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ABSTRACT
Location tracking with global navigation satellite systems (GNSS), such as GPS, is used 
in many applications, including the tracking of wild animals for research. Snapshot 
GNSS is a technique that only requires milliseconds of satellite signals to infer the 
position of a receiver. This is ideal for low-power applications such as animal tracking. 
However, there are few existing snapshot systems, none of which is open source.

To address this, we developed SnapperGpS, a fully open-source, low-cost, and low-
power location tracking system designed for wildlife tracking. SnapperGpS comprises 
three parts, all of which are open-source: (i) a small, low-cost, and low-power receiver; 
(ii) a web application to configure the receiver via USB; and (iii) a cloud-based platform 
for processing recorded data. This paper presents the hardware side of this project.

The total component cost of the receiver is under $30, making it feasible for field work 
with restricted budgets and low recovery rates. The receiver records very short and low-
resolution samples resulting in particularly low power consumption, outperforming 
existing systems. It can run for more than a year on a 40 mAh battery.

We evaluated SnapperGpS in controlled static and dynamic tests in a semi-urban 
environment where it achieved median errors of 12 m. Additionally, SnapperGpS has 
already been deployed for two wildlife tracking studies on sea turtles and sea birds.

METADATA OVERVIEW

Main design files: https://github.com/SnapperGPS/snappergps-pcb

Target group: biologists tracking animal movement

Skills required: PCB manufacturing and assembly (can be outsourced) – advanced;

Replication: this hardware has been replicated by every author. See section “Build 
Details” for more detail.

mailto:beuchert@robots.ox.ac.uk
https://doi.org/10.5334/joh.48
https://doi.org/10.5334/joh.48
https://github.com/SnapperGPS/snappergps-pcb
https://orcid.org/0000-0003-1463-2853
https://orcid.org/0000-0002-3646-3299
https://orcid.org/0000-0001-6324-0536
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(1) OVERVIEW
INTRODUCTION

Animal location trackers most commonly use global navigation satellite systems (GNSS) 
such as the Global Positioning System (GPS). These systems use constellations of satellites 
which continuously broadcast radio signals containing precise transmission timestamps and 
their ephemeris data describing their orbits. A GNSS tracking device on Earth captures these 
signals and infers its location from this information. A traditional GNSS receiver usually requires 
more than one minute of data for a first fix (for which it needs to decode both, ephemerides 
and timestamps), and at least several seconds for subsequent fixes (if recently decoded 
ephemerides are available) (van Diggelen 2009). However, powering the radio to capture these 
signals and then the processor to calculate the location is energy expensive, resulting in the 
need for large batteries with high capacity. This often makes traditional GNSS tags impractical 
for tracking small animals over long deployment periods (McMahon et al. 2017).

Assisted GNSS (A-GNSS) receivers address this issue by obtaining some of the satellite data in 
another way, which allows them to reduce their on-time, thereby saving energy. This is done 
either by pre-loading ephemerides before the deployment or by regularly downloading them 
via another connection (e.g. cellular). However, pre-loading data is only possible for short 
deployments and an additional download link requires more expensive hardware and is energy 
intensive.

Snapshot GNSS is another alternative GNSS concept, which, by design, has significantly lower 
energy needs, resulting in small, light-weight, energy-efficient, and low-cost receivers. Instead 
of capturing seconds or even minutes of the satellite signals for a fix, a snapshot receiver records 
just a few milliseconds. This reduces its power consumption by several orders of magnitude 
compared to a traditional GNSS approach. Additionally, a snapshot GNSS device does not need 
to calculate its position on-board, saving even more energy and lowering the requirements for 
its computing hardware. Instead, it can just locally store the raw signal snapshots until the 
deployment ends. Afterwards, the data processing can be off-loaded to the cloud.

Table 1 details pure snapshot GNSS systems that have been developed in the past. Only 
BaSeBand TechnoloGieS currently offers its solution for purchase (Baseband Technologies Inc. 
n.d.). It is available as a proprietary development board and, therefore, not readily available 
for deployments. Only the ATS G10 module has been evaluated in a realistic scenario, but 
was found to be unreliable by McMahon et al. (2017) due to battery and software failures 
(Morrison n.d.). Furthermore, all existing solutions also use high sample rates and/or long 

Table 1 Existing snapshot 
GNSS systems.
a Data from commercial GPS 
front-end, not snapshot 
receiver.
b Rooftop with good sky 
visibility.
c Evaluation by McMahon et al. 
(2017).
d Evaluation board.

CO-GPS BASEBAND TECHNOLOGIES ETH ZÜRICH ATS G10 ULTRALITE GPS

Reference Liu et al. (2012) Baseband Technologies Inc. (n.d.) Eichelberger et al. (2019) Morrison (n.d.)

Memory 8 MBit  
≤ 1,000 snapshots

4 GB  
≤ 2,000,000 snapshots

2 GB  
65,600 snapshots

4 GB  
≤ 244,000 snapshots

Maximum 
deployment 
duration

1.5 years  
(2 AA batteries, 1 fix/s)

18 days–1 year 
(10 mAh) 
weeks (coin cell)  
years (phone battery)

683 days 
(coin cell, 235 mAh, 
4 fixes/h)

80 min 
(19 mAh, 1 fix/s) 
–759 days  
(200 mAh, 1 fix/h)

Snapshot duration 5 chunks of 2 ms 2–20 ms 1–30 ms ?

Quantisation 2 × 2 bit ? 2 bit ?

Sampling frequency 16.368 MHz ? 16.368 MHz ?

Accuracy < 35 ma median < 9 m < 25 mb mean 15.5 mc

Weight ? ? 1.3 g 11 g

Size [mm] 70 × 52 22 × 27 23 × 14 32 × 23 × 12

Available (2022) no yesd no no

Price N/A 189 USD N/A N/A

Open source no no no no
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snapshots at multi-bit resolution. This improves the snapshot quality but also requires complex 
and expensive hardware. For example, the ETHZ receiver records two-bit signals sampled at 
16 MHz, which limits their microcontroller choice to one with a parallel input capture interface 
(PARC) (Eichelberger et al. 2019). The CO-GPS receiver uses additional circuitry to convert its two-
bit GPS input stream at 16 MHz into a 16-bit parallel signal at 2 MHz, which a microcontroller 
then captures using direct memory access (DMA) (Liu et al. 2012).

Moreover, the hardware is only part of a full snapshot GNSS solution. A complete system also 
needs a signal processing chain to calculate positions from the raw snapshot data. However, 
this software is not openly available for any of these systems, which renders users dependent 
on the technology provider over the whole lifespan of their devices.

To address these issues, we developed SnapperGpS, a completely open-source, small, low-cost, 
low-power snapshot GNSS system designed for tracking wildlife. The algorithmic details of the 
SnapperGpS cloud-processing chain have already been described (Beuchert & Rogers 2021a). 
This paper presents the accompanying hardware. The SnapperGpS printed circuit board (PCB) 
measures 32.0 mm by 27.3 mm and weighs 3 g. The total weight, including an antenna 
and a 40 mAh lithium-ion polymer battery, is 9 g. With such a battery, SnapperGpS can run 
for more than a year. SnapperGpS works with short 12 ms snapshots sampled at only 4 MHz 
with 1-bit amplitude quantisation. This unmatched low resolution allows us to use low-
cost, off-the-shelf components. The total component cost adds up to $21 for each device 
if ordered in a batch of 100, excluding battery and antenna. SnapperGpS tags are used with 
an open-source web application. The app serves as a tool for configuring the tag and later 
for uploading the recorded snapshots to the cloud for processing. We evaluated SnapperGpS 
in controlled deployments, both moving and stationary. With good sky visibility, SnapperGpS 
achieves a median error of 10 m. Modified versions of SnapperGpS have additionally been 
deployed on free-ranging sea turtles and sea birds, demonstrating its usefulness for wildlife  
tracking.

The rest of the paper is structured as follows: Section (1) Overview continues with the Overall 
implementation and design of SnapperGpS. It includes sub-sections on the Electronics, the 
Firmware and the Web application. Section (2) Quality Control covers how to safely operate 
a SnapperGpS receiver and how to test that the system reliably provides accurate location 
estimates over long periods of time. Examples of use cases are presented in (3) Application and 
(4) Build Details provides the instructions to replicate SnapperGpS. Section (5) Discussion includes 
a conclusion and an outlook on future work.

OVERALL IMPLEMENTATION AND DESIGN

SnapperGpS consists of three components: (i) a purpose-built energy-efficient low-cost receiver, 
(ii) a web application for configuration of the receiver, and (iii) a cloud-based data processing 
platform.

Electronics

We place all electronic components on a single side of a two-layered PCB to enable low-cost 
assembly, as seen in Figure 1. The block diagram in Figure 2 shows all core components, which 
we describe in the following.

The antenna captures GNSS signals in the GPS L1 band, which has a centre frequency of  
1.57542 GHz. There are more GNSS signal bands, but the cheapest ICs work with the L1 band, 
the oldest civilian band, and we can receive the modernised GPS L1C, the Galileo E1, the BeiDou 
B1C, and the potential future GLONASS L1OCM signal in this band, too. This allows us to make 
use of multiple satellite systems and, therefore, to increase localisation reliability by using more 
satellites.

Sampling and storing satellite signals at a rate of multiple gigahertz is not possible with a low-
cost receiver. Therefore, we use the heterodyne method: by mixing the received signal with 
an unmodulated signal from a local oscillator, we shift the original signal down to a lower, so-
called intermediate frequency.
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For this, we choose an integrated circuit that is designed for low-power applications, is 
available at very low costs (<$1), and is designed for the GPS L1 band: the SE4150L-R from 
SkyworkS SoluTionS inc. This radio includes an analogue-to-digital converter (ADC) and a voltage-
controlled oscillator (VCO), which needs a reference frequency of 16.368 MHz from an external 
temperature-compensated crystal oscillator (TCXO).

To sample the radio’s output signal, we connect it to a low-power microcontroller unit (MCU); 
a 32-bit Silicon laBS happy Gecko with an arm corTex-m0+ core. To reduce the overall number of 
components, we operate the MCU on the same clock as the radio when acquiring snapshots. 
Otherwise, we fall back to an internal 14 MHz RC oscillator.

The MCU stores the sampled signals on an external flash memory chip. Its size is the 
main limitation for the number of fixes. We use a 512 Mbit flash, which stores up to about  
11,000 snapshots, 6 KB each.

To configure the board or download data, it must be connected to a host device. For this, we 
add a USB-C connector and use the internal USB hardware of the MCU.

The PCB also has two LEDs to provide information on the state of the device when it is not 
connected via USB.

The board draws its power from either USB or a rechargeable lithium-ion polymer (LiPo) 
battery. The latter’s high power density allows to reduce weight. It provides 3.0 V–4.2 V, while 
the USB power line is at 5 V. Therefore, we need a power regulator and a MOSFET-based switch 
to provide a stable 3.3 V supply voltage. There are also MOSFETs to switch off the radio and the 
flash to minimise quiescent currents. Finally, we add a circuit to measure the battery voltage.

We expose three general-purpose input/output pins (GPIOs) of the MCU at an edge of the PCB 
to allow for the connection of external modules to extend the functionality of the device. We 
also expose the reset pin and the Serial Wire Debug (SWD) pins.

Figure 1 Assembled SnapperGpS 
receiver.

Figure 2 The main electronic 
components of a SnapperGpS 
receiver.
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Firmware

The happy Gecko MCU runs custom firmware written in the C programming language. The 
state machine in Figure 3 visualises its core functionalities. To minimise the overall energy 
consumption, we carefully select for each state one of the five energy modes (EMs) that the 
happy Gecko offers (Silicon Laboratories Inc. 2015). Almost all the time during a deployment, 
the MCU sleeps in stop mode (EM3), which consumes only 0.5 µA. A real-time counter (RTC) 
triggers wake-ups in regular intervals to record a satellite signal snapshot, respectively, and 
the MCU switches to run mode (EM0) for this. The flow chart in Figure 4 shows the steps that it 
completes in this mode before it goes to sleep again.

The radio outputs satellite signal samples at 16.368 MHz with two-bit amplitude quantisation. 
However, we sample the signal at a low 4.092 MHz rate, a quarter of the clock frequency. 
Additionally, we use only one bit for the amplitude quantisation. Both together reduce the 
amount of required memory by a factor of eight. However, the main advantage is that we 
can capture the one-bit receiver output using the existing device USART configured as an 
SPI master. Our choice gives us 32 clock cycles to acquire an eight-bit sample and write it to 
RAM. The small RAM size of our low-cost MCU limits the snapshot length to 6 KB, i.e., 12 ms.  
Afterwards, we write the snapshot together with a timestamp and measurements of the 
battery voltage and the temperature via SPI to the external flash memory. Subsequently, the 
MCU goes to sleep in EM3 again or switches to shutoff mode (EM4) if all snapshots have been 
captured and the deployment is complete. In shutoff mode, the RTC is also powered down and 
the MCU consumes just 20 nA.

To preserve energy, we switch off the high-frequency 16.368 MHz oscillator during sleeping 
because we only need a high frequency clock while capturing a snapshot and the low-frequency 
32.768 kHz oscillator is sufficient to keep track of time between consecutive snapshots and the 
RTC running.

We configure a GPIO with a pull-up resistor to be pulled low when a USB connector is plugged 
in. Then, the MCU leaves EM3 or EM4, stops the RTC and, therefore, the recording of further 
snapshots, and switches to EM0. A SnapperGpS receiver provides USB bulk endpoints in both 
directions to facilitate fast transfers of larger amounts of data. These enable it to be configured 
as a WebUSB device, for example, together with the SnapperGpS web application, which is linked 
in the USB descriptor. The documentation in the snappergps-firmware repository defines the 

Figure 3 State machine of a 
SnapperGpS receiver.
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messages to communicate with a SnapperGpS receiver via USB. The messages can be used to 
get status information from the receiver, configure a receiver for a deployment, and transfer 
snapshots and timestamps to a host computer. We also use USB to send a firmware update 
via the MCU to the external flash memory and to request a cyclic redundancy check (CRC) 
afterwards to detect transmission errors. Next, a custom bootloader function that is held in 
SRAM copies the firmware update from the external flash memory to the flash memory of the 
MCU before the MCU reboots to complete the update.

Cloud-processing back-end

The actual processing of the GNSS signals snapshots, i.e., the location estimation, is done in 
the cloud rather than on the device itself (see Figure 5). For this, we wrap the open-source 
snapshot GNSS algorithms developed by Beuchert & Rogers (2021a) into an open-source 
Python back-end that runs on a server. The back-end pulls snapshots that have been 
uploaded from a SnapperGpS receiver from a relational database, processes them, and puts back 
location estimates.

Figure 4 Flow chart for 
capturing a snapshot.

Figure 5 The SnapperGpS 
system comprising receiver, 
web application, and cloud-
processing back-end.
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Web application

A front-end written in JavaScript functions as an interface between SnapperGpS receiver, user, 
and back-end. It is a progressive web app (PWA), which means that it can run in a browser 
window (see Figure 6), but also as native app. Additionally, PWAs load quickly, require little 
memory, are secure to use, and a service worker automatically keeps the app up-to-date.

The SnapperGpS app communicates with a SnapperGpS board via WebUSB, thus not requiring any 
driver installation.

A configuration view allows to read out various information, including the battery voltage and 
the number of signal snapshots on the receiver. Furthermore, it is used to set parameters such 
as the device clock/time, the time interval between two consecutive snapshots, and the start 
and end date and time of the next deployment. It can also be used to update the firmware via 
USB (see the firmware description presented earlier).

After a deployment, an upload view transfers snapshots and timestamps from the device to a 
server.

Finally, a download view shows the track on an interactive map once the back-end has 
calculated it and the user can download it in four different file formats.

(2) QUALITY CONTROL
SAFETY

A lithium-ion polymer battery can overheat or catch fire when short-circuited, charged too 
quickly, overcharged, or damaged. Always use a battery with in-built circuit protection and 
follow the safety instructions of the supplier.

CALIBRATION

A SnapperGpS receiver does not require calibration despite the fact that it is made of low-
cost components with relatively wide tolerances. This is because the software automatically 
estimates and corrects errors.

The main components of concern are the two oscillators. The SnapperGpS receiver uses the  
32.768 kHz oscillator to time stamp snapshots. The snapshot GNSS method requires timestamps 
with an accuracy of at least 1 min (van Diggelen 2009). However, the 32.768 kHz oscillators 
that we use have a frequency tolerance of at least ±10 ppm, which can cause an error of over  
5 min during a year-long deployment. Our snapshot GNSS back-end mitigates this by estimating 
the time error for every single snapshot and using the previous estimate as initialisation for the 
next one. Since the on-board time is synchronised with the browser time during configuration, 
this propagation is sufficient to keep track of the time error during the location estimation 
process.

Figure 6 Example views of 
the SnapperGpS app (https://
snappergps.info).

https://snappergps.info
https://snappergps.info
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The synthesizer of the radio turns the 16.368 MHz reference frequency of the external TCXO 
into a frequency close to the GPS L1 frequency of 1575.42 MHz. Therefore, frequency errors of 
the TCXO are amplified by almost a factor 100 and a frequency tolerance of ±500 ppb can turn 
into a frequency offset of the front-end of more than 800 Hz, which shifts the intermediate 
frequency of the captured snapshots by the same amount. However, for successful satellite 
acquisition, we need an accuracy that is a magnitude better than that, especially for Galileo and 
BeiDou satellites. To avoid searching a large frequency space for the satellite signals, the back-
end automatically estimates the offset of the receiver front-end for each uploaded dataset 
using a couple of snapshots from the beginning of the deployment (Beuchert & Rogers 2021b). 
Afterwards, it corrects the offset estimate over time based on the recorded temperatures 
and a linear model that relates temperature and frequency offset and which we fitted to a 
training dataset.

Both steps together allow us to obtain reliable localisation accuracy without manual calibration.

GENERAL TESTING

Localisation accuracy

To test the accuracy of the location estimates of a SnapperGpS receiver, we advise users to just 
record some data outdoors at a location with known coordinates and then upload it via the 
SnapperGpS app. Then they can calculate the horizontal error between the estimated locations 
and the ground truth. For comparison, we obtained median tracking errors of 11–12 m on an 
open test data collection that we established by ourselves using three SnapperGpS receivers. It 
consists of four static and seven dynamic cycling tests in urban and rural environments with 
3700 snapshots in total (Beuchert & Rogers 2021a,b). In addition, a receiver that we mounted 
on a roof top with good sky visibility collected about 8000 snapshots over more than five 
months and achieved a median error of 10 m (see Figure 7).

Power consumption

Measuring the power/current consumption of a SnapperGpS receiver is critical for long-term 
deployments to ensure that it will work for the desired operation time, although none of our 
test boards had problems in this regard. The current should be 1 µA–2 µA if the board is sleeping 
and the maximum current should be around 25 mA when capturing a snapshot. The charge 
consumption for a single snapshot should be <0.3 µAh.

Figure 7 Three SnapperGpS 
receivers on a cycling 
helmet (top left), example 
track captured while cycling 
and walking in and around 
Oxford, UK (top right, from 
https://snappergps.info/
view?uploadid=8821aa36c3), 
roof-mounted SnapperGpS 
receiver for stationary data 
collection over six months 
(bottom left), and example set 
of ten fixes (bottom right).

https://snappergps.info/view?uploadid=8821aa36c3
https://snappergps.info/view?uploadid=8821aa36c3
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(3) APPLICATION
USE CASES

SnapperGpS could be used for any location data logging application, however, the snapshot 
GNSS approach has advantages over traditional GNSS that make it particularly well suited for 
wildlife tracking. Most notable is the significantly reduced power consumption which means 
that smaller batteries can be used. Minimising size and weight of a tag is crucial when tagging 
wildlife to avoid unnecessary stress to the animal. Furthermore, a snapshot receiver is capable 
of taking a snapshot at any time and only requires milliseconds of clear signal (as opposed to 
multiple seconds with a traditional receiver). These attributes make the snapshot approach 
particularly well suited for marine settings, where animals may only surface sparsely and briefly.

Marine deployment

In summer 2021, SnapperGpS tags were deployed on loggerhead sea turtles (Caretta caretta) on 
the island of Maio, Cape Verde (Matthes et al. 2022). The receivers were placed in enclosures 
milled out of plastic and aluminium, which we tested to be waterproof to at least 100 m. We 
open-sourced an updated version of the enclosure design.

The team tagged 20 females with SnapperGpS tags while they were nesting on the beach. Nine 
tags were recovered when the individuals returned to lay another clutch of eggs. Whenever a 
snapshot was taken above the surface, SnapperGpS reliably calculated a position. GNSS signals 
are easily stopped by water and so any snapshots taken underwater do not contain any usable 
satellite information. However, the SnapperGpS signal processing chain can filter out these poor 
fixes, see Figure 8.

The obtained tracks are potentially helpful for identifying important habitats that may benefit 
from further protection.

Avian deployment

In May 2022, a custom variant of SnapperGpS was deployed on Manx shearwaters (Puffinus 
puffinus) nesting on Skomer, Wales and the Copeland Islands, Northern Ireland. These birds 
weigh between 400 g and 450 g (Brooke 2013), so minimising the weight of the tag is particularly 
important. To achieve this, we reduced the size of the PCB by removing the GPIO pads and the 
JST connector for the lithium-ion polymer battery. The battery is soldered on instead. To avoid 
having to remove the battery for charging, we added a charging circuit to the PCB. This allows 
the tag to be charged using the USB port. The altered tag with a 40 mAh lithium-ion polymer 
battery and an APAM1368YB13V3.0 antenna from Abracon LLC weighs 8.3 g.

The receivers were waterproofed using heat-shrink tubing. The tubing was shrunk with a heat 
gun and then the ends were sealed with flat needle-nose pliers while the plastic was still 
warm. In total, 21 tags were deployed and 19 were recovered over the incubation and chick 
rearing period. The recorded data has high enough temporal resolution to identify behaviour. 
In particular, foraging behaviour shows up in the data as erratic movement which clearly 
distinguishes it from sustained flight or rafting on the surface. This makes it possible to monitor 
behaviour and locate major foraging sites of the species during the nesting season without 
having to co-deploy other sensors such as accelerometers.

See Figure 9 for a photograph of a SnapperGpS receiver on a bird and a plot of one recorded track.

Figure 8 A SnapperGpS tag on 
the back of a loggerhead sea 
turtle and a track captured 
over two weeks.
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REUSE POTENTIAL AND ADAPTABILITY

SnapperGpS, as it is presented here, is designed to be general-purpose and low-cost. However, as 
demonstrated in the previous section, the SnapperGpS hardware can be customised for specific 
applications. This is a key advantage of a fully open-source solution.

The open-source design has multiple GPIO pins to extend functionality of the tag without 
altering the PCB layout. These can be used to connect a sensor such as an accelerometer, 
a calibrated thermometer or a light sensor. The additional sensor data can then be logged 
alongside the GNSS data. Such additional sensors can also be used to trigger snapshots.

Other potentially useful changes to the PCB design may include switching out the flash storage 
for a larger alternative (e.g. a microSD card), and swapping the power source from a LiPo battery 
to something that is more readily available (e.g. a coin cell).

(4) BUILD DETAILS
AVAILABILITY OF MATERIALS AND METHODS

Table 2 presents the bill of materials (BOM) for the electronic components of a SnapperGpS 
receiver. The price of $21 for a single device in a batch of 100 is significantly cheaper than both 
existing commercial and open-source GNSS receivers for wildlife tracking, which usually cost a 
few hundred USD.

Figure 9 A custom SnapperGpS 
tag on the back of a Manx 
shearwater and a recorded 
track.

COMPONENT VALUE PART QTY PRICE [USD]

ONE  100 1000

Ceramic capacitor 100 nF GRM155R60J104KA01D 10 0.33 14.60 81.70

Ceramic capacitor 10 nF GRM155R60J103KA01D 5 0.50 4.43 29.10

Ceramic capacitor 100 pF GRM1555C1H101JA01J 1 0.10 0.81 4.54

Ceramic capacitor 22 pF GRM1555C1H220JA01D 1 0.10 0.81 4.57

Ceramic capacitor 18 pF GRM1555C1H180JA01D 2 0.20 2.32 13.00

Multi-layer ceramic capacitor 1 uF GRM188R60J105KA01D 4 0.40 11.00 61.84

Multi-layer ceramic capacitor 4.7 uF GRM185R60J475ME15D 1 0.30 11.67 72.02

Multi-layer ceramic capacitor 10 uF GRM188R60J106KE47D 1 0.15 5.07 29.44

Fixed inductor 39 nH 0402HS-390EKTS 1 0.26 15.68 109.72

Ferrite bead BLM15HB221SH1D 1 0.10 4.36 25.08

Resistor 15 Ω RC0402FR-0715RL 2 0.20 1.32 5.98

Resistor 1 kΩ RC0402FR-071KL 2 0.20 1.32 5.98

Resistor 4.7 kΩ RC0402FR-074K7L 3 0.30 1.98 7.77

Table 2 Bill of materials for 
one, 100, and 1000 SnapperGpS 
receivers.

(Contd.)



EASE OF BUILD

We intend to support making the SnapperGpS hardware available through group purchasing 
websites. This will be more cost- and time-effective for most potential users.

OPERATING SOFTWARE AND PERIPHERALS

See sections Firmware and Web application.

The SnapperGpS app works in the microSofT edGe and GooGle chrome browsers. Optionally, the 
user can also install it as a native app, either through the website https://snappergps.info, the 
microSofT STore (https://apps.microsoft.com/store/detail/snappergps/9P9RPRS6LSMM), or GooGle 
play (https://play.google.com/store/apps/details?id=com.herokuapp.snapper_gps.twa).

DEPENDENCIES

The SnapperGPS hardware has no dependencies. We provide all firmware dependencies 
together with the firmware. We list all dependencies of the web app in the respective repositories 
and they can be installed via pip (Python) or npm (JavaScript). No dependencies are closed-
source and all are free software.

HARDWARE DOCUMENTATION AND FILES LOCATION

Name: snappergps-pcb

Persistent identifier: https://github.com/SnapperGPS/snappergps-pcb

Licence: Solderpad Hardware License v2.1

Publishers: Jonas Beuchert, Amanda Matthes, Alex Rogers

Date published: 10/06/22

COMPONENT VALUE PART QTY PRICE [USD]

ONE  100 1000

Resistor 5.1 kΩ RC0402FR-075K1L 2 0.20 1.32 5.98

Resistor 6.8 kΩ RC0402FR-076K8L 1 0.10 0.66 2.99

Resistor 10 kΩ RC0402FR-0710KL 2 0.20 1.32 5.98

Resistor 100 kΩ RC0402FR-07100KL 7 0.70 4.62 14.98

Crystal 32.768 kHz Q 0,032768-JTX310-12,5-10-T1-HMR-50K-LF 1 0.86 62.70 495.00

Yellow-green LED 572 nm SML-D12M1WT86 1 0.22 5.51 39.86

Red LED 620 nm SML-D12U1WT86 1 0.22 5.51 39.86

Temp. compensated oscillator 16.368 MHz D32G-016.368M 1 8.00 700.00 7000.00

GPS receiver SE4150L-R 1 0.86 86.40 864.00

SAW filter 1.57542 GHz AFS20A42-1575.42-T3 1 1.05 71.37 543.74

Microcontroller EFM32HG310F64G-C-QFN32R 1 5.91 435.04 3703.46

TVS diode 5.5 V PRTR5V0U2AX,235 1 0.66 42.47 257.87

NAND flash memory 512 Mbit W25N512GVEIG 1 2.90 228.68 2051.92

U.FL connector jack 50 Ω 1909763-1 1 0.51 36.55 595.90

MOSFET array N/P-channel TT8M1TR 3 1.56 86.58 487.08

Linear voltage regulator S-1318D33-M5T1U4 1 1.58 109.94 908.20

USB-C receptacle connector DX07S016JA1R1500 1 1.67 129.65 1080.44

JST connector header S2B-PH-SM4-TB 1 0.54 39.08 339.84

Total 31.55 2124.54 18900.69

https://snappergps.info
https://apps.microsoft.com/store/detail/snappergps/9P9RPRS6LSMM
https://play.google.com/store/apps/details?id=com.herokuapp.snapper_gps.twa
https://github.com/SnapperGPS/snappergps-pcb


SOFTWARE CODE REPOSITORIES

Names: snappergps-firmware, snappergps-app, and snappergps-backend

Identifiers: https://github.com/SnapperGPS/snappergps-firmware,  
https://github.com/SnapperGPS/snappergps-app, and  
https://github.com/SnapperGPS/snappergps-backend

Licence: MIT

Date published: 10/06/22

(5) DISCUSSION
CONCLUSIONS

This paper presents SnapperGpS, a location data logging system designed for wildlife tracking. It 
consists of three parts: (i) a GNSS receiver, (ii) a web application that is used to configure it, and 
(iii) a cloud-based data processing platform. The receiver is small, low-cost and energy-efficient 
enough to run on small batteries for multiple years. SnapperGpS has been tested in multiple 
controlled static and dynamic tests in urban and rural environments. Additionally, SnapperGpS 
has already been used for tracking sea turtles and sea birds in the wild. These deployments 
have demonstrated that SnapperGpS is a viable wildlife tracking system.

FUTURE WORK

Future work could include: altering the PCB design to further reduce the size and weight of the 
receiver; switching to a power source that is more readily available; increasing the on-board 
storage to allow for more snapshots per deployment; and adding commonly used sensors to 
log additional data (e.g. sound, light, acceleration).
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