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A B S T R A C T   

To cope with interannual climate variability, many farmers in tropical and sub-tropical regions choose crop 
varieties that fit seasonal climate conditions. Therefore, seed demand for different varieties, such as early- or late- 
maturing cultivars, varies between years. Resulting mismatches between relatively constant supply and variable 
demand create losses for both seed suppliers and farmers. Because demand for seed of different varieties is 
influenced by seasonal climate, however, probabilistic seasonal rainfall forecasts could help seed suppliers better 
anticipate upcoming seed demand. To explore this idea, we engaged decision-makers from seed supply orga
nizations in Zimbabwe and Ethiopia. Through a participatory design process, we identified opportunities and 
challenges for using seasonal rainfall forecasts to inform seed supply decisions. In a case study of maize seed sales 
in Zimbabwe, we tested our assumptions and iteratively devised a systematic procedure for forecast-based 
planning in seed supply, relying on free online data sources and expert deliberations. We found that currently 
accessible rainfall forecasts could indeed be useful for prioritizing likely high-demand varieties during the stages 
of seed treatment, packaging, and logistics. In practice, though, more flexible and adaptive management of seed 
supply pipelines might be required to make use of seed demand forecasts. In the future, targeting farmers with 
climate forecasts along with recommended variety portfolios may strengthen the association between seasonal 
climate and farmers’ variety demand, increasing the accuracy of demand anticipation. This study highlights 
opportunities for increased case-specific collaboration between climate scientists and the seed sector to make 
seasonal forecast information operational.   

Practical implications  

To maximize productivity, farmers in topical and sub-tropical re
gions need reliable access to seed of locally suitable crop varieties. 
But climate outcomes, especially rainfall quantities, generally 
vary between years. This means that a different set of varieties 
may be optimal every year. For example, farmers typically de
mand more early-maturing varieties in drought years than in rain- 
abundant years. Seed suppliers (including commercial enterprises, 

public bodies, and NGOs) have an interest in aligning their variety 
portfolios to farmers’ demand. This is because both over-supply of 
certain varieties (more seed offered than farmers demand) and 
under-supply (too little seed offered, farmers turn to alternative 
seed sources) create costs. Therefore, both farmers and seed sup
pliers would benefit from an increased ability to anticipate 
farmers’ seed demand at the variety level. This information could 
be used to adapt seed supply operations in a way that minimizes 
the mismatch between supply and demand. This study explores 
how this idea could work out in practice. 

Because farmers’ demand for different seed varieties is influenced 
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by seasonal climate, seasonal climate forecasts create opportu
nities to anticipate seed demand. Using freely available climate 
forecasts and real data on maize seed demand in Zimbabwe, this 
study demonstrates that this is possible in principle. Based on 
engagements with seed supply practitioners, we point out oppor
tunities and conditions for employing seed demand forecasts in 
the management of seed supply chains. We do not present a ready- 
made decision-making tool, but a general proof-of-concept and 
prototype validated by seed supply practitioners from two sub- 
Saharan countries. For further operationalization of the concept, 
this study highlights opportunities for future development, 
including case-specific collaboration between the seed supply 
sector and climate researchers. Our results are an encouraging 
base of evidence to motivate further investigation around the use 
of seasonal climate forecasts for improving seed supply in tropical 
and sub-tropical regions. 

Data availability 

The data that has been used is confidential.   

1. Introduction 

In many tropical and sub-tropical regions, marked year-to-year 
climate variability creates uncertainty for decision-making in small
holder agriculture. In parts of Eastern Africa, for example, annual 
rainfall anomalies of 50 % above or below the long-term annual mean 
are common (Kotir 2011, Tierney et al. 2015, Nicholson 2017). This 
variability has implications for the livelihoods of farmers, who make up 
large parts of the population in many low- and middle-income countries. 
Any given farm configuration (e.g., choice of crops, crop varieties, and 
other inputs) is likely to show different levels of productivity under 
different seasonal climates (Challinor et al., 2014, Rowhani et al. 2011, 
Thornton et al. 2014). To mitigate risks from weather and climate 
variability and optimize farm performance, a key strategy is an appro
priate choice of crop varieties to fit seasonal climate conditions. For key 
food security crops such as maize, smallholder farmers’ variety demand 
can be more strongly determined by supply-side factors than by farmers’ 
choices (Chivasa et al. 2022; Rutsaert et al. 2021; Waldman et al. 2017). 
But farmer perceptions of intra- and interannual climate variability also 
influence seed demand. For example, some farmers decide to plant, on 
the whole, later-maturing varieties when rainfall conditions are favor
able (Lacy et al. 2006) or prioritize traditional over modern varieties in 
shorter rainy seasons (Almekinders et al. 2021). 

Variable seed demand increases the risk of mismatches between seed 
supply and demand. Often, farmers take seed sourcing decisions as late 
as the very onset of planting, or even later, in cases where the farm must 
be replanted (Lacy et al. 2006, Burer et al. 2008). Yet at these points in 
time, major seed supply decisions – which amounts of which varieties 
get multiplied, distributed, promoted, etc. – have already been made. 
Faced with the unpredictability of exact seasonal seed demand, suppliers 
in open seed markets (commercial enterprises, not-for-profit organiza
tions, or public institutions) plan and prepare for average demand pat
terns based on past experiences (Burer et al. 2008). Consequently, 
outstandingly high demand can contribute to the unavailability of 
preferred varieties for some farmers (Shiferaw et al. 2008, Shiferaw 
et al., 2015). In this case, farmers may need to buy alternative, less 
preferred varieties and accept lower yield potential or increased pro
duction risk. Due to lower willingness-to-pay for less preferred varieties 
and carry-over of unsold seed, mismatches between seed supply and 
demand are costly for seed suppliers (Burer et al. 2008, Teferi et al. 
2020). 

Despite the frequent ad-hoc nature of seed purchasing decisions, seed 
demand can be anticipated to some extent, due to its association with 
seasonal climate and other factors, such as crop prices or the availability 

of credit. Zhu et al. (2019), for example, demonstrated that demand for 
horticultural seeds in Shanghai can be forecasted up to five months into 
the future using data on climate, market prices, and seed inventories, at 
practically meaningful levels of accuracy. In the (non-agricultural) 
manufacturing and retail industry, demand forecasting is a widely 
established practice for supply chain coordination (Fildes et al. 2022, 
Petropoulos et al. 2022). Seasonal forecasts of seed demand could help 
reduce the degree of mismatch between seed supply and demand, likely 
translating into better overall outcomes for both seed suppliers (lower 
market share lost to competitors, lower share of unsold seed) and 
farmers (more reliable access to suitable, preferred varieties). 

Since climate variability influences seed demand, seasonal climate 
forecasts could inform forecasts of seed demand. Seasonal climate 
forecasting is made possible due to the influence of slowly moving 
boundary conditions of the climate system on atmospheric phenomena 
(Troccoli 2010). For example, variability in tropical Pacific sea surface 
temperature, associated with El Niño-Southern Oscillation (ENSO), is 
predictable up to one year ahead. This allows long-lead prediction of 
seasonal rainfall anomalies, given the influence of ENSO on them (Ham 
et al. 2019, Taschetto et al. 2020). One widely used approach for pro
ducing seasonal forecasts is the use of numerical climate model simu
lations. These models provide predictions for a range of variables, such 
as temperature and precipitation, typically up to six months into the 
future. Seasonal forecasts are now provided free of charge through na
tional and supranational initiatives such as Copernicus (the European 
Union’s earth observation program) or NOAA (the US climate science 
department). The potential of seasonal climate forecasts to support 
farmers’ decision-making has been explored extensively, both in high- 
income and smallholder context (Hansen 2002, Hansen et al. 2011, 
Klemm and McPherson 2017, Chisadza et al. 2020, Ceglar and Toreti 
2021, Alexander and Block 2022). Experimental access to seasonal 
forecast information can positively influence farmers’ agronomic de
cisions, for example, about sowing dates and variety choice (Roudier 
et al. 2014). In practice, however, available seasonal forecast products 
are rarely inclusive to the needs and capacities of resource-poor small
holder farmers (Hansen et al. 2019, Vogel et al. 2019). Staff of seed 
supply organizations are likely to face lower technological and cognitive 
access barriers than farmers, but to our knowledge, the potential use of 
seasonal climate forecasts for decision-making in seed supply has not 
been widely studied. 

2. Opportunities for scenario planning 

Operational seasonal climate forecasts often provide probabilistic 
forecasts of rainfall terciles, i.e., they give the likelihood of a rather dry 
(lower tercile), average (middle tercile), or rather wet season (upper 
tercile), relative to historical rainfall variability at a particular location. 
If seed suppliers can assess the most likely implications of these rainfall 
outcomes on seed demand, seed supply operations can be planned ahead 
in a way that minimizes the risk of mismatches. This type of anticipating 
the future and defining optimal operational adjustments under uncer
tainty is commonly referred to as ‘scenario planning’. Scenario planning 
is used by organizations, such as businesses and governments, to stra
tegically pre-plan their responses to alternative, possible combinations 
of future events and circumstances – i.e., scenarios (Reilly and Wil
lenbockel 2010, Amer et al. 2013). For example, the existence of strin
gent pandemic preparedness plans, developed through earlier scenario 
planning exercises, has been crucial for effective and rapid responses to 
the COVID-19 health crisis (Richmond et al. 2021, Villa et al. 2020). 

In contrast to stochastic modelling approaches used by insurance 
companies, which can consider the probabilities of numerous factors for 
determining the probability of an outcome of interest, scenario planning 
is driven by human deliberation. Scenario planning supports decision- 
making by identifying a small number of discrete, plausible futures 
that call for different responses. As a first step, this implies identifying 
key uncertainties that may affect the future performance of a policy or 
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enterprise. Then, based on the most relevant factors of uncertainty 
(usually 3 to 8), planners define a manageable number of scenarios 
(typically 3 to 4) through different, plausible combinations of the un
certainty variables (Amer et al. 2013). This way, even without esti
mating the probability of each scenario, decision-makers can already 
define an optimal response to each scenario, usually through qualitative 
deliberations. 

Seed supply in low- and middle-income countries may benefit from 
systematic use of scenario planning and strategic foresight. Climate 
variability exposes seed supply to high uncertainty. There is strong 
public interest in risk mitigation, as the efficiency of seed supply affects 
rural livelihoods and food security. Here we assess how seasonal climate 
forecasts can be employed by seed supply decision-makers in scenario 
planning exercises to better meet farmers’ seed demand. Through an 
open-ended co-design process with seed supply stakeholders in 
Zimbabwe and Ethiopia, we co-developed a generic decision-support 
procedure that harnesses seasonal forecasts for informing risk- 
minimizing decisions on seed supply. Two main objectives guided our 
study: First, to co-develop a concept of forecast-based seasonal scenario 
planning together with practitioners and evaluate its potential for seed 
supply management. Second, to create a replicable procedure for 
implementing the concept in practice, as a starting point for further 
methodological development. 

In the following, Section 3 describes the concept we devised and the 
co-design process with seed sector stakeholders in Zimbabwe and 
Ethiopia. Results from a case study are reported, and we present the 
tentative implementation of the generic seed scenario planning tool. 
Section 4 presents the main insights from our exploratory proof-of- 
concept study, including on likely use cases and recommended further 
development. Section 5 concludes with key lessons learned and an 
outlook. 

3. Exploring the use of seasonal scenario planning for seed 
supply management 

3.1. Concept of seasonal seed scenario planning 

Seasonal seed scenario planning intends to support seed supply or
ganizations’ anticipation of seed demand at crop variety level. Based on 
this anticipation of upcoming seed demand, planners can adapt decision- 
making, increasing their ability to respond to farmers’ demand and 
minimize economic loss. The idea here is to use historical data to asso
ciate different seasonal climate conditions with seed demand, in a sta
tistical model. This information can then be integrated with anticipated 
climate variability from numerical seasonal forecast models to estimate 
upcoming seed demand. Finally, this demand forecast can be used to 
inform decision-making along the seed supply chain. As a decision 
support process, the concept comprises five key stages.  

(i) Identifying drivers of seed demand variability. The first step consists 
of understanding which factors generally influence farmers’ de
mand for different seed varieties in the target context. Seasonal 
rainfall is an example, but depending on context, also elections 
(distorting open-market demand, as political campaigns may 
distribute free seed of certain varieties) or disasters such as 
droughts or floods (increasing demand, as farmers need to 
replant) might play a role.  

(ii) Envisioning plausible, alternative scenarios. Based on different, 
coherent combinations of the identified drivers of seed demand 
variability, agricultural seasons are categorized into a low num
ber of stereotypical scenarios. An example would be ‘high overall 
rainfall, no election, no disaster’.  

(iii) Assessing scenario probabilities. For the upcoming season, the 
probability of each scenario is estimated. This can be done using 
available data (e.g., electoral calendar), expert heuristics, or 
scientific forecasts (e.g., seasonal climate forecasts). Some 

scenarios may have a probability of 0 %. For example, when no 
election is scheduled to take place, all scenarios involving an 
election may be disregarded. The probabilities of all considered 
scenarios add up to 100 %.  

(iv) Defining an overall risk-minimizing strategy. Under each scenario, 
matching supply and demand requires a different set of actions by 
the seed supply organization. As decision-makers cannot know 
for sure which seasonal scenario will eventually occur, however, 
an overall risk-minimizing behavior can be identified. This 
overall optimal strategy is defined by identifying the scenario- 
specific optimal strategies and weighting them by the respec
tive scenario probabilities.  

(v) Preparing an action plan for each scenario. The overall risk- 
minimizing strategy balances the different scenario probabili
ties and their respective risks, using best available knowledge 
prior to the agricultural season. Nonetheless, this strategy is un
likely to perfectly suit the actual seasonal outcome. Thus, for each 
individual scenario, an action plan can be prepared. These action 
plans consider that the overall risk-minimizing strategy will be 
adopted. Then, for each scenario, they outline actions that help to 
better respond to actual seasonal demand and reduce economic 
loss. 

3.2. Co-design process 

3.2.1. Design criteria 
Our goal was to co-design with seed sector stakeholders a user- 

friendly procedure for seasonal scenario planning in seed supply, 
combining digital and non-digital features as appropriate. To ensure the 
resulting procedure fits the targeted decision-making context and con
siders the needs, habits, preferences, and capacities of seed supply 
stakeholders, we facilitated a process of participatory design (see Stit
zlein et al. 2020, Eastwood et al. 2022, McCampbell et al. 2022, Steinke 
et al. 2022). Participatory design intends to generate context-aware 
solutions without predetermining any features or characteristics of the 
eventual solution. While we adopted this open-ended approach, the 
research team agreed on multiple design criteria. These are re
quirements that the scenario planning procedure should fulfill to be 
widely applicable beyond the immediate design context and case study. 
We considered the following design criteria: 

Low cognitive effort. Seasonal seed scenario planning should avoid the 
need for advanced technical know-how in statistics or climate science, 
but instead use simple indicators and heuristics that seed sector stake
holders are generally familiar with. The procedure should not require 
the use of complex software that would require users to invest significant 
time into learning. 

Low access barriers. All features of seasonal seed scenario planning 
should be immediately accessible (online), without requiring individual 
registration, affiliation to a certain organization, or payments. 

Low time investment. The procedure should require minimal time 
commitment by the decision-makers involved. 

Actionable output. The output of seasonal seed scenario planning 
should provide a practically meaningful input into adaptive decision- 
making in seed supply chains. 

Universal application. Although we created and tested the procedure 
in a specific case study, our goal was to design a decision-support tool 
that can be used across regional contexts and crops. 

3.2.2. Explorative interviews with seed sector experts 
To understand current practices of demand assessment and to iden

tify the practical potential of influencing decisions with seasonal de
mand forecasts, we conducted semi-structured interviews with 
production and marketing managers of Seed Co Limited in Zimbabwe. 
Seed Co is a major commercial breeder and supplier of cereal and 
legume seed, serving both large- and small-scale farmers across multiple 
countries in sub-Saharan Africa. In addition, we were interested in 
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understanding the major drivers of farmers’ seed choice in the case study 
area, Zimbabwe. Due to travel restrictions in the face of the COVID-19 
pandemic, two individual interviews and one focus group discussion 
with three participants were conducted via video conferencing software. 

As a starting point for prototyping the tool, we mapped current 
decision-making procedures within Seed Co, as well as along the wider 
seed value chain (see Table 1). Production decisions – how many tons of 
each variety will be produced by contract farmers – are influenced by 
multiple considerations: first, production is driven by a long-term plan 
for market positioning, determined by senior management. Second, 
production managers estimate demand for different varieties based on 
previous seed sales and feedback from seed retailers, but also consid
ering expected effects from advertising specific varieties. On top of this 
estimated seed demand, a fixed percentage of surplus seed eventually 
gets produced. This is because – although seed carry-over has a cost in 
terms of logistics, storage, and administration – Seed Co prioritizes 
ensuring customer loyalty by avoiding running out of stock. Bulk seed is 
then distributed to regional depots according to the regional demand 
estimates. For further distribution, Seed Co staff collects initial orderings 
from seed retailers. During the season, these local agro-dealers regularly 
order seed batches from the regional depots to restock their shelves. 

3.2.3. Prototyping a decision-support tool for seasonal seed scenario 
planning 

During a prototyping phase, we collected feedback from climate 
scientists and seed sector decision-makers to progressively specify our 
initial design idea. This also involved insights gained through the in
teractions under Sections 3.3 and 3.4 (see below). 

As a first step, we conceptualized a possible procedure for forecasting 
seed demand based on our insights about drivers of variety demand in 
Zimbabwe, available seed sales data, and current decision-making pro
cesses around seed supply in Seed Co, our case study. To obtain feedback 
from potential users of seasonal seed scenario planning, we presented 
the concept to decision-makers at Seed Co via an online workshop and 
jointly discussed potential use cases as well as perceived challenges 
around its different components. 

Our concept involved three steps: (1) Past growing seasons are 
individually categorized by two scenario factors that are known to in
fluence seed demand: seasonal rainfall (dry/medium/wet tercile), and 
whether the season was preceded by a national election (yes/no). This 
results in six possible seasonal scenarios. (2) Data on historic seed de
mand is used to estimate the statistical association between scenario 
factors and demand for individual varieties, using linear regression 
models. The fitted regression coefficients are then used to predict 
average seed demand patterns under each scenario. (3) The probability 
of each scenario in the next season is assessed using a seasonal climate 
forecast and the electoral calendar. An overall demand forecast is then 
generated by weighting the different scenario-specific average demand 
patterns by the respective forecasted scenario probabilities. 

To implement this concept in practice, we first searched for a suitable 
source of historic rainfall data that could be used to categorize past 
seasons. We identified the CHIRPS dataset, which has global coverage 
and is open access (Funk et al., 2015). CHIRPS daily rainfall estimates 
are derived from geostationary infrared satellite retrievals of cloud top 
temperature, merged with available rain gauge data. Data can be 
accessed through a global map interface at ClimatSERV1, a data service 
jointly offered by NASA and USAID, allowing users to download daily 
rainfall estimates at country and sub-country levels. 

Next, we identified a seasonal climate forecast product that best 
serves our design criteria. We chose the Copernicus Climate Change 
Service (C3S) multi-model forecast2 because it provides a probabilistic 

rainfall forecast (probabilities of a rather dry, average, or rather wet 
season) and visualizes these forecasts as global maps. In addition to 
being globally applicable and freely accessible online, our evaluation 
showed that a probabilistic map was understood by seed sector decision- 
makers. 

In stakeholder consultations with Seed Co, and to address our design 
criteria, we decided to implement all analyses in one Microsoft Excel 
workbook, with embedded weblinks to ClimatSERV (to download 
rainfall data) and C3S (to obtain the most recent seasonal climate 
forecast). The workbook comprises six sheets: 

Sheet 1: Enter sales data. The user is asked to provide data on historic 
seed demand by variety and per annum (seed sold or distributed in the 
region of interest). Data can be supplied for up to 50 years and up to ten 
different crop varieties (cf. Step 1 in Fig. 1). 

Sheet 2: Get rainfall data. This sheet includes the weblink to Cli
matSERV. The user is asked to click this link, which will open in a 
browser, outside Excel. The rest of the sheet includes screenshots from 
the ClimatSERV interface to guide the user towards downloading his
torical daily rainfall estimates from the region of interest. 

Sheet 3: Insert rainfall data. The user is asked to paste the recently 
downloaded daily rainfall estimates (cf. Step 2 in Fig. 1). A bar chart of 
monthly rainfall averages is automatically generated. This allows the 
users, who are expected to be familiar with their target region’s climate 
chart, to verify whether any errors in downloading or pasting the data 
have occurred. 

Sheet 4: Get seasonal forecast. This sheet includes the weblink to the 
C3S seasonal rainfall forecast and shows screenshots to guide the user 
through this online resource. The user is asked to generate the forecast 
maps for the upcoming agricultural season, i.e., the probabilities for 
rainfall in the lower, middle, and upper tercile category (a rather dry, 
average, or rather wet season). The user is asked to focus on their region 
of interest and retrieve the respective forecasted probabilities (cf. step 4 
in Fig. 1). C3S forecast maps provide a spatial resolution of 1◦ × 1◦, 
equivalent to roughly 111 km × 111 km at the equator, and smaller grid 
cells towards the poles. In cases where forecasted probabilities are 
shown to vary across a larger region of interest, the user may choose to 
focus on the dominant probability across the region of interest. Ideally, 
though, separate analyses should be carried out for smaller sub-regions. 

Back in the Excel sheet, the user then supplies these forecasts in three 
drop-down cells. For use in further calculations, the user also specifies 
the forecast period of interest, i.e., the three-month agricultural season 
(for example, October-November-December). 

Sheet 5: Calculations. All calculations are automated in this back
ground sheet, which is hidden from view and password protected to 
prevent accidental edits. Section 3.3 (see below) and Fig. 1 provide a 
detailed overview of calculations with example data (cf. steps 3 and 5 in 
Fig. 1). 

Sheet 6: Results. Two types of results are generated. The first result is a 
forecast of overall seed demand, across all varieties. The forecast is 
provided in the form of relative statements, comparing forecasted seed 
demand to both the long-term average and, as a direct reference, to last 
year’s demand. The result can take five levels, from ‘much lower’ (more 
than two standard deviations, SD, below long-term average) to ‘lower’ 
(at least one SD below average), ‘about average’ (within one SD around 
average), ‘higher’ (at least one SD above average), and ‘much higher’ 
(more than two SDs above average). The second result resembles the 
first but provides statements for each individual variety (cf. step 6 in 
Fig. 1). 

We created a first prototype of this Excel workbook and refined its 
design in multiple iterations of user testing. We performed user evalu
ations by presenting early versions to decision makers at Seed Co and 
collecting qualitative feedback. We also performed independent tests 
with two users previously unfamiliar with the entire concept, using the 
think aloud method (Jaspers et al., 2004). These test users (one woman, 
one man) were a geographer and a biologist based in Germany, with no 
pre-existing expertise on smallholder seed systems. These interactions 

1 https://climateserv.servirglobal.net/.  
2 Created by the European Centre for Medium-Range Weather Forecasts 

(ECMWF). 

J. Steinke et al.                                                                                                                                                                                                                                  

https://climateserv.servirglobal.net/


Climate Services 32 (2023) 100410

5

were especially helpful for simplifying the language (avoiding jargon) 
and adding instructions to the prototype. After each test, we adapted 
features of the Excel workbook. The eventual design is appended to this 
article as a supplementary file. 

3.3. Case study with Seed Co (Zimbabwe) 

To understand the usefulness and define potential use cases of our 
prototype, we explored it in practice and with real world data, together 
with decision-makers at Seed Co in Zimbabwe. This case study was 
carried out in mid-2020, aiming at forecasting seed demand in the 
November-December-January (NDJ) season 2020/21. We compiled 
historic sales data on five Seed Co maize varieties with different times to 
maturity (ranging from ‘ultra-early’ to ‘late’). For each variety, sales 
records were aggregated per calendar year across all of Zimbabwe, 
covering the years 2012 through 2019. Because Zimbabwe has one 
planting season typically centered on NDJ, aggregated seed sales 
recorded in a calendar year can be expected to be associated with the 
agricultural season starting that same year. 

We downloaded daily precipitation estimates, averaged over 
Zimbabwe, from ClimatSERV (see previous Section) for the period of 
1993–2019. For each year in the reference period, cumulative rainfall 
over the forecast season was calculated (i.e., November 1 to January 31). 
Because the reference period used by the C3S seasonal forecast to 
calculate tercile thresholds is 1993–2016 by default, we used this 24- 
year period to calculate tercile thresholds for Zimbabwe, too. Using 
these thresholds (346 mm and 441 mm), each of the seasons 2012–2019 
(for which seed demand data were available) was classified as either dry, 
average, or wet. In addition, seasonal rainfall for a ‘typical’ dry, me
dium, and wet season was calculated by taking the median of the eight 
reference seasons per tercile: 315 mm (dry), 388 mm (medium), and 

506 mm (wet). 
To link seasonal scenarios and seed demand, a linear regression was 

calculated for each maize variety. Annual seed demand was the 
dependent variable, and independent (explanatory) variables included 
seasonal rainfall, seed demand in the previous year, and an ‘election’ 
dummy. Although not part of the scenario definition, seed demand in the 
previous year was added since this variable has been shown to be an 
important predictor of future demand (see Zhu et al. 2019). Previous 
experiences with agricultural technologies, such as seed varieties, are an 
important determinant of subsequent adoption decisions and willing
ness to pay (e.g., Mastenbroek et al. 2021). Expected seed demand per 
variety in a ‘typical’ dry, medium, or wet season was then calculated 
using the regression coefficients of the three explanatory variables. The 
resulting seed demand estimates highlighted links between seasonal 
scenarios and seed demand:  

× Overall seed demand, adding up all varieties, increased with 
increasing seasonal rainfall. Predicted seed demand in a ‘typical’ wet 
season exceeded demand in a ‘typical’ dry season by 33 %. Two 
factors are likely to contribute to this observation: first, in anticipa
tion of a wet season, farmers are likely to buy larger quantities of 
certified seed than in drier years, as these investments are more likely 
to pay off (see Almekinders et al. 2021). Second, Seed Co staff 
observed that in rain-abundant seasons, some commercial farmers 
with access to supplemental irrigation switch from one cropping 
cycle (typically using a late variety) to two successive cropping cy
cles (using ultra-early seed), effectively requiring the double amount 
of seed.  

× Total seed demand in election years was higher than in non-election 
years regardless of seasonal rainfall. This increase was primarily 
explained by higher sales of very-early seed, the main variety used by 

Table 1 
Schematic representation of major decision-making opportunities for mitigating risks along the commercial seed value chain.  

Row 
no. 

Approximate number 
of months before 
sowing 

Seed supply operation Decisions to be made Risks to be mitigated Decision- 
making agent 

1 24 Parent seed production What quantities of parent seed of 
which varieties to produce 

Insufficient supply of high-demand varieties Seed supplier 

2 12 Seed multiplication What quantities of certified seed of 
which varieties to multiply 

Insufficient production of high-demand 
varieties 
Overproduction of low-demand varieties 

Seed supplier 

3 9 Post-harvest management: sorting, 
grading, quality control 

What quantities of which varieties to 
prioritize, and which to shelve for 
later processing 

Investments into post-harvest processing of 
seed that will eventually be sold as grain, if 
farmer demand is low 

Seed supplier 

4 6 to 1 Preparation of seed batches: 
cleaning seed, chemical treatment, 
packaging, labelling 

What quantities of which varieties to 
process into small batches, and 
which to shelve in bulk storage 

Investments into seasonal preparations for 
seed that will eventually be sold as grain or 
feed 
Destruction of chemically treated seed, 
which cannot be sold as grain or seed 

Seed supplier 

5 3 to 1 Bulk shipping to regional depots What quantities of which varieties to 
allocate in each region 

Local under-supply, requiring 
supplementary shipments between regional 
depots 

Seed supplier 

6 3 to 1 Shipping to local agro-dealers What quantities of which varieties to 
allocate at local agro-shops 

Preferred seed varieties sold out too soon, 
farmer customers turning to competitors 
Costly return shipment of unsold seed 

Seed supplier, 
local agro- 
dealers 

7 1 to 0 Last-minute advertisement Which varieties to promote to 
farmers to increase demand for 
varieties in stock 

Seed demand diverts substantially from 
expectations, leading to local under- or 
over-supply 

Seed supplier, 
local agro- 
dealers 

8 1 to 0 Seed purchase by farmers What quantities of which varieties to 
purchase 

Use of suboptimal varieties leading to 
disappointing yields 
Inaccessibility of preferred seed in case of 
replanting needs 

Farmers 

9 3 after sowing Shipping unsold seed back to 
central warehouse 

None None Seed suppliers 

10 6 after sowing Reprocessing of returned seed What quantities of which varieties to 
sell as grain, and which to retain for 
renewed sale as seed 
What quantities of which varieties to 
export for upcoming sale on other 
national markets 

Foregone profit due to lower sales price of 
grain or costs of exporting seed 
Over-supply of seed in next season 

Seed suppliers  
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Fig. 1. Flowchart of inputs, calculations, and outputs of seasonal seed scenario planning. Maturity classes in facet 1 and rainfall data in facet 2 reflect the Seed Co 
case study. Facet 1 does not show the actual demand data due to a confidentiality agreement with Seed Co. 
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smallholder farmers in rain-fed conditions. It is assumed that these 
sales are due to seed handouts acquired by electoral campaigns.  

× Increasing seasonal rainfall implied a shift towards later-maturing 
varieties. From dry to medium to wet season, the predicted relative 
shares of very-early and early decreased, whereas the share of me
dium increased. Contradicting our original expectations, however, 
increasing seasonal rainfall was associated with more ultra-early, 
and less late. This can be explained by the fact that both varieties 
are mainly used by commercial farmers with access to irrigation, 
who tend to use the ultra-early varieties for double cropping in wet 
seasons (see above).  

× Goodness-of-fit of the seed demand regressions was highest for the 
ultra-early variety (R2 = 0.70). This indicates that the demand for 
this extreme maturity class responds more strongly to variations in 
climatic conditions than the demand for other maturity classes (R2 

ranging between 0.11 and 0.20). This may be because commercial 
farmers have better access to seasonal climate forecasts than small
holder farmers, and thus their varietal choice is more strongly 
influenced by seasonal climate. 

To generate foresight on seed demand in the 2020/21 NDJ season, 
we used the C3S online interface (see previous Section). We retrieved a 
seasonal rainfall forecast for Africa in August 2020 (nominal forecast 
start August 1, 2020). We focused on Zimbabwe and recorded the 
probabilities for a dry, average, and wet NDJ season. These probabilities 
were “20–40 %” for all three seasonal outcomes. Lastly, seed demand in 
the upcoming season was forecasted. For each variety, the ‘typical’ seed 
demand quantities in the three seasonal scenarios were weighted by the 
forecasted scenario probabilities. In our case study – where all scenarios 
were forecasted to have same probability – this was the same as taking 
the mean of the three ‘typical’ demand quantities. 

Eventually, results statements were generated by comparing the 
predicted seed demand with historic seed demand records (for the 
2012–2019 period). Overall seed demand as well as demand for indi
vidual varieties were forecasted to be “about average”, i.e., within one 
standard deviation around the average of the 2012–2019 period. 

These results statements suggested the overall risk-minimizing 
strategy: in this (unspectacular) case, maintaining seed supply of all 
varieties at average levels balances the risks of under- and over-supply. 
Had the seasonal forecast suggested, for example, a drier-than-usual 
season, then the overall risk-minimizing strategy may have involved 
more meaningful changes, such as supplying more seed of the very-early 
variety. 

3.4. Validation exercise with Oromia Seed Enterprise and Ethiopia Seed 
Enterprise (Ethiopia) 

To ensure the scenario planning procedure can be used by users 
previously unfamiliar with the concept, we facilitated a one-day work
shop with decision-makers from two public seed enterprises in Ethiopia. 
Rather than gradually implementing and iteratively improving the de
cision support procedure, as we did with Seed Co in Zimbabwe, we 
aimed at carrying out the entire procedure in one go. Three decision- 
makers from each Oromia Seed Enterprise (OSE) and Ethiopia Seed 
Enterprise participated, and the exercise used seed demand data from 
the East Wellega zone, provided by OSE. During this test, we continu
ously collected qualitative feedback from participants. We recorded 
their assumptions and expectations around the procedure and its out
puts. We also sought for challenges in understanding the concept, the 
underlying calculations, and the Excel or online interfaces. Another 
emphasis consisted in understanding participants’ views on potential 
use cases in Ethiopian seed supply context. This feedback was used to 
improve the design of our procedure and the Excel decision support tool. 

3.5. Replicable implementation of the procedure for seasonal seed 
scenario planning 

The Seed Co case study (see Section 3.3) demonstrated that the 
strength of statistical links between seasonal scenarios and seed demand 
can vary considerably. Depending on the maturity class, the regression 
models explained between 9 % and 73 % of the year-to-year variation in 
varietal seed demand (mean R2 values from leave-one-out cross-vali
dation, Hastie et al. 2009). Low explanatory power for some maturity 
classes may have different reasons. One potential limiting factor is the 
rather low number of years for which seed sales data were available. To 
ensure that seed demand anticipation is backed by adequate statistical 
power, future applications of our concept may need to rely on more 
observations. Under the conditions of our case study, for example, ten 
seasons of demand data would provide acceptable statistical power for a 
variety with a relatively high R2 = 0.7, but at least 20 observations are 
needed for a lower R2 = 0.4. 

Other drivers of seed demand, not included in the statistical models, 
might also play a role. For example, seed purchasing decisions can be 
influenced by the availability of cash, which may vary with yields and 
market prices of cash crops (Almekinders et al., 2021). Along with the 
inherent uncertainty of climate forecasts, this means that presenting the 
demand forecasts to decision-makers as ‘predictions’ could insinuate a 
certainty that is unwarranted. Therefore, we decided to embed the use of 
the Excel tool as part of an expert workshop. The seed demand prognoses 
were kept deliberately tendential (“lower than average”, etc.) to avoid 
insinuating deterministic accuracy and to serve as mere information 
inputs into qualitative expert discussions and decision-making. 

Another important insight from the validation exercise with seed 
supply decision-makers in Ethiopia (see Section 3.4) was the need for 
well-prepared, competent facilitation. Therefore, we created detailed 
support materials for workshop facilitators to lead participants through 
the collective decision-making process. In addition to the Excel tool that 
is to be filled and used jointly by workshop participants, the procedure is 
supported by a detailed workshop guide (aiming for around 3 h) and a 
PowerPoint presentation. Using these support materials, a facilitator can 
autonomously prepare and implement a seasonal seed scenario planning 
workshop. The workshop comprises the following stages (intended 
duration in minutes in parentheses): Welcome and clarify objectives (5′), 
Explain background and motivation for scenario planning (10′), Simple 
exercises to familiarize with the concept of scenario planning (15′), 
Introduction to the Excel tool (20′), Coffee/tea break (15′), Joint use of 
the Excel tool (60′), Joint discussion of implications of results for seed 
supply decision-making (60′). 

4. Insights and methodological learnings 

4.1. Potential use cases 

Seed sector stakeholders involved as co-designers and test users 
agreed that seed demand forecasting and scenario planning would be 
most useful before seed production. However, decisions on seed pro
duction are typically made at least a year before the season of interest 
(see Table 1). Climate forecasts with 12-month lead times exist, but 
usually lack skill and are not widely publicized. Thus, seasonal seed 
scenario planning is more likely to be useful for influencing post- 
production decisions. Reasonable use cases include decision-making at 
the stages of seed pre-treatment, packaging, and distribution, which take 
place within few months or weeks before the beginning of the season (i. 
e., rows 4 to 7 in Table 1). Scenario planning could be used by seed 
suppliers to adapt the respective quantities of each seed variety that are 
cleaned, treated, packaged, and allocated to different regions or ware
houses. For example, chemically treated, but unsold seed cannot be 
relabeled as food grain and in some cases needs to be destroyed. Sce
nario planning could help to minimize this type of loss, by better 
adapting (initial) treatment and packaging to forecasted demand. 

J. Steinke et al.                                                                                                                                                                                                                                  



Climate Services 32 (2023) 100410

8

Logistics is another use case. In advance of the planting season, big seed 
suppliers typically stock multiple regional depots with different quan
tities of seed, according to expected demand. Regionally explicit de
mand forecasts could be valuable to plan initial stocking, reducing both 
shortage of high-demand seed and carry-over and return shipments of 
less demanded seed (see Alemu and Bishaw 2016). 

Interactions with seed suppliers in Zimbabwe and Ethiopia high
lighted, however, that current, rather linear seed supply pipelines do not 
easily accommodate flexible, adaptive decision-making based on sce
nario planning. Current business practice does not allow for significant 
deviation from a standard sequence of steps in seed supply (e.g., pro
duction, packaging, distribution), for example, by prioritizing some 
varieties over others, or shelving a share of certain varieties for a while, 
to avoid unnecessary treatment/packaging/shipping. An effective use of 
seasonal seed scenario planning would require moving away from a 
predetermined linear succession of operations in seed supply, towards 
increased agility. For example, while great amounts of seed could 
originally be shelved based on a forecasted low demand, they could be 
treated, packaged, and shipped later in response to an unfolding high- 
demand scenario. This would also require quick and accurate feedback 
about demand from distribution points, as well as available labor force 
to implement treatment, packaging, and shipping in successive 
‘instalments’. 

Seasonal seed scenario planning requires that seed demand is influ
enced by predictable phenomena (such as seasonal rainfall or elections). 
In our Zimbabwean case study, we found that the regressions, based on 
our scenarios, had stronger predictive power for some varieties than for 
others. Without expert validation (judging whether results are plau
sible), generating demand foresight based on weak statistical links risks 
leading to wrong conclusions. As a solution, the Excel tool could apply a 
threshold for the strength of association between seasonal scenarios and 
demand (for example, R2 ≥0.40 in the regression models) as a condition 
for generating any results. This way, users would focus on those varieties 
where demand forecasts can be made with more certainty. In future 
applications, empirically identifying additional determinants of variable 
seed demand and including them in the regression models could lead to 
more accurate predictions. 

4.2. Compliance with design criteria 

Across the co-design process, our design decisions aimed at consid
ering five design criteria (see Section 3.2.1). Here, we discuss how these 
criteria were addressed. 

Low cognitive effort: Our case study and validation exercise showed 
that seed supply decision-makers generally can understand all steps of 
analysis and discuss potential implications. Familiarity with key con
cepts such as cumulative seasonal rainfall, seasonal climate forecasts, 
variability of demand, probabilities and uncertainty, or statistical as
sociation can be assumed. Nonetheless, a prepared facilitator seems 
necessary to guide participants through the process and keep discussions 
focused on the scenario planning exercise. 

Low access barriers: Daily rainfall data as well as seasonal climate 
forecasts can be freely accessed online. While there are relevant re
sources that require registration, our procedure was built around using 
CHIRPS rainfall estimates and the C3S rainfall forecast, which are free 
and immediately accessible. 

Low time investment: Some time commitment for becoming familiar 
with the Excel tool and the online resources, as well as for compiling the 
seed demand data seems inevitable for applying the procedure properly. 
However, we minimized overall time requirement by suggesting the 
assignment of a workshop facilitator. We estimate the facilitator needs 
about two hours for preparing the workshop, and additional time for 
compiling and cleaning seed demand data, which will depend on the 
level of data standardization and curation within the seed supply or
ganization. The other participants (about 3–5 persons) should spend 
about three hours in the workshop. 

Actionable output: Feedback from decision-makers in Zimbabwe and 
Ethiopia suggested that results are well understood and are perceived as 
useful inputs to discussions around the prioritization of varieties in post- 
production treatment, as well as in allocation to different warehouses or 
depots. Until now, however, the relatively rigid, linear succession on 
operations in seed supply limits the scope for using the outputs of sea
sonal seed scenario planning in adaptive decision-making. 

Universal application: We deliberately focused on a near-global rain
fall dataset (CHIRPS) and a global climate forecast (C3S) to ensure our 
implementation of seasonal seed scenario planning can be easily applied 
in any regional context. There are, however, also continental, regional, 
or national climate forecasts, which often provide higher resolution than 
C3S. One example is the seasonal forecast generated by ICPAC3 for the 
greater Horn of Africa. If users prefer, alternative forecasts can be used 
instead of C3S, and forecasted tercile probabilities can easily be entered 
in the Excel tool. 

To come up with the seasonal seed scenario planning procedure, we 
applied a participatory design process. This process was open-ended 
regarding the type of solution that would be generated. The design 
assignment, however, made relatively strong assumptions on the use
fulness of seasonal climate forecasts for seed supply management. As a 
result, the generated procedure does not reflect the major information 
needs of targeted stakeholders – prioritizing varieties at the production 
stage – and cannot be easily ‘plugged in’ with current business practices 
of seed suppliers. Effective use of seasonal seed scenario planning likely 
requires institutional adjustments toward more flexible operations in 
seed supply (see previous Section). The relative difficulty of immedi
ately implementing our procedure under current conditions challenges a 
claim of participatory design – that it generates context-specific, fit-for- 
purpose solutions – and highlights the need for even less prescriptive 
design assignments (Steinke et al. 2022). 

4.3. Future development 

Along the co-design process, multiple needs and opportunities for 
further development of the seasonal seed scenario planning concept and 
its practical implementation emerged. One challenge noticed in both the 
case study and the rapid replication exercise was the difficulty of 
compiling data on seed distribution at variety level. In both cases, 
aggregating data from different in-house sources, verifying variety 
names, and removing duplicated entries required considerable effort 
and time. In practice, the challenge of accessing reliable data on historic 
variety demand might discourage decision-makers from using seasonal 
seed scenario planning. Seasonal seed scenario planning relies on seed 
distribution data in a specific format (seed quantity of each variety 
distributed in a defined area across a defined time period). This may 
require seed supply organizations to first systematize seed distribution 
records correspondingly. 

Seed supply stakeholders also highlighted that, for scenario planning 
to unfold its full potential, farmers themselves may require greater ac
cess to seasonal climate forecasts. In our study regions, some farmers 
already receive seasonal forecast information from extension agents or 
local input dealers. Many farmers, however, lack access to seasonal 
forecasts and thus cannot easily align their seed demand with forecasted 
seasonal rainfall (see also Waldman et al. 2017). This may, in part, 
explain the relatively weak statistical link between climate and seed 
demand observed especially for the varieties targeting smallholders in 
Zimbabwe. Large-scale dissemination of seasonal climate forecasts, 
along with concrete recommendations on suitable, risk-minimizing va
riety portfolios, is expected to strengthen these statistical links, as 
farmers’ demand may better align with seasonal climate. To date, seed 

3 ICPAC is the Intergovernmental Authority on Development (IGAD) Climate 
Prediction and Applications Centre, see https://www.icpac.net/seasonal- 
forecast/. 
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demand is strongly supply-side driven even in countries with relatively 
competitive private seed markets, such as Kenya (Rutsaert et al. 2021, 
Chivasa et al. 2022). Thus, seed suppliers might minimize the economic 
risks of mismatches – costly carry-over or foregone profits (when 
farmers have lower willingness to pay for less-preferred varieties or buy 
seed from competitors) – by deliberately promoting seasonally adapted 
variety portfolios. Promotion efforts, for example, via collaborating 
agro-dealers, might more strongly influence farmer demand than the 
dissemination of seasonal forecasts (see Rutsaert and Donovan 2020). 
Through improved farm performance, promoting seasonally adapted 
variety portfolios may also enhance farmers’ trust in seed suppliers’ 
brands, potentially leading to increased customer loyalty and future 
revenue. 

By generating a generic, globally applicable solution, our experi
mental proof-of-concept study has demonstrated the general feasibility 
and potential usefulness of seasonal scenario planning for matching 
supply and demand in the seed sector. In future practice, more case- 
specific implementations may be possible. Collaborations between 
climate scientists and seed supply organizations could lead to the 
development of highly practice-oriented decision-support tools that 
consider locally relevant climate phenomena – going beyond seasonal 
rainfall – possibly at longer lead times. Rather than focusing on cumu
lative seasonal rainfall alone, climate science could help estimate sea
sonal risk for scenarios that combine different extreme weather events 
(e.g., drought spell during germination phase + elevated heat during 
grain filling). Moreover, identifying climatic boundary conditions, such 
as tropical sea surface temperatures, that influence seasonal rainfall 
could help increase the lead time of forecasts (Lehmann et al. 2020). An 
improved understanding of the climatic conditions relevant for seed 
demand (beyond rainfall alone) can help increase prediction skill, but 
requires in-depth regional analyses. 

The scenario planning approach relies on assessing the probabilities 
of different outcomes, yet in our implementation of seasonal seed sce
nario planning, the output insinuates a deterministic prediction: for each 
variety, expected seed demand is calculated and users receive a single 
results statement. This was a deliberate design decision to keep the 
output simple and to limit information load for users. But future co- 
design exercises with seed sector decision-makers could explore alter
native realizations of the trade-off between simplicity and a more ac
curate representation of uncertainty in the results. For example, it would 
be possible to assign a probability to each of the five results statements, 
rather than just reporting one statement. For users, receiving more detail 
on uncertainty increases the challenge of interpreting results. Hence, 
participatory research could evaluate what types of additional detail on 
results that better represent uncertainty are perceived as useful and 
actionable. 

Our low-tech approach to the decision-support tool, consisting of an 
Excel workbook with embedded weblinks, has generated valuable in
sights on user needs, but also brings challenges. In our case, future 
modifications in the user interfaces of ClimatSERV or C3S could make 
the user instructions obsolete. Requiring users to navigate back and 
forth between Excel and the web browser risks attrition and distraction. 
Eventually, offering a decision-support tool for seasonal seed scenario 
planning as a freely accessible one-stop website would likely provide a 
more inclusive, streamlined user experience. Through Application Pro
gramming Interfaces (APIs), such an online tool could conveniently 
import and display CHIRPS data, as well as a range of different climate 
forecasts. Another implication of our emphasis on technological 
simplicity is the use of linear regression models, using only three pre
dictor variables. This type of model can be implemented in Excel, but 
advanced machine learning approaches, accounting for non-linear ef
fects, could yield more skillful demand forecasts (see Zhu et al. 2019). 
Future research could explore the design of user interfaces that allow 
seed sector decision-makers to train and use more sophisticated pre
diction systems. 

Lastly, seasonal seed scenario planning could be useful not only to 

seed suppliers interested in meeting farmers’ demand for existing vari
eties. Exploring the principle of seasonal scenario planning could also be 
useful in other parts of the seed sector, such as breeding pipelines. A 
good understanding of seed demand and crop performance under 
different seasonal scenarios could, for example, enable breeding pro
grams to evaluate not only individual varieties and their performance 
under future scenarios, but also the overall varietal portfolio that is 
available to farmers and evaluate the complementary value of different 
varieties (see Condori et al. 2014). 

5. Conclusion 

This study explored the practical potential of using seasonal climate 
forecasts for anticipating farmers’ seed demand and informing risk- 
minimizing seed supply decisions. Our findings suggest that by imple
menting ‘seasonal seed scenario planning’, decision-makers at seed 
supply organizations could meaningfully reduce the risk of mismatches 
between seed supply and demand at variety level. Establishing statistical 
links between seasonal (climate) scenarios and empirical seed demand 
allows anticipating near-future seed demand. This information can be 
useful for adapting certain operations at seed supply organizations, such 
as bulk seed logistics. This may help minimize economic risks faced by 
seed suppliers, such as costly carry-over of unsold seed, while improving 
farmers’ access to seed of preferred varieties. 

To be implemented in practice, however, more agile decision-making 
mechanisms and more flexible operations management may be needed 
within seed supply organizations. Also, our case study on maize seed 
demand in Zimbabwe shows that links between seasonal scenarios and 
farmers’ seed demand for most varieties are relatively weak. In the 
future, improving farmers’ access to skillful and timely seasonal climate 
forecasts may increase the strength of association between seasonal 
climate and farmers’ variety choices, allowing more accurate prediction 
of demand. Active promotion of seasonally adapted variety portfolios, 
informed by scenario planning, may also help align supply and demand 
in a way that minimizes risk for both seed suppliers and farmers. 

The co-design process highlighted diverse needs and opportunities 
for future joint efforts of climate scientists, agricultural researchers, and 
seed sector practitioners to make climate forecast information opera
tional for mitigating climate-related risk in seed supply. Future research 
should explore how seasonal scenario planning can be effectively inte
grated in decision-making at seed suppliers, and how it affects seed 
business and farm performance on the long run. 
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