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ABSTRACT 

Serpentinites play a crucial role in mass transport and volatile recycling in subduction zones, yet the 
mechanism for their contribution to the formation of arc magma remains elusive. Here, we investigate this 
issue by examining the magnesium (Mg) and boron (B) isotope compositions of volcanic rocks and forearc 
serpentinites from the South Sandwich Island arc. The volcanic rocks display δ26 Mg values ranging from 

−0.25 ‰ to −0.06 ‰ and δ11 B values ranging from + 9.6 ‰ to + 16.5 ‰ , while the forearc serpentinites 
exhibit δ26 Mg values of −0.21 ‰ to −0.02 ‰ and δ11 B values of + 5.2 ‰ to + 9.8 ‰ . Given the substantial 
contrast in both Mg and B contents between mantle rocks and fluids, the combined heavy Mg–B isotope 
compositions of volcanic rocks pose a challenge to traditional arc formation models, i.e. flux melting of 
depleted subarc mantle metasomatized by slab-derived fluids. Although an alternative model involving flux 
melting of dehydrated serpentinites can partly account for the heavy Mg isotope compositions of arc 
magmas, it is difficult to simultaneously explain the B isotope and trace-element compositions. Instead, 
these distinct compositions can be adequately explained by partial melting of a serpentinite-dominated 
mélange beneath the volcanic arc. Given that arc magmas exhibiting coupled heavy Mg–B isotope 
compositions are increasingly reported, we propose that serpentinite-mélange melting represents an 
effective and geochemically self-consistent mechanism for transferring signatures of subducted slabs to the 
overlying mantle source. This process can be significant in subduction zones with prominent forearc mantle 
erosion or those involving considerable amounts of slab-hosted serpentinite. 
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I
T  

a  

p  

t  

c  

s  

m  

t  

k  

b  

c  

m  

w  

t  

e  

nite to the source of arc magmas in subduction zones 
[9 –12 ]. 

Island arc volcanic rocks typically have higher 
B contents and δ11 B values than mid-oceanic ridge 
basalts (MORB) [5 ]. This has been traditionally at- 
tributed to their being sourced from enriched man- 
tle hybridized by fluids derived from subducted 
AOC and/or sediments [2 ,13 ]. More recently, grow- 
ing evidence indicates that serpentinite plays an 
important role in the generation of arc lavas—
particularly those with high δ11 B values ( > + 5 ‰ ) 
[4 ,5 ,9 –12 ,14 ]. However, the exact mechanism and 
process for the contributions of serpentinites are sti l l 
unclear. In addition to the well-established flux melt- 
ing model, diapirism within the mantle wedge, po- 
tentially as part of a mélange, may also play an impor- 
tant role [15 –17 ]. Moreover, across-arc geochemical 
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NTRODUCTION 

he formation of arc magmas has been tradition-
lly attributed to the partial melting of mantle wedge
eridotite—a process driven by fluids derived from
he subducting slab [1 ,2 ]. Numerous studies have fo-
used on distinguishing the contributions of various
ubducted components, primarily composed of sedi-
ent, altered oceanic crust (AOC) and serpentinite,
o the mantle source of arc magmas. Serpentinite,
nown for its capacity to accommodate water and
oron (B) [3 ], is characterized by heavy B isotope
ompositions that are distinct from those of sedi-
ent and AOC at subarc depths [4 –6 ]. Combined
ith the fluid-mobile behavior of B during serpen-
inite dehydration [7 ,8 ], B isotopes serve as a pow-
rful tool for tracing the contribution of serpenti-
byOxfordUniversity Press on behalf of China Science Publishing &Media Ltd. This is anOpen Access article distributed under the terms of the Creative
ttps://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original 
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Figure 1. (a) Tectonic setting of the South Sandwich Island (SSI) arc–East Scotia Ridge (ESR) region (modified after [28 ]). 
CSS, Central Scotia Sea; ESS, East Scotia Sea; WSR, West Scotia Ridge; WSS, West Scotia Sea. (b) Detailed location of 
the SSI arc (modified after [26 ]). The volcanic samples are from islands on the Sandwich Plate. The hexagon indicates the 
location of the dredged serpentinized peridotites [27 ]. 
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ariability in volcanic arc magma could provide in-
ights into the composition of mantle wedges and
lab dehydration or melting processes [9 ,10 ,18 ]. The
orrelations of various isotope tracers (such as B–
r–Nd isotopes) and trace-element ratios (such as
/Nb) along the arc can also effectively reflect the
nfluence of serpentinite components in subduction
ones [9 ,10 ]. 
Arc magmas with δ26 Mg values that are higher

han those of MORB have been increasingly re-
orted [19 –22 ]. The observed heavy Mg isotope
ata were attributed to either fractional crystal-
ization and/or crustal assimilation processes or a
antle source that has been metasomatized by slab
omponents [20 ,23 ,24 ]. Regarding fractional crys-
allization, a significant increase in the δ26 Mg value
as been predominantly observed in differentiated
agmatic rocks with MgO < ∼5 wt% [19 –24 ].
hether this process can account for the Mg iso-

opic fractionation in more primitive arc magmas
emains uncertain, highlighting the necessity for ex-
mining the Mg isotope systematics of high-Mg, rela-
ively unfractionated rocks. Another explanation for
he heavy Mg isotope compositions in arc magmas
s that they primarily reflect a metasomatized mantle
ource by slab-derived fluids [20 ]. However, due to
he substantial difference in Mg contents between
antle rocks and aqueous fluids, the mass propor-
ion of infiltrating fluids would need to be exception-
lly high ( > 50%) [25 ]. This high fluid proportion
learly contradicts the constraints provided by B iso-
ope systematics, which suggest a fluid contribution
f < 5% [11 ,12 ]. This apparent paradox indicates that
Page 2 of 11
the mechanism for mantle source modulation by 
subducted components may be more complex than 
a simple fluid-flux melting process. Other mecha- 
nisms, such as the melting of dehydrated forearc ser- 
pentinite or the involvement of serpentinite-bearing 
mélange diapirs, should be considered [9 ,16 ,17 ]. 

The South Sandwich Island (SSI) arc in the 
South Atlantic is an intra-oceanic arc characterized 
by a young age of < 3 Ma, a simple tectonic setting
and a considerable distance away from any continen- 
tal crust [26 ]. SSI arc lavas span large MgO con-
tents and have the highest δ11 B values among world- 
wide arc magmatic rocks, which has been attributed 
to fluids derived from forearc serpentinites that were 
eroded and transported to subarc depths [11 ]. These 
unique samples provide an excellent opportunity to 
investigate the contribution of serpentinites to the 
mantle and to study the mechanism of crust–mantle 
interactions in subduction zones. 

In this study, we present the first set of com- 
bined Mg and B isotope compositions of arc mag- 
mas and associated forearc serpentinites from the 
SSI arc. These arc magmas simultaneously exhibit 
high δ11 B and δ26 Mg values, which are difficult to ex-
plain solely by fluid-flux melting or magmatic evo- 
lution. We propose that the diapiric rise and partial 
melting of mélanges composed of forearc serpenti- 
nite and minor sediments can account for the geo- 
chemical compositions of SSI arc magmas. Given the 
increasing reports of coupled heavy Mg–B isotope 
compositions in both serpentinites and arc rocks, 
we argue that, in addition to the traditional flux 
melting model, the diapirism of serpentinite-bearing 
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Figure 2. Boron element and isotope variations in arc magma and forearc serpentinite 
from the SSI. (a) B/Zr vs. SiO2 . δ11 B vs. (b) B concentration, (c) Nb/B ratio and (d) B/Zr 
ratio of arc magma and forearc serpentinite. The error of the δ11 B is smaller than the 
symbol. Both the major and trace-element data are from [26 ,27 ] and the MORB data 
are from [31 ,32 ]. 
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élanges may also play a significant role in the gen-
ration of arc magmas. 

ESULTS 

e analysed the boron and magnesium isotope
ompositions of volcanic samples and associated
orearc serpentinites from the SSI arc-basin system.
he general petrology and geochemistry have been
eported previously [26 ,27 ]. The arc lavas were
ollected from 11 main islands on the Sandwich
icroplate (Fig. 1 ), most of which belong to the
low-K) tholeiitic magma series, but some lavas are
alc-alkaline [26 ]. The extensively serpentinized
orearc peridotites were recovered from the inner
all of the South Sandwich Trench during the dredg-
ng program undertaken by dredges 52–54 from the
ritish Antarctic Survey [26 ,27 ,29 ] (Fig. 1 ). The
lab depth beneath the SSI arc volcanoes ranges
rom 80 to 155 km based on the data from Hayes
t al. [30 ] ( Fig. S1). 
Boron contents range from 5.1 to 18.6 μg/g for

SI arc magmas and from 59 to 119 μg/g for the ser-
entinites (Fig. 2 ) ( Table S1). The SSI arc magmas
ave the highest δ11 B values worldwide, ranging from
 9.6 ‰ to + 16.5 ‰ , while the forearc serpentinites
ave δ11 B values ranging from + 5.1 ‰ to + 9.8 ‰ .
oth arc rocks and forearc serpentinites exhibit δ11 B
alues that are systematically higher than that of the
antle of approximately −7 ‰ [31 ]. 
Page 3 of 11
In terms of Mg isotopes, the arc rocks have 
δ26 Mg values ranging from −0.25 ‰ to −0.06 ‰ 

( Table S2). Among the subgroups, the low-K tholei- 
ites and normal tholeiites exhibit δ26 Mg values of 
−0.17 ‰ to −0.12 ‰ and −0.13 ‰ to −0.06 ‰ ,
respectively, which are significantly greater than 
the MORB of −0.25 ‰ ± 0.06 ‰ [33 ]. The calc-
alkaline samples with the lowest MgO contents 
(2.6–3.8 wt%) display relatively low δ26 Mg values of 
−0.25 ‰ to −0.19 ‰ (Fig. 3 ). The forearc serpen-
tinites show a δ26 Mg range of −0.21 ‰ to −0.02 ‰ ,
broadly overlapping the arc magmas. There is no cor- 
relation between the Mg isotope compositions and 
geographical location or slab depths, while the B/Nb 
ratios, δ11 B values and 87 Sr/86 Sr ratios tend to de- 
crease with increasing slab depths ( Fig. S2). 

DISCUSSION 

The origin of heavy B–Mg isotope 

compositions in SSI arc magmas 
The processes of subduction material recycling in 
the SSI arc are examined in the context of B–Mg iso-
tope systematics. Boron contents in the arc magmas 
range from 5.1 to 18.6 μg/g, which are significantly 
higher than the MORB value of ∼1.3 μg/g [31 ].
The ratio of B to fluid immobile elements such as Zr
or Nb in arc rocks can be used to infer the nature
of the mantle source [11 ,12 ,31 ,35 ]. Notably, while
B and Zr do not fractionate from each other dur-
ing partial melting and magma differentiation, Nb 
is more incompatible than B and Zr [31 ]. However,
generally consistent trends between B/Zr and B/Nb 
(Fig. 2 ) suggest that the difference in compatibil- 
ity between Nb and B does not significantly affect 
the evaluation. In the SiO2 vs. B/Zr plot of the SSI
arc rocks (Fig. 2 a), fractional crystallization leads to 
SiO2 enrichment while maintaining a constant B/Zr 
ratio, confirming the similar partitioning of both el- 
ements. The enrichment of B in both arc rocks and 
forearc serpentinites suggests the incorporation of B- 
rich fluids (Fig. 2 b). Specifically, as fractional crystal- 
lization has a negligible effect on the δ11 B values of
residual melt [14 ,36 ], the correlation between B/Zr 
(and Nb/B) ratios and δ11 B values clearly shows the 
involvement of serpentinite or serpentinite-derived 
materials in the source of the arc magmas (Fig. 2 c
and d). Indeed, the very high δ11 B values of SSI
arc rocks have been interpreted to result from a hy-
bridized mantle infiltrated by fluids from forearc ser- 
pentinites, which were transferred to subarc depths 
via subduction erosion [11 ]. 

The high δ26 Mg values observed in both SSI 
arc magmas ( −0.25 ‰ to −0.06 ‰ ) and associated

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
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f  

t  

a  

s  

r  

o  

i  

s  

s  

v  

w  

a  

i  

c  

o  

i  

t  

t  

a  

r  

h  

m  

c  

r  

e  

r  

e  

s  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/1/nw

ae363/7825886 by guest on 26 February 2025
orearc serpentinites ( −0.21 ‰ to −0.02 ‰ ) are no-
ably higher than those of MORB (Fig. 3 ), which,
gain suggests a potential contribution of the forearc
erpentinite component to the formation of SSI arc
ocks. Given that the large range of δ26 Mg values
f these arc rocks do no correlate with either large
on lithophile elements or Sr–Nd isotope compo-
itions (Fig. 3 ), it can be inferred that crustal as-
imilation does not account for the elevated δ26 Mg
alues in the magmas. It is thus crucial to clarify
hether these heavy Mg isotopic compositions in
rc magmas represent a mantle source signal or are
nstead the result of magmatic differentiation pro-
esses. While mantle melting has a negligible effect
n Mg isotope fractionation [37 ,38 ], previous stud-
es have documented the influence of fractional crys-
allization of basaltic melts [21 ,24 ,39 ,40 ]. A nega-
ive Mg isotope fractionation factor between olivine
nd melt was identified, suggesting that the sepa-
ation of olivine could lead to the enrichment of
eavy Mg isotopes in evolved residues [21 ]. The
odeling results of δ26 Mg evolution during the
o-crystallization of 20% olivine and 20% clinopy-
oxene shows that the magmatic variation in less-
volved arc magmas does not exceed the MORB
ange [21 ] (Fig. 3 a). In addition, this crystallization
ffect may be partially offset by the simultaneous
eparation of spinel/chromite, which are preferen-
Page 4 of 11
tially enriched in isotopically heavy Mg [38 ,39 ]. A 

compilation of global island arc basalts in Fig. 2 a 
demonstrates that most less-evolved samples with 
MgO contents of > 5 wt% exhibit δ26 Mg values that 
are similar to those of MORB within analytical un- 
certainty, whereas highly evolved samples tend to 
show elevated δ26 Mg values. This observation sup- 
ports previous findings that significant Mg isotope 
fractionation occurs due to crystal fractionation in 
highly evolved samples [21 ,40 ]. However, the over- 
all increase in the δ26 Mg value caused by crystal frac- 
tionation is typically within 0.07 ‰ [21 ,40 ], which is 
close to the analytical uncertainty. Therefore, δ26 Mg 
values of the arc basalts may slightly increase due 
to the crystallization of olivine in the initial crys- 
tallization stage, but the increase is too limited to 
show an observable difference compared with those 
of MORB [33 ,37 ] (Fig. 3 a). In this regard, the effect
of crystal fractionation may be overestimated and re- 
quires further constraints. 

The SSI arc magmas, characterized by high 
δ26 Mg values in conjunction with relatively high 
MgO contents (up to ∼11 wt%), represent a more 
primitive magma (Fig. 3 a). Their Mg isotope com- 
positions are inconsistent with the evolution trend 
caused by fractional crystallization [21 ,40 ]. Con- 
sequently, the heavy Mg isotope compositions of 
these unique SSI arc magmas provide compelling 
evidence that crystal fractionation has an insignifi- 
cant effect on their elevated δ26 Mg values, which are 
primarily inherited from the mantle source ( δ26 Mg 
> −0.15 ‰ ∼ −0.10 ‰ ). The lower δ26 Mg values 
observed in the two calc-alkaline samples with low 

MgO, TiO2 and FeO contents (Fig. 3 and Fig. S3) 
may be attributed to the crystallization of titanomag- 
netite during the later stage of magma differentiation 
[40 ] or to the mantle source with normal Mg isotope
compositions. 

Serpentinite-mélange melting to form SSI 
arc magma 

Various processes have been proposed for the con- 
tributions of material from the subducted slab to 
the mantle. A commonly proposed model for arc 
magma formation is flux melting, which involves the 
partial melting of a depleted mantle wedge metaso- 
matized by slab-derived aqueous fluids or hydrous 
melts at subarc depths [1 ,41 ]. More recently, di- 
apiric rise and melting of high-pressure mélanges 
that initially formed at the slab–mantle interface 
were proposed as another important mechanism for 
arc magma generation [16 ,17 ]. We conducted geo- 
chemical mixing modeling based on SSI arc rocks 
to provide further insights into the dynamics of 
material recycling and arc magma generation in 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
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ubduction zones (Fig. 4 ). The parameters used in
he modeling are provided in Table S3 and the de-
ails of the model are described in the ‘Materials and
ethods’ section. 
The geochemical characteristics of SSI arc
agmas—particularly their coupled heavy Mg and
 isotope compositions—cannot be explained by
uid/melt metasomatism of the mantle wedge.
his is due to the low B and Mg contents and
ow δ11 B values of the fluid/melt generated by
etasediments and AOC at subarc depths [5 ,43 ]
Fig. 4 c). These features also present challenges for
he traditional fluid-flux melting model driven by
erpentinite-derived fluids as proposed by Tonarini
t al. [11 ] and Cooper et al. [12 ]. While such a
odel can reasonably explain the high δ11 B values
f SSI arc magmas (where fluid addition does not
xceed 3% in mass proportion, Fig. 4 a), it cannot
imultaneously account for the high δ26 Mg values,
Page 5 of 11
given the contrasting Mg contents between man- 
tle rocks and aqueous fluids (Fig. 4 b). Although
serpentinite-derived fluids are expected to contain 
relatively high Mg contents compared with those 
derived from crustal materials [8 ,25 ,43 ], it sti l l
requires exceptionally large amounts of fluids to 
account for the observed high δ26 Mg values of SSI 
arc rocks. For instance, even under extreme upper 
limit estimates of MgO contents (5 wt%) and δ26 Mg 
values ( + 0.5 ‰ ) of serpentinite-derived fluids, the
required fluid mass proportion sti l l exceeds 50%, 
which is unreasonable (Fig. 4 b). Furthermore, the 
strikingly contrasting fluid proportions inferred 
from Mg and B isotopic constraints pose a challenge 
to this scenario. This discrepancy necessitates an 
alternative mechanism to explain the observed 
geochemical signatures in SSI arc magmas. 

Serpentinites can occur in various tectonic 
settings—as abyssal serpentinites on the ocean 
floor, as forearc serpentinites formed by slab fluid 
metasomatism and as slab mantle resulting from 

bending near the trench [9 ,44 ]. Due to their low
density and viscosity, these serpentinites can be sub- 
ducted and transported into the hot mantle wedge, 
where they rise and may subsequently undergo 
flux melting induced by slab-derived fluids [9 ,10 ]. 
Notably, the dehydration of serpentinite, despite 
progressive changes in P–T conditions, does not sig- 
nificantly modify the heavy Mg isotope composition 
of the residues due to the limited amount of Mg in
the fluids. High-pressure serpentinites and their de- 
hydration products can sti l l display high δ11 B values,
even exceeding + 20 ‰ [4 ,45 ,46 ], while retaining
significant B due to its high solubility in secondary 
olivine [46 –48 ]. Given that the temperature at the
slab–mantle interface of subarc depths is too low to 
induce the melting of refractory serpentinite [49 ], 
the scenario involving serpentinite diapirism can 
be considered as a hybrid fluid-flux melting model. 
Considering the depleted nature of serpentinites 
[27 ,50 ], the addition of a sediment component is
required to account for the high trace-element com- 
positions of arc magmas [26 ,51 ,52 ]. Partial melting
modeling based on a composite source composed 
of forearc serpentinites and depleted mantle, along 
with Sr–Nd isotope mixing modeling, consistently 
suggests that the mass proportion of the sediment 
added to the mantle source is less than ∼3% (see
‘Materials and methods’ for details) ( Figs S5 and 
S6). This observation aligns w ith prev ious work 
showing that the addition of < 6% of sediment to the
mantle can effectively account for the incompatible 
element contents of global arc magmas [51 ]. 

Furthermore, the sediment component added 
to the SSI arc mantle source was documented to 
exhibit similar Nb/La ratios to those of the bulk 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
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ediment [52 ]. This observation can be explained
y the sediment being either added in the form
f a bulk solid or through sediment melt without
hanging the Nb/La ratio. The latter can be achieved
nly when rutile is absent during sediment melting
52 ]. However, high- P /high- T experimental results,
sing starting materials that are similar to those of
outh Sandwich sediments—especially in terms of
i and Fe contents—have indicated the presence of
utile at pressures exceeding 2 GPa during sediment
elting [53 ,54 ]. To further verify this point, we con-
ucted phase equilibrium modeling by using South
andwich sediment as the bulk composition (see
Materials and methods’ for details). The results also
onfirm the presence of rutile during sediment melt-
ng ( Fig. S7). Thus, the Th/La, Sm/La and Nb/La
ystematics of SSI arc magmas suggest that the sedi-
ent was recycled in the form of a bulk solid rather
han as a melt. This is consistent w ith prev ious con-
traints by using Sr–Nd isotope compositions [17 ],
s well as our modeling results ( Fig. S6B). Notably,
he addition of sediment in bulk solid form does
ot favor the hybrid flux melting model, but instead
ligns well with the serpentinite-dominated mélange
odel ( Fig. S6). 
The Mg–B isotope data can also be reconciled by

onsidering a serpentinite-dominated mélange melt-
ng process. This scenario involves the physical mix-
ng of serpentinite and minor sediments to form low-
ensity diapirs. Considering the observed high δ11 B
nd δ26 Mg values in SSI forearc serpentinites ( Figs
b and 3 c), and the fact that forearc serpentinites can
e transferred to subarc depths through mantle flow
r subduction erosion [11 ,29 ,35 ,55 ], we suggest that
SI forearc serpentinites may have served as the main
onstituents of the mélange materials. Alongside the
idespread high δ11 B values, both mantle wedge ser-
entinite and seafloor serpentinites can also show el-
vated δ26 Mg values [56 –58 ] ( Fig. S4), which are at-
ributed to serpentinization and/or chemical weath-
ring [56 ,57 ,59 ]. 
The quantitative modeling for the process de-

cribed above is shown in Fig. 4 , with a schematic
 l lustration provided in Fig. 5 . Our results reveal
hat a composite mantle source constituting 20%–
0% (by mass) of the mélange can effectively ex-
lain the high δ26 Mg values of the SSI arc mag-
as (Fig. 4 ). However, as the δ11 B values of SSI
orearc serpentinites are lower than those of asso-
iated arc magmas, the interpretation of the B iso-
ope systematics requires a more complex scenario
Fig. 4 ). This feature could be attributed to the fact
hat the serpentinites dredged from the SSI trench
ay not fully represent all serpentinites eroded in
he forearc region, as global reports have shown
hat forearc serpentinites can exhibit higher δ11 B val-
Page 6 of 11
ues (can exceed + 20 ‰ ) [60 ,61 ]. Alternatively, the
forearc serpentinite-dominated mélange may have 
undergone additional infiltration by 11 B-rich fluids, 
which derived from slab serpentinite that is known 
to maintain high δ11 B values even at great depths 
[4 ,45 ,46 ] (Fig. 4 c). In either scenario, the melting
of serpentinite-dominated mélange diapirs provides 
a plausible mechanism for the coupled heavy Mg and 
B isotope compositions observed in the SSI arc mag- 
mas. Furthermore, the interaction between melts 
generated from the partial melting of serpentinite- 
dominated mélange and mantle peridotite can yield 
arc-like major element compositions, further sup- 
porting the hypothesis that mélanges can serve as a 
potential source of arc magmas [62 ]. 

Previous studies have documented cross-arc geo- 
chemical variations within many island arc regions, 
including progressive change in the concentrations 
of fluid-mobile elements and the isotopic compo- 
sitions of B–Sr–Nd–Pb–Mo systems [2 ,10 ,18 ,63 –
65 ]. For example, it has been noted that the con-
tents of fluid-mobile elements, such as B and Pb, de- 
crease with increasing depths of arc magma forma- 
tion [2 ,18 ], which was interpreted as being driven 
by the dehydration of the subducting slab at varying 
depths. In addition, an increase in the concentration 
of elements such as Th and Hf further requires the in- 
volvement of a melt component, likely sourced from 

subducted sediments [66 ]. However, the scenario 
involving a mantle source metasomatized by a fluid 
or melt component makes it difficult to explain the 
heavy B–Mo isotope compositions observed in some 
arc magmas [11 ,12 ,65 ,67 ] because heavy isotopes 
would typically be depleted during the progressive 
subduction before subarc depths [5 ,68 ]. Recently, a 
multistage model has been proposed to account for 
the cross-arc geochemical variations, particularly re- 
garding the B–Mo–Sr–Nd- Pb isotope compositions 
from the Mariana and Kurile arcs [9 ,10 ,64 ]. Accord-
ing to this model, the heavy B–Mo isotope compo- 
sitions in arc magmas can be primarily attributed to 
the dehydration of forearc serpentinites at frontal arc 
depths, whereas the lighter B–Mo isotope composi- 
tions in rear arc rocks were due to the disti l lation of
B and Mo from sediments or AOC by fluids derived 
from serpentinite. 

The SSI arc magmas display similar cross-arc geo- 
chemical variations, with the frontal arcs showing 
higher B/Nb ratios, δ11 B values and radiogenic Sr 
isotope compositions than the rear arcs ( Fig. S2). 
In our proposed scenario, forearc serpentinites 
were scraped off and mixed with minor amounts 
of sediments and AOC, forming a serpentinite- 
dominated mélange. The diapiric rise of this buoy- 
ant mélange into the wedge can explain the heavy 
Mg–B isotope compositions of the SSI arcs. The 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
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istance-related geochemical variations can be ac-
ommodated by the decreasing amounts of crustal-
erived materials or the preferential releasing of
uid-mobile elements of mélanges at shallower
epths. Consequently, frontal arc rocks exhibit
igher B/Nb ratios, heavier B isotope compositions
nd more radiogenic Sr isotope compositions rela-
ive to rear arc rocks. Notably, the suggested model
mphasizes the role of serpentinite over previously
roposed sediment-dominated mélange model [16 ],
n view of the coupled heavy Mg–B isotope com-
ositions of magmatic products. In addition, the
erpentinite-dominated mélange diapir in the wedge
antle may undergo additional metasomatism by
uids or melts derived from the descending slab,
hereby enhancing the crustal-derived signals in arc
agmas. 

mplication for global arc magma 

ormation 

ecently, there has been increasing emphasis on
he significant role of serpentinite in geochemi-
al cycling and arc magma generation, highlighting
he importance of Mg–B–Mo isotope systemat-
cs in discerning serpentinite signatures in subduc-
ion zones [6 ,9 ,10 ,12 ,25 ,69 ,70 ]. Although combined
g–B isotope studies of arc magmatism are sti l l

are, coupled heavy isotope signatures are increas-
ngly reported [5 ,20 ,21 ,71 ,72 ]. For example, Du et al.
71 ] reported arc rocks in Eastern Tianshan, China,
ith coupled heavy Mg and B isotope compositions
Page 7 of 11
( δ26 Mg = −0.23 ‰ to −0.13 ‰ , δ11 B = −0.04 ‰
to + 1.08 ‰ ), although they ascribed these signa-
tures to the contribution of serpentinite-derived flu- 
ids. Similar isotopic signatures were found in mag- 
mas from the Lesser Anti l les Arc (LAA), where mag-
mas from the central islands show high δ26 Mg val- 
ues of −0.25 ‰ to −0.10 ‰ and high δ11 B values
of + 2.3 ‰ to + 11.2 ‰ [12 ,20 ]. As discussed ear-
lier, a fluid-mediated metasomatic process would re- 
quire an exceptionally high fluid mass proportion, 
which contradicts the constraints imposed by B iso- 
topes (Fig. 4 a and b). Trace-element and Sr–Nd–
Pb isotope data suggest that the LAA arc lavas con-
tain considerable crustal components in the mantle 
source [20 ]. In the context of a mélange model, mi-
nor additions of sediments do not significantly al- 
ter the Mg–B isotope compositions but can notably 
shift the Nb/B ratio of the mantle (Fig. 4 c). Our
model, which involves the mixing of mélange melt, 
slab-derived fluids and depleted mantle rocks, can 
also be applied to explain the Mg–B isotope system- 
atics of LAA magmas (Fig. 4 c and d). This integrated 
approach provides a comprehensive framework for 
understanding the geochemical signatures of arc 
magmas. 

As such, our proposed serpentinite-dominated 
mélange melting model can effectively account 
for the formation of arc magmas exhibiting cou- 
pled heavy B and Mg isotope signatures. These 
signatures are increasingly observed in arc mag- 
mas [5 ,20 ,21 ,71 ,72 ]. In subduction zones where
forearc erosion is significant (such as the SSI arc 
and Mariana arc) [29 ,73 ], diapiric rise and partial
melting of a mélange predominantly composed 
of forearc serpentinite may be applicable for the 
formation of magmas in these settings. Seafloor 
serpentinites commonly occur at ultraslow to 
slow spreading ridges [74 ,75 ], such as the South
American–Antarctic ridge that is associated with 
the SSI arc system [76 ]. Additionally, serpen- 
tinization also occurs in plate-bending regions 
where the slab enters subduction zones [75 ,77 ]. 
As serpentinization and/or seafloor weathering of 
abyssal peridotites can lead to heavy Mg–B isotope 
compositions in serpentinites [56 ,59 ,76 ], the in- 
corporation of such serpentinites into the mélange 
can also be considered as an important reservoir 
for the generation of coupled heavy Mg–B isotopes 
in arc magmas. The compositions of arc magmas 
from different localities are influenced by many fac- 
tors, including the nature of the mantle source, the 
thermal structure of subduction zones, the degree 
of partial melting and magmatic differentiation, 
which are ultimately dictated by the compositions of 
metasomatic agents in a fluid-flux melting process or 
material constituents in a diapiric mélange melting 
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cenario. Given the complexity of geochemical com-
ositions observed among different arcs, variable
onstituents of the mélange may be needed. Our
tudy on SSI arc magmas suggests the important
ole of serpentinite-dominated mélanges in the
ormation of global arc magmas with coupled heavy
g–B isotope compositions (Fig. 5 ). 

ATERIALS AND METHODS 

oron content and B isotope analysis 
he whole-rock B elemental and isotopic analy-
es were performed at the State Key Laboratory
f Isotope Geochemistry, Guangzhou Institute of
eochemistry, Chinese Academy of Sciences. The
ample preparation followed the methods described
y Wei et al. [78 ]. Briefly, ∼150 mg of pow-
er was weighed into a polypropylene centrifuge
ube and fully digested with HF–H2 O2 –mannitol
t 60°C for 1 week. Subsequently, the sample so-
utions were diluted with Mi l li-Q water and sep-
rated using AG MP-1 anion-exchange resin. The
esulting solution was further diluted for B con-
ent and isotope measurements. The B concentra-
ion was determined by using ICP–AES (Induc-
ively Coupled Plasma-Atomic Emission Spectrom-
try) and the analytical uncertainty was generally
ess than ±5%. The B isotopic composition was anal-
sed by using a Neptune Plus MC–ICP–MS and
he results are reported as δ11 B ( δ11 B = 10 0 0 ×
(11 B/10 B)Sample /(11 B/10 B)NBS951 − 1]). The B con-
ents and δ11 B values for the external reference ma-
erials are consistent with the recommended val-
es within error, validating the reliability of the data
 Table S1). 

g–Sr–Nd isotope analysis 
g isotopes were obtained by following the method
f An et al. [79 ] at the CAS Key Laboratory of
rust-Mantle Materials and Environments, Univer-
ity of Science and Technology of China (USTC),
efei, China. Appropriate amounts of whole-rock
owders were fully digested with a mixture of con-
entrated HF-HNO3 to obtain ∼20 μg of Mg for
hemical purification. Mg purification involved two
ycles of chromatography using Bio-Rad AG50 W-
12 resin columns. Mg isotope analysis was per-
ormed by using a Thermo-Scientific Neptune Plus
C–ICPMS. The mass bias of the instrument was
alibrated by using the sample-standard bracketing
ethod with DSM-3 as the standard. The results
re reported in delta notation relative to DSM-3:
x Mg = [(x Mg/24 Mg)Sample /(x Mg/24 Mg)DSM-3 –
] × 10 0 0, where x = 25 or 26. The long-term exter-
al precision for δ26 Mg values is better than ±0.05 ‰
Page 8 of 11
[79 ]. During the analytical session, the δ26 Mg values 
of the USGS (United States Geological Survey) ref- 
erence materials BCR-2, BHVO-2 and AGV-2 were 
identical within error with established values [37 ,79 ] 
( Table S2). The duplicate samples processed via the 
same procedure also gave identical δ26 Mg values 
within error ( Table S2). The plot of δ25 Mg vs. δ26 Mg 
from our data showed a linear trend with a slope of
∼0.520 ( Fig. S8), consistently with the theoretical 
mass-dependent fractionation values [80 ]. 

Whole-rock Sr–Nd isotope compositions were 
measured at the USTC by following the chemical 
separation and analytical protocol described by Ma 
et al. [81 ]. In brief, ∼100 mg of sample powder
was completely digested by using a mixture of HF–
HNO3 –HCl in capped beakers at 120°C for 1 week. 
Sr–Nd separation and purification were achieved by 
using cation exchange chromatography and Sr was 
further purified by using a Sr-specific resin. The 
purified Sr–Nd solutions were measured by using 
a Thermo-Scientific Neptune Plus MC–ICP–MS. 
The isotopic mass fractionations of Sr and Nd were 
corrected by normalizing 86 Sr/88 Sr to 0.1194 and 
146 Nd/144 Nd to 0.7219, respectively. Multiple inter- 
national standards, including NBS987 for Sr and 
JNdi Nd for Nd, were measured for quality control. 
The USGS reference materials BHVO-2 and BCR- 
2 we re consis te n t with previously reported values
within error [81 ] ( Table S2). 

Mixing models for arc formation 

The detailed compositions used in the modeling are 
presented in Table S3. For depleted MORB man- 
tle (DMM), the parameters are set as follows: B 

concentration of 0.077 μg/g with a δ11 B value of 
−7.1 ‰ [31 ], Nb concentration of 0.148 μg/g, MgO 

concentration of 38.7 wt% [36 ] and δ26 Mg value 
of −0.25 ‰ [32 ]. Considering the relatively high B 

contents of SSI forearc serpentinites, the initial B 

concentration is assumed to be 6 0 μg/g [11 ,6 0 ],
which experienced a significant loss of B during de- 
hydration via subduction to subarc depths [5 ,15 ,82 ]. 
Therefore, the final meta-serpentinite is estimated to 
have a B content of ∼15 μg/g and a δ11 B value of
+ 13 ‰ , with a Nb/B ratio of 0.0 0 07 according to the
distribution coefficient of Nb from Kessel et al. [83 ]. 
Similarly to previous models, the ranges of B concen- 
trations and δ11 B values of serpentinite-derived flu- 
ids are set as from 325 μg/g and + 19 ‰ to 289 μg/g
and + 11 ‰ , respectively, with a Nb/B ratio of 0.001
[4 ,11 ,12 ]. The effect of different incompatibilities 
between Nb and B [31 ] on the overall discussion is
minimal, which wi l l slightly increase the mass pro- 
portion of fluids (less than ∼1%). 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae363#supplementary-data
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The MgO contents for SSI forearc serpentinites
re from Pearce et al. [27 ] and dehydration does not
ignificantly modify their MgO contents. As serpen-
inites with high δ26 Mg values are globally observed
19 ,57 –59 ], the initial δ26 Mg value of mélange ser-
entinite is assumed to be ∼40 ‰ . The MgO con-
ents of serpentinite-derived fluids are assumed to
ange from 1.0 to 4.3 wt% based on fluid inclusion
esults from high-pressure metaperidotites [8 ]. Al-
hough serpentinite-derived fluids are suggested to
ave relatively high δ26 Mg values, the exact frac-
ionation factor during dehydration remains poorly
onstrained. We assume the high δ26 Mg values of
erpentinite-derived fluids ( + 0.15 ‰ to + 0.50 ‰ )
o demonstrate that the addition of fluids to the man-
le cannot effectively affect the Mg isotope composi-
ions of Mg-rich mantle. 
The initial compositions of the subducted sedi-
ents and AOC followed those of previous studies
11 ,13 ,84 –86 ] and are listed in Table S3. The upper-
ost slab is assumed to be composed of 90% AOC
nd 10% sediment in mass proportion [11 ]. It is as-
umed that the progressive subduction of sediments
i l l result in the loss of > 60% of the initial B content
5 ,87 ]. The MgO content of the slab-derived fluids
s estimated as a maximal value based on the mineral-
uid partition coefficient of Mg [88 ]. Since there are
o convincing data for the Mg isotope compositions
f slab crust-derived fluids, we set an extremely high
26 Mg value of + 0.20 ‰ to i l lustrate the limited ef-
ect of slab crust-derived fluids [89 ]. Additionally, it
s expected that the dehydration process would not
ignificantly change the Mg isotopic composition of
he residual slab [58 ] due to the low Mg content of
he fluids [90 ]. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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