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Abstract
Purpose Large language models (LLMs) are pivotal in artificial intelligence, demonstrating advanced capabilities in natural
language understanding and multimodal interactions, with significant potential in medical applications. This study explores
the feasibility and efficacy of LLMs, specifically ChatGPT-4o and Claude 3-Opus, in classifying thyroid nodules using
ultrasound images.
Methods This study included 112 patients with a total of 116 thyroid nodules, comprising 75 benign and 41 malignant
cases. Ultrasound images of these nodules were analyzed using ChatGPT-4o and Claude 3-Opus to diagnose the benign or
malignant nature of the nodules. An independent evaluation by a junior radiologist was also conducted. Diagnostic per-
formance was assessed using Cohen’s Kappa and receiver operating characteristic (ROC) curve analysis, referencing
pathological diagnoses.
Results ChatGPT-4o demonstrated poor agreement with pathological results (Kappa= 0.116), while Claude 3-Opus
showed even lower agreement (Kappa= 0.034). The junior radiologist exhibited moderate agreement (Kappa= 0.450).
ChatGPT-4o achieved an area under the ROC curve (AUC) of 57.0% (95% CI: 48.6–65.5%), slightly outperforming Claude
3-Opus (AUC of 52.0%, 95% CI: 43.2–60.9%). In contrast, the junior radiologist achieved a significantly higher AUC of
72.4% (95% CI: 63.7–81.1%). The unnecessary biopsy rates were 41.4% for ChatGPT-4o, 43.1% for Claude 3-Opus, and
12.1% for the junior radiologist.
Conclusion While LLMs such as ChatGPT-4o and Claude 3-Opus show promise for future applications in medical imaging,
their current use in clinical diagnostics should be approached cautiously due to their limited accuracy.
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Introduction

The widespread use of high-resolution ultrasound technol-
ogy and increased public health awareness have sig-
nificantly boosted the detection rates of thyroid nodules [1].

Although the majority of these nodules are benign, accurate
differentiation between benign and malignant cases is cri-
tical for making informed clinical decisions and ensuring
timely and appropriate treatment for malignant nodules [2].
Currently, fine-needle aspiration biopsy (FNAB) and
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surgical pathology are the gold standards for diagnosing
thyroid nodules. While these methods offer high diagnostic
accuracy, they are invasive and can cause discomfort and
complications for patients [3]. Ultrasound imaging is the
primary non-invasive method for evaluating thyroid
nodules, offering a safer alternative. However, its diagnostic
accuracy heavily depends on the radiologist’s expertise,
resulting in variability in clinical outcomes [4].

Large language models (LLMs) have emerged as a
transformative force in artificial intelligence (AI), with
advanced capabilities in natural language understanding,
logical reasoning, and multimodal interactions [5]. Since the
introduction of OpenAI’s ChatGPT-3.5 in November 2022,
generative AI has rapidly gained prominence [6]. The
subsequent release of more sophisticated models, such as
ChatGPT-4.0 in 2023, which integrate text, voice, and
image processing, has further demonstrated the profound
potential of these technologies. Models like Claude 3-Opus
and ChatGPT-4o exemplify the rapid evolution of AI,
showcasing increasingly human-like cognitive functions.
The expanding application of language comprehension AI
across various sectors highlights its significant potential for
societal advancement [7].

Recent studies have explored the use of LLMs in various
medical fields, including medical education [8], clinical
diagnosis [9], and healthcare quality management [10],
yielding promising results such as improved learning,
diagnostic support, and operational efficiency. In the con-
text of thyroid nodule management, recent research has
primarily focused on text-based analysis, using LLMs to
process clinical reports or ultrasound descriptions to assist
in diagnosis [11, 12]. However, with the growing capability
of LLMs to handle visual data, there is significant potential
for these models to aid in direct medical image analysis
[13]. The application of LLMs to the task of distinguishing
between benign and malignant thyroid nodules from ultra-
sound images represents an exciting opportunity to further
explore their role in medical imaging.

This study aims to evaluate the potential of LLMs,
including Claude 3-Opus and ChatGPT-4o, in distinguishing
between benign and malignant thyroid nodules using ultra-
sound images. By comparing the diagnostic performance of
LLMs with that of radiologist, we seek to assess the feasibility
of applying LLMs in processing and analyzing medical ima-
ges, thereby exploring their potential clinical applications.

Materials and methods

Ethical statement

This study is a cross-sectional clinical research project
approved by the institutional ethics committee of The Hong

Kong Polytechnic University and conducted in accordance
with the Declaration of Helsinki. Written informed consent
was obtained from all patients prior to their participation in
the study.

Study population

The cases included in this study for analysis were derived
from a prospectively and consecutively enrolled cohort at
our institution between May 2019 and August 2021. All
participants underwent thyroid nodule ultrasound exam-
inations, followed by either preoperative FNAC, post-
operative histopathological evaluation, or both. The
inclusion criteria were: (1) patients aged 18 years or older;
(2) patients who underwent thyroid ultrasound examination
prior to thyroid nodule FNAB or thyroid surgery; and (3)
patients with a definitive pathological diagnosis from
FNAB cytology and/or surgical biopsy. The exclusion cri-
teria were: (1) thyroid nodule images with poor quality,
defined as those affected by motion artifacts that sig-
nificantly degraded image clarity or cases where multiple
nodules in a single lobe were so closely adjacent that
effective segmentation was not possible, making them
unsuitable or unfeasible for analysis; and (2) patients with a
history of thyroid surgery or medical treatment for thyroid
nodules.

The overall study design is illustrated in Fig. 1.

Ultrasound examination

All thyroid ultrasound examinations were conducted by a
single sonographer with over three years of experience
using the Aixplorer Ultrasound imaging system (Super-
Sonic Imagine, Aix-en-Provence, France) equipped with a
linear array probe (SL15-4, 4–15MHz). Transverse and
longitudinal ultrasound images of the thyroid nodules were
stored for analysis. All images used for analysis in this
study were the original images. No measurements or
markings were included on the images.

Large language models analysis

Two LLMs, ChatGPT-4o (OpenAI, San Francisco, CA,
USA) and Claude 3-Opus (Anthropic, San Francisco, CA,
USA), were employed for analysis in this study. ChatGPT-
4o, developed by OpenAI, was utilized in its most recent
version available during the study period, with its training
databases updated until October 2023. Similarly, Claude 3-
Opus, developed by Anthropic, was used in its most recent
version available, with training databases updated until
August 2023. Both models were accessed through their
respective application programming interface (API) services
to ensure consistent and reproducible interaction

Endocrine



parameters. The thyroid ultrasound images used in this
study originated from our private database, which is not
accessible online, thus preventing the LLMs from utilizing
these images during pre-training—a process where models
are initially trained on large datasets to learn general pat-
terns that can later be applied to specific tasks, such as
image classification. For each thyroid nodule, two ultra-
sound images were used: one transverse and one long-
itudinal section. These two images were consistently
included for every nodule to ensure comprehensive analysis
from different angles. The images were meticulously
cropped to remove irrelevant details and unrelated anato-
mical structures, preserving only the nodules and the sur-
rounding thyroid tissue. These prepared images, along with
the patient’s age and gender, were then input into the LLMs
for analysis. The input prompt was as follows: “Please act
as an experienced senior ultrasound specialist with exten-
sive expertise in diagnosing thyroid nodules. I will provide
you with two ultrasound images of a thyroid nodule from a
XX-year-old XX (gender) patient. To help you focus on the
characteristics of the nodule itself, I have captured only the
nodule and its surrounding thyroid tissue, omitting any
other potentially distracting information. The first image is
a transverse section, and the second image is a longitudinal
section. Please carefully examine the images and analyze
the various ultrasound features of the nodule, including its

composition, echogenicity and homogeneity, shape, mar-
gins, and presence or absence of calcifications. Based on
these features, determine whether the nodule is benign or
malignant, and provide your diagnostic rationale. Finally,
please provide a clear diagnostic conclusion. Thank you.”
The LLMs analyzed the ultrasound images and provided
diagnostic conclusions regarding the benign or malignant
nature of the nodules (Fig. 2). The research analyses using
ChatGPT-4o were conducted from June 3 to June 9, 2024,
while the analyses using Claude 3-Opus were carried out
from June 10 to June 16, 2024. All analyses by the LLMs
were performed by an independent operator. With each new
analysis, a new chat session was initiated, and records from
the previous session were cleared to ensure confidentiality
and accuracy.

Junior radiologist evaluation

Thyroid nodule ultrasound images and patient information
(age, gender) were also provided to a junior radiologist with
two years of experience for an independent assessment. The
radiologist conducted a detailed assessment of the nodule’s
characteristics according to the ACR TI-RADS guidelines,
including its composition, echogenicity, shape, margins,
and echogenic foci. Based on the evaluation of these spe-
cific categories, the radiologist provided a final diagnostic

Fig. 1 Study Workflow for Comparing Large Language Models and a
Junior Radiologist in Thyroid Nodule Classification. This flowchart
outlines the study design comparing ChatGPT-4o, Claude 3-Opus, and
a junior radiologist in distinguishing between benign and malignant

thyroid nodules using ultrasound images. It includes steps such as
obtaining sonographic images, cropping regions of interest, and ana-
lyzing these images using large language models, followed by per-
formance comparison with a junior radiologist
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conclusion regarding the benign or malignant nature of the
nodule.

Statistical analysis

Data analysis was performed using SPSS 26.0 software
(SPSS Inc., Chicago, IL, USA) and R statistical software
(version 4.2.0; http://www.R-project.org). Categorical data
were expressed as frequencies (percentages), and con-
tinuous data as means ± standard deviations. Pathological
diagnosis served as the gold standard. Chi-square tests were
employed to assess the diagnostic capabilities of the LLMs
and the junior radiologist in distinguishing between benign
and malignant nodules. Cohen’s Kappa consistency analy-
sis was used to evaluate the agreement between the LLMs,
the junior radiologist, and the pathological diagnosis, with
Kappa values interpreted as follows: 0–0.2 (poor agree-
ment), 0.2–0.4 (fair agreement), 0.4–0.6 (moderate

agreement), 0.6–0.8 (substantial agreement), and 0.8–1.0
(almost perfect agreement). Receiver operating character-
istic (ROC) curve analysis was used to assess diagnostic
performance, calculating the area under the ROC curve
(AUC), sensitivity, specificity, and accuracy. The compar-
ison of AUCs was conducted using the DeLong test. The
unnecessary biopsy rate, defined as the proportion of mis-
diagnosed benign nodules among the total biopsy-required
nodules, was also calculated. A two-sided P value of less
than 0.05 was considered statistically significant.

Results

Patient and nodule characteristics

A total of 112 patients, encompassing 116 thyroid nodules,
were included in this study. Of these, 9 patients (8.0%)

Fig. 2 Dialogue-Based Interaction for Thyroid Nodule Ultrasound Image Analysis Using Large Language Models. Input thyroid nodule ultrasound
images and prompts into ChatGPT-4o (A) and Claude 3-Opus (B) to distinguish between benign and malignant thyroid nodules
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underwent only surgical pathology without FNAC, 10
patients (8.9%) had FNAC without surgical pathology, and
93 patients (83.1%) underwent both. The patient cohort
consisted of 19 males and 93 females, with a mean age of
53.79 ± 12.14 years. Among the nodules, 75 (64.7%) were
benign with an average size of 2.53 ± 1.24 cm, while 41
(35.3%) were malignant with an average size of
1.97 ± 1.32 cm. Detailed baseline characteristics are pre-
sented in Table 1.

Consistency analysis with pathological results

ChatGPT-4o demonstrated poor agreement with patholo-
gical results, reflected by a Kappa value of 0.116
(P= 0.118). Claude 3-Opus showed even lower agree-
ment, with a Kappa value of 0.034 (P= 0.653). The
P values for both models were greater than 0.05, indicating
that neither ChatGPT-4o nor Claude 3-Opus could effec-
tively distinguish between benign and malignant nodules.
In contrast, the junior radiologist exhibited moderate
agreement with a Kappa value of 0.450 (P < 0.001), indi-
cating statistically significant consistency with pathological
diagnoses (Table 2).

Diagnostic performance comparison: LLMs vs. junior
radiologist

When comparing diagnostic performances, ChatGPT-4o
achieved an AUC of 57.0% (95% CI: 48.6–65.5%), slightly

outperforming Claude 3-Opus, which had an AUC of
52.0% (95% CI: 43.2–60.9%). However, the difference
between their performances was not statistically significant
(P= 0.393). Both LLMs exhibited significantly lower
diagnostic performance compared to the junior radiologist,
who achieved an AUC of 72.4% (95% CI: 63.7–81.1%) (vs.
ChatGPT-4o, P= 0.008; vs. Claude 3-Opus, P= 0.002).
The junior radiologist also demonstrated superior accuracy
(75.0%, 95% CI: 66.1–82.6%) and specificity (81.3%, 95%
CI: 70.7–89.4%) compared to the LLMs, although
ChatGPT-4o exhibited the highest sensitivity (78.0%, 95%
CI: 62.4–89.4%) (Table 3, Figs. 3, 4).

Unnecessary biopsy rates comparison: LLMs vs.
junior radiologist

The rates of unnecessary biopsies varied across the diag-
nostic approaches (Table 4, Fig. 4). ChatGPT-4o recom-
mended biopsies for 80 nodules, of which 48 were
unnecessary, resulting in an unnecessary biopsy rate of
41.4% (48/116). Claude 3-Opus recommended biopsies for
79 nodules, with 50 being unnecessary, yielding an unne-
cessary biopsy rate of 43.1% (50/116). In contrast, the
junior radiologist recommended biopsies for 40 nodules,
with 14 being unnecessary, translating to a lower unne-
cessary biopsy rate of 12.1% (14/116).

Discussion

In this study, we explored the application of LLMs for the
analysis of ultrasound images to address critical medical
diagnostic challenges. Specifically, we evaluated the per-
formance of two state-of-the-art LLMs, ChatGPT-4o and
Claude 3-Opus, in classifying thyroid nodules based on
ultrasound imaging. To the best of our knowledge, this
research represents the first study of utilizing LLMs for the
direct analysis of thyroid nodule ultrasound images to dis-
tinguish between benign and malignant nodules. Our results
demonstrate that while these LLMs exhibit some potential,
their performance in differentiating benign from malignant

Table 1 Baseline characteristics of patients and thyroid nodules

Characteristic Total Benign Malignant

Patients 112 75 37

Sex (Male/Female) 19/93 12/63 7/30

Age (years) 53.79 ± 12.14 53.32 ± 12.02 54.73 ± 12.48

Nodules 116 75 (64.7) 41 (35.3)

Nodule size (cm) 2.33 ± 1.29 2.53 ± 1.24 1.97 ± 1.32

Categorical variables are presented as n (%) and continuous variables
as mean ± standard deviation.

Table 2 Consistency analysis
between diagnostic approaches
and pathological results

Index Pathological result Cohen’s Kappa value χ2 P value

Benign Malignant

ChatGPT-4o Benign 27 9 0.116 2.444 0.118

Malignant 48 32

Claude-3-Opus Benign 25 12 0.034 0.202 0.653

Malignant 50 29

Junior radiologist Benign 61 15 0.450 23.495 < 0.001

Malignant 14 26

The bold value signifies the highest diagnostic performance in this metric

Endocrine



thyroid nodules is limited, falling significantly short of the
diagnostic accuracy achieved by a junior radiologist.
Importantly, it must be stressed that neither the LLMs nor
the radiologist achieved strong performance in the evaluated
tasks. In fact, both the models and the radiologist performed
below acceptable clinical thresholds, indicating that
improvements are needed in both automated and human-
driven diagnostic processes for this task.

In the present study, thyroid nodule ultrasound images
were input directly into LLMs to assess their benign or
malignant nature, with histopathological findings serving as
the gold standard for comparison. The TI-RADS classifi-
cation system was not utilized for risk stratification.
Although various TI-RADS systems, such as ACR, EU,
ATA, and Korea, are widely used, a universally accepted
TI-RADS classification has not yet been established across
all regions [14–17]. Each TI-RADS system differs in how
malignancy risk is categorized, and no consistent cutoff
exists to reliably separate benign from malignant nodules
across these systems. Additionally, significant differences in
sensitivity and specificity are observed among the TI-RADS
systems, making it challenging to harmonize diagnostic
approaches and compare results across studies or regions
[18, 19]. While TI-RADS is recognized as an essential tool
for clinical decision-making, certain diagnostic models are
increasingly being developed to directly predict the like-
lihood of malignancy from ultrasound images. Several
commercially available computer-aided diagnosis (CAD)
systems, which are based on large-scale image datasets and
deep learning algorithms, have already been designed to
input ultrasound images and classify nodules directly as
benign or malignant without relying on intermediary TI-
RADS scoring [20–22]. This direct assessment approach is
becoming a central focus in both research and clinical
applications, as it allows for more streamlined diagnostic
processes and may reduce interobserver variability inherent
in TI-RADS interpretation. Consequently, this study was
designed to explore the feasibility of using LLMs to directly
classify thyroid nodules as benign or malignant without
relying on intermediary TI-RADS-based stratification. This

Table 3 Overall diagnostic
performance of various
diagnostic approaches

Index Sensitivity %
(95% CI)

Specificity %
(95% CI)

Accuracy %
(95% CI)

AUC %
(95% CI)

P# value P* value

ChatGPT-4o 78.0
(62.4–89.4)

36.0
(25.2–47.9)

50.9
(41.4–60.3)

57.0
(48.6–65.5)

0.008 0.393

Claude-3-Opus 70.7
(54.5–83.9)

33.3
(22.9–45.2)

46.6
(37.2–56.0)

52.0
(43.2–60.9)

0.002 /

Junior radiologist 63.4
(46.9–77.9)

81.3
(70.7–89.4)

75.0
(66.1–82.6)

72.4
(63.7–81.1)

/ /

P# value indicates the comparison of AUCs between ChatGPT-4o, Claude-3-Opus, and Junior radiologist.
P* value indicates the comparison of AUCs between ChatGPT-4o and Claude-3-Opus. The bold value
signifies the highest diagnostic performance in this metric

AUC area under the curve, CI confidence interval

Fig. 3 Comparative Performance of Large Language Models and a
Junior Radiologist in Thyroid Nodule Classification Using ROC Curve

Fig. 4 Radar Chart Comparing Key Performance Metrics of ChatGPT-
4o, Claude 3-Opus, and a Junior Radiologist in Thyroid Nodule
Classification
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approach aligns with the current trend in CAD software
development, where the ultimate goal is to generate a binary
benign-versus-malignant outcome, providing a practical and
efficient diagnostic tool for clinicians. By bypassing the
inconsistencies between different TI-RADS systems, this
study investigated the potential of LLMs to serve as an
adjunct or alternative to traditional classification systems,
with a focus on improving diagnostic accuracy and opera-
tional efficiency. Nevertheless, it is acknowledged that
future studies could benefit from comparing the perfor-
mance of LLMs with specific TI-RADS classifications to
further assess their utility within existing clinical
frameworks.

Previous studies have explored the application of LLMs in
thyroid nodule evaluation, though predominantly focusing on
text-based data or the analysis of ultrasound reports. For
instance, Wu et al. demonstrated that LLMs like ChatGPT-4.0
achieved high diagnostic accuracy when combined with image-
to-text strategies to analyze ultrasound features and structured
diagnostic data [23]. This study reported an AUC of 0.83,
which outperforms the results observed in our study. Similarly,
Wang et al. applied a “Chain of Thought” methodology to
deconstruct the decision-making process in ChatGPT-4.0’s
analysis of thyroid ultrasound reports, thereby improving both
its interpretability and diagnostic utility [24]. The superior
performance of LLMs in these studies can be attributed to their
reliance on image-to-text approaches or structured text-based
reports, which act as intermediaries by converting visual data
into structured, text-based inputs that LLMs are inherently
more adept at handling. LLMs are trained predominantly on
textual data and excel in tasks involving language compre-
hension, logical reasoning, and structured report generation
[25–27]. These methods allow LLMs to capitalize on their
strengths in processing textual information, thereby bypassing
the challenges of direct pixel-level image analysis [28].

In contrast, our study directly evaluated the performance
of LLMs, specifically ChatGPT-4o and Claude 3-Opus, in
analyzing ultrasound images of thyroid nodules. Despite the
advanced natural language processing capabilities of these
models, they exhibited poor concordance with pathological
diagnoses, with Kappa values of 0.116 for ChatGPT-4o and
0.034 for Claude 3-Opus. This demonstrates that current
LLM technologies struggle to capture the nuanced visual

cues essential for accurate ultrasound-based diagnosis.
Furthermore, both LLMs significantly underperformed in
comparison to a junior radiologist, with notably lower AUC
values (ChatGPT-4o vs. radiologist: 57.0% vs. 72.4%,
P= 0.008; Claude 3-Opus vs. radiologist: 52.0% vs. 72.4%,
P= 0.002). These results underscore the limitations of
current LLMs in medical imaging tasks, particularly those
that require precise differentiation of nodule characteristics.
While ChatGPT-4o and Claude 3-Opus exhibit potential in
data processing and decision support tasks, their perfor-
mance in image-based diagnostics remains significantly
inferior to that of human experts.

A key factor contributing to the underperformance of
LLMs in medical imaging is the misalignment between their
design and the demands of image analysis. Trained primarily
on textual data, LLMs excel in natural language understanding
and reasoning but lack the capacity to process and analyze
complex visual information, particularly at the pixel level
[29, 30]. This mismatch is especially evident in the inter-
pretation of thyroid ultrasound images, where subtle grayscale
contrasts, edge delineations, and textural variations often sig-
nal malignancy. Such features are challenging for models
trained on text-based inputs. Additionally, the training data for
LLMs often lacks the depth and diversity needed to capture
pathology-specific anatomical details visible in ultrasound
images. LLMs are not optimized to process pixel-level infor-
mation or comprehend spatial relationships, both of which are
essential for accurate medical image interpretation.

It is essential to recognize that current LLM architectures
do not incorporate the capability to perform medical image-
based tasks that demand the interpretation of spatial, visual,
and contextual patterns. These tasks require specialized
models, such as those trained on multimodal data that
integrates both text and images, or deep learning models
specifically designed for medical image analysis. Future
research should focus on developing and training models
tailored for medical imaging tasks, incorporating both tex-
tual and visual data to create architectures capable of more
effectively interpreting complex medical image features
[31]. Such advancements could significantly enhance the
diagnostic performance of LLMs in medical imaging and
enable more accurate, automated image interpretation.
However, before these models can be widely adopted,

Table 4 Comparison of
unnecessary biopsy rate between
various diagnostic approaches

Index No. of recommended
biopsy nodules

No. of malignant
nodulesa

No. of benign
nodulesa

Unnecessary biopsy
rate, %b

ChatGPT-4o 80 32 (40.0) 48 (60.0) 41.4 (48/116)

Claude-3-Opus 79 29 (36.7) 50 (63.3) 43.1 (50/116)

Junior
radiologist

40 26 (65.0) 14 (35.0) 12.1 (14/116)

aData are presented as n (%). bData are presented as percentage (numerical structure ratio). The bold value
signifies the highest diagnostic performance in this metric
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extensive validation studies are required to ensure their
reliability and safety in clinical environments. Addressing
these research and validation gaps is critical for trans-
forming LLMs from a promising tool into a practical
solution for medical imaging.

This study has several limitations that should be con-
sidered. The sample size was relatively small; future studies
should include a larger cohort to further validate the diag-
nostic performance of LLMs. Additionally, the study did
not account for the potential influence of image quality and
variability in ultrasound equipment and techniques, which
could affect the performance of the LLMs.

Conclusions

This study demonstrates the potential of LLMs, specifically
ChatGPT-4o and Claude 3-Opus, in classifying thyroid nodules
based on ultrasound images. However, their diagnostic per-
formance is currently limited and falls short of that achieved by
a junior radiologist. This underscores the inherent limitations of
these models in medical imaging tasks and highlights the
cautious stance of medical professionals regarding their appli-
cation in clinical settings. To effectively integrate LLMs into
medical imaging diagnostic workflows, future efforts should
focus on optimizing LLM architectures for medical imaging,
expanding training datasets, and improving their diagnostic
capabilities and reliability in clinical practice.
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