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Abstract
Global warming has increased the frequency of extreme weather events, including heatwaves, over recent decades. Heat early 
warning systems are being set up in many regions as a tool to mitigate their effects. Such systems are not yet implemented 
in the West African Sahel, partly because of insufficient knowledge on the skill of models to predict them. The present study 
addresses this gap by examining the skill of the ECMWF ENS extended-range forecasting system (ENS-ext) to predict 
Sahelian heatwaves out to subseasonal lead-times. It also assesses the importance of tropical modes of variability, which 
were previously identified as important large-scale drivers of heatwave occurrence in the Sahel. The results show that ENS-
ext is able to predict Sahelian heatwaves with significant skill out to lead-week 2–3. With increasing lead-time, heatwaves 
are more predictable at nighttime than at daytime. Likewise, the pre-monsoon season heatwaves have a longer predictability 
than those occurring in late winter. The model is also able to relatively well simulate the observed relationship between 
heatwave occurrence and tropical mode activity. Furthermore, the prediction skill is better during the active phases of the 
modes, suggesting that they are good sources of heatwave predictability. Therefore, improving the representation of tropical 
modes in models will positively impact heatwave prediction at the subseasonal scale in the Sahel, and gain more time and 
precision for anticipatory actions.
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1  Introduction

The recent developments in climate change are marked by an 
increased occurrence of extreme weather and climate events, 
including heatwaves (Stott 2016). There has indeed been an 
upward trend of heatwaves both at the global and regional 
levels (Perkins-Kirkpatrick and Lewis 2020), with future 
projections warning of even more severe thermal discom-
fort (Xu et al. 2020; Raymond et al. 2020) for the human 
community.

The West African Sahel, a climatologically hot region 
(e.g. Nicholson 2013), suffers from extreme heat events 
all year round (with peaks in boreal spring). The literature 
indicates that Sahelian heatwaves are relatively short-lived 
as compared to other regions, but are extremely severe in 

magnitude (e.g. Oueslati et al. 2017; Guigma et al. 2020a). 
Moreover, over the recent decades and in agreement with 
the global trend, they have been more frequent, more intense 
(especially at night) and longer lasting (Fontaine et al. 2013; 
Ringard et al. 2016; Moron et al. 2016; Oueslati et al. 2017; 
Barbier et al. 2018). Climate projections also anticipate an 
increase of the magnitude, spatial extent and frequency of 
extreme heat events (Russo et al. 2016; Dosio 2017; Sylla 
et al. 2018) that could only aggravate the thermal risk in 
the region.

The impacts of extreme heat in the region, as elsewhere in 
Africa, are largely unreported or underreported (Harrington 
and Otto 2020). A few studies have however elaborated on 
the topic, giving an insight into the adverse effects of heat 
across a range of sectors. Diboulo et al. (2012) and Azongo 
et al. (2012) showed strong associations between higher tem-
perature and daily mortality in western Burkina Faso and 
northern Ghana respectively. The increase of death rates is 
especially important at the short-term (a few days after the 
heatwave events), with under-five children being the most 
hit. In the energy sector, Aissatou et al. (2017) evidenced 
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a relatively strong correlation between extreme heat events 
and peaks of electricity consumption in two major Sahelian 
cities (Dakar and Niamey). Furthermore, the International 
Labour Office stresses in a recent report (ILO 2019) that, in 
Africa, seven of the 10 countries most severely affected by 
labour productivity loss due to heat stress are located in the 
Sahel. In this report, the working hours lost to heat stress in 
1995 across West Africa, were estimated to be the equivalent 
of more than two million full-time jobs, which represents, 
in economic terms, 3.3% of the GDP of the region. With 
the projected increase of heat in the region, these losses are 
expected to reach more than eight million full-time jobs, or 
equivalently 4.77% of the GDP by just 2030. The agriculture 
and construction sectors, which employ an important portion 
of the work force, are the most severely affected.

Faced with this issue, it is urgent to undertake actions to 
alleviate the adverse effects of these extremes. In that regard, 
numerical weather prediction (NWP) models could provide 
information to help governments and humanitarian organisa-
tions in the region to trigger preventive actions. Such heat 
early warning systems (HEWSs), jointly recommended by 
the World Meteorological Organization and World Health 
Organization (2015) (WMO; WMO N°1142), are already 
implemented in several countries across North America (e.g. 
McElroy et al. 2020; Henderson et al. 2020), Europe (e.g. 
Morabito et al. 2019; Casanueva et al. 2019), Australia (e.g. 
Nicholls et al. 2008; Nitschke et al. 2016) and South Asia 
(e.g. Knowlton et al. 2014). A non-exhaustive global map 
of heat-action plans has been prepared by the Global Heat 
Health Information Network (GHHIN) and is accessible 
from http://​ghhin.​org/​map/.

One prerequisite for HEWSs is skilful prediction from the 
NWP models at a reasonable lead-time for action. However, 
the skill of Sahelian heatwave forecasting has received only 
minor attention. The main work on this topic so far is an 
evaluation of two CNRM-CM forecasting systems in use 
at Météo-France by Batté et al. (2018). They found that, 
at the subseasonal scale, the skill of their forecasting sys-
tems is essentially restricted to the deterministic horizons 
(first 10 days). Coughlan de Perez et al. (2018) investigated 
the short-term (out to 10 days) predictability of tempera-
ture extremes at the global level, and found that while the 
NOAA model has limited skill, the ECMWF model instead 
presents a potential for the implementation of rapid preven-
tive actions for heatwave impact mitigation. They also made 
the recommendation that further research be conducted to 
identify the drivers of heatwave predictability in regions 
including Africa. Likewise, Batté et al. (2018) mentioned 
that extended predictability may be provided by planetary 
waves and teleconnections.

These recommendations are in tune with previous work 
by Guigma et al. (2020b), who identified tropical modes 
of variability as important large-scale drivers of Sahelian 

heatwaves. Precisely, the activity of the Madden Julian 
Oscillation (MJO), the equatorial Rossby (ER) and Kelvin 
(EK) waves in the Equatorial West Africa sector (0–10°N), 
where convection peaks in spring, significantly modulates 
the frequency and spatial distribution of heatwaves in the 
Sahel. Given the spatio-temporal properties of these modes, 
Guigma et al. (2020b) suggested that they could provide 
heatwave predictability at subseasonal timescales. Subsea-
sonal predictability has received increasing attention over 
recent years, given the range of new opportunities for risk 
management in several sectors (health, disaster prepared-
ness, water management, energy and agriculture) that it 
brings (White et al. 2017).

This research seeks to address the gap in understanding of 
heatwave predictability in the Sahel and has two objectives: 
(1) to evaluate the skill of Sahelian heatwave prediction at 
the synoptic and subseasonal scales (i.e. up to ~ 45 days) and 
(2) to assess the importance of tropical modes as a source of 
predictability. This is achieved through a statistical evalua-
tion of a long record of hindcast (or re-forecast) data and a 
detailed examination of a case study heatwave event.

By building understanding of climate and predictabil-
ity, this research seeks to pave the way for the development 
of HEWSs and the scaling of anticipatory forecast-based 
Actions/Financing (FbA/FbF) for such events (e.g. Coughlan 
de Perez et al. 2015). This is an especially relevant approach 
in developing countries, including the Sahel, where climate 
investments are currently principally directed to post-disas-
ter recovery (Mirza 2003).

The remainder of this manuscript is structured as follows. 
Section 2 introduces the forecast and reference datasets used 
in this study as well as the different methods for tropical 
mode detection and skill evaluation. In Sect. 3, the results 
of both the statistical and the case studies are presented and 
discussed. Finally Sect. 4 summarises the findings, and elab-
orates on the next steps for future research on heatwaves in 
the Sahel.

2 � Data and method

The present research analyses heatwave prediction skill 
for forecasts initialised in two seasons, as in Guigma et al. 
(2020a): the February to March season (FM hereafter) and 
the pre-monsoon April to June season (AMJ hereafter), 
which marks the peak of heat in the region.

2.1 � Description of the ECMWF ENS extended‑range 
forecasting system

In this study, the ECMWF ENS extended-range forecast-
ing system (ENS-ext hereafter) has been chosen to evaluate 
the prediction skill of Sahelian heatwaves at the synoptic to 

http://ghhin.org/map/


539Prediction skill of Sahelian heatwaves out to subseasonal lead times and importance of…

1 3

subseasonal lead-times. The main reason for this preference 
is that in most inter-model comparative studies, ECMWF 
has proved to be the most skilful (e.g. Janiga et al. 2018; 
de Andrade et al. 2019; Bengtsson et al. 2019). In addi-
tion, national meteorological services in the Sahel can freely 
access some of the ECMWF high-resolution real-time fore-
cast data (including 2 m temperature), thanks to a partner-
ship between the African Centre for Meteorological Applica-
tions for Development (ACMAD) and the European Centre.

ENS-ext generates a hindcast twice a week (Monday and 
Thursday) in running an 11 member-ensemble (one control 
and 10 perturbed members) for the last 20 years, starting 
on the same weekday and month as the real time forecast. 
The present study uses all the hindcast data generated in 
2018 (thus covering the 1998–2017 period), consisting of 
105 different calendar days (initialisation dates). Note that 
2018 covers two different versions of the model (CY43R3 
and CY45R1) as an upgrade was implemented in June 2018. 
The hindcast, like the real-time forecast, has a time horizon 
of 46 days (output data are generated every six hours), with 
a native horizontal resolution of O640 (about 18 km) up to 
day 15, degrading to O320 (about 36 km) between day 16 
and day 46.

Two main sets of variables are extracted. (1) Thermal 
variables consisting of temperature (T), maximum and mini-
mum temperatures (Tmax and Tmin) and dewpoint tempera-
ture (Td), all at the screen level (2 m height), from which 
are derived thermal indices (see Sect. 2.2). (2) Outgoing 
longwave radiation (OLR) data which are used to assess 
the activity of tropical modes (see Sect. 2.4). The thermal 
variables are extracted as 06-hourly forecasts at a resolu-
tion of 0.5° × 0.5° over the Sahel domain (20°W–30°E; 
10°N–20°N), while the OLR data are downloaded as fore-
cast 24-h totals at a resolution of 2.5° × 2.5° over the global 
tropics (20°S–20°N). Both sets of variables extend up to the 
full 46-day forecast horizon.

The hindcasts are verified against the fifth generation of 
the European Reanalyses (ERA5, Hersbach et al. 2020), also 
produced by ECMWF. ERA5 has a native horizontal reso-
lution of approximately 31 km. The variables retrieved are 
those extracted from the hindcast, and the resolution cho-
sen accordingly. In terms of the quality of near-surface tem-
peratures in ERA5, Oueslati et al. (2017) and Barbier et al. 
(2018) assessed ERA-Interim, which ERA5 is an improve-
ment of, against the Global Summary Of the Day (GSOD) 
observational dataset, and concluded that it was suitable for 
heatwave study in the Sahel. Furthermore, Gleixner et al. 
(2020) showed that in ERA5, near-surface temperatures are 
less climatologically biased, and their interannual variabil-
ity better represented than in ERA-Interim across Africa, 
including in the Sahel band. Similarly, Wang et al. (2017), 
Tall et al. (2019), Wright et al. (2020) and Hersbach et al. 
(2020) proved that ERA5 represents relatively well the 

observed OLR over the tropical domain, confirming its suit-
ability as reference dataset for the analysis of tropical modes. 
The Berkeley Earth Surface Temperatures (BEST; Muller 
et al. 2014; Rohde et al. 2016) dataset is used as a second 
reference dataset to provide an independent evaluation of 
thermal indices (given that ERA5 is created using the same 
model as ENS-ext). BEST data consist of daily Tmax and 
Tmin (no moisture data is available) at a native resolution of 
1° × 1°, regridded to 0.5° × 0.5° to match the hindcast grid.

2.2 � Thermal index derivation

Guigma et al. (2020a) showed that in the Sahel, heatwaves 
defined using different thermal indices over the same diurnal 
period, or the daytime versus nighttime heatwaves of a same 
index are not synchronous, and often result from different 
underlying thermodynamic processes. Their predictability 
could therefore also differ, and to account for this eventu-
ality, two distinct measures of heat are used in this paper: 
Temperature (T) and the heat index (HI). Considering their 
daytime and nighttime components separately gives a total 
of four thermal indices.

For temperature the nighttime (daytime) component 
is taken as the daily minimum (maximum) value of the 
06-hourly forecasts of minimum (maximum) temperature 
and is hereafter referred to as T-night (T-day).

The formula for HI derivation (Steadman 1979) is as 
follows:

where T is temperature, and RH relative humidity computed 
from temperature and dewpoint temperature.

The nighttime (daytime) component of HI, hereafter 
referred to as HI-night (HI-day), is computed by replacing 
T from (1) by T-night (T-day) and RH by the averages of the 
06-hourly forecasts of relative humidity valid at 00 and 06 
UTC (12 and 18 UTC).

Similarly, T-night, T-day, HI-night and HI-day are derived 
from the ERA5 dataset using the corresponding timesteps. 
T-night and T-day are directly available in BEST.

2.3 � Heatwave definition and forecast probability

Using the method of Guigma et al. (2020a), heatwaves in the 
ERA5 dataset are defined for each thermal index and at each 
grid-cell, as spells of at least three consecutive days where 
the daily index value exceeds both the 75th percentile of its 
total distribution over all days, and the 90th percentile of its 

(1)
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calendar day distribution computed over a 31-day centred 
window. Binary data of heatwave occurrence (coded 1) or 
non-occurrence (coded 0) are thus obtained.

Heatwaves are also defined in the hindcast dataset at each 
grid-cell and for each thermal index using several steps. As 
a reminder, for each thermal index, a given grid-cell has a 
total of 1,062,600 data records, broken down into 105 ini-
tialisation dates each year, 46-day integrations (or forecast 
horizons), 20 years of forecasts (covering 1998–2017) and 
11 ensemble members. Pooling all the 11 members together, 
the 75th percentile of the total distribution and the 90th per-
centile of each calendar day are calculated. Both thresholds 
are derived as a function of lead-time, giving a total of 46 
values for the 75th percentile and 4830 values for the 90th 
percentile (46 lead-times × 105 calendar days). The latter is 
smoothed through averaging over a window of 10 initialisa-
tion dates (including the date of interest, the four initialisa-
tion dates before, and the five initialisation dates after). For 
example, to calculate the 90th percentile of forecasts initial-
ised on 15 January 2018, the forecasts initialised on 01, 04, 
08, 11, 15, 18, 22, 25, 29 January and 01 February are used.

Once the magnitude thresholds are defined, heatwaves 
are detected in each member as spells of three or more con-
secutive days where the thermal index exceeds both the two 
thresholds defined above. In order to account for events 
which start before the first day of the forecast but run into the 
forecast time, each 46 day-long forecast integration is pad-
ded at its beginning with the 2 days of reference heatwave 
occurrence binary data immediately before the forecast. 
These extra two days are removed after the detection step. 
The forecast data thus turn binary to indicate the occurrence 
or non-occurrence of heatwaves.

Then, on a given day and at a given grid-cell, the forecast 
probability of heatwave occurrence is given by the ratio of 
the sum of the ensemble members’ binary heatwave val-
ues to the ensemble size of 11 (ranging from 0 to 1 in 1/11 
increments).

2.4 � Predicted tropical mode activity and link 
with heatwaves

In order to assess whether tropical modes can be a source 
of skill for heatwave prediction, their activity in each of the 
ENS-ext individual members, as well as in the ensemble 
mean (EM) (mainly for the case study purposes) is filtered, 
using the same method as in Janiga et al. (2018), which con-
sists of several steps.

1.	 First, besides the 11 individual members, daily values of 
the EM forecast OLR for each grid-cell across the global 
tropics are derived. For each of the 11 individual mem-
bers and the EM, there is a total of 96,600 data points 
(105 initialisation dates × 20 years, each with a forecast 
horizon of 46 days).

2.	 The ends of each 46-day long forecast integration are 
padded: the heads with the 730 days (two years) of ref-
erence (ERA5) OLR immediately prior to the forecast 
first day, and the tails with zeros (zero-padding) to a 
length of 730 days also. This results in new data seg-
ments of length 1506 days each (46 days of forecast plus 
2 × 730 days of padded data) for each individual member 
and the EM, from which the mean and first four harmon-
ics of the reference OLR are subtracted.

3.	 Then, each segment undergoes a wavenumber frequency 
filtering similarly to (Wheeler and Kiladis 1999), to 
retain the harmonics of the MJO, ER and EK waves. 
The exact characteristic wavenumbers, periodicities 
and equivalent depths used to detect each of these three 
modes of tropical variability are the same as those used 
in Guigma et al. (2020b), and are shown in Table 1. The 
outcome of the filtering for each mode and for each seg-
ment is a 1506-day long timeseries of filtered OLR data 
at each of the global tropics grid-cell. For verification 
purposes, the 46 days of forecast in each segment are 
replaced by the corresponding analysed ERA5 data, and 
the same filtering is applied. This gives to each fore-
cast mode-filtered data segment an equivalent observed 
mode-filtered data segment, which it can be verified 
against.

Table 1   Characteristics of the 
tropical modes analysed in this 
study

MJO Madden Julian oscillation, ER equatorial Rossby wave, EK equatorial Kelvin wave

Mode Equivalent depth (m) Wavenumber Period band (days) References

MJO Not specified 0 to 9 20–100 Kiladis et al. (2005)
ER 1–90 − 10 to − 1 9.7–72 Kiladis et al. (2009)
EK 8–90 1 to 14 2.5–20 Straub and Kiladis 

(2002) Mekonnen 
et al. (2008)
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Then, another set of methods is used to assess the activity 
of tropical modes locally over the Equatorial West Africa 
sector (this set of methods is not applied to the EM data). 
The forecast and observed 1506-day long mode-filtered data 
segments are each averaged at the characteristic 5°E longi-
tude between the equator and 10°N (this band of latitudes 
corresponds to the region of maximum convection over 
West Africa in spring; Guigma et al. 2020b). For each seg-
ment, the resulting unidimensional timeseries and its first 
order time derivative are standardised (using the standard 
deviation from ERA5 for both the forecast and observed 
segments), and, through trigonometric operations, they are 
combined to identify wave angle and amplitudes for each 
day. The angles are further binned into eight 45° wide phases 
labelled 1–8. A mode is considered active on a given day 
only if its amplitude reaches or exceeds one. If not, the cor-
responding phase takes the value 0. The composite anoma-
lies of observed OLR against these phases are shown in Fig. 
SM1 for each mode of variability. The reader is referred 
to Guigma et al. (2020b) for a thorough description of the 
method. At the end of this process, the days corresponding 
to padded data (a total of 1460 days for each segment) are 
removed from the data segments, such that only the mode 
phases of the effective 46 days of the forecast and the cor-
responding observation are retained. The final outcome for 
each mode of variability is then 12 arrays (11 forecast and 
one observation) of filtered OLR data, each of dimension-
ality 46 (forecast horizons) × 105 (initialisation dates) × 20 
(years).

2.5 � Forecast evaluation metrics

2.5.1 � General evaluation

To evaluate the skill of ENS-ext, a set of evaluation metrics 
has been used. The complete description of each metric is 
presented in Joliffe and Stephenson (2012).

1.	 Anomaly correlation coefficients
	   The strength of the association between the observed 

versus predicted values of thermal indices is evaluated 
using the anomaly correlation coefficients (ACCs), 
i.e. correlation coefficients between the anomalies of 
observed versus the anomalies of predicted values of 
the indices. The ACCs for the four thermal indices are 
discussed in Sect. 3.1.

2.	 Symmetric Extremal Dependency Index

Heatwaves are relatively rare events. Many common 
measures of forecast quality struggle to give real indica-
tions of model skill for extreme events, as they degenerate 
to trivial values with increasingly rare events (Ferro and 
Stephenson 2011). For this reason, non-degenerate met-
rics have been specifically designated to assess the skill 
associated with rare events. This study uses the Symmetric 
Extremal Dependence Index (SEDI), suggested by Hogan 
and Mason (2012) to be the best choice, and successfully 
used in similar heatwave studies (e.g. Marshall et al. 2014; 
Mandal et al. 2019). SEDI itself is based on two simple 
scores: the hit rate (H) and false alarm rate (F) which are 
derived from a two-by-two contingency table (Table 2) 
between a deterministic forecast and observation of heat-
wave occurrence:

In (2) and (3), hits are instances where heatwaves were 
forecast and did occur indeed, misses instances where 
heatwaves were not forecast but occurred, false alarm 
instances where heatwaves were forecast but did not occur, 
and correct negatives instances where heatwaves were not 
forecast and did not occur (see Table 2).

From H and F, SEDI is obtained by applying this loga-
rithmic formula:

The possible values for SEDI range from − 1 to 1, with 
1 being the perfect score and positive values indicating 
that the model is better than random.

In the present research, the SEDI calculation proceeds 
similarly to Marshall et al. (2014) as follows: contingency 
tables are first built separately for each of the 11 indi-
vidual members before pooling them as a single table to 
calculate H and F, and SEDI subsequently. To assess the 

(2)H =
hits

hits + misses

(3)F =
false alarms

false alarms + correct negatives

(4)SEDI =
lnF − lnH − ln(1 − F) + ln(1 − H)

lnF + lnH + ln(1 − F) + ln(1 − H)

Table 2   Contingency table of heatwave occurrence between a deter-
ministic forecast and the observation

Observed

Yes No

Forecast Yes Hits False alarms
No Misses Correct negatives
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significance of the SEDI scores, their standard errors are 
derived using the following formula (Ferro and Stephen-
son 2011):

where H is the hit rate, F the false alarm rate, n the sam-
ple size and p the base rate (relative frequency of heatwave 
occurrence).

At a given grid-cell, the SEDI score is con-
sidered significant if the confidence interval (i.e. [
SEDI − 2SESEDI ;SEDI + 2SESEDI

]
 ) does not include zero.

2.5.2 � Evaluation of heatwave prediction skill taking 
into account the modulation by tropical modes

To assess the skill of the ENS-ext in simulating the activ-
ity of tropical modes, the forecast local phases are veri-
fied against those detected from ERA5 (local phases are 
defined in Sect. 2.4), using hit rates. As with the SEDI 
scores, the contingency tables are first built separately 
before pooling them to calculate the hit rates. They are 
discussed in Sect. 3.3.1.

To assess how well the model represents the relation-
ship between tropical modes and heatwaves, the frequency 
of heatwave occurrence conditioned on the phase of tropi-
cal modes (also termed as modulation of heatwave occur-
rence by the modes) is evaluated in both the model and the 
reference datasets, using the same formula as in Guigma 
et al. (2020b):

where Px is the conditional frequency of heatwaves over an 
active phase x of a given mode, and Pa the frequency derived 
from all days, irrespectively of the activity of the mode.

The results for this modulation are presented in 
Sect. 3.3.2.

Finally, a given tropical mode is considered to be a 
source of heatwave predictability if the SEDI scores are 
higher under its forecast active phases than its inactive 
phase. This assessment considers (1) all the eight active 
phases altogether (i.e. the comparison is made between 
instances where the mode amplitude is greater than one 
versus instances where it is equal to or less than one) as in 
Hudson et al. (2011) and (2) each phase separately in order 
to determine precisely which phases contribute the most to 
the skill. At each grid-cell, statistical significance at a 95% 

(5)SESEDI =

2
|
|
|
(1−H)(1−F)+HF

(1−H)(1−F)
log[F(1 − H)] +

2H

1−H
log[H(1 − F)]

|
|
|

H{log[F(1 − H)] + log[H(1 − F)]}2

√
H(1 − H)

pn

(6)M =

Px − Pa

Pa

level is tested using a nonparametric bootstrap resampling, 
with 1000 repetitions as in Guigma et al. (2020b).

2.6 � Additional methods for the case study

To understand the causes of the heatwave case-study 
event analysed in Sect. 3.4, the patterns of net radiation 
(shortwave and longwave) and turbulent fluxes (sensible 
heat flux SHF and latent heat flux LHF) at the surface are 
analysed from the ERA5 data. For each of these terms, 
the anomalies are derived by subtracting the calendar day 
mean and are subsequently averaged over the heatwave 
period. The fluxes are, by convention, counted positively 
when directed from the atmosphere towards the surface.

The activity of the tropical modes during this period is 
visualised through a time-longitude diagram of the mode-
filtered OLR averaged between the Equator and 20°N, a 
commonly used technique in tropical meteorology (e.g. 
Schreck et al. 2011; Guigma et al. 2020b).

Fig. 1   Anomaly correlation coefficients (ACCs) between the ENS-ext 
forecasts and the ERA5 reference averaged over the Sahel for the four 
thermal indices over the a February–March and b April to June sea-
sons. The black dotted lines represent the average ACCs of the persis-
tence forecast across the four indices
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3 � Results and discussion

3.1 � Skill of thermal index prediction by ENS‑ext

ENS-ext has a relatively good skill in predicting the four 
thermal indices under investigation. Figure 1 shows the 
ACCs averaged over the Sahel across the 46 lead days 
for the FM and AMJ seasons (see Sect. 2.5.1 for method 
description). For the first week of the forecast for example, 
the ACCs of all the four thermal indices exceed 0.6. There 
is then a fast decrease of the forecast skill out to week 3–4 of 
the forecast bringing the ACC values down to about 0.2. The 
fast decrease of ACCs beyond the first week is also noticed 
by Batté et al. (2018) using the Météo-France S2S system, 
but the drop is much sharper there. A diurnal dependence in 
thermal index prediction skill is noticeable for both seasons. 
For the shortest lead-times (out to about day 7), daytime 
indices slightly outperform their nighttime counterparts and 
conversely for longer lead-times (exception for HI-day in 
AMJ). The prediction skill also presents a relatively marked 
seasonality. Thus in the FM season (Fig. 1a) the ACCs are 
generally better than during AMJ (Fig. 1b) but only for the 
shortest lead-times. There is indeed a reversal at longer 
lead-times such that the more humid season of AMJ pre-
sents higher skill than FM (even though ACC values are 
low). Figure 1 also shows that ENS-ext clearly outperforms 

persistence forecast (black dashed lines in Fig. 1), even at 
the shortest lead-times.

The examination of the spatial distribution of the ACCs 
reveals differences across the Sahel (Fig. SM2 using T-day 
for illustration). For the shortest horizons, the skill is higher 
in the north than in the south of the Sahel (irrespectively of 
the season), whereas at longer forecast lead-times, there is 
increasingly higher skill in the south than in the north (where 
the correlation becomes insignificant).

3.2 � Heatwave prediction skill and potential 
for early action

The skill of ENS-ext in predicting Sahelian heatwaves is 
assessed using the SEDI score (described in Sect. 2.5.1). 
Similarly to the ACCs of the indices, the FM season offers 
larger SEDI scores of heatwave prediction than the AMJ 
season at short lead-times. Thus, with ERA5 as refer-
ence, for the first and second weeks of forecast, the scores 
are respectively above 0.8 and 0.5 (0.6 and 0.3) in the 
FM (AMJ) seasons across much of the region as shown 
in Fig. 2 (Fig. 3). The skill vanishes quicker in the sub-
sequent lead-weeks in FM than in AMJ such that, after 
week 3, there is almost no skill (SEDI scores below zero 
means random forecast better than the model) in fore-
casts initialised in FM, whereas some scarce areas still 
have positive (though very weak) SEDI scores in AMJ 
at lead-week 6. As is also observed with the ACCs, the 

Fig. 2   SEDI scores in the FM seasons for each of the four heatwave indices using ERA5 as reference dataset. Each panel represents a specific 
week of the forecast with the first week at the top. White areas are not significant at the 95% probability level
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SEDI scores are initially higher in the northern half of the 
domain, but a reversal is observed at longer lead-times 
(this is less evident in FM as heatwaves are not detected 
in northern Sahel at that season). The seasonality and the 
evolution with lead-time of the skill are similar across all 
four heatwave indices. It should be noted however, that in 
AMJ, the decrease of skill of nighttime heatwave indices 
(T-night and HI-night) is slower than that of their daytime 
counterparts, especially in the southern Sahel, consistently 
with previous findings by Batté et al. (2018). HI-day has 
the fastest rate of skill decrease, with only limited areas 
showing positive SEDI scores after week 2. This marks a 
contrast to HI-night which is the best forecast heatwave 
index at the longest lead-times. The lower skill observed 
in HI-day may be related to the differential diurnal cycle 
between Tmax and the relative humidity (the two variables 
from which it is derived) in the Sahel. Whilst Tmax peaks 
in the early hours of the afternoon and increases with clear 
skies, moisture reaches its minimum at the same time, with 
cloudier skies tending to increase it (Guichard et al. 2009; 
Bourgeois et al. 2018).

The verification using BEST as reference is shown in Fig. 
SM3 and it shows mainly similar patterns as using ERA5 
with however slightly lower SEDI scores.

Compared with other regions across the globe, it can be 
said that the Sahel enjoys at least the same degree of heat-
wave predictability at the subseasonal scale. Thus, European 
heatwaves are found by (Lavaysse et al. 2019) to be predict-
able mostly up to two weeks in advance using ENS-ext. In 

Australia, the Bureau of Meteorology’s POAMA-2 ensemble 
model is able to well predict heatwaves two to three weeks 
ahead with SEDI scores reaching 0.5 at these lead-times 
under some weather regimes (Hudson et al. 2011; Marshall 
et al. 2014). In India, a region with a closer climate system 
to that of the Sahel, the skill of heatwave prediction by the 
Indian Institute of Tropical Meteorology’s ensemble pre-
diction system is found to still be significant at lead-week 
3, with comparable SEDI scores as those of the Sahel dur-
ing the pre-monsoon season (Mandal et al. 2019). As such, 
the Sahel can also benefit from HEWSs as currently imple-
mented in these regions (e.g. Lowe et al. 2011; Nitschke 
et al. 2016; Hess et al. 2018; Casanueva et al. 2019).

One potential explanation for the spatiality/seasonality of 
the ACC and heatwave prediction skill can be found in the 
large-scale circulation controlling the Sahelian atmosphere. 
The FM season experiences a large influence from extrat-
ropical weather systems coming from the northern edge of 
the domain (Knippertz and Martin 2005), which are known 
for their large synoptic-scale predictability (e.g. Knippertz 
and Fink 2009; Wheeler et al. 2017). On the other hand, 
AMJ is characterised by an increasing activity of the MJO 
and equatorial waves, which are by then more active in the 
equatorial sector of Africa (e.g. Berhane et al. 2015; Guigma 
et al. 2020b). These modes of variability, since they are less 
inclined to forecast error growth with lead-time than extrat-
ropical disturbances, confer higher subseasonal predictabil-
ity to the tropics (Judt 2020).

Fig. 3   Same as Fig. 2 but for the AMJ season
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While the verification is so far based on strict comparison 
of forecast and observed heatwaves at the exact grid-cell 
and day, it may also be relevant, for operational purposes, 
to include a window of flexibility in which the forecast still 
has some potential for action (e.g. Coughlan de Perez et al. 
2016). Such a “tolerant” evaluation is assessed here from the 
temporal point of view through considering that a positive 
forecast of heatwave (i.e. heatwave forecast to occur) is con-
sidered to be a hit if it occurs within a time window of three 
days centred on the forecast validity date, i.e. between a day 
earlier and a day after. Given the three-day minimum dura-
tion constraint used in this paper, the tolerance only affects 
the onset and cessation of heatwave events. The comparison 
between the Sahel-wide average SEDI scores of strict and 
tolerant evaluation is shown in Fig. 4. It is apparent that the 
gain in skill obtained through the tolerant evaluation is more 
important in AMJ than in FM (Fig. 4a–d). Moreover, the 
gain is the largest at the longest lead-times, with difference 
of SEDI scores from the strict evaluation reaching a value 
close to 0.2 in AMJ (Fig.4c, d). As a matter of comparison, 
the tolerant evaluation shows a heatwave prediction skill at 
lead-week 6 similar or better than that of the strict evalua-
tion at lead-week 3 (or at lead-week 2 if a 5-day window of 
tolerance is used instead, not shown). Providing forecasts 
with such a tolerance for the longest lead-times could prove 
relevant for heat-health early actions in the region. With long 

lead-times, the preparedness actions likely do not need daily 
accuracy in the forecast. An operational scheme could adopt 
the ’Ready-Set-Go!’ approach of the Red Cross in which 
various inexpensive actions are implemented at long lead-
times, and different more specific or costly actions are then 
invoked based on more accurate shorter-lead forecasts (Bazo 
et al. 2019). In this sense, the tolerant verification statistics 
show that the skill at long lead-times is meaningful to risk 
managers.

3.3 � Tropical modes as a source of predictability 
for Sahelian heatwaves

Guigma et al. (2020b) showed that at the subseasonal scale, 
heatwaves in the Sahel are modulated by tropical modes of 
variability, namely the MJO, the ER and EK waves. Further-
more, in Sect. 3.1, the higher skill at subseasonal scale in 
the AMJ season than in the FM season could be related to 
the greater activity of tropical modes in the former season. 
The present section aims at assessing whether, in addition 
to being important drivers of heatwave occurrence, tropical 
modes also constitute a significant source of predictability. 
Marshall et al. (2014) mentioned two conditions that any 
model should a priori meet to be able to predict a hazard in 
association with its climatic driver: (1) well predict the cli-
matic driver, and (2) well simulate the relationship between 

Fig. 4   SEDI scores spatially averaged over the Sahel domain for a, b the FM and c, d the AMJ seasons. Daytime (nighttime) heatwaves are 
shown in red (blue) with the strict (tolerant) verification in solid (dotted) lines. Strict and tolerant verifications are defined in Sect. 3.2
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the climatic driver and the hazard. These two conditions 
will first be assessed, before considering whether tropical 
modes indeed provide skill for heatwave prediction in the 
Sahel. The analysis is restricted to the first three weeks of the 
forecast, beyond which the SEDI scores become relatively 
low (Fig. 3), and covers only the AMJ season.

3.3.1 � How well does ENS‑ext predict tropical modes?

At the global level, Janiga et al. (2018) discussed the predict-
ability of the mode-filtered OLR across the tropics and found 
ECMWF to be the model with the lowest bias for forecasts of 
the mean state and activity of tropical modes. Furthermore, 
investigations by Dias et al. (2018) revealed that ECMWF 
is relatively skilful at propagating tropical modes for longer 
lead-times. Here the focus is on the Equatorial West Africa 
Sector (the region just south of the Sahel, i.e. 20°W–30°E; 
0°–10°N) where convection is shown to modulate heatwave 
occurrence in the Sahel (Guigma et al. 2020b). To assess the 
skill of the model in capturing the local activity of tropical 

modes, the forecast phases are compared against observation 
using hit rates (defined in Sect. 2.5.2).

Among the three investigated modes, the MJO (blue 
histograms in Fig. 5) stands clearly as the most skilfully 
predicted. At week 1 for example, the hit rate is above 0.4 
in most active phases. This value decreases to 0.3 at week 
2 and slightly above 0.2 at week 3. As for the ER wave, it 
has hit rates which are on average 0.1 point lower than that 
of the MJO, being about 0.3, 0.2 and above 0.1 at weeks 
1, 2 and 3 respectively. The EK wave shows the lowest 
hit rates. They indeed always remain below 0.2, even at 
week 1, and at weeks 2 and 3, stand below 0.1. Note that 
the lower skill associated with the EK wave has already 
been highlighted by previous work (e.g. Li and Stech-
mann 2020). For each mode, the hit rates are generally 
comparable across the eight phases, with however slightly 
higher values in the central phases (phases 3 through 6). 
The differences observed between the different modes are 
in agreement with their spectral properties summarised 
in Table 1. The MJO and ER wave indeed have a longer 
periodicity than the EK wave. This provides them with a 
longer “memory” and leads to slower error growth.

3.3.2 � How well does the model simulate the link 
between tropical modes and heatwaves?

Guigma et al. (2020b) already elaborated on the modula-
tion of heatwave occurrence by tropical modes from an 
observational perspective, with a discussion of the under-
lying physical mechanisms. This modulation, as described 
in Sect. 2.5.2, compares heatwave occurrence under active 
phases of the modes to the climatological occurrence. The 
quality of the replication of this modulation by ENS-ext is a 
function of the mode under consideration, and is discussed 
here using T-day heatwaves for illustration. As shown in the 
left panels of Fig. 6, observed phases 1–3 of tropical modes 
(which roughly correspond to a suppression of convection, 
Fig. SM1) are overall favourable to heatwaves, whereas 
phases 5–7 (enhancement of convection) obstruct heatwave 
occurrence. It is apparent that in ENS-ext, the influence of 
the MJO and ER wave on heatwaves is well simulated. Both 
the zonal propagation (eastward for the MJO and westward 
for the ER wave) and the magnitude of the modulation (with 
M values absolutely reaching 1.5) are well captured by the 
model (Fig. 6b, d). On the other hand, for the EK wave 
(Fig. 6f), whilst there is a relatively acceptable simulation 
of the propagation of the modulation across phases, ENS-
ext struggles to get the magnitude correct. There is indeed 
an underestimation of the forcing that EK waves exert on 
heatwave occurrence. This is however not a surprise, given 
that the model also has difficulty to predict the activity of 
this mode (Sect. 3.3.1). For the three other thermal indi-
ces (T-night, HI-night and HI-day), similar conclusions are 

Fig. 5   Hit rates of predicted tropical mode phases at the reference 
longitude of 5°E for the first three weeks of the forecast. The right-
most histograms in each panel represent the average hit rates across 
the eight active phases. The blue, red and green bars represent the 
MJO, ER and EK waves respectively
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Fig. 6   Modulation of T-day 
heatwave probability of 
occurrence by active phases 
of tropical modes in observa-
tion (left panels) and ENS-ext 
(right panels). The modulation 
is the variable M defined in 
Sect. 2.5.2 (Eq. (6))

Fig. 7   Difference of SEDI scores between forecasts falling on active versus inactive phases of the MJO. All active phases are pooled together 
and the significance of the SEDI differences is tested by bootstrap resampling (see Sect. 2.5.2)
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drawn, i.e. a skilful representation of the impact of the MJO 
and the ER wave on heatwaves versus a limited skill for the 
EK wave (not shown).

3.3.3 � Heatwave prediction skill in active versus inactive 
phases of the modes

The previous two sections have shown that ENS-ext meets 
the two necessary conditions (according to Marshall et al. 
2014) to be able to draw heatwave predictability from tropi-
cal modes, especially from the MJO and ER (much less 
for the EK wave). This section addresses whether there is 
indeed an enhancement of prediction skill associated with 
the activity of tropical modes during the AMJ season. This 
is done through stratifying the forecast (not observation) into 
active versus inactive phases, as described in Sect. 2.5.2, and 
assessing the SEDI differences between the two instances. 
Out of the three modes of variability, the MJO is the largest 
source of prediction skill. For T-night, HI-night and HI-day, 
the MJO-related skill reaches values of 0.4, mainly over the 
central Sahel (Mali, Burkina Faso and western Niger) and 
extends out to week 2–3 of the forecast (Fig. 7). For T-day, 
the skill is mainly observed over the eastern Sahel. The main 
phases responsible for the positive SEDI differences are 
phases 3 and 4 (Fig. SM4). For the ER wave, the improve-
ment of skill, limited to 0.3, is mostly found over the eastern 
(western) Sahel for T-night, HI-night and HI-day (T-day) at 
week 1 (Fig. 8) and comes essentially from phases 7 and 8 
(Fig. SM5). At longer lead-times, the ER-related skill is rela-
tively marginal, apart from T-day and HI-day which show 
some skill over the central Sahel (Burkina Faso and western 
Niger) at week 2–3 (Fig. 8). As for the EK wave, the skill, 
analysed only for week 1 of the forecast (beyond which the 
model cannot well predict it, Sect. 3.3.1) originates mostly 
from phase 3 and is generally not much in excess of 0.1 
(Fig. SM6).

These results therefore show that the MJO, the ER wave 
and, to a lesser extent, the EK wave provide predictability to 

Sahelian heatwaves. This implies that heatwave predictions 
are more reliable when an intense activity of tropical modes 
is also (skilfully) forecast. Such a conclusion is especially 
interesting for operational forecasters in the region. They can 
indeed rely on the local activity of tropical modes to estimate 
the confidence levels of their heatwave warnings.

3.4 � Case study of a tropical mode‑driven heatwave 
over Burkina Faso

In this section, the detailed analysis of the prediction of a 
heatwave event over Burkina Faso, in the central Sahel, by 
ENS-ext is undertaken with the objective of assessing, in a 
real case, how the activity of tropical modes can impact the 
skill of the model. The choice of this event is justified mainly 
by the fact that it was physically favoured by tropical modes, 
and also because of its relatively large spatial extent.

3.4.1 � Description of the heatwave and thermodynamic 
conditions

The heatwave event under scrutiny took place mainly in 
Burkina Faso between 27 May and 02 June 2015. Fig-
ure 9a, b show the spatial distribution and the length of 
the event across the country. Both daytime and nighttime 
were affected (which is unusual in the Sahel; Guigma et al. 
2020a) over the whole country. It should be noted that 
the event was less marked in HI-day and HI-night than in 
T-day and T-night (not shown).

Fig. 8   Same as Fig. 6 but for the ER wave

Fig. 9   Heatwave occurrence and thermodynamic conditions between 
27 May and 02 June 2015. a, b Show the number of heatwave days 
sampled by T-day and T-night respectively. c–f Show the aver-
age anomalies of sensible heat flux (net radiation) at the surface in 
W m−2 for daytime and nighttime respectively. They are convention-
ally counted positively when oriented from the atmosphere towards 
the surface. g, h Display the average anomalies of heat advection at 
the 925 hPa pressure level superimposed with wind anomalies at the 
same level respectively for daytime and nighttime

◂
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The analysis of some thermodynamic variables over the 
heatwave period reveals that the daytime event was chiefly 
shaped by a strong sensible flux from the ground towards 
the atmosphere (a magnitude above 40 W m−2 in some 
areas; Fig. 9c) which was anomalously dryer than usual 
(not shown), an increased incoming solar radiation in the 
south of the country (Fig. 9e) and heat advection in the 
north (Fig. 9g). At night, the heat resulted mainly from 
a longwave radiation emission from the ground (Fig. 9f) 
which was overheated during the day (a relatively cool air 
was however advected, reducing the heat load, Fig. 9h).

3.4.2 � Evolution of tropical modes during the event

The increase of incoming solar radiation during the day 
and longwave loss during the night were favoured by 

large-scale conditions that suppressed convection over the 
region. To find out the origins of this convective inhibi-
tion, the time-longitude diagram of the EM mode-filtered 
OLR is shown in Fig. 10. It is apparent that an ER wave 
originating from the Indian Ocean was the main mode sup-
pressing convection over the domain surrounding Burkina 
Faso (green lines in Fig. 10) during the heatwave period. 
Besides, the initial and last days of the heatwave are also 
affected by EK waves on convectively suppressed phases 
which also promoted the heating. An eventual contribu-
tion from the MJO is ruled out since it was instead on a 
convectively enhanced phase (not shown).

3.4.3 � Skill of the model over the heatwave period

The average anomalies of T-day and T-night over the heat-
wave period in the ENS-ext EM forecasts and in the ERA5 
analysis, as well as the average anomalies in ERA5 over 
the week preceding the heatwave (persistence) are shown 
in Fig. 11. The first remark is the relatively good spatial 
coherence between the forecasts at different lead-times and 
the observation, valid for both T-day and T-night. The model 
was therefore able to predict the anomalously hot conditions 
that prevailed over Burkina Faso between 27 May and 02 
June 2015, even at the longest lead-times. Better, on the last 
two initialisations before the event, the model beat persis-
tence, notwithstanding that for T-day there is a slight over-
estimation of the magnitude of the anomalies. Two forecasts, 
namely those initialised at lead-times 31 and 10 days to the 
onset, are however characterised by less accuracy than the 
rest, especially in comparison with forecasts initialised at 
longer lead-times than them.

Figure 12 shows the heatwave forecast probabilities at 
different lead-times for T-day and T-night. The flavour of 
the heatwave was already perceptible at lead-time 24 days 
to the onset (i.e. longer than three weeks in advance) with 
at least one individual member predicting the event over the 
vast majority of the country, consistently in both T-day and 
T-night (note that the climatological forecast probability is 
below 0.1 over the heatwave period; not shown). The fore-
cast probabilities increased on the following initialisation 
dates to eventually reach 50% three days prior to the onset. 
However, as with the index anomalies, some initialisation 
days “lost” the heatwave signal in the run-up. Thus, forecast 
probabilities at lead-times 17 and 10 days to the onset are 
lower than that at the respective longer lead-times.

To understand the weakening of the forecast probabilities 
at these dates, the EM forecast of tropical mode activity is 
examined, knowing that the heatwave was associated with 
a convectively suppressed ER wave (Sect. 3.4.2). Figure 13 
thus shows observed and EM predicted ER wave-filtered 
OLR, starting from lead-time 24 days to the onset where the 
heatwave was first significantly predicted. It is apparent that 

Fig. 10   Time-longitude diagram of high-pass filtered OLR aver-
aged between the Equator and 20°N from 15 May to 15 June 2015 in 
W m−2. The MJO, ER and EK wave-filtered OLR averaged over the 
same domain are superimposed as black, green and purple contours 
respectively. Contour levels are 2 and 8 W  m−2 (only positive con-
tours, representing convectively suppressed phases are shown). The 
rectangular black box in the middle of the plot delimits the longitudi-
nal domain of Burkina Faso (6°W–3°E) and the heatwave period (27 
May–02 June)
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at lead-time 17 and 10 days to the onset, the forecast of the 
ER wave activity over Burkina Faso was less accurate than 
at other lead-times. While the entire country was under the 
influence of a convectively suppressed phase of the ER wave 
during the heatwave period, at lead-times 17 and 10 days, 
the model was predicting a convectively enhanced phase 
across at least half of the country. Therefore it can be said 
that the wrong forecast of the physical driver also led to a 

less accurate forecast of the heatwave itself, with the reverse 
being true.

Previous studies have already highlighted similar cases 
where the misrepresentation of subseasonal variability by 
models also caused misses in heatwave forecasts (e.g. Qi 
and Yang 2019; Hsu et al. 2020). As a result, improving the 
skill of prediction of tropical modes in models could also 
be beneficial for heatwave prediction in the Sahel as well as 
in other regions.

Fig. 11   Average anomalies of T-day and T-night over the 27 May–02 
June 2015 period in (top panels) ERA5 analysis and persistence and 
(subsequent panels) in ENS-ext ensemble mean forecasts at different 
start dates. The persistence (‘Pers’) is taken as the average of ERA5 

anomalies over the period from 20 to 26 May 2015. The numbers 
between brackets indicate the lead-times in days from the forecast 
start dates to the onset and cessation of the heatwave
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4 � Conclusion

The ECMWF ENS extended-range forecasting system shows 
significant skill for heatwave prediction across most parts 
of the Sahel in the first two to three weeks of the forecast. 
The AMJ season has a longer lead-time predictability than 
the FM season, likewise nighttime heatwaves are better 
predicted at longer lead-times than their daytime counter-
parts. This study has also demonstrated that atmospheric 
tropical modes of variability, mostly the MJO and ER 
waves, are effective sources of skill for heatwave prediction 
in the Sahel. The forecast skill is indeed higher when they 
are active in the region than when they are weak. The case 
study of the prediction of a heatwave event driven by tropi-
cal modes in 2015 over Burkina Faso further illustrated this, 
by showing that the forecasts of heatwaves are more skilful 

when that of the tropical modes are accurate. Information on 
the predicted activity of tropical modes can thus be useful to 
forecasters in their heatwave warnings.

In addition, as already highlighted by Guigma et  al. 
(2020b), a more accurate simulation of tropical modes will 
have a positive repercussion on heatwave prediction in the 
region. This will likely improve the current skill and extend 
it to longer lead-times, thus winning more time and preci-
sion for preparedness actions. In this context and given the 
connection between convection and tropical modes, convec-
tion-permitting models can play an important role as they 
reduce model errors, and likely offer a better representation 
of tropical modes (Judt 2020). It has indeed been shown that 
the parameterisation of moist convective processes and their 
links to the large-scale flow is an important source of errors 
in the tropics (Dias et al. 2018).

Fig. 12   T-day and T-night average heatwave forecast probabilities (in %) over the 27 May–02 June 2015 period at different start dates. The num-
bers between brackets indicate the lead-times in days from the forecast start dates to the onset and cessation of the heatwave
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But even with the current level of predictability, there is 
a potential for HEWSs. With a predictability of two to three 
weeks, there is indeed a range of actions that can be trig-
gered in advance (e.g. Matthies and Menne 2009; Lowe et al. 
2016; Nissan et al. 2017). As evidenced in other regions 
of the globe, many socio-economic sectors (especially pub-
lic health) can benefit from such systems (e.g. Knowlton 
et al. 2014). The scaling up of HEWSs actually emerges as 
a pressing necessity given the future projections of global 
warming (Xu et al. 2020; Raymond et al. 2020) and could 
therefore serve as an efficient tool to mitigate its adverse 
effects. Furthermore, since the predictability is extendible 
when the verification criteria are relaxed, low-cost prepared-
ness actions can be taken at even longer lead-times, follow-
ing the “Red-Set-Go!” approach of the Red Cross.

However to get the best of such systems, it is important 
to have a clear understanding of how the heat hazard affects 
populations (e.g. WMO N°1142; Casanueva et al. 2019). 
This includes identifying the most affected social groups, the 

most lethal heat thresholds, the most relevant thermal indi-
ces, the most recurrent heat-related illnesses in the region 
etc. Such a research area is still in its infancy in the Sahel 
and should therefore receive more attention now that the 
potential for anticipatory action is evidenced. Furthermore 
the investigations can extend to other sectors like energy and 
water management which are heat-sensitive in this semi-arid 
region. This will allow a holistic approach to the heat issue 
and contribute to save many lives and protect livelihoods in 
the Sahel.
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