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Abstract

In neuroimaging, accurate brain age prediction is key to understanding brain
aging and early neurodegenerative signs. Recent advancements in self-supervised
learning, particularly contrastive learning, have shown robustness with complex
datasets but struggle with non-uniformly distributed data common in medical
imaging. We introduce a novel contrastive loss that dynamically adapts during
training, focusing on localized sample neighborhoods. Additionally, we incorporate
brain stiffness, a mechanical property sensitive to aging. Our approach outperforms
state-of-the-art methods and opens new directions for brain aging research.

1 Introduction

Brain age prediction uses neuroimaging data to establish a baseline aging trajectory from healthy
samples, casting it as a regression problem. This approach is particularly promising for identifying
deviations from normal aging processes that might indicate neurological conditions. Inspired by ad-
vancements in computer vision, self-supervised learning techniques, particularly contrastive learning
methods, have been effectively adapted for predicting brain age from structural MRI scans [1, 2].

Limitations. Despite their potential, current methods often struggle with generalization, particularly
across datasets characterized by non-uniform distributions. To address this limitation, we introduce a
novel contrastive loss that focuses on localized sample neighborhoods and adapts dynamically during
training, enhancing performance where traditional approaches falter. Given the greater age sensitivity
of mechanical over structural properties [3–10] this is the first application of contrastive learning to
brain stiffness maps, opening new directions in neuroimaging research.

Contrastive Learning. To construct semantically rich and structured representations, contrastive
learning has become a widely adopted method for self-supervised representation learning. Contrastive
learning adjusts distances in the embedding space to bring similar samples closer and push dissimilar
ones apart [11, 12]. Early methods like SimCLR [11] introduced a simple yet effective framework
that utilized a contrastive loss function to maximize agreement betweeen differently augmented views
of the same data sample (positive pairs) while pushing apart representations of different samples
(negative pairs). Subsequently, NNCLR [13] pairs each sample with its nearest neighbor in the feature
space, focusing on informative similarities between samples.

Shifting from classification to regression problems, the distinction between positive and negative
pairs transitions to a continuous spectrum. This shift necessitates the model’s ability to discern
varying degrees of similarity, represented as si,k = sim(f(xi), f(xk)), beyond mere categorical
differentiation. In response to the challenge of integrating continuous labels such as age, recent
advancements propose strategies such as the Y-Aware loss [1], which softens the boundary between
positive and negative samples. Similarly, [2] proposed the Threshold and Exponential losses, which
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Figure 1: Graphical Illustration of Our Proposed Method. Throughout training (top to bottom), the
repulsion is progressively localized as the number of samples, selected as nearest neighbors, are
gradually decreased.

adjust the strength of alignment and repulsion based on the similarity between continuous labels.
Another work introduced the Rank-N-Contrast loss [14], which employs a comparative ranking
strategy among samples. This method ranks samples based on their similarity to a given anchor,
creating a ranking-based continuous spectrum of positive and negative pairs. See Appendix A.1 for
detailed loss descriptions.

2 Proposed Technique

Problem Setup. The primary challenge in brain age modeling lies in accurately mapping high-
dimensional brain imaging data to a continuous age variable. Traditional contrastive learning methods
are limited in their capacity to handle the subtle variations in brain stiffness associated with aging
due to their global approach. Our technique introduces a dynamic, localized strategy to progressively
capture age-related features effectively.

Formally, we aim to train a neural network mapping brain images x ∈ X to target ages y ∈ R. The
model comprises two key components: a feature encoder f : X → Z , which transforms brain images
into an embedding space Z ⊆ Rd, and an age predictor g : Z → R, tasked with estimating the age
from these features.

Dynamic Localized Repulsion. The dynamic localized repulsion technique is a cornerstone of our
methodology, designed to optimize the contrastive learning framework specifically for the regression
tasks inherent in brain age modeling.

To enhance the precision of contrastive regression learning, we introduce a dynamic localized
repulsion approach that progressively explores varied scales within the embedding space, as depicted
in Figure 1. This methodology systematically adjusts the selection of repulsion candidates, taking
into account both their proximity and the evolutionary stage of training. The selection process for
repulsed samples is defined by:

NN(xi; epoch) = {xk | fepoch(xk) is among the NNnb(epoch) nearest
neighbors of fepoch(xi) based on d(fepoch(xk), fepoch(xi))} (1)

This defines the samples subject to repulsion by distance d. Our approach narrows the scope
of nearest neighbors in repulsion, focusing learning on increasingly localized neighborhoods.
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This adaptive mechanism is governed by two critical hyperparameters: the final count of near-
est neighbors,NNnb,final, representing the ultimate scope of repulsion at the end of training, and
the decrement frequency, NNstep size, which specifies the interval of epochs for adjustments in the
neighbor count, as detailed in Appendix A.3.

In datasets that show non-uniform distributions, especially those with multi-modal characteristics, it
is common to find some target areas oversampled and others undersampled. This scenario is typical in
neuroimaging datasets (see Appendix A.2.2). Our dynamic localized strategy is designed to address
this issue. It starts by segregating distinct groups and then the training objective evolves to focus
exclusively on those groups. This process is illustrated in Fig. 1. Our approach aims to reveal more
coherent representations throughout the dataset.

Following the methodology proposed by [2], we utilize kernel functions to determine the degrees
of positiveness, wi,k = K(yi − yk), where 0 ≤ wi,k ≤ 1. Larger values of wi,k indicate closer age
similarity, bringing their representations closer together. The set of nearest neighbors, NNnb(epoch),
is dynamically adjusted during training, and repulsion is applied only to the nearest neighbors,
progressively focusing on more localized interactions as training advances. The final dynamic
localized repulsion loss is:

LDynLocRep = −
∑
i

∑
k ̸=i

wi,k∑
t wi,t

log

(
exp(si,k)∑

xt∈NN(xi;epoch) exp(si,t(1− wi,t))

)
(2)

This overall loss calculates the aggregated contribution of each sample pair within a batch. It
normalizes these contributions by the sum of positiveness weights, reflecting age similarity, to adjust
the influence of each pair. The softmax function is then applied to these normalized and adjusted
similarity scores si,k, which are recalculated for each dynamically defined nearest neighbor set.

What is the Intuition Behind Our Dynamic Localized Repulsion? We address the challenge of
non-uniform data distributions in neuroimaging datasets. Traditional models often fail to distinguish
between age groups when data is unevenly represented. Our approach refines this by adjusting
embeddings dynamically. This is done via (2) which aims to dynamically adjust the embeddings
based on age-related similarities. The essence of this equation lies in its ability to modulate the degree
of repulsion or attraction between samples within the same batch based on their age proximity wi,k.
This formulation allows for adaptive learning where the focus is progressively shifted toward more
challenging or informative pairs, potentially those that are not well-aligned in age, thus encouraging
the model to learn finer distinctions as training progresses.

3 Experimental Results

We assembled a dataset of 311 3D brain stiffness maps from healthy control subjects, sourced from
multiple clinical studies [15–20]. For detailed information on the data and pre-processing, see
Appendix A.2.

Evaluation Protocol. We used a 3D ResNet-18 model (33.5M parameters), pre-trained on over 5000
T1 3D MRI brain images from the openBHB dataset [21], using the best reported method from the
OpenBHB challenge [21]. We fully fine-tune (i.e. updating all weights) the pre-trained ResNet-18
on our brain stiffness dataset and evaluated the learned representations using a Ridge Regression
estimator [2] to predict age. As an evaluation metric, we calculated the mean absolute error (MAE) on
the test set, averaging the results across five random seeds. Further details can be found in Appendix
A.4.

Results and Discussion. We begin by evaluating the representations of stiffness maps learned using
our dynamic localized repulsion loss against those using current state-of-the-art classification and
contrastive regression losses. Table 1 demonstrates the effectiveness of our approach, evidenced by
the Mean Absolute Error (MAE) metric. Notably, our method significantly outperforms contrastive
classification losses such as SimCLR [11] and NNCLR [13], which achieve higher MAEs of 9.600±
1.701 and 8.526± 1.442, respectively.

When comparing our method to existing state-of-the-art contrastive regression losses, our approach
demonstrates superior accuracy in predicting brain age. Upon careful examination, we can observe
that Rank-N-Contrast [14] shows the highest MAE, suggesting it may be less adept at capturing the
nuanced patterns within the data necessary for precise age prediction. Y-Aware and Exponential [1, 2]
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Table 1: Representation comparison demonstrates the superior performance of our method over
state-of-the-art contrastive classification and regression losses.

Contrastive Classification Loss MAE [years]
SimCLR [22] 9.600± 1.701
NNCLR [13] 8.526± 1.442

Contrastive Regression Loss
Rank-N-Contrast [14] 5.266± 0.587
Y-Aware [1, 2] 3.852± 0.212
Threshold [2] 4.420± 0.503
Exponential [1, 2] 3.824± 0.215
Dynamical Localized Repulsion (Ours) 3.724 ± 0.220

Figure 2: UMAP visualizations of representations show model improvements throughout various
learning stages. As epochs increase, the clusters become more distinct and separate, indicating a
more defined representation of the underlying data features.

losses show improvements over Rank-N-Contrast. These methods appear to better align with the
underlying age-related changes in brain stiffness but still fall short compared to our approach.
Threshold [2] loss offers a competitive performance, yet it does not achieve the same level of accuracy
as our method. This indicates that while these methods handle some data variability effectively, they
might not fully capture localized age-related changes as our method does, which achieves the lowest
MAE. This shows that focusing on localized neighborhoods and dynamic adaptation significantly
contribute to its improved performance. Refer to Appendix A.5 for ablation studies on various
settings.

Fig. 2 shows UMAP embeddings across epochs 2, 20 and 50, illustrating the progressive refinement
of the feature space. Initially scattered, the representations form more defined clusters as training
progresses, reflecting the model’s increasing ability to capture age-related variations. By epoch
50, distinct groupings indicate a better understanding of underlying age-related features. These
visualizations confirm our approach’s effectiveness and offer intuitive insights into how contrastive
learning can be harnessed for regression tasks in medical imaging.

4 Conclusion

We introduced a dynamic localized repulsion approach for contrastive regression learning, addressing
generalization challenges in medical imaging with non-uniform data distributions. Applied to
brain stiffness maps, our method enhances robustness and performance in brain age prediction. Our
research marks the first application of self-supervised learning to explore mechanical brain properties,
opening avenues for understanding structural changes related to aging and neurological conditions.
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Future work includes expanding to neurological disease cohorts and integrating multimodal imaging
data for better prediction accuracy.
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A Appendix

A.1 State-of-the-Art Contrastive Regression Losses

In this Appendix, we provide detailed descriptions of the state-of-the-art contrastive regression
losses referenced in the main text. These methods adapt contrastive learning for regression tasks by
modifying the loss functions to handle continuous labels.

Method Contrastive Regression Loss

Rank-N-Contrast LRnC = −
∑

i

∑
k ̸=i log

exp(sk)∑
xi,t∈Si,j

exp(si,t)
with Si,j := {xk|k ̸= i, d(yi, yk) ≥ d(yi, yj)}

Y-Aware Ly−aware = −
∑

i

∑
k ̸=i

wi,k∑
t wi,t

log
(

exp(si,k)∑
t ̸=k exp(si,t)

)
Threshold Lthreshold = −

∑
i

∑
k ̸=i

wi,k∑
t δwi,t<wi,k

wi,t
log
(

exp(si,k)∑
t ̸=k δwi,t<wi,k

exp(si,t)

)
Exponential Lexp = −

∑
i

∑
k ̸=i

wi,k∑
t wi,t

log
(

exp(si,k)∑
t ̸=k exp(si,t(1−wi,t))

)
Table 2: Overview of Contrastive Regression Losses. This details existing methods each employing
distinct strategies to refine the contrastive learning process for regression tasks.

Descriptions:

• Rank-N-Contrast loss [14]: Construct positive and negative pairs based on their ranking
of label differences, focusing on labels with smaller label distances.

• Y-Aware loss [1]: Uses a weighting function wi,k to adjust the influence of each sample
pair according to label similarity, allowing for a smooth transition between positive and
negative pairs.

• Threshold loss [2]: Introduces a threshold to define positive pairs, considering only those
within a certain label distance, and adjusts the loss accordingly.

• Exponential loss [2]: Applies an exponential weighting to modulate the repulsion between
samples based on label differences, emphasizing pairs with similar labels.

A.2 Detailed Data Description

This section provides comprehensive details about the datasets used in our study and the preprocessing
steps applied to ensure data uniformity and quality.

A.2.1 Datasets

We assembled a dataset of 311 3D brain stiffness maps from healthy control subjects, sourced from
multiple clinical studies [15, 16, 19, 18, 17, 20]. Table 3 presents a detailed breakdown of these
datasets. All datasets were collected in accordance with ethical standards, under protocols approved
by the respective local institutional review boards.

Table 3: Compilation of Dataset Information Across Multiple Studies: This table presents a detailed
breakdown of the datasets used in our analysis. The aggregated data encompasses a diverse age range
and a balanced gender ratio, facilitating a comprehensive evaluation of brain stiffness in healthy
controls.

Study Published In #Subjects Age [years] Sex [F:M]
1 [15] 134 23.4± 4.0 78:56
2 [16] 60 37.8± 20.9 34:26
3 [19] 12 69.4± 2.4 6:6
4 [18] 68 69.3± 5.8 49:19
5 [17, 20] 37 49.1± 16.6 16:21

Total - 311 41.0±21.9 183:128
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A.2.2 Age Distribution

Fig. 3 illustrates the age distribution of participants from the different studies. The distribution is
bimodal, indicating two predominant age groups among the subjects.

Figure 3: Age Distribution of Participants from Multi-Site MR Elastography Studies. Contribution to
the 311 healthy control (HC) stiffness brain maps of different clinical studies is highlighted in color.
The distribution is bimodal, indicating two predominant age groups among the subjects.

A.2.3 Data Preprocessing

To enhance data quality and uniformity, we applied several preprocessing steps to the stiffness maps:

1. Skull Stripping: Each map underwent skull stripping using Freesurfer [23] to isolate brain
tissue from non-relevant anatomical structures.

2. Bias Field Correction: We applied bias field correction to remove intensity gradients that
could affect analyses.

3. Spatial Normalization: To address data heterogeneity across different studies, we per-
formed affine registration of the images to the MNI152 template at an isotropic resolution of
2mm3 using ANTs [24], ensuring consistent orientation and scale among all datasets.

4. Intensity Normalization: Finally, we normalized the quantitative stiffness images by setting
their mean to zero and standard deviation to one across the dataset.

A.2.4 Neuroimaging Modalities Comparison

Figure 4 presents a comparison of neuroimaging modalities. Each row shows three orthogonal views
(sagittal, coronal, and axial) of the brain images, highlighting differences in mechanical (stiffness
maps) and structural (T1-weighted MRI) properties across different ages.

A.3 Calculation of Number of Nearest Neighbors

In our dynamic localized repulsion approach, the number of nearest neighbors (NNnb) decreases
progressively during training. Algorithm 1 outlines the computation of NNnb at each epoch.

A.4 Evaluation Protocol Details

We used an 80:20 train-test split over 50 epochs with a batch size of 32, utilizing the Adam optimizer.
The initial learning rate was set to 1× 10−4 and decreased by 10% every 10 epochs. A weight decay
of 5× 10−5 was applied to prevent overfitting. Hyperparameters NNnb,final and NNstep size were
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Figure 4: Comparison of Neuroimaging Modalities.

Algorithm 1 Calculation of Number of Nearest Neighbors NNnb (epoch)

Require: NNstep size < max epochs ∧ NNnb, final ≥ 0

steps completed←
⌊
current epoch

NNstep size

⌋
total steps←

⌊
max epochs
NNstep size

⌋
NNnb decrement per step← batch size−NNnb, final

total steps−1

NNnb ← batch size− (NNnb decrement per step× steps completed)
NNnb ← max(NNnb, NNnb, final)

optimized via random search across 30 iterations, resulting in NNnb,final = 14 and NNstep size = 1,
which were used throughout the benchmarks and ablation studies. Our implementation is based on
Barbano et al. [2]. All models were trained using an NVIDIA A100-SXM-80GB GPU.

A.5 Ablation Studies

We conducted several ablation studies to examine the impact of different components on model
performance.

A.6 Impact of Distance Norms

We investigated the role of the distance norm used for nearest neighbor selection in our dynamic
localized repulsion approach. As shown in Figure 5a, the method demonstrates robustness regarding
the choice of distance norm. The Manhattan norm achieved the lowest MAE of 3.724± 0.220 years,
outperforming the Cosine (MAE = 3.748± 0.142 years), Euclidean (MAE = 3.806± 0.154 years),
and Chebyshev norms (MAE = 3.842± 0.196 years).

A.7 Comparison of Regression Losses

We evaluated different auxiliary loss functions to investigate their impact on performance: Mean
Squared Error (MSE), Mean Absolute Error (L1), Huber loss, and DEX loss [25]. The encoder
was first trained using LDynLocRep, then frozen while a predictor was trained using the auxiliary
loss. As shown in Figure 5b, the MSE loss achieved the lowest MAE of 3.724 ± 0.220 years,
suggesting that traditional regression losses are more effective when combined with contrastive
learning representations.
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(a) Ablation study for different distance norms when
selecting nearest neighbors shows Manhattan norm
achieves lowest MAE.

(b) Ablation study for different regression losses
shows MSE loss achieves lowest MAE compared to
Huber, L1 and DEX.

(c) Ablation study for different augmentations reveals
the Cutout method achieves the lowest MAE, outper-
forming other augmentations.

(d) Ablation study for feature extraction shows fea-
ture extraction after non-linear projection mapping
achieves lower MAE.

Figure 5: Ablation studies for distance norms, regression losses, augmentations, and feature extraction
with/without projection mapping.

A.8 Effect of Data Augmentations

We explored the impact of various augmentations—Noise, Cutout, Rotation, and Flip—on model
performance. Figure 5c indicates that Cutout provided the best performance with an MAE of
3.667 ± 0.147 years. Rotation significantly degraded performance due to disruption of consistent
brain orientation.

A.9 Feature Extraction with/without Projection

We compared model performance when features were extracted after the projection layer versus
before. Figure 5d shows that extracting features after the projection layer resulted in a lower MAE of
3.724± 0.220 years compared to 4.323± 0.216 years without projection, aligning with practices in
frameworks like SimCLR.
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