to motion artefacts compared to other techniques such as EEG and fMRI.

The specific potential of fNIRS for haemodynamic-based neurofeedback applications is based on a variety of further
advantages (cf. table 1 for a complete overview). Its general suitability for clinical applications is based on its complete safety,
ease of application, motion tolerance, environmental flexibility, cost-effectiveness, user-friendliness and comfort—allowing
frequent, long-term/continuous measurements of even two different brain-signal types (Δ[HbO] and Δ[HbR]. figure 1d).
However, like any other functional neuroimaging method, fNIRS has several methodological challenges, particularly its
limitations in (full) brain coverage and spatial resolution, as well as its general susceptibility to various noise sources (cf.
table 1). It is important for researchers and clinicians to recognize and carefully consider these challenges when designing
experiments and developing clinical applications. However, with the rapid advancement of technology, it is likely that several of
the stated challenges can be mitigated (cf. §§3 and 4), potentially further increasing the usefulness of fNIRS in general and for
neurofeedback applications in particular.

This review is aimed at both fNIRS novices and experienced users from various areas of basic and applied neuroscience
who would like to make optimal use of the capabilities of fNIRS neurofeedback in future studies. After familiarizing the
reader with the advantages and challenges of fNIRS as functional neuroimaging method as well as their implications (and
countermeasures) for neurofeedback applications (cf. table 1), we will discuss ways to translate promising fMRI neurofeedback
research into different cognitive domains on mobile, lower-cost and easier-to-implement fNIRS neurofeedback protocols. We
also provide a brief overview of existing empirical work on fNIRS neurofeedback (cf. §2). Furthermore, a substantial part
of this review is dedicated to presenting the various methodological advances that are being developed to address some of
the challenges previously discussed. These advances are particularly important because they have the potential to improve
the implementation and dissemination of fNIRS neurofeedback (cf. §3). Finally, we will present our vision for future fNIRS
neurofeedback methodology and application (cf. §4).

2. Translating fMRI neurofeedback to fNIRS: what is possible?
The aim of this section is to discuss a series of selected clinical fMRI neurofeedback studies that we believe have great potential
for adaptation to fNIRS neurofeedback protocols. At the same time, we provide a brief overview of recent fNIRS neurofeedback
studies (for a more comprehensive overview see [3,10]). For general considerations regarding the design of neurofeedback
interventions, we refer to the existing guiding literature [37–39].
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When transferring fMRI neurofeedback protocols to fNIRS, it is important to understand the relationship of the fMRI BOLD
signal and the two distinct signal types Δ[HbO] and Δ[HbR] obtained with fNIRS. Note that the time courses of Δ[HbO] and
Δ[HbR] are usually highly negatively correlated, with Δ[HbO] increasing and Δ[HbR] decreasing when neurons within a brain
region get more activated. This means that an fMRI BOLD upregulation protocol could be translated into either training to
increase Δ[HbO] or to decrease Δ[HbR] (cf. figure 1b–d). Another crucially important consideration when translating fMRI to
fNIRS protocols is that target ROIs must be compatible with the depth penetration and spatial resolution of fNIRS. As explained
above, fNIRS is only sensitive to superficial cortical areas and the spatial resolution of standard fNIRS is significantly lower than
in fMRI.

Most fMRI neurofeedback studies to date have applied univariate analysis approaches (e.g. training the mean brain
activation within a single ROI) [1,5,40], although multivariate approaches that analyse multiple variables simultaneously and
can therefore detect more complex patterns of brain activity are becoming increasingly important [41]. Given the higher spatial
resolution required for multivariate approaches [42], univariate methods are generally more suitable for fNIRS neurofeedback
protocols, as reflected in the majority of existing fNIRS studies.

Taking these factors into account, certain brain regions and their associated functions appear to be particularly well suited
for translating neurofeedback protocols from fMRI to fNIRS. We identified four groups of brain functions, for some of which
empirical fNIRS neurofeedback literature is already available.

(a) Motor system function
In the area of motor function, motor imagery techniques (i.e., the mental imagination of a movement without actually executing
it) are often used in fMRI neurofeedback studies. Since motor imagery involves motor networks that largely overlap with those
activated during real movement execution (see for review [43,44]), it can be used as a training technique for motor rehabilitation

(a)
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Bedside

On the go

(b)

(c)
(d)

f N I R S - g u i d e d  n e u r o f e e d b a c k

N e u r o f e e d b a c k  l o o p

Mother−child

interaction

Mobility & portability ∆[HbO] & ∆[HbR]

Feedback
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Figure 1. Illustration of the advantages and basic principles of fNIRS neurofeedback. (a) Emphasizes the inclusivity and flexibility of fNIRS and highlights its potential
for real-world applications such as bedside use, home (neuro)therapy and mobile scenarios. It also shows the adaptability of fNIRS to different body positions and its
applicability in different populations, including children, and in unique future configurations such as hyperscanning neurofeedback (‘hyperfeedback’) scenarios with
mother–child interactions (cf. §4). (b) Illustrates the neurofeedback loop: brain activity is measured by fNIRS, (pre)processed and then used to generate a (visual,
auditory or tactile) feedback representation (illustrated here as visual feedback in form of a flower representation). (c) Highlights the advances in mobile and wireless
fNIRS technology that further improve its applicability in real-world environments. (d) Furthermore, unlike fMRI, fNIRS offers the choice between Δ[HbO] (red flower)
and Δ[HbR] (blue flower) as neurofeedback information, potentially enabling more personalized neurofeedback approaches.
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Table 1. Advantages and challenges of fNIRS and resulting implications for neurofeedback applications (and possible countermeasures). HD-DOT, high-density diffuse
optical tomography.

description resulting implication for neurofeedback (and counter‐
measure)

advantages

compactness of the
device

fNIRS equipment is portable and often mobile possibility to perform neurofeedback in real-world environments
(e.g., at home or bedside) and in low-resource countries as
well as while performing natural tasks

minimal discomfort fNIRS does not produce loud noises or require patients to lie still inside
a confined space (as fMRI)—meaning reduced stress, anxiety and
discomfort

increased user tolerability and possibility to involve sensitive/
vulnerable populations (e.g. children, psychiatric and elderly
patients)

low-tech nature in comparison to (high-tech) fMRI, fNIRS is relatively low-tech,
translating to considerably lower purchase, operating and
maintenance costs

increased affordability/accessibility for fNIRS neurofeedback

body-posture
independence

fNIRS is functional regardless of the individual’s body position (i.e.,
sitting, lying and standing)

increased flexibility/applicability for patients in different clinical
conditions (e.g., bedside, wheelchair)

motion tolerance fNIRS is less sensitive to motion artefacts compared with fMRI and
EEG

the robustness to motion artefacts is particularly advantageous
for clinical neurofeedback applications

technical
compatibility with
paramagnetic
equipment

fNIRS is compatible with paramagnetic (incl. medical) equipment or
other techniques for recording or interfering with brain activity
(e.g. EEG, TMS, fMRI)

enables simultaneous measurements of electrophysiological
and haemodynamic brain activation to provide multi-modal
(neuro)feedback which might offer novel, more effective and
efficient neurofeedback applications

ease of application setting-up and calibrating fNIRS equipment is remarkably quick and
straightforward; there is no need for gel application and scalp
scrubbing (as in EEG), which simplifies the preparation process

fNIRS neurofeedback might be applicable by non-experts; ideally,
patients could operate it independently or with the assistance
of a family member; this would allow for more frequent but
shorter neurofeedback sessions—a procedure being much
more suited in the clinical context

full safety fNIRS is a non-invasive technique that uses low-energy near-infrared
light without the need for ionizing radiation, radio frequency
pulses or strong magnetic fields

the full safety makes it an ideal neurofeedback method for
repeated and long-term use even in vulnerable populations
(e.g. patients and children)

availability of both
HbO and HbR
changes

fNIRS quantifies changes in both oxygenated (Δ[HbO]) and
deoxygenated (Δ[HbR]) haemoglobin related to brain activity

the possibility to alternatively use Δ[HbO] or Δ[HbR]
enables more personalized neurofeedback approaches; when
combining both Δ[HbO] and Δ[HbR] for neurofeedback,
the robustness and validity of the provided neurofeedback
information can be increased

relatively high single-
trial reliability

like fMRI, fNIRS has higher single-trial reliability compared to EEG
and allows researchers to obtain more consistent results across
repeated trials [28]

higher single-trial reliability results in increased effectiveness of
neurofeedback learning

challenges

indirectly measuring
brain activity

like fMRI, fNIRS relies on changes in blood (de)oxygenation that are
associated with changes in brain activity

limited effectiveness: modulation of neural activity via its
brain haemodynamics may result in reduced precision and
effectiveness; while this is a given fact, the simultaneous
use of electric and haemodynamic methods can potentially
improve the effectiveness of neurofeedback interventions

lack of
anatomicalinform
ation

unlike fMRI, fNIRS does not provide individual anatomical information limited spatial specificity: given the significant inter-individual
variability in brain size and structure, this hinders the ability
to precisely target specific brain regions for neurofeedback;
addressable by applying advanced methods such as
neuronavigation, combinatorial use with fMRI, probabilistic
approaches, etc.

limited spatial
resolution

fNIRS typically provides a spatial resolution of approximately 1 cm3

[27] which is significantly lower than that achieved with fMRI
limited spatial specificity: desired changes in brain activation

presented at a fine spatial scale may not be specifically altered
by fNIRS neurofeedback;

addressable to some degree by using advanced methods such as
high-density fNIRS or HD-DOT [29–31]

(Continued.)
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[45], as well as for active forms of neuromodulation, including neurofeedback (see for review [46,47]). FMRI neurofeedback
studies have used motor imagery to, for example, induce neuroplasticity in the motor system, reduce motor deficits and
improve motor function in neurological diseases such as Parkinson’s [48–50] and Huntington’s disease [51], as well as ischaemic
stroke [46,52]. A commonly used protocol involves the upregulation of the BOLD signal in ROIs such as the supplementary
motor area (SMA) and premotor cortex (PMC) using kinaesthetic motor imagery (see for review [44,46,47]). This approach has
shown substantial signal modulation in both healthy individuals [53–55] and neurological patients [48,49,52,56]. In contrast,
studies using fMRI neurofeedback to train primary motor cortex (M1) upregulation reported inconsistent results: while some
studies found no significant modulation [57,58], one study reported activation only for a subset of participants [59], and other
studies even reported deactivation of M1 [54,60]. The neurophysiological basis for these inconsistent findings, particularly the
lack of BOLD activation in M1 during motor imagery, has been a matter of debate [43,54].

To date, most fNIRS neurofeedback studies targeting the motor domain have focused on modulating SMA and PMC
activity [3,10]. Although these regions are typically located beneath the hairy scalp, robust cognitive strategies (e.g. motor
imagery) have been shown to elicit reliable fNIRS signals [61,62]. In addition, initial well-controlled clinical trials using fNIRS
neurofeedback for stroke neurorehabilitation have shown promising results [63,64]. Furthermore, there is evidence that M1
may also be suitable for fNIRS neurofeedback interventions [65]. In a feasibility study, Matarasso et al. [66] combined the

Table 1. (Continued.)

description resulting implication for neurofeedback (and counter‐
measure)

limited depth
pervasion

fNIRS mainly captures superficial cortical activity due to its limited
penetration depth of approximately 1.5 cm [27]

limited applicability: the fNIRS neurofeedback approach is not
suitable for targeting deeper cortical and subcortical regions;

partially addressable through indirect training of deeper brain
regions via functional connectivity

signal-quality
variability across
individuals

physical features of individual participants (e.g. skull thickness,
skin pigmentation, hair pigmentation, texture and colour) vary
significantly and may negatively affect the quality of the fNIRS
signal through increased light scattering/absorption [32]

limited applicability: the fNIRS neurofeedback approach may not
work equally well for every individual and may not be suitable
at all for a portion of the general population (i.e. ‘good’ versus
‘poor’ responders); while most physical characteristics are
invariant, a better understanding of the relationship between
physical features and the quality of the fNIRS signal would be
beneficial, e.g. in predicting neurofeedback performance

limited brain
coverage

typically, the number of affordable/available optodes is limited and
only covers part of the brain or even the hemisphere

limited applicability: simultaneous training of highly distributed
brain regions/large brain networks may not be possible;
reduced comfort: increasing the number of optodes is
associated with increased burden/lower compliance on the
participants’ side; in principle addressable by developing
high-density systems which are at the same time still
comfortable

susceptibility to
artefacts

like fMRI, fNIRS is highly susceptible to both task- and non-task
evoked (extra)cerebral systemic physiological artefacts/noise (e.g.
caused by changes in blood pressure and heart rate) 33]

limited effectiveness: provided fNIRS neurofeedback information
may not be reliable/robust enough to effectively learn
modulating the haemodynamic response;

addressable by advanced artefact control in real-time (i.e.
individualized filtering and short-channel regression) and
carefully considered study designs (proper timing of
modulation and rest periods)

limited temporal
resolution

while the sampling rate of fNIRS is considerably higher than in fMRI,
the temporal resolution is still limited by the biological constraint
of the delay of the haemodynamic response

limited effectiveness: the (desired) concurrency of applying
a specific cognitive modulation strategy and the resulting
neurofeedback information is limited—this could slow
down neurofeedback learning; in addition, the limited
temporal resolution results is a relatively low number of
(neurofeedback) trials; partially addressable by implementing
proper study design and appropriate task instruction)

possible discomfort
wearing fNIRS
cap/headband

longer wear times of fNIRS cap/headband can become uncomfortable
due to applied pressure of optodes (ensuring sufficient optode-
skin contact) [34]

limited applicability: complaints can lead to the fNIRS
neurofeedback training being discontinued/rejected outright;
limited effectiveness: fNIRS neurofeedback signal might be
affected by pain/discomfort-related brain activity or increase
of systematic physiology [33,35,36]; addressable to some
degree by careful optode placement and collaboration with
fNIRS manufacturers to develop more patient-friendly fNIRS
equipment
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complementary strengths of fMRI and fNIRS neurofeedback: stroke patients first underwent three fMRI neurofeedback sessions
to increase hand–knob activity during wrist extension training. FMRI then informed channel selection for the subsequent
10 fNIRS neurofeedback sessions in which patients also received neural-triggered functional electrical stimulation (FES) to
additionally support the wrist movements. Thus, the use of fMRI enabled higher spatial specificity while fNIRS allowed for
combining the neurofeedback training with FES and a large number of sessions. This interesting approach requires further
validation investigating whether the fMRI–fNIRS combination actually outperforms the use of fNIRS alone.

(b) Prefrontal brain function
Prefrontal brain regions are involved in a range of higher cognitive functions, including language production [67], regulation
of affective processes [68], executive cognitive functions such as inhibitory control [69] and working memory [70]. Impairments
in these functions and associated aberrant brain activity in prefrontal areas have been linked to several neurological and
psychiatric diseases [71,72]. Neurofeedback represents a promising approach in this context to ‘normalize’ brain activity not
only to treat diseases but also for neuroenhancement and age-related prevention. Note that prefrontal areas are particularly
suitable for fNIRS measurements, as the absence of hair on the forehead usually results in good signal quality.

As an example, the inferior frontal gyrus (IFG) plays a crucial role in cognitive control and attention, which has implications
for neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD) [73]. In an fMRI neurofeedback
study, the right IFG was trained in ADHD patients to alleviate these symptoms [74,75]. Moreover, a recent double-blind
randomized controlled trial (RCT) reported significant improvement in clinical symptoms, however, effects were not superior
to a sham control [75]. Initial clinical investigations for fNIRS neurofeedback in ADHD have been conducted in both adult and
paediatric cohorts, but have yielded mixed findings so far [76–79].

In addition to the IFG, the middle frontal gyrus, particularly the dorsolateral prefrontal cortex (DLPFC) within it, is also
essential for cognitive control. The DLPFC has been the focus of several fMRI neurofeedback proof-of-concept studies aimed
at modulating its activity, particularly in the context of improving working memory [80–82]. Such protocols could provide a
basis for future translation, for instance, in the context of cognitive decline (see for review, [83]). Recently, a proof-of-concept for
fNIRS neurofeedback on working memory in healthy individuals was presented [84]. In the clinical context, a proof-of-concept
study has shown that a short training protocol has the potential to mitigate cognitive decline in stroke patients [85]. Another
proof-of-concept study, also focused on memory function, used an alternative approach. It used resting-state fMRI data and
functional connectivity (FC) analysis, placing a seed in the hippocampus, to identify cortical connections suitable for targeting
with fNIRS [86]. This approach resulted in the identification of a target in the temporal lobe. The study demonstrated the
feasibility of this fMRI-informed approach and reported increased fMRI hippocampal activation following fNIRS neurofeed-
back, as well as improved scores in an associated memory task [86].

Other prefrontal functions in which the DLPFC is involved include appetite control and emotion regulation. A first RCT has
demonstrated feasibility of DLPFC fMRI neurofeedback in obese individuals within a single training session [87]. An initial
12-session clinical trial of fNIRS neurofeedback of the DLPFC provided promising results in reducing binge-eating episodes in
related disorders, improving secondary symptoms and executive functions, and thereby demonstrating the high potential of
fNIRS for the clinical translation [88]. FMRI neurofeedback of the DLPFC has also shown positive results for emotion regulation
in depressed patients, including one RCT [83,89]. However, larger RCTs are needed to provide evidence for the specificity and
clinical relevance of symptom improvements [83]. FNIRS may be particularly suitable for achieving this goal, and first studies
have provided proof-of-concept of DLPFC fNIRS neurofeedback [90,91]. Finally, an uncontrolled proof-of-concept study has
shown promising preliminary results in reducing symptoms in social anxiety disorder using fNIRS neurofeedback [90].

(c) Language network function
The left IFG and posterior superior temporal gyrus (pSTG), also known as Broca’s and Wernicke’s area, are key brain regions of
the language network [67] and promising ROIs for fNIRS neurofeedback. Previous fMRI neurofeedback studies have focused
on upregulation of activity in these ROIs to modulate language processing [92], for instance, with the specific aim of promoting
recovery from post-stroke expressive aphasia [93], thus demonstrating the feasibility of self-regulation through mental or covert
speech. Other fMRI neurofeedback studies have trained these areas in a psychiatric context and examined modulation of IFG
and pSTG activity as a possible treatment for auditory verbal hallucinations in psychotic disorders such as schizophrenia
[94,95]. The potential has been further highlighted in several reviews, also given the need to find new interventions aimed at
modulating this highly treatment-resistant symptom [5,96–98]. However, the use of fMRI in this population may be limited
as patients may have difficulty tolerating the MRI scanner environment. Moreover, schizophrenic patients sometimes have
impaired learning abilities, which may require additional sessions for more effective neurofeedback, a challenge that fNIRS can
address and that was examined in a case study [99].

(d) Social network function
Lastly, first fMRI neurofeedback studies have begun to target higher social cognitive functions (see for review [100]). In this
context, virtual human avatars provide an attractive way for more immersive feedback. For instance, a study in adolescents
and young adults with autism spectrum disorder (ASD) targeted the FC between the somatosensory cortex and the superior
temporal sulcus (STS), two areas associated with social cognition [101]. Without explicit feedback instructions, the experimental
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group learned to self-regulate the FC between the target ROIs, while a control group did not. The study reported successful
self-regulation within four sessions as well as behavioural effects in the experimental, but not in the control group. Another
early phase (IIa) RCT applying fMRI neurofeedback in young adults with ASD provided proof-of-concept for posterior STS
upregulation over five sessions, in which participants were instructed to imagine (happy or sad) facial expressions while
receiving feedback from a virtual avatar face [102]. Noteworthy, behavioural effects were also retained at a six-month follow-up
assessment.

Regarding fNIRS neurofeedback to modulate higher cognitive social functions, a first randomized controlled proof-of-con-
cept study has successfully targeted the right temporoparietal junction (rTPJ) in two groups of healthy individuals, either
upregulating or downregulating the rTPJ using a virtual human avatar feedback display [103]. While the study demonstrated
the feasibility of self-regulation in the upregulation group and behavioural effects related to spatial attention, no specific effects
on social cognition were found [103]. Lastly, a controlled case study tested the feasibility of upregulating a temporal and
prefrontal ROI in combination with the aim of improving face recognition capacities in ASD patients [104]. While one ASD
patient received real feedback from these ROIs, the control patient received sham feedback from randomly generated brain
signals. Successful upregulation of the ROIs as well as improved facial recognition capacities was reported only for the ASD
patient who received real fNIRS neurofeedback. Given that involved target ROIs are well measurable with fNIRS and the high
relevance of social cognitive processes in mental health [105], future larger fNIRS neurofeedback studies and RCTs are highly
desirable.

3. Advancing fNIRS for neurofeedback applications: challenges and current solutions
As shown in table 1, there are several fNIRS-specific challenges that should be considered when planning and conducting fNIRS
neurofeedback studies. So far, processing of fNIRS data and reporting results lacks a certain level of standardization [106,107],
which also applies to real-time analysis of fNIRS data [108]. To ensure the effectiveness of fNIRS neurofeedback, a careful and
informed selection of the methodology used is therefore required. Two important areas to consider in this context are improving
spatial specificity (cf. figure 2a) and increasing signal quality (see figure 2b) [108]. Moreover, enhancing the overall research
quality of a study is crucial to achieve generalizable and reproducible results [3]. In the following sections, we briefly discuss
these three aspects and suggest concrete strategies that could help improve future fNIRS neurofeedback applications.

(a) Improving spatial specificity
When training certain brain regions, it is important to aim for the greatest possible spatial specificity (i.e. the localization of
brain activity) with the chosen brain-imaging technique [62,108,109]. The spatial specificity of fNIRS lies somewhere between
the high spatial resolution of fMRI and the relatively low precision of EEG. However, it is important to note that fNIRS is only
sensitive to activity within the superficial cortical layers of the brain [19,26,110]. Furthermore, an inherent limitation of fNIRS is
the lack of individual anatomical information and limited head coverage due to the typically small number of available optodes
[62,111–113]. Therefore, when planning and conducting a study, special attention should be paid to improving spatial specificity
[108].

(i) Probe design and spatial validation

Particular attention should be given to the probe design (cf. figure 2a—probe design), that is the arrangement of source and
detector optodes in the cap, to ensure accurate measurement of the target brain regions [108]. The probe allows effective
targeting of the ROI and therefore can have a direct impact on the reliability, reproducibility and precision of the intervention
itself [108,112–114]. To design probes based on either individual anatomy or standardized head models, specialized software is
typically used [112–114]. Some of these software tools also provide simulation capabilities to evaluate how sensitive the probe
is to targeting specific ROIs [112,115]. If higher accuracy is desired, prior fMRI validation (i.e., individual ROI localization; cf.
figure 2a) can be performed, which in addition to higher spatial specificity, can also improve task sensitivity [62,109].

(ii) Cap placement

Precise placement of the fNIRS cap is another important aspect for improvement (cf. figure 2a—cap placement). Although
the probe is designed to target a specific ROI, the lack of anatomical information coupled with the lack of a consistent and
standardized placement method could affect the accuracy of precise targeting [108,116,117]. Since neurofeedback applications
require repeated measurements on the same person, it is even more important to standardize cap placement so that it does
not depend on the individual practical experience of the experimenter. Placement methods range from using standardized
procedures (e.g. standardized EEG 10–20 positions to ensure, for instance, placement of Cz over the vertex using nasion, inion,
left and right preauricular points) [108,118] towards more advanced techniques that require, for example, individual anatomy
and task-dependent activation peaks [108,109,117]. While the latter approach offers greater individual accuracy, it is important
to consider whether the benefits justify the additional time and cost in each individual case [109].
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(iii) High density

Future fNIRS neurofeedback applications could benefit from currently emerging high-density measurements such as high-den-
sity diffuse optical tomography (HD-DOT) [29,31]. An important additional advantage here is that the sensitivity to the target
ROI can be improved, as this helps to overcome the inherent blind spots [119] of standard regular density probe designs (cf.
figure 2a—high density).

(b) Increasing signal quality
Unlike offline processing, where the fully captured time series is typically analysed after data recording is complete, real-time
processing analyses each new incoming data point immediately [108,120]. Accordingly, real-time processing is critical in
systems such as brain–computer interfaces and neurofeedback implementations because both interact with real-time brain
signals [121]. However, real-time processing presents some challenges, especially since not all (pre-)processing algorithms
available offline can be easily applied in real time [108]. Furthermore, inaccuracies in real-time data processing cannot be
corrected post hoc, as is possible during offline analysis. It is therefore particularly important that the real-time signal is
of sufficient quality to ensure a certain level of precision and reliability. With regard to neurofeedback applications, this is
particularly important as reduced signal quality can have a direct impact on the user experience and would result in the
feedback being based on noise rather than representing meaningful brain activity [108,122].

To date, fNIRS research has mainly used continuous-wave fNIRS systems, which are widely used due to their ease of
use, portability and affordability [18,26,31], making them also very suitable for real-time applications. Since these systems are
unable to distinguish between different tissue layers or between absorption and scattering phenomena, they cannot be used to
quantify absolute values, but rather concentration changes of oxygenated (Δ[HbO]) and deoxygenated (Δ[HbR]) haemoglobin.
These changes are calculated using the modified Beer–Lambert law (mBLL) [18,26]. With offline analysis, the conversion of raw

(a) (b)
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Figure 2. Illustration of possible optimization strategies to improve fNIRS neurofeedback applications with regard to the challenges of (a) spatial specificity and
(b) signal quality. More specifically, part (a) shows various methods to improve spatial specificity, such as adequate probe design, precise cap placement, the possibility
of spatial validation and the prospective application of high density measurements for more accurate neurofeedback. Part (b) focuses on improving signal quality
and highlights important techniques such as channel quality assessment, motion artefact correction, temporal filtering and extracerebral activity correction to reduce
artefacts and thus improve the reliability of fNIRS data.
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light intensity data into changes in optical density is based on a stable baseline obtained from the entire recorded time series.
In contrast, real-time applications are often based on a shorter, initial baseline [108,120]. To achieve reasonably stable mBLL
calculations in real time, it is recommended to record a sufficiently long and motion-free baseline (e.g. starting with at least
20−30 s baseline) before starting an experiment. However, since there is still no systematic validation in this regard, an exact
recommendation of the optimal baseline duration is not yet possible [108,120].

A larger issue is the variety of noise sources typically included in the fNIRS signal [18,33,36]. An insufficiently cleaned
fNIRS signal might result in neurofeedback being based on noise instead of brain activity [122]. Therefore, it is important to
understand these factors and their potential impact on neurofeedback and to develop strategies to address these fNIRS-specific
challenges in order to be also effective in less controlled, real-world environments [108].

(i) Channel quality assessment

The quality of the signal is often influenced by how well the optodes are (physically) coupled to the scalp, and there are various
methods to assess data quality in this regard [108,123,124]. Among them, the scalp coupling index (SCI) is particularly suitable
because it indicates the presence of the heartbeat in the fNIRS signal, which in turn reflects the strength of the optode–scalp
coupling (cf. figure 2b—channel quality assessment) [123,124]. A high SCI value indicates good signal quality, and channels with
SCI values that are too low often indicate poor quality channels that should be removed from subsequent analysis [108,123,124].
Real-time monitoring tools like PHOEBE provide a way to continuously assess signal quality by enabling real-time SCI tracking
[124]. Although not yet common practice in real-time applications [3], these tools have the potential to immediately detect signal
degradation and directly exclude poor quality data from affecting the overall analysis [108]. Initial approaches to monitoring
signal quality in real time have also been adopted in commercial toolboxes for real-time data processing (Turbo-Satori, Brain
Innovation B.V., Maastricht [120]).

(ii) Motion artefact correction

Motion artefacts, often caused by (physical) optode shifts (e.g. due to head movement), can cause signal spikes and baseline
shifts and seriously affect data quality (cf. figure 2b—motion artefact correction) [125,126], which could negatively impact the
accuracy of the neurofeedback information provided [108]. Although there are various methods for correcting motion artefacts
for fNIRS [125–130], their real-time application is not always possible. As a result, this crucial corrective step is often missing
in many neurofeedback studies [3]. Additionally, fully automated offline motion correction methods such as the temporal
derivative distribution repair (TDDR) method [128] hold potential for adaptation to real-time analysis. However, they have not
yet been fully validated for this purpose [108].

(iii) Temporal filtering

While the presence of the heartbeat is an important indicator of the quality of the fNIRS signal [124], it is also classified,
along with respiration, Mayer waves and other low-frequency oscillations, as non-evoked cerebral and extracerebral systemic
activity—or simply as physiological noise [18,33]. However, the frequency bands of some of these noise components are often
distinguishable from the task frequency, allowing the use of temporal filters to separate them [131] (cf. figure 2b—temporal
filtering). Temporal filters are also often used in real-time preprocessing [3]. However, it is important to carefully adjust and
test filter settings to ensure that they reduce physiological noise without affecting the task frequency. Before applying filters,
information about the potential challenges and filter options should be obtained. There are already some resources for both
offline and real-time fNIRS analysis (e.g. [108,131]).

(iv) Extracerebral activity correction

In addition to the previously mentioned physiological noise, task-evoked cerebral and extracerebral systemic activity forms
another component of noise in the fNIRS signal [18,33]. Correcting these artefacts is significantly more difficult due to possible
overlap with task frequencies, making conventional temporal filters insufficient [18,33,36,122,132–134]. However, if this noise
component remains uncorrected, data interpretation becomes complicated because this component can either mimic or mask
actual brain signals [33]. Direct correction of task-evoked cerebral components is not currently possible, but for task-evoked
(and non-evoked) extracerebral components, the gold-standard for correction involves the use of short-distance channels (SDCs)
[108,122,132,133]. SDCs have a source–detector distance of less than 1 cm (ideally 0.8 cm for adults [135]), which allows
them to primarily detect extracerebral signals (cf. figure 2b—extracerebral activity correction). The data can then be used to
remove extracerebral influences from the normal fNIRS channels, which is often done using regression-based approaches
[18,33,108,122,132,133,136,137]. Although these methods are generally suitable for real-time applications, they have not yet been
widely used in neurofeedback studies [3]. However, in cases where SDCs are not available, alternative correction methods have
been proposed [25,108,122,133,134] and first approaches have already been implemented in neurofeedback pipelines [3].

(c) Enhancing research quality
Although the issue of research quality is not limited to fNIRS research, Kohl et al. [3] found that the design and reporting
quality of fNIRS neurofeedback studies are predominantly moderate, ranging from low-quality studies to studies that used
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robust methods such as sham control conditions, randomization and blinding. A common factor was small sample sizes which
reduce statistical power and thereby the ability to detect true effects. Nevertheless, several strategies are available to enhance the
quality of research in this area [3].

(i) Clear definition of study type

It may sound trivial, but properly categorizing a neurofeedback study (e.g. as feasibility, pilot or proof-of-concept study) and
appropriately reporting it in the publication are important. It is equally important to explicitly state whether the analysis is
planned (i.e. based on preformulated hypotheses) or exploratory. This clarity in setting objectives, design and analysis steps can
significantly improve the accuracy of reporting and prevent the risk of excessive conclusions [3,107].

(ii) Sampling plan

It is important to have transparent sampling plans to ensure the validity and precision of the research [3,107]. This includes
carefully considering the number of planned neurofeedback sessions and the participants required (i.e. sample size) to detect
a specific effect of interest on the main outcome measure(s). In addition to sample size planning, the number of repeated
measures should also be considered, especially given the high scalability of fNIRS, which makes it ideal for multisession
interventions. While a priori power or sensitivity analyses are commonly used when planning sample sizes, it is important to
consider potential biases caused by resource limitations such as limited funding or time constraints [107]. These limitations may
result in smaller sample sizes and potentially biased effect sizes. Ensuring an adequate sample size is thus crucial to effective
research. Planning sample sizes based on realistic effect sizes from literature that is less susceptible to publication bias (e.g.
Registered Reports) [138] or the use of established smallest effect sizes of interest can significantly improve the overall integrity,
evidential strength and trustworthiness of the results [139]. This is particularly important for non-significant results [140]. To
increase the chance of drawing meaningful and reproducible conclusions, researchers should avoid basing power analyses on
(typically small sized) pilot studies [141]. If effect-size estimates cannot be well justified, other sample size planning strategies
may be more appropriate [142]. Regardless of the methodological approaches (e.g., frequentist or Bayesian), the assumptions
underlying sample size decisions should always be transparent and justified [3,107,142].

In neurofeedback research, which often involves a repeated-measures design, it is important to include this aspect in sample
size calculations, particularly in studies that focus on primary outcome variables tested with a repeated-measures test [3].
However, we further note that caution should be exercised when using common software such as GPower for power or
sensitivity calculations in repeated-measures ANOVA [143]. Some studies [144,145] have pointed out that the default effect size
option in GPower can lead to inaccurately low sample sizes and sensitivity measures. To prevent underpowered/insensitive
studies, the effect-size setting should be adjusted based on whether a purely within- [144] or between-group design with
interaction [145] is used. For a more detailed overview of effect-size derivations, see also Kieslich [146].

(iii) Control conditions

Another key aspect in neurofeedback research is the selection of appropriate control conditions [3,38,147]. For an accurate
assessment of the effectiveness of neurofeedback, it is important to include a control condition (or group), for instance,
treatment as usual, sham feedback, bidirectional regulatory control and/or randomized ROI control [38]. Incorporating such
controls ensures that the observed results are actually based on the feedback and not on other non-specific factors. Ideally, and if
resources allow, the integration of multiple control conditions may enable a clearer distinction between neurofeedback-specific
effects and general, non-specific processes [3,38,39].

(iv) Bias reduction

In neurofeedback research, biases can influence results [3]. A selection bias can arise, for instance, from non-random assign-
ments. This problem can be solved using randomization and hidden assignments [148]. Furthermore, the expectations of the
participants or the experimenter could also influence the neural responses. Strategically assigning participants to different
feedback conditions and ensuring that experimenters are blind to these conditions can mitigate such expectancy effects [3].
When blinding is not possible, the use of standardized scripts or automation can be an effective alternative. Moreover, compre-
hensive blinding can counteract performance and detection biases arising from unmasked participants or inconsistent outcome
measures [148]. Effective management of drop-outs is critical to minimizing attrition errors. Additionally, the use of open
science practices such as preregistration helps reduce selective reporting and reporting errors [107,148–151].

4. Perspectives of fNIRS neurofeedback: an outlook
FNIRS neurofeedback is a rapidly developing field with numerous promising perspectives for future development. Further
advances in hardware and methodology could help expand the application of neurofeedback to real-world environments.
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Additionally, making the hardware and software more user-friendly could expand usage to a wider range of users and
scenarios. In this discussion, we share our ideas for innovative concepts and identify areas where we expect major progress
towards these goals. In addition, we explore some exciting possible applications and discuss possible requirements that are
crucial to realizing these visions.

(a) Advancements in hardware and methodology

(i) Multimodal neurofeedback

It is likely that no single functional neuroimaging tool is perfect for all neurofeedback applications or equally effective for
every person and situation. Different signals such as electrophysiological and haemodynamic signals might have different
effects depending on the scenario or person. Accordingly, a combination of EEG and fNIRS could help provide a more
comprehensive and accurate view of brain activity [152,153]. Such a multimodal approach, already being considered in the
field of brain–computer interfaces [154], combines the high temporal resolution of EEG and the spatial specificity of fNIRS and
could potentially improve the effectiveness and efficiency of neurofeedback [155]. Because both EEG and fNIRS are mobile
technologies, this multimodal approach is well suited for use in real-world environments and paves the way for more effective
and personalized neurofeedback protocols that could benefit a wider range of users.

(ii) High-density (multivariate) neurofeedback

In addition to univariate ROI-based methods, new approaches such as FC and multivariate approaches [41,156] promise a
possible further development of neurofeedback. There are already initial approaches to FC-based neurofeedback in the fMRI
field [157]. Thus, the application of fNIRS neurofeedback for FC training in diverse networks could examine a broader range of
functions. Despite the reliance on correlational analysis, well-designed FC-based neurofeedback has the potential to advance FC
research and facilitate the testing of causal hypotheses [158,159]. Compared to low-density fNIRS, the use of HD-DOT systems
offers potential for fNIRS neurofeedback as it enables higher spatial specificity and depth resolution [29,160], which could
result in more precise targeting of ROI(s) and reduce typical blind spots compared to standard probe designs [119] (cf. figure
2a—high density). Since the first commercial wearable HD-DOT systems are already available [29–31], these devices would also
be suitable for wearable neurofeedback, although this has not yet been demonstrated. The higher spatial resolution offered by
HD-DOT and other high-density fNIRS systems could enable better detection of more complex brain activation patterns, which
could lead to the development of more personalized neurofeedback. The integration of HD-DOT with approaches such as FC
and multivariate techniques therefore provides an interesting opportunity to develop more advanced fNIRS neurofeedback
protocols.

(iii) Smartphone-based, artificial intelligence-supported wearable neurofeedback

While significant progress has been made in the mobility and portability of fNIRS devices [30,153,161–163], the future of fNIRS
neurofeedback in real-world environments may benefit from further hardware and methodological developments. In contrast
to the idea of high-density fNIRS neurofeedback, an important step would be to further miniaturize fNIRS devices into smaller,
more comfortable wearables that are easy to use and allow individuals to use them independently of experts. To better integrate
neurofeedback into everyday life, mobile applications (apps) should be developed that synchronize with these wearable fNIRS
systems and provide real-time neurofeedback visualization as well as data collection and processing capabilities. There have
already been technological developments in the EEG area, such as significantly smaller devices [164–167] and app-based
real-time processing [168–170]. A key advantage of EEG is that, due to its lower spatial specificity, it allows activity to be
recorded using devices positioned nearby or in the ear [164–167]. FNIRS, on the other hand, requires more precise placement to
capture the activity of specific ROIs. Accordingly, the development of small fNIRS wearables additionally requires methods for
innovative positioning mechanisms that could, for example, use artificial intelligence (AI) for precise placement. AI could also
personalize (app-based) neurofeedback protocols by identifying and training individual brain patterns (e.g. [171], for a review
about AI in EEG-based BCI).

In addition, wearable fNIRS neurofeedback in telemedicine or telerehabilitation are another exciting prospect, where there
are already initial approaches in the EEG field [172,173]. Integration with (mental) health apps and wearables such as smart-
watches and the associated tracking of various health metrics enables improved monitoring of a person’s well-being [155]. These
data could further individualize fNIRS neurofeedback and tailor sessions based on daily activities or physiological states such
as physical activity, sleep patterns and physiological information (e.g.heart rate). In addition, physiological wearable data could
improve (real-time) fNIRS signal quality and help with artefact correction [36,108,137,174]. In addition, various environmental
factors such as lighting, ambient noise and temperature can potentially affect the performance of wearable neurofeedback.
This information could be measured and used to instruct users to change their environment when necessary, thus improving
neurofeedback sessions in various real-world environments. However, to develop smartphone-based and AI-powered wearable
neurofeedback, important privacy and security issues should be addressed [175,176]. Because these devices process sensitive
health information, strict security measures are essential to protect against unauthorized access and misuse of these data.
Therefore, when developing such apps, the balance between the benefits of AI and smartphones and protecting the privacy of
personal data should always be kept in mind.
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(b) Future applications

(i) Using fMRI for validating fNIRS neurofeedback

In a more research-oriented context, the combined (simultaneous and/or sequential) use of fMRI and fNIRS represents a
promising opportunity to better validate and improve fNIRS neurofeedback [20,62]. For example, fMRI could serve as a pre-
and post-measurement tool for fNIRS neurofeedback to examine changes in brain function before and after neurofeedback
intervention. Furthermore, these data could improve the spatial specificity of fNIRS through spatial validations [62] (cf. §3a
and figure 2a—spatial validation), provide insights into immediate effects of neurofeedback (via fNIRS), and track long-term
changes in brain activity (via fMRI). The combination of fNIRS and fMRI could thus provide a better overview of how
neurofeedback affects brain activity across sessions and in different brain regions, which could be used to refine neurofeedback
protocols, better understand their mechanisms and identify areas for future research. However, such approaches are associated
with considerable costs, as fMRI measurements are expensive and fMRI-compatible fNIRS devices must be purchased. These
costs should therefore be taken into account in advance, for instance, when applying for funding.

(ii) Fingerprinted neurofeedback

Creating so-called ‘fingerprints’ to identify individuals is typically based on brain activity patterns derived from a single
functional neuroimaging method [177]. However, this approach can also be used to create individual fingerprints based on
higher spatial resolution methods such as fMRI, increasing the reach of methods with lower spatial specificity (e.g. EEG or
fNIRS) to deeper brain regions [178]. In the EEG field, for instance, this approach has been used to create a type of filter
for fingerprinted EEG neurofeedback based on previously recorded simultaneous fMRI-EEG data to train brain areas such as
the amygdala [179–182]. Due to the conceptual similarity between fNIRS and fMRI, this approach is particularly promising
for fNIRS neurofeedback. However, the idea of creating fingerprints based on fMRI data [22,177,183] and then using them in
fingerprinted fNIRS neurofeedback has not yet been implemented. The use of machine learning or AI-based methods could be
particularly effective in this context. These technologies allow for more precise analysis of simultaneously acquired data and
could potentially find more subtle patterns, improving the effectiveness and individualization of neurofeedback training.

(iii) FNIRS hyperfeedback

In hyperscanning, multiple individuals are measured simultaneously which can offer interesting insights into phenomena such
as inter-brain synchrony [184]. An important aspect of inter-brain synchrony is that brain activity of two or more persons
become synchronized during interaction, which is considered crucial for various cooperative behaviours or effective commu-
nication [184]. Hyperscanning neurofeedback (or ‘hyperfeedback’), provides feedback based on a common target parameter
resulting from the brain activity of all involved individuals and thus requires the cooperation of these subjects to regulate this
parameter together. This could in turn lead to an increase in empathy or social belonging [184]. Although this field is still in its
infancy, several studies on EEG hyperfeedback have already been conducted [185–189]. However, research on haemodynamic
hyperfeedback is still limited [184,190,191]. Given that social interactions likely work best in face-to-face, real-world environ-
ments, the potential for using fNIRS in this context is particularly promising. This application represents an interesting direction
for future research, but more and sufficiently large studies are needed in the future to determine its effectiveness [184].

(c) Essential foundations for future progress

(i) Analysis and reporting of change in both oxygenated and deoxygenated haemoglobinΔ[HbR]

In previous fNIRS-guided neurofeedback studies, Δ[HbO] was predominantly used as a feedback signal [3]. This problem is
not necessarily specific to fNIRS neurofeedback research, but is strikingly common in the fNIRS field in general [106,192,193].
This choice is often justified by the higher amplitude of Δ[HbO] which can more easily produce significant results compared
to Δ[HbR] [193], or simply not justified at all. Although it may be useful to select a single signal type for neurofeedback,
post hoc data analysis and results reporting should not be limited to only the selected signal and completely ignore the other
signal. Furthermore, basing this preference on amplitude difference justification alone is not particularly convincing, since
the suitability of Δ[HbO] or Δ[HbR] can potentially vary from person to person and also between different brain regions and
specific tasks [122,194]. Future fNIRS studies should therefore better justify the chromophore choice for their neurofeedback
protocol, for instance, on the basis of protocol-specific pilot measurements or validation studies. In line with previous recom-
mendations [106,107], both Δ[HbO] and Δ[HbR] results should always be reported, regardless of the chromophore choice for
neurofeedback, to enable a better understanding of the underlying brain activity and thereby improve the further development
of neurofeedback interventions.

(ii) Promoting open science practices

The advancement of the neurofeedback field and most of the ideas discussed depends, among other things, on a common
factor: the transparent and open exchange of data and analysis codes. Especially when it comes to AI applications and machine
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learning algorithms, access to large datasets is required to train and validate models and to reduce bias [195,196]. It is likely
that AI will play a larger role in real-time applications in the future [197], so the availability of diverse and large datasets will
be crucial for developing AI models. In addition, the open sharing of data and code enables the validation of results and the
replication of studies, which can not only promote collaboration in the scientific community but also accelerate innovation in
the field [107,198–201]. To share data efficiently, a certain level of standardization should be maintained and the FAIR principle
should be followed (i.e. findable, accessible, interoperable and reusable) [107,198–200]. Inter-operability and reusability of fNIRS
can be achieved when data are stored in the shared near-infrared spectroscopy format (.snirf) [202], an open access data format
developed by the fNIRS community [107], and shared within the Brain Imaging Data Structure [203] extended for fNIRS [204],
which sets a standard for organizing and naming data and metadata [107]. To make the data accessible and findable, various
platforms and repositories can be used (for an fNIRS-specific example, see https://openfnirs.org/data/ [107]).

In addition, preregistration before starting the study is an important aspect to increase the credibility of fNIRS (neurofeed-
back) research. This includes publicly describing the research methodology, including hypotheses, experimental procedures
and data analysis plans [107,205–208]. Preregistration helps prevent selective reporting and ensures that research is guided
by a priori planned hypotheses and methods [107]. Furthermore, journals (and community platforms) are increasingly offering
peer-review for preregistrations in the form of so-called Registered Reports (RRs) [138]. After a positive peer-review based on
the study protocol, authors receive a so-called in-principle acceptance as a guarantee for the publication of their final study if it
complies with the approved protocol. As a result, RRs allow publications independent of statistical outcomes and are therefore
a promising way to mitigate publication bias (i.e. preferred publication of significant study outcomes) as indicated by first
meta-analyses [149,150].

Finally, it is important to carefully document every aspect of a study, from methodology to inconsistencies and even
deviations from the original plan, to maintain scientific integrity [39,107]. Therefore, researchers can adhere to established
guidelines when reporting their studies [106]. This also includes standardizing results reporting and using consistent metrics
and statistical methods to present results to make it easier to compare the results of different studies. A current initiative in the
fNIRS area pursues this goal in particular (FRESH study: https://openfnirs.org/data/fresh/). Standardization is also important
in meta-analyses and systematic reviews, which are crucial for synthesizing evidence and drawing broader conclusions in the
field.

5. Conclusion
FNIRS allows targeting brain regions with a sufficiently high spatial specificity at low cost and is therefore particularly suitable
for neurofeedback applications. Although fNIRS presents its own challenges, it remains the only technique that can effectively
integrate haemodynamic-based neurofeedback into real-world environments such as bedside, home use and on-the-go mobile
scenarios. Accordingly, fNIRS offers many exciting possibilities for haemodynamic-based neurofeedback applications and,
due to its compatibility with challenging populations such as children, combined with its applicability in real-world settings,
enables unique options such as haemodynamic hyperfeedback to promote personal social interactions [184].

Although the future of fNIRS neurofeedback is full of potential and promising applications, there is a need for further
development in this area. Accordingly, it is essential that fNIRS devices, software and analysis tools are further developed
and open science practices are followed. We look forward to a future full of innovative research and applications such as
haemodynamic hyperfeedback, multimodal neurofeedback, integration of AI algorithms and smartphone-based home training.
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