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Abstract Earthquakes are amongst themost destructive nat-
ural hazards, posing substantial risks to urban populations
and infrastructure. As cities grow and modernise, identi-
fying optimal locations for Urban Earthquake Emergency
Shelters (UEES) becomes key for ensuring public safety.
However, this process involves complex, multi-faceted cri-
teria that must be carefully evaluated. This paper introduces
a multi-criteria decision-making (MCDM) framework thatf-
figa integrates ontology with the fuzzy analytic hierarchy
process (FAHP) to prioritise potential locations. A key con-
tribution is the use of an ontology to model and interconnect
the diverse criteria necessary forUEES site selection, provid-
ing a structured perspective that enhances both the theoretical
understanding and practical decision-making in urban emer-
gency management. The designed ontology structures and
analyses the selection criteria,which are thenprocessedusing
the FAHP to prioritise potential sites. This framework was
validated through a case study in Beijing, where the Shi-
jingshan and Haidian districts were identified as the most
suitable locations due to high safety levels, economic bene-
fits, and infrastructure interactions. The results also highlight
key challenges in planning and construction across different
sites. By combining ontology with FAHP, this framework
optimises UEES location selection and supports the digital
transformation of urban emergency management systems,
offering a holistic, data-driven approach to disaster prepared-
ness.
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Abbreviations

AEE Adaptive evacuation efficiency
AHP Analytic hierarchy process
CI Consistency index
CR Consistency ratio
DEMATEL Decision-Making Trial and Evaluation Labo-

ratory
DSS Decision Support System
DL Description logic
EDMs Expert decision-makers
FAHP Fuzzy analytic hierarchy process
FTOPSIS Fuzzy Technique for Order Preference by Sim-

ilarity to Ideal Solution
GIS Geographical Information System
IT2FSs Interval type-2 fuzzy sets
MCDM Multi-criteria decision-making
PC Proportional change
RF Random Forest
SQWRL Semantic Query-Enhanced Web Rule Lan-

guage
SWRL Semantic Web Rule Language
TOPSIS Technique for Order of Preference by Similar-

ity to Ideal Solution
TFNs Triangular fuzzy numbers
UEES Urban Earthquake Emergency Shelters
VGAE Variational graph autoencoder
OWL Web Ontology Language
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1 Introduction

Urban expansion has been a cornerstone of modern devel-
opment, resulting in increased building density and higher
floor area ratios in cities. Whilst this growth signals eco-
nomic progress, it also introduces significant challenges for
disastermanagement, particularly in earthquake-prone areas.
Earthquakes, as one of the most destructive and unpre-
dictable natural phenomena, present substantial risks to urban
safety. In China, for instance, the 5.12 Wenchuan and 4.14
Yushu earthquakes caused significant fatalities and economic
losses. Many of these losses were due to the absence of
timely evacuation measures and effective decision support
systems [1–3]. With millions of earthquakes recorded glob-
ally each year, the rapid pace of urbanisation necessitates the
adoption of modern technologies to enhance resilience, as
traditional earthquake-resistant methods alone are no longer
sufficient [4].

Disaster management focuses on implementing policies
and strategies to reduce disaster risks, manage residual risks,
and enhance preparedness [5]. Earthquake emergency shel-
ters play a critical role in this process, providing refuge and
essential services during the aftermath of an earthquake [6].
However, many cities lack well-planned shelters, leaving
civilians vulnerable to secondary hazards such as aftershocks
and resource shortages. This highlights the urgent need for
effective earthquake evacuation strategies, particularly in
optimising the siting of shelters, defining service areas, and
stratifying shelter tiers. Therefore, it is necessary to develop
methods for selecting suitable shelter locations to enhance
civilian safety and mitigate the impact of secondary disas-
ters [7].

Given the complexity of shelter siting, several studies have
attempted to address these challenges. For instance, Xu et
al. [8] developed a multi-objective mathematical model to
optimise evacuation paths and shelter selection, considering
constraints such as hazard paths, shelter layout, and evacua-
tion times. He andXie [9] proposed a bi-levelmulti-objective
location-allocation model that balances long-term economic
sustainability with evacuee preferences for shelter proxim-
ity and scale. The study acknowledges the limitation that
evacuees may not always make rational choices based on
shelter size and proximity in real emergencies. Madanchian
and Taherdoost [10] applied the Technique for Order of Pref-
erence by Similarity to Ideal Solution (TOPSIS) method,
supported by the analytic hierarchy process (AHP), to select
shelters based on multiple criteria for urban evacuation.
Whilst this method is a valuable tool for decision-making,
the study highlighted challenges in the weighting process.
Meanwhile, Wang et al. [11] integrated machine learning
models, such as Variational Graph Autoencoders (VGAE)
and Random Forests (RF), to enhance shelter site selection
by analysing spatial topological data. The authors recom-

mend incorporating additional factors to enhance themodel’s
predictive accuracy and exploring multi-model fusion to
increase adaptability in data-limited environments.

Despite these advancements, current multi-objective
approaches often fail to fully integrate diverse and rele-
vant criteria into a holistic framework due to inconsistencies
in data representation and the integration of heteroge-
neous hazard-related data [12,13]. Moreover, there is limited
research that comprehensively identifies and evaluates the
criteria for shelter site selection under multi-faceted urban
conditions [14]. This gap becomes even more pronounced
in the context of rapid urban expansion, which complicates
emergency response due to increased data complexity [15]
and the absence of a holistic decision-making framework.
Therefore, disaster management should be viewed as a
continuous and cyclical process, covering the pre-disaster,
disaster, and post-disaster phases [5,15], as illustrated in
Fig. 1. The pre-disaster phase emphasises risk knowledge and
monitoring to identify potential hazards, whilst the disaster
phase focuses on immediate response, where the effective-
ness of communication and response capabilities determines
the success of evacuation and sheltering efforts. Finally, the
post-disaster phase centres on recovery and learning from
the event, feeding back into risk knowledge to refine future
monitoring and preparedness strategies.

In recent years, ontology-based Semantic Web technolo-
gies have emerged as a promising solution for overcoming
data inconsistencies by providingmachine-readable data and
standardised terminologies [15]. This structured approach
enhances decision-making processes by allowing for more
efficient disaster management. Given the increasing com-
plexity of modern urban environments, integrating ontology
with decision-making methods like the FAHP provides a
powerful framework for optimising UEES site selection.
Thus, this paper aims to develop a holistic framework for
UEES site selection, utilising FAHP to define and prioritise
site selection criteria and employing ontology to facilitate
the identification of optimal shelter locations. This integrated
approach not only enhances decision-making efficiency but
also supports the digital transformation of urban emergency
management systems. The paper is structured as follows:
Sect. 2 reviews the classification of UEES and key princi-
ples for site selection, discusses the interconnections between
MCDM,AHP, andFAHP, and explores ontology applications
in UEES. Whilst the literature review is not exhaustive, it
highlights the most relevant research. Section3 presents the
research methodology, whilst Sect. 4 establishes the evalu-
ation criteria for UEES site selection based on hierarchical
theory and FAHP. Section5 discusses the development of an
ontology-based system using Protégé 5.5, offering system-
atic insights into key ontological concepts. In Sect. 6, a case
study in Beijing applied the proposed approach to determine
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Fig. 1 Phases of disaster
management

optimal shelter locations. Finally, Sect. 8 provides the con-
clusion.

2 Literature Review

2.1 Classification of UEES and Site Selection Principles

AUEES is a designated structure or area that provides essen-
tial protection, livelihood support, and rescue coordination
for community residents following major natural disasters,
especially earthquakes. These shelters are typically located
in public spaces such as urban parks, stadiums, green areas,
and city squares [14]. UEES are critical components of a
city’s disaster response infrastructure, which are designed to
offer protection against aftershocks and secondary hazards,
ensuring the safety andwell-being of affected individuals [1].

UEES are classified into three categories: temporary shel-
ters, short-term shelters, and long-term shelters [16]. This
classification helps urban planners organise shelters based
on their capacity and the duration they are intended to
serve evacuees, as outlined in Table 1. Temporary shelters
are established immediately after an earthquake, providing
refuge for up to 10 days. They are typically located in acces-
sible urban areas, such as parks and sports grounds, with a
minimum area of 2000m2 and a Comprehensive Score (CS)
of 3 or less. If evacuation extends beyond 10 days, evacuees
are transferred to short-term shelters, which provide more
comprehensive facilities for extended stays. These shelters
cover areas larger than 10,000m2 and have a CS between
3 and 4. For evacuations lasting more than 30 days, long-
term shelters are required. These shelters provide essential
services for prolonged evacuations, requiring areas greater
than 100,000m2 and having a CS of 4 or higher. This hierar-
chical classification ensures that each shelter type is capable
of meeting the specific needs of evacuees depending on the
duration of their stay. Moreover, higher-level shelters incor-
porate the functions of lower-level shelters. For instance,
long-term shelters also offer the functions of short-term shel-
ters and temporary shelters, and short-term shelters provide
the functions of temporary shelters.

After classification, the next step is selecting optimal loca-
tions based on site selection principles. Site selection for
UEES must follow principles that ensure safety, accessibil-
ity, and functionality during disasters [16]. These principles
guide decision-makers to optimise shelter locations in prepa-
ration for earthquake emergencies. The Safety Principle
requires that shelters be located away from seismic faults
and geologically hazardous areas on flat and open land
with access routes to ensure quick and safe accessibility.
Moreover, shelters should have easy access to essential
infrastructure and services to support the livelihood of the
sheltered population. The Traffic Principle dictates that
UEES should have multiple evacuation routes, with each
shelter site having at least two accessible routes leading in
and out of the area. This ensures that evacuees can reach
the shelter without restricted access and provides alterna-
tive paths in case any primary route becomes obstructed or
unusable due to earthquake damage.TheLife SupportCapac-
ity principle emphasises that chosen sites should have the
infrastructure to offer basic living necessities, medical care,
and recreational facilities for disaster civilians. Personnel
Capacity is another critical factor in site selection, requir-
ing effective space distribution to avoid overcrowding and
ensure comfort for sheltered individuals. For general shel-
ters, the available space per person should be no less than
1.5 square metres [16]. For long-term shelters, where evac-
uees may stay for extended periods, a minimum of 2 square
metres per person is recommended to provide adequate living
conditions [16].

In the aftermath of an earthquake, individuals often
instinctively evacuate to the nearest UEES or open areas
within the city. However, due to the uneven distribution
of shelters and their varying capacities, disorganised evac-
uations often occur, driven by panic and based solely on
life experiences. This can result in some UEES being over-
crowded, exceeding their design capacity, whilst others are
underutilised. Therefore, effective distribution and zoning of
UEES are critical for managing evacuation and optimising
resource use. To ensure an organised evacuation and equi-
table shelter distribution, certain zoning principles must be
followed [16]: the Proximity Principle, which ensures that
each UEES is easily accessible to its service area popula-
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Table 1 Classification of UEES by site type, size, and comprehensive score [16]

Name Site type Site size Comprehensive Score (CS)

Temporary shelters Green spaces, parks, squares, sports grounds Area ≥ 2000m2 CS ≤ 3

Short-term shelters Green spaces, parks, squares, sports grounds Area > 10,000m2 3 < CS < 4

Long-term shelters Green spaces, parks, squares, sports grounds Area > 100,000m2 CS ≥ 4

tion, reducing travel distance during emergencies; the Spatial
Continuity Principle, which ensures that service areas should
be contiguous, avoiding fragmented zones that complicate
evacuation and access; the Full Coverage Principle, which
ensures that every high-density population area is within the
service area of at least oneUEES, ensuring no one is leftwith-
out access to a safe shelter. By adhering to these principles,
urban planners can ensure that UEES are not only equitably
distributed but also efficiently utilised. Hence, the effective-
ness of the UEES depends on precise planning, site selection,
and zoning based on principles of safety, accessibility, and
capacity.When properly implemented, UEES advance urban
resilience and secure reasonable access to essential services
during emergencies.

2.2 Enhancing MCDM with FAHP

MCDM is a framework that refers to the evaluation of
decision-making based on multiple, often conflicting cri-
teria. It requires a systematic approach to assess various
alternatives against a set of predetermined criteria, assign-
ing weights to each criterion based on its relative importance
in the overall decision [17]. A key requirement in this eval-
uation process is that the sum of the weights for all criteria
must equal 1, as shown in Eq. (1).

W (pc) =
n∑

i=1

W (ci , pc) = 1 (1)

W (ci , pc) is the weight of the i th criterion at a given propor-
tional change (PC); n is the total number of criteria.

The MCDM approach is widely applied for site selec-
tion, where expert decision-makers (EDMs) assess the most
suitable alternative from a limited set of options based on pre-
defined criteria. To effectively applyMCDMto site selection,
it is crucial to establish a comprehensive evaluation index sys-
tem that covers all relevant criteria that affect the decision. In
the context of earthquake shelter site selection, fourmain cat-
egories of criteria are typically considered: Safety Criteria,
which include factors related to the protection of occupants
from aftershocks and other hazards; Planning Criteria, con-
cerning the accessibility, capacity, and layout of the shelter,
Economic Criteria, which is associated with construction,
operation, and maintenance of the shelter, and Construction

Criteria, aspects related to the feasibility and speed of build-
ing the shelter. Each of these main criteria can be broken
down into sub-criteria to capture more specific aspects of the
decision.

Several studies have leveraged the MCDM approach,
Table 2. One of the most widely used methods under the
MCDM umbrella is the AHP, which is particularly effective
for planning, prioritisation, and alternative selection prob-
lems [18]. AHP decomposes complex decision problems
into their constituent factors and then synthesises the results.
The process begins by organising the problem into a hier-
archical structure, breaking it down into component factors
that are clustered into various levels based on their interrela-
tionships, forming a multi-layer analytical structure. At the
lowest level, the alternatives are assessed with respect to the
overall objective at the top level. For example, Omidvar et
al. [19] developed a systematic approach for pre-earthquake
temporary shelter site selection by combining a geographical
information system (GIS) with MCDM techniques, notably
the AHP. AHP was employed to assess and rank 14 poten-
tial zones in Tehran, Iran, based on 13 criteria, helping to
determine the most appropriate shelter sites. Similarly, Roh
et al. [20] used AHP to prioritise key factors influencing
warehouse location decisions in humanitarian relief logistics,
with criteria such as accessibility, proximity to transporta-
tion hubs, and local resource availability. The study also
recommended integrating other mathematical models, such
as TOPSIS, to enhance decision-making accuracy.

Pang et al. [21] focused on optimising emergency mate-
rial reserve locations using an evaluation model based
on TOPSIS, combining subjective and objective weight-
ing methods to reduce bias in decision-making. However,
the study acknowledged limitations, such as the exclusion
of important factors like logistics and transportation and a
lack of consideration for the correlation between alterna-
tives. Demir et al. [22] proposed an approach to revising
the initial AHP matrix in solar PV site selection, improving
accuracy and reliability by adjustingweights based on known
ratios between criteria. Another study by Zhang et al. [23]
developed amulti-objective optimisationmodel that not only
optimises evacuation efficiency and minimises costs but also
seeks to maximise vulnerability coverage across the city. By
incorporating constraints related to population coverage and
evacuation capacity, the model enhances the scientific basis

123



Z. Li et al.: Holistic Decision-Making for Optimal Siting of Urban Earthquake Emergency...

Table 2 Studies of AHP and FAHP on site selection for disaster management

Authors Problem area Approach Criteria

Omidvar et al. [19] Temporary shelter site selec-
tion

AHP, TOPSIS Accessibility, culture, public
opinion, water resources

Roh et al. [20] Warehouse location in
humanitarian logistics

AHP Proximity to transport, local
resources, disaster impact

Pang et al. [21] Material storage site selec-
tion

TOPSIS Geographic proximity,
logistics, capacity, response
time

Demir et al. [22] Solar PV site selection AHP Transmission costs, road
costs, construction phase
costs

Zhang et al. [23] Traditional evacuation site
selection and social vulner-
ability in disaster manage-
ment

AHP Social vulnerability, popu-
lation coverage, evacuation
capacity

Arca and Keskin Çıtıroğlu [24] Disaster assembly area
selection

GIS, AHP Slope, population, distance
to roads, rivers

Xu et al. [25] Urban evacuation shelter site
selection

AHP Safety, accessibility, shelter
facilities, demand matching

Çetinkaya et al. [27] Refugee camp location
selection

GIS, Fuzzy-AHP, TOPSIS Geographic, social, infras-
tructural risk factors (slope,
population, distance)

Celik [28] Cause-effect relationships
for shelter locations

DEMATEL, IT2FS Logistics technology, finan-
cial support, optimal distri-
bution, infrastructure

Celik [6] Critical factors in shelter site
selection

DEMATEL, IT2FS Proximity, transport, distri-
bution capacity, logistics,
accessibility

Boonmee and Thoenburin [29] Temporary safety zones dur-
ing haze crises

FAHP, FTOPSIS Proximity to community,
air quality, budget, capacity,
emergency preparedness

Lam and Cruz [30] Evacuation shelter site suit-
ability assessment

Fuzzy AHP, topological networks Network metrics (density,
centrality), accessibility,
reachability, hazard maps

for evacuation site planning, ensuring that strategies are both
efficient and equitable. Arca and Keskin Çıtıroğlu [24] com-
bined GIS and AHP to generate a sensitivity map for site
selection. Using AHP, weights for key factors such as slope,
population, distance to roads, geology, and land use were
calculated, with slope identified as the most critical param-
eter. Xu et al. [25] proposed an evaluation index system for
assessing the emergency response capability of urban shelters
using AHP within an MCDM framework. This study identi-
fied factors such as site safety, spatial accessibility, demand
matching, and public awareness as key criteria.

AHP further refines MCDM by structuring criteria into
a hierarchical model, which allows for pairwise compar-
isons and the derivation of priority scales that quantify
decision-makers preferences. Whilst AHP is effective in

many decision-making scenarios, it relies on precise numer-
ical judgments, which can be challenging to provide in
environments characterised by uncertainty or subjectivity. To
address the limitation, FAHP extends the traditional AHP by
incorporating fuzzy logic. Fuzzy logic is based on fuzzy set
theory, which allows for degrees of membership and helps
handle uncertainty in human judgment [26]. FAHP uses Tri-
angular Fuzzy Numbers (TFNs), represented by triplets (l,
m, u), to model uncertainty. In fuzzy sets, elements have
degrees of membership ranging continuously between 0 and
1, indicating their level of association with a given set. For
instance, in Eq. (2), a membership degree of 0 indicates that
the element does not belong to the fuzzy set, a degree of
1 signifies full membership and any value between 0 and 1
reflects partial membership.
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μA (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a or x ≥ c

x − a

b − a
,

c − x

c − b
,

1,

if a < x < b

if b ≤ x < b

if x = b

(2)

Fuzzy set A: The membership degree of x in A is defined
by the triangular membership function; a, b, and c represent
the lower, middle, and upper bounds of the triangular fuzzy
number, respectively.

By adopting TFNs and a linguistic scale of corresponding
importance, EDMs can express their judgments in a manner
that more accurately reflects the inherent fuzziness of human
perception. FAHP has been successfully applied in various
site selection studies. For instance, Çetinkaya et al. [27]
proposed a GIS-based fuzzy MCDM framework for iden-
tifying suitable refugee camp locations, incorporating Fuzzy
AHP to prioritise geographic, social, infrastructural, and risk-
related indicators and TOPSIS to rank potential sites. The
use of FAHP allowed for the incorporation of uncertainty in
EDMs’ opinions, enhancing the reliability of the indicator
weighting process. Celik [28] presented a decision-making
framework that combines the Decision-Making Trial and
Evaluation Laboratory (DEMATEL) method with interval
type-2 fuzzy sets (IT2FSs) to evaluate cause-and-effect rela-
tionships amongst 14 critical criteria for shelter location. Key
factors identified include logistics technology, financial sup-
port, and optimal distribution. Another study by Celik [6]
focused on identifying critical factors for shelter site selec-
tion to support humanitarian relief efforts after disasters.
Amongst the most important criteria identified were prox-
imity and transport–distribution capacity. Sub-criteria such
as distribution centre capacity, logistics personnel, available
electricity, and accessibility were also highlighted.

Boonmee and Thoenburin [29] proposed an integrated
approach for selecting temporary safety zones during haze
pollution crises, combining FAHP, the Fuzzy Technique for
Order Preference by Similarity to Ideal Solution (FTOP-
SIS), and a fuzzy multi-objective mathematical model. The
methodology provides EDMs with a comprehensive frame-
work to prioritise and evaluate criteria, optimise resource
allocation, and select suitable locations.However, the approach
has limitations, such as computational complexity and
reliance on expert input, which may introduce bias. Lam and
Cruz [30] introduced a modelling framework that integrates
a topological network and FAHP to assess potential evac-
uation shelters, focusing on accessibility, reachability, and
other critical criteria. By modelling shelters and their inter-
dependencies as nodes and links in an evacuation network,

the study evaluates shelter suitability using network metrics
like density, degree centrality, and closeness centrality. These
studies demonstrate the effectiveness of FAHP in handling
uncertainty and refining decision-making processes for site
selection in disaster management. Hence, FAHP enhances
traditional AHP by addressing the inherent uncertainty in
human judgments, offering a more flexible approach to com-
plex decision-making scenarios, such as earthquake shelter
site selection. By incorporating fuzzy logic, FAHP allows
decision-makers to express their preferences with greater
accuracy, leading to more robust and reliable outcomes. Fur-
ther details about this approach are given in Sect. 4.

2.3 Ontologies and Their Role in UEES

Ontologies play a critical role in organising and managing
knowledge in the field of UEES. They provide structured
frameworks for capturing, representing, and reasoning about
complex information, which is particularly useful in disas-
ter management. The construction of ontologies is guided
by foundational principles that ensure clarity, consistency,
and adaptability. These principles, first established by Gru-
ber [31] and further developed by Arpirez et al. [32], include
clarity, consistency, extensibility, minimal encoding errors,
and minimal ontological commitment. First, clarity states
that ontologiesmust clearly and effectively define concepts in
a way that is easily understood. Second, consistency involves
these definitions remaining uniform across the ontology
to ensure that subsequent reasoning and knowledge repre-
sentation are reliable. Third, extensibility is the principle
that ontologies should be designed with the anticipation of
future extension. Fourth, the minimal coding error focuses
on the importance of producing ontologies that can be easily
transformed into different programming languages without
losing information. Finally, minimal ontological commit-
ment means that ontologies should be built with the most
basic and general concepts possible, avoiding unnecessary
complexity and making fewer assumptions to prevent lim-
iting their applicability. These principles are essential in
dynamic fields such as UEES, where adaptability to different
crisis scenarios is important. By adhering to these principles,
ontologies can support the development of flexible systems
capable of adapting to various disastermanagement contexts.

Ontologies are composed of several key elements that pro-
vide a structured framework for representingknowledge [33].
The most fundamental element is the Class, which is a for-
matted description of a domain concept. Below the class
level, there canbe individuals (also referred to as instances) or
subclasses, which represent narrower divisions of the class.
Attributes describe the characteristics of the class and typi-
cally include object attributes, data attributes, and annotation
attributes. An instance is a real existence under the concept
of a class, which is an abstract generalisation of a feature.
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An individual belongs to a class, and it is an instance of the
class.

Moreover, relationships are used to describe the inter-
actions between classes, both as a detailed description of
properties and as a logical qualification of reasoning. There
are four basic types of relationships in ontology develop-
ment: ‘part-of’ for component relationships, ‘kind-of’ for
inheritance, ‘instance-of’ for membership, and ‘attribute-of’
for characteristics, each providing a different perspective on
the links between classes [34]. A function is a special form
of ontology expression that involves the mapping between
classes, often used to complete reasoning within the ontol-
ogy. For example, functions can be used to calculate the
scores and weights of each criterion for alternative sites in
a UEES. Additionally, axioms are used to constrain inter-
actions between classes, attributes, and instances, ensuring
logical consistency and supporting more sophisticated rea-
soning.

Several studies have explored the application of ontolo-
gies in disaster management, highlighting their potential
to improve decision-making, interoperability, and response
strategies. Table 3 summarises key studies that have applied
ontology-based frameworks to disaster management, with a
focus on site selection and decision-making. Liu et al. [35]
conducted a review of 26 existing ontologies, identifying 11
essential subject areas relevant to crisis management. They
concluded that whilst there is a high degree of semantic inter-
operability, gaps remain in the integration of ontologies for
crisis response. The reviewemphasised the need formore for-
mal and standardised ontologies to enhance interoperability
across systems. Malizia et al. [36] developed an ontology
called SEMA4A, which integrates concepts from accessibil-
ity, emergency scenarios, and communication technologies.
This ontologywas designed to adapt emergency notifications
based on users’ profiles, abilities, and the available commu-
nication media. Onorati et al. [37] extended SEMA4A by
adding a domain focused on evacuation routes. This exten-
sion allows for the automatic adaptation of evacuation routes
based on user profiles, the type of emergency, and the avail-
able infrastructure. The study identified a significant gap in
existing systems, which lack interoperability and the ability
to automatically adapt evacuation routes to different users
and scenarios. Jain et al. [38] developed a recommenda-
tion system for emergencies, such as earthquakes, using
a combination of ontology-supported rule-based reasoning
and case-based reasoning. The system provides immediate
actions based on past cases and predefined rules, helping to
mitigate damage to life and property.

In the context of urban flood disaster management, Wu et
al. [13] developed an ontology-based framework that inte-
grates, shares and manages data from various sources such
as the Internet, social media, and sensors. However, the
data input process was done manually, which was time-

consuming. Yahya and Ramli [39] proposed a standard
ontology to improve information sharing amongstMalaysian
agencies during floods, addressing issues related to inaccu-
rate or unavailable data on flood victims. The system enables
faster access to important data, such as victim informa-
tion, flood locations, evacuation centres, and aid distribution,
enhancing the overall efficiency of emergency responses.
Shukla et al. [40] proposed an ontology-based Decision
Support System (DSS) for disaster management, integrat-
ing a knowledge base with Semantic Web Rule Language
(SWRL) to generate logic-based solutions. The SWRL rules
form the core of the system, providing valuable assistance to
decision-makers. Liu et al. [41] developed a framework using
knowledge graphs and community discovery algorithms to
match disaster methods and data, particularly focusing on
rainstorm and flood disaster risk assessment. Finally, Zhong
et al. [15] suggested an ontology-based crisis simulation
system for population sheltering management, incorporating
features like resource allocation and scenario simulation. As
was shown in recent studies, ontologies have great promise
for enhancing disaster management strategies and improving
the resilience of urban areas to natural disasters.

Through an extensive review of the existing literature, it
becomes clear that both AHP and FAHP have been widely
applied to various disaster management challenges, partic-
ularly in shelter site selection. Whilst these methods have
advanced MCDM frameworks by incorporating fuzzy logic
to handle uncertainty, a significant research gap remains.
Current studies largely focus on the standalone application
of these methods without fully exploring their integration
with other advanced technologies. FAHP enhances tradi-
tional AHP by leveraging fuzzy set theory to manage the
inherent uncertainty in human judgment, yet its application
is limited by a lack of interoperability with diverse data
sources and semantic systems. Similarly, ontologies have
demonstrated their ability to enhance interoperability, data
integration, and decision support systems in UEES. How-
ever, the full potential of combining ontologies with MCDM
frameworks, particularly FAHP, has yet to be realised. The
existing research does not address how FAHP and ontolo-
gies can be integrated to form a comprehensive, interoperable
decision-making framework for shelter site selection.

Thus, the problem statement arises from the lack of a uni-
fied MCDM framework that integrates ontology with FAHP
for optimal decision-making in shelter site selection. Select-
ing locations for UEES involves complex, multi-faceted
criteria that require a decision-making system capable of
handling both qualitative and quantitative data whilst ensur-
ing semantic interoperability across diverse data sources.
By integrating ontology with FAHP, the decision-making
process can be significantly enhanced to address both the
technical and practical challenges of shelter site selection
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Table 3 Studies of ontologies in site selection for disaster management

Authors Problem area Approach Criteria

Malizia et al. [36] Accessible emergency
notifications for diverse users

SEMA4A ontology for
adaptive notifications based
on user profiles

Accessibility, user profiles,
emergency scenarios,
communication technologies

Onorati et al. [37] Adaptable evacuation routes for
diverse users

Extended SEMA4A ontology
for adaptive evacuation routes

User profiles, emergency type,
route adaptability,
infrastructure

Jain et al. [38] Adaptive recommendations
during earthquakes

Ontology-supported rule-based
and case-based reasoning
systems for recommendations

Seismic activity, population
density, response time,
operator verification

Wu et al. [13] Integrated data management for
urban flood disasters

Ontology-based framework to
manage urban flood data

Rainfall intensity,
topographical factors, data
integration, impact indices

Yahya and Ramli [39] Lack of shared data during
flood emergencies

Ontology to standardise terms
and improve data sharing

Interoperability, standardised
terminology, access to flood
information

Shukla et al. [40] Inefficient decision-making in
disaster management

Ontology-based decision
support system

SWRL rules, disaster phases,
knowledge flow, disaster
recovery assistance

Liu et al. [41] Effective evacuation
management

Framework using knowledge
graphs and simulations

Knowledge graphs, evacuation
scenarios, disaster
management strategies

Zhong et al. [15] Ack of an efficient resource
allocation system for
population sheltering during
crises

Ontology-based crisis
simulation system with
decision support and
recommendations

Key components: ontology,
resource allocation,
four-layer simulation system,
tested in disaster scenarios

whilst also advancing the digital transformation of urban
emergency management systems.

3 Methodology

This section presents the overall research methodology
used in this study, which integrates the FAHP, ontology-
based modelling, and GIS data to develop a comprehensive
approach for UEES site selection. The methodology lever-
ages the Web Ontology Language (OWL) and the SWRL in
combination with the FAHP to develop a robust framework
for UEES site selection. By moving beyond traditional site
selection methods, this approach enhances decision-making
processes, ensuring more effective and informed choices for
UEES site selection. The overall research methodology is
illustrated in Fig. 2:

• Pre-selected site selection The first step involves filter-
ing potential shelter sites based on the appropriate land
uses and collecting GIS data to support spatial analysis.
This process includes evaluating factors such as acces-
sibility, hazard vulnerability, and proximity to essential
services. These criteria are crucial for incorporating geo-
graphical considerations into the shelter evaluation. After
this filtering process, a set of shelter site alternatives are
identified for further evaluation.

• FAHP for criteria weighting In this step, the FAHP is
employed to assign weights to the criteria involved in
selecting shelter sites. The process beginswith a thorough
review of relevant literature and standards, particularly
from the Chinese national guidelines for EES sites [16],
to systematically identify the main criteria for UEES.
A hierarchical structure model is then established to
organise these criteria and the decision-making process.
Following this, the criteria weights are calculated using
TFNs, which are applied in fuzzy pairwise comparison
matrices to compare the relative importance of the crite-
ria. The fuzzy weights are then defuzzified to produce
crisp values. Finally, the Consistency Index (CI) and
Consistency Ratio (CR) are calculated to validate the
consistency of the pairwise comparisons, ensuring that
the criteria weighting is reliable.

• Ontology-based modelling for UEES This step focuses
on developing an ontological framework to support
the assessment of UEES site alternatives. The process
includes three main parts: conceptualisation, reorganisa-
tion of terms, and the creation of ontology instances. This
framework compiles all relevant data, criteria, and indi-
cators related to UEES, representing them hierarchically
and in a machine-readable format. The open-source Pro-
tégé 5.5 ontology editor, alongwith the SWRL rule editor
and the Semantic Query-Enhanced Web Rule Language
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Fig. 2 Research methodology

(SQWRL) data query plugin, is utilised to develop this
ontology, enabling advanced data querying and analysis.

• Case study and discussion The developed methodol-
ogy is then applied in a case study focused on Beijing
to demonstrate the approach’s effectiveness in ranking
potential UEES locations. After the evaluation process,
the rankings of the shelter site alternatives are reviewed
to ensure consistency with the established methodol-
ogy. Any inconsistencies identified during this review
are addressed before making the final selection of shelter
sites.

4 FAHP for Criteria Weighting

4.1 Evaluation Criteria for Site Selection

The selection of appropriate evaluation criteria and sub-
criteria is crucial for the site selection of UEES. An in-depth

review of relevant literature, along with standards from the
Chinese national guidelines for EES sites [16], has led to the
systematic identification of four main criteria that are essen-
tial for the assessment process (illustrated in Fig. 3): Safety
criteria, Planning criteria, Economic criteria, Construction
criteria.

4.1.1 Safety Criteria (S1)

Safety is the primary consideration when selecting a site for
UEES. The location must be inherently safe from earthquake
impacts (C11) and ideally situated far from seismic rupture
zones to minimise risks during an earthquake [42]. Addition-
ally, the site should not be vulnerable to secondary hazards,
such as landslides, that earthquakes might trigger. Proxim-
ity to residential areas is also critical (C12), as the shelter
should be accessible for the swift evacuation of victims [43].
Lastly, in urban environments with high-rise buildings, the
site should maintain a safe distance from these structures
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(C13) to avoid risks associated with the potential collapse of
buildings during an earthquake.

4.1.2 Planning Criteria (S2)

Population density in the surrounding area, where the prepa-
ration site is located (C21), is a key factor. A higher
population density increases the value of the UEES, as more
people can be served in the event of an emergency. This is
directly related to the plans of the local government. Traf-
fic accessibility (C22) is another vital aspect for ensuring
that evacuees and rescue teams can reach the site quickly;
this includes evaluating the number of major roads and
intersections that facilitate access. The distance from other
emergency shelters (C23) is also considered to avoid overlap
in services and ensure efficient decision-making for evac-
uees. Additionally, proximity to critical infrastructure (C24),
such as hospitals, fire stations, and transport hubs, is equally
important as it enhances the shelter’s operational effective-
ness.

4.1.3 Economic Criteria (S3)

Economic criteria focus on the costs associated with estab-
lishing and operating the UEES. These expenses vary
regionally and are influenced by the local economic devel-
opment level. In Beijing, for example, land costs are
amongst the highest inChina, followed by construction costs,
whilst maintenance costs are comparatively consistent across
regions. Land cost (C31) typically accounts for the largest
portion (around 60%) of the total cost, followed by construc-
tion cost (C32) at 30%andmaintenance cost (C33) at roughly
10%.

4.1.4 Construction Criteria (S4)

The available area of the site (C41) is critical for determin-
ing the shelter’s capacity and the scope of services it can
offer. The presence of complete hydropower facilities (C42)
is important for larger sites, allowing for the development
of essential infrastructure, such as water and electricity sup-
plies,which can supportmedical services and supply stations.

4.2 Establishing a Hierarchical Structure Model

A structured three-tiered hierarchical model was developed
to facilitate the selection of optimal sites for UEES, as illus-
trated in Fig. 3. At the highest level, the Objective Layer
(G) represents the overarching goal of identifying the opti-
mal most suitable locations for emergency shelters. The
middle level comprises the Criteria (S) and Sub-Criteria Lay-
ers (C), which encompass key evaluation factors such as
safety, accessibility, and capacity. The sub-criteria further

refine these broader categories, creating a comprehensive
framework designed to support informed decision-making.
The Alternatives Layer (A), at the lowest level, contains
the potential shelter sites. These sites are evaluated based
on the criteria and sub-criteria defined in the middle tier,
ensuring that the most appropriate locations are selected for
emergency sheltering in the event of an earthquake. The
relationships between the layers and elements are depicted
through connecting lines, illustrating the flow of evaluation
from objectives to alternatives.

The selection process involves determining the relative
weights of each main criterion (S) with respect to the overall
objective (G) and the weights of each sub-criterion (C) rela-
tive to its associated criterion (S). These two sets of weights
are then aggregated to compute the global weight of each
sub-criterion (C) in relation to the objective (G). It is essen-
tial that the elements within the hierarchy are clearly defined
and that the relationships between them are logically sound.
Inadequate definitions or incorrect relationships could com-
promise the quality of the site selection process, potentially
leading to suboptimal outcomes or the failure of theAHP.The
weighting of these elements is a critical step in the decision-
making process, requiring pairwise comparisons to establish
their relative importance within the context of UEES site
selection. This ensures that the model accurately reflects the
priorities and considerations necessary for the effective iden-
tification of optimal emergency shelter locations.

4.3 Criteria Weights Calculation Process

4.3.1 Definition of Triangular Fuzzy Numbers (TFNs)

Determining the weights of both the main criteria and sub-
criteria is critical, especially since the four primary criteria
and twelve sub-criteria do not share uniform weight dis-
tribution. Traditionally, the AHP has been employed for
this purpose. However, AHP’s reliance on subjective judg-
ments during the matrix construction phase makes it prone
to bias, which may result in outcomes that are not univer-
sally accepted by decision-makers [44]. To address this issue,
this study integrates fuzzy logic, which allows decision-
makers to express preferences using TFNs, enabling more
precise expression of judgments and capturing the inherent
uncertainty in human perception. Table 4 presents the lin-
guistic scale of importance, the corresponding TFNs, and
their reverse semantic ranges with inverse TFNs.

The linguistic scale of importance allows decision-makers
to express their subjective judgments in terms of predefined
categories such as “Equally important” or “Strongly impor-
tant”. Each of these linguistic terms is quantified using a
TFN, represented by three values: l (lower bound), m (mid-
dle value), and u (upper bound). These values capture the
uncertainty and imprecision inherent in human judgments.
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Fig. 3 Hierarchical structure model of UEES
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Table 4 Linguistic scale of
importance, the corresponding
TFNs, and their reverse semantic
ranges with inverse TFNs

Semantic range TFNs (l, m, n) Reverse semantic range Inverse TFNs (1/n,1/m,1/l)

Equally important (1,1,1) Equally weak (1,1,1)

Slightly important (1,1,3/2) Slightly weak (2/3,1,1)

Significantly important (1,3/2,2) Significantly weak (1/2,2/3,1)

Strongly important (3/2,2,5/2) Strongly weak (2/5,1/2,2/3)

Extremely important (2,5/2,3) Extremely weak (1/3,2/5,1/2)

For example, a judgment that is considered “Slightly impor-
tant” is represented by the TFN (1,1,3/2), meaning that the
importance lies somewhere between 1 (equally important)
and 1.5 (more important), with 1 as the most likely value.
Additionally, the reverse semantic ranges and their corre-
sponding inverse TFNs are used to account for pairwise
comparisons in the opposite direction. For example, if Cri-
terion A is “Slightly more important” than Criterion B, then
Criterion B is “Slightly less important” than Criterion A, and
the corresponding inverse TFN (2/3,1,1) is used.

4.3.2 Constructing Fuzzy Pairwise Comparison Matrices
and Defuzzification of the Fuzzy Weights

For each layer of the hierarchical structure, a fuzzy pair-
wise comparisonmatrix is constructed. Thismatrix compares
each criterion or sub-criterion with every other element at the
same level, assessing their relative importance. The compari-
sonmatrix assists in structuring the decision-making process,
starting from high-level objectives to more specific factors.
Decision-makers utilise the linguistic scale of importance to
evaluate and compare both the main criteria (denoted as S)
and the sub-criteria (denoted as C).

Each expert’s judgment is represented as matrix elements
WE

i j , where i refers to the row criterion and j refers to the
column criterion. Each element expresses the relative impor-
tance of one criterion over another, using TFNs to capture the
uncertainties in these judgments. To synthesise the individual
judgments of multiple experts into a collective decision, the
arithmeticmeans of the pairwise comparison values provided
by all experts is computed for each pair of criteria i and j .
This process results a consensus on the relative importance
of each pair of criteria or sub-criteria. The fuzzy pairwise
comparison matrix for an expert group can be expressed as
shown in Eq. (3).

WE =

⎡

⎢⎢⎢⎣

1 WE
12 · · · WE

1n
W E

21 1 · · · WE
2n

...
...

. . .
...

WE
n1 WE

n2 · · · 1

⎤

⎥⎥⎥⎦ (3)

where WE
i j represents the fuzzy comparison value between

criteria i and j as provided by expert E .

Each matrix element WE
i j is a TFN (l,m, u), where l,

m, and u represent the lower, middle, and upper bounds of
the fuzzy judgment, respectively. The aggregation of these
judgments across all experts is weighted by their respective
importance μE , where Σ E

E=1, μE = 1, μE > 0. The aggre-
gated fuzzy pairwise comparison matrix Wi j is represented
in Eq. (4).

W̄i j =
E∑

E=1

μEwE
i j =

(
E∑

E=1

μEl
E
i j ,

E∑

E=1

μEm
E
i j ,

E∑

E=1

μEu
E
i j

)

= (
li j ,mi jui j

)
(4)

where μE represents the weight assigned to the judgment of
expert E; The summation�E

E=1 accounts for the aggregation
of all experts’ opinions; l Ei j ,m

E
i j , andu

E
i j are the lower,middle,

and upper bounds of the fuzzy comparison valueWE
i j for the

pairwise comparison between criteria i and j .
Once the fuzzypairwise comparisonmatrix is constructed,

the next step is to defuzzify the fuzzy weights for each cri-
terion. Defuzzification is the process of converting fuzzy
numbers into crisp values, thus simplifying the comparison
of criteria. These defuzzified weights for the i th criterion,
denoted as Wci , is calculated according to Eq. (5). The TFN
(l,m, u) is then defuzzified using Eq. (6), converting the fuzzy
weights into crisp scalar values, which can be more easily
interpreted and applied in the decision-making process.

WCi =
∑n

j=1 Wi j∑n
i=1

∑n
j=1 Wi j

, i = 1, 2, · · · , n (5)

where WCi is the defuzzified weight for the i th criterion,
derived from the aggregated fuzzy comparison matrix; n is
the number of criteria.

Crisp number = l + 2m + u

4
(6)

Finally, the local weights are normalised to ensure that
the sum of weights equals 1. This normalisation is done by
dividing each crisp number by the sum of all crisp numbers.
The same steps are applied to construct fuzzy pairwise com-
parison matrices for the sub-criteria and to defuzzify their
respective fuzzy weights.
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4.3.3 Fuzzy Pairwise Comparison Matrix Consistency
Check

The consistency of pairwise comparison matrices is crucial
for achieving consensus amongst experts and validating the
logical consistency of their judgments. In this paper, pairwise
comparison matrices were constructed for different experts,
where each element represents the relative importance of one
criterionover another, as judgedby the expert. Thesematrices
are then normalised to compute the relative weights, and the
normalised weights are averaged to determine the priority of
each criterion for each expert.

To assess the consistency of each expert’s judgments, the
sumof the products of the elements in theweight columnwith
the sumof the corresponding columnsof the original pairwise
comparison matrix, denoted as

∑
AW , was calculated. Sub-

sequently,
∑

AW was divided by the corresponding weight
W, yielding

∑ AW
W . This process helps ensure that the matrix

reasonably represents the experts’ opinions without signifi-
cant logical contradictions. A key aspect of the consistency
test is the calculation of the principal eigenvalue, which
provides the relative weights of the criteria. The principal
eigenvalue λmax is obtained by summing the entries of AW

W
across each row and dividing by the number of criteria n, as
expressed in Eq. (7):

λmax =
n∑

i=1

(AW )i

nWi
(7)

where n is the number of criteria; AWi represents the sum
of the products of the elements in th i th row of the original
pairwise comparison matrix and the corresponding weights
Wi ; Wi is the weight of the i th criterion.

If the Consistency Ratio (CR) is within an acceptable
range, the weights derived from the principal eigenvector
are used as the relative weights of the criteria. However,
if the CR exceeds the acceptable threshold, the pairwise
comparison process may need to be revisited and revised
to improve consistency, thereby ensuring more reliable and
robust decision-making outcomes. Following the determina-
tion of the principal eigenvalue, the Consistency Index (CI)
is calculated using Eq. (8):

CI = λmax − n

n − 1
(8)

where λmax is the principal eigenvalue, as calculated in Eq.7;
n is the number of criteria.

A CI of zero indicates perfect consistency, though perfect
consistency is rarely achieved; thus, a measure of accept-
ability is required. Saaty [45] has provided Average Random
Consistency Index (RI) values for matrices of sizes 1 to 9,
which serve as a benchmark (Table 5). The CR is then calcu-

Table 5 Average random consistency index (RI)

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.89 1.12 1.24 1.32 1.41 1.45

lated by dividing the CI by the corresponding RI, as shown in
Eq. (9). A CR value of less than 0.10 generally indicates that
the consistency of the matrix judgments is acceptable. Oth-
erwise, the judgment matrix should be appropriately revised.

CR = CI

RI
(9)

where CI is the Consistency Index, as calculated in Eq. 9;
RI is the Random Consistency Index, which depends on the
number of criteria (n) and serves as a benchmark for com-
parison; CR is a measure of how consistent the judgments
are in the pairwise comparison matrix relative to a randomly
generated matrix.

5 Ontology-Based Modelling for UEES

5.1 Knowledge Base Design and Development

This section focuses on developing an ontological frame-
work for the holistic assessment of alternative sites for
UEES. The construction process is divided into three main
stages. The first is conceptualisation, which defines the
purpose and scope of the ontology. It involves identifying
the domain-specific knowledge and the goals the ontology
should achieve. The second stage focuses on organising the
key termswithin the domain by defining classes, establishing
hierarchical relationships between these classes, and identi-
fying the properties of each class. The connections between
properties are also defined at this stage. The third stage
involves the practical application of the newly created ontol-
ogy by generating instances based on real-world data. This
step ensures the ontology’s validity and applicability to the
domain.

The construction process of the UEES ontology is centred
on a hierarchical representation of the domain’s knowledge.
The goal is to represent this knowledge in a scientific, hierar-
chical, and machine-readable manner. Various methods can
be used for ontology development. In this study, ontology
101 [46] was utilised due to its top-down approach. The tool
Protégé 5.5 was employed for its Description Logic (DL)
query reasoning, which facilitates hierarchical restrictions
and logical checks. Protégé performs automatic checks for
hierarchical consistency and logical correctness, improving
the proposed ontology’s accuracy and validity.
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Fig. 4 The class hierarchy of the UEES ontology

5.1.1 Defining Classes and Class Hierarchies

A clear definition of terms related to the domain is a crucial
first step. Once the terms are identified, they are organised
into a hierarchy structure, also known as a taxonomy. A
taxonomy provides a pyramid structure that organises key
information logically. According to Ontology 101 [46], the
process of developing an ontology includes several key tasks:
defining classes by identifying the main concepts within the
domain, organising these classes into a hierarchical taxon-
omy (withmore general concepts at the top andmore specific
ones as subclasses), and defining properties (slots) for each
class, along with possible values for these properties.

In this study, the ontologywas developedusing a top-down
approach, where each class represents a general concept
within the domain and may include several subclasses or
instances representing more specific cases. For example, the
class hierarchy of the UEES ontology is shown in Fig. 4; the
top class, named “Thing,” is automatically generated when
creating the ontology in protégé. In the context of UEES,
the main class is “Urban_earthquake_emergency_shelter,”
which contains four subclasses that are further broken down
into more subclasses:

• “Safety_standard” includes “Site_safety”, “Distance_
from_residential_area”, and “The_ratio_of_ building_
height_to_the_ distance_to_the_shelter”.

• “Planning_standard” encompasses “Population_density”,
“Traffic_accessibility”, “Distance_from_ other_ emer-
gency_shelters”, and “Distance_to_critical_infrastructure”

• “Economic_standard” consists of “Land_cost” “Con-
struction_cost,” and “Maintenance_cost”

• “Construction_standard” comprises “Available_ area_
of_site” and “Complete_hydropower facilities”.

5.1.2 Defining the Properties of a Class

Attributes in an ontology describe the internal structural con-
nections between concepts. There are three primary types of
attributes: object attributes, data attributes, and annotation
attributes.

• Object attributes describe relationships between two
concepts, specifically between different classes. They
not only define these relationships but also impose con-
straints that guide reasoning processes. For example, the
“Is_Subcriteria_of” attribute indicates a sub-criteria rela-
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Table 6 Data attribute description

Data property Description Corresponding class or instance

District Alternate address name –

Latitude Address longitude –

Longitude Address latitude –

Final Score Final score of address –

GS_C11 Substandard final score Site_safety

GS_C12 Distance_from_residential_area

GS_C13 The_ratio_of_building_height_to_the_distance_to_the_shelter

GS_C21 Population_density

GS_C22 Traffic_accessibility

GS_C23 Distance_from_other_emergency_shelters

GS_C24 Distance_to_critical_infrastructure

GS_C31 Land_cost

GS_C32 construction_cost

GS_C33 Maintenance_cost

GS_C41 Available_area_of_site

GS_C42 Complete_hydropower_facilities

S_C11 Substandard subjective and objective score Site_safety

S_C12 Distance_from_residential_area

S_C13 The_ratio_of_building_height_to_the_distance_to_the_shelter

S_C21 Population_density

S_C22 Traffic_accessibility

S_C23 Distance_from_other_emergency_shelters

S_C24 Distance_to_critical_infrastructure

S_C31 Land_cost

S_C32 construction_cost

S_C33 Maintenance_cost

S_C41 Available_area_of_site

S_C42 Complete_hydropower_facilities

Score_Sa Final score of main standard Safety_standard

Score_Pn Planning_standard

Score_Ec Economic_standard

Score_Cn Construction_standard

W_C11 Substandard global weight Site_safety

W_C12 Distance_from_residential_area

W_C13 The_ratio_of_building_height_to_the_distance_to_the_shelter

W_C21 Population_density

W_C22 Traffic_accessibility

W_C23 Distance_from_other_emergency_shelters

W_C24 Distance_to_critical_infrastructure

W_C31 Land_cost

W_C32 construction_cost

W_C33 Maintenance_cost

W_C41 Available_area_of_site

W_C42 Complete_hydropower_facilities
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Fig. 5 Example of an alternative address instance definition

tionship, and “Is_Supercriteria_of” represents a main
criterion relationship.

• Data attributes link instances to specific data, defining
howdata are associatedwith each instance. Table 6 shows
various data attributes, their descriptions, and the classes
or instances they correspond to. For example, “GS_C11”
represents the substandard final score for Site_safety,
whilst “W_C11” represents the global weight for the
same criterion.

• Annotation attributes provide additional descriptions
of classes, instances, and attributes but do not partici-
pate in inferential reasoning. They are primarily used for
documentation and clarification within the ontology.

5.1.3 Create Pre-selected Site Instances

In an ontology, instances serve as specific expressions
of their respective classes, each characterised by unique
properties and values. In the context of this ontology,
the “Site_Alternatives” class includes a set of 10 distinct
instances, each representing a viable alternative site for
evaluation. These instances are not merely abstract represen-
tations; they are accompanied by detailed attributes defined
within their data properties. These attributes play a crucial
role in the reasoning process used to rank the sites based
on predefined criteria, ensuring a structured and data-driven
approach to site selection.

The ontology management interface, Protégé, offers a
clear visualisation of how these instances are structured and
managed. As shown in Fig. 5, the instances represent a series
of alternative site addresses, each assessed based on a set of

defined criteria. On the left panel of the Protégé interface,
a collection of individuals is displayed, with each individ-
ual being an instance of the “Site_Alternatives” class. The
instances are labelled from “A_One” to “A_Ten”, each cor-
responding to a distinct site. The Description pane provides
a classification of the selected instance, indicating, for exam-
ple, that “A_One” is categorised under “Site_Alternative”.

Moreover, the Data Property Assertions section of the
interface lists the individual properties associated with each
instance, along with their corresponding quantified val-
ues. These values represent specific evaluative metrics that
contribute to the ranking process. For example, proper-
ties such as “S_C22” and “S_C24” capture key evaluative
scores relevant to the site alternative “A_One”. The value of
“S_C22” represents the “Traffic_accessibility” score, whilst
“S_C24” reflects the “Distance_to_critical_infrastructure”
score. These quantified attributes are integral to the infer-
ential mechanism employed to establish a ranking hierarchy
amongst the site alternatives. By assigning specific values to
these properties, the ontology enables a structured and trans-
parent evaluation process, ensuring that each alternative site
is assessed based on consistent and predefined criteria.

5.2 Defining SWRL Rules and SQWRL Queries

SWRL allows for the generation of new facts by applying
rules to existing information within an ontology. Several
rules were defined in the proposed ontology based on the
requirements specified in this research. The complexity of
those rules varies, from rules that consider only one condi-
tion to rules that account for multiple conditions, creating
a multi-objective knowledge base. SWRL includes several

123



Z. Li et al.: Holistic Decision-Making for Optimal Siting of Urban Earthquake Emergency...

types of atoms: class atoms, individual property atoms, and
data-valued property atoms, each playing a unique role in
rule formation. A detailed examination of these atom types
can be found in Ren, Ding, and Li [47]. In SWRL, the symbol
‘^’ is used to connect class atoms and individual atoms, the
question mark ‘?’ represents a variable in each atom, and the
symbol “→” is used to connect antecedents and consequents
of a rule, as shown in Tables 7 and 8.

Within the Protégé 5.5 ontology editor, extensions such
as SWRLTap and SQWRLTap integrate seamlessly with the
OWL framework. SWRLTab is used to define rules, whereas
SQWRLTab is used to query inferred data. For example, a
class expression might look like Site_Alternatives(A_One),
where “A_One” is a variable representing a site. Data
attributes could be represented as Score_Sa(A_One, ?x),
where “?x” is a variable for safety scores at the site
“A_One”.These rules leverageSWRLbuilt-in functions such
as swrlb:multiply() and swrlb:add() for performing arith-
metic.Moreover, to query the ontology after applying SWRL
rules, the syntax sqwrl:select and sqwrl:orderByDescending
is used, as shown in Table 9.

6 Case Study: Application in Beijing

Beijing’s distinct geographical and demographic challenges,
combined with its proactive disaster management strategies,
offer valuable insights for urban earthquake preparedness.
Given its historical experience with earthquakes, Beijing
was chosen to demonstrate the proposed UEES site selec-
tion framework. For this study, only potential UEES sites
with an area exceeding 2000 square metres were considered,
Table 10. The evaluation of these sites was based on four
main criteria: safety, planning, economy, and construction,
further divided into 12 sub-criteria. The data used for analysis
included both subjective (expert assessments) and objective
(GIS-based) information for each of the pre-selected sites
(Table 11). The decision-making team consists of 5 industry
experts: economic experts (E1), construction experts (E2),
transportation experts (E3), earthquake experts (E4), and
safety experts (E5).

Table 12 provides the quantitative evaluation data neces-
sary for performing pairwise comparisons in the site selection
process. It organises the scores for each site across multiple
criteria. In constructing the pairwise comparison matrices,
the EDM team uses the scores from Table 12. The process
began by calculating the arithmetic means of the pairwise
comparisons for each criterion and sub-criterion, considering
their lower (l), middle (m), and upper (u) values separately.
Next, the means for each comparison were summed to pro-
vide an overall score for each criterion. These sums were
then normalised by dividing each value by the total sum of
the respective column, resulting in the initial fuzzy weights.

This normalisation ensures that the weights for all criteria
add up to 1, making them comparable.

To simplify the decision process, the fuzzy weights were
defuzzified, converting each fuzzy value into a crisp number.
This was done by calculating the weighted average of the
lower, middle, and upper values. The resulting crisp values
represent the final importance of each criterion without the
uncertainty inherent in the fuzzy numbers. Finally, the local
weights were derived from the crisp values, which reflect
each sub-criterion’s relative importance to its main criterion.
Table 13 shows the relative importance of the main criteria.
The results indicate that Site Safety (S1) is the most signif-
icant criterion, with a weight of 0.333. Similarly, Table 14
shows that within the safety sub-criteria, Site Safety (C11)
is the most important, with a weight of 0.445. The bold for-
matting in Tables 13 and 14 is used to highlight the most
significant criterion or sub-criterion based on their calculated
weights. The global weight for each sub-criterion was calcu-
lated by multiplying its local weight by the global weight of
its immediate parent sub-criterion. These global weights are
summarised in Table 15.

The analysis reveals three sub-criteria with a weight
greater than 0.1: site safety (C11), area of the site (C41), and
distance from residential areas (C12). Amongst these, site
safety (C11) is the most important, followed by the area of
the site (C41) and the distance from residential areas (C12).
The least weighted sub-criterion is construction cost (C32),
which has a weight of 0.04. Finally, the consistency of the
pairwise comparison matrices is checked to ensure the relia-
bility of the expert judgments.

Finally, the consistency of the pairwise comparison matri-
ces is checked to ensure the reliability of the expert judg-
ments. Table 16 shows the detailed consistency calculation
for Expert E1, including the evaluation matrix, normalisa-
tion process, weight determination, and consistency check
(CI and CR). To determine the largest characteristic root
λmax, the following steps are taken: the matrix E1 Evalua-
tion Matrix is multiplied by the weight vector W to obtain
AW for each row, and this is followed by dividing each entry
of AW by the corresponding entry of W to get AW

W for each
row. In this case, there are four criteria (C1, C2, C3, C4),
hence, n is equal to 4. To check the consistency, the average
of the AW

W values is calculated, which gives the largest eigen-
valueλmax. This valueλmax is then used to calculate theCI, as
shown in Table 16. The CR is then calculated by dividing the
CI by the corresponding RI. The RI is a value that depends
on the number of criteria n. For a matrix of size 4, the RI
is typically 0.89, as previously mentioned in Table 5. A CR
value of 0.017 indicates that the consistency ratio is less than
0.1, which is the commonly accepted threshold for consis-
tency. A CR below 0.1 signifies that the expert’s judgments
are consistent and reliable.
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Table 9 SQWRL ranking query
of alternative sites Query 1: Descending reasoning substandard ranking

Site_Alternatives(?x) ^GS_C11(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C12(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C12(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C21(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C22(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C23(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C24(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C31(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C32(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C33(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C41(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^GS_C42(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Query 2: Descending reasoning Main standard ranking

Site_Alternatives(?x) ^Score_Sa(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^Score_Pn(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^Score_Ec(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Site_Alternatives(?x) ^Score_Cn(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Query 3: Descending reasoning for final ranking

Site_Alternatives(?x) ^Final_Score(?x, ?a) → sqwrl:select(?x, ?a) ^sqwrl:orderByDescending(?a)

Table 10 Basic information of
alternative sites

Site alternative no Type Area (m2) Longitude Latitude District

A1 Park 37,000 39.878469 116.424628 Dongcheng

A2 Park 400,000 39.99242 116.302269 Haidian

A3 Park 270,000 39.953313 116.288869 Haidian

A4 Park 54,000 39.959903 116.421358 Dongcheng

A5 Park 3,357,000 40.025231 116.396797 Chaoyang

A6 Park 47,000 39.885845 116.37434 Xicheng

A7 Park 20,000 39.841377 116.378608 Fengtai

A8 Park 434,000 39.919156 116.540303 Chaoyang

A9 Urban green space 280,000 39.975005 116.506423 Chaoyang

A10 Park 400,000 39.912449 116.244861 Shijingshan

Table 11 Data sources for
subjective and objective criteria

Sub-criteria Data name Data source

Site_safety S_C11 DMT

Distance_from_residential_area S_C12 GIS

The_ratio_of_building_height_to_the_distance_to_the_shelter S_C13 GIS

Population_density S_C21 GIS

Traffic_accessibility S_C22 GIS

Distance_from_other_emergency_shelters S_C23 GIS

Distance_to_critical_infrastructure S_C24 GIS

Land_cost S_C31 DMT

Construction_cost S_C32 DMT

Maintenance_cost S_C33 DMT

Available_area_of_site S_C41 GIS

Complete_hydropower_facilities S_C42 GIS
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Table 13 Main standard weight
and pairwise comparison matrix

Criteria S1 S2 S3 S4 Weight

S1 (1,1,1) (1,1.1,1.4) (1.6,2.1,2.6) (1.1,1.5,2) 0.333

S2 (0.767,0.933,1) (1,1,1) (1.2,1.6,2.1) (1,1.2,1.6) 0.276

S3 (0.392,0.45,0.667) (0.493,0.667,0.867) (1,1,1) (0.7,0.933,1) 0.176

S4 (1,1,1) (0.667,0.867,1) (1,1.1,1.5) (1,1,1) 0.215

The “Weight” column shows the normalised importance of each criterion, calculated using the FAHP based
on expert pairwise comparisons

Table 14 Safety standard local
weight and pairwise comparison
matrix

Criteria C11 C12 C13 Weight

C11 (1,1,1) (1,1.3,1.7) (1.6,2.1,2.6) 0.445

C12 (0.633,0.8,1) (1,1,1) (1.1,1.4,1.9) 0.327

C13 (0.392,0.493,0.667) (0.583,0.767,0.933) (1,1,1) 0.228

The “Weight” column shows the normalised importance of each criterion, calculated using the FAHP based
on expert pairwise comparisons

Table 15 Global sub-criteria weights

Sub-criteria C11 C12 C13 C21 C22 C23 C24 C31 C32 C33 C41 C42

Global weights 0.148 0.11 0.076 0.095 0.078 0.045 0.057 0.058 0.04 0.077 0.129 0.087

Table 17 summarises the consistency calculations for all
experts (E1 to E5), providing a broader view of the reli-
ability of the judgments across multiple experts. For each
expert, the λmax CI and CR were calculated using the same
procedure outlined for Expert E1. The results indicate that all
experts have CR values below the threshold of 0.1. Specifi-
cally, Expert E1 has a CR of 0.017, Expert E2 has a CR of
0.031, and Expert E4 and Expert E5 have CR values of 0.011
and0.006, respectively, all suggesting highly consistent judg-
ments. Expert E3, with a CR of 0.091, has the highest CR
value amongst the group, though still within the acceptable

threshold. These results confirm that the judgments provided
by all experts are consistent and reliable. The same procedure
applies to other experts and criteria matrices to ensure that
all pairwise comparison judgments are consistent.

Following the previous calculation, the derived data was
integrated into the ontology via a rule-based query operation.
This process involved developing several rules and queries to
enable the generation of various alternative address rankings,
as shown in Tables 7, 8 and 9. These queries can be classified
as follows:

Table 16 Expert E1 evaluation
consistency calculation

E1 evaluation matrix C1 C2 C3 C4

C1 1.000 2.000 3.000 4.000

C2 0.500 1.000 3.000 3.000

C3 0.333 0.333 1.000 1.000

C4 0.250 0.333 1.000 1.000

Sum 2.083 3.666 8 9

Normalisation C1 C2 C3 C4 Weight (W )
∑

AW
∑

AW /W

C1 0.480 0.546 0.375 0.444 0.461 1.884 4.084

C2 0.240 0.273 0.375 0.333 0.305 1.236 4.049

C3 0.160 0.091 0.125 0.111 0.122 0.489 4.016

C4 0.120 0.091 0.125 0.111 0.112 0.450 4.031

λ n RI CI CR

4.045 4 0.890 0.015 0.017
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Table 17 Expert evaluation consistency calculation

Expert (E) λ n RI CI CR

E1 4.045 4 0.890 0.015 0.017

E2 4.082 4.000 0.890 0.027 0.031

E3 4.244 4.000 0.890 0.081 0.091

E4 4.031 4.000 0.890 0.010 0.011

E5 4.015 4.000 0.890 0.005 0.006

• Sub-criteria rankingsA query was executed to produce
ten alternative address rankings based on sub-criteria
scores, resulting in twelve rankings.

• Main criteria ranking Another query was conducted to
determine the ranking of ten alternative addresses based
on the main criteria score, resulting in four rankings.

• Comprehensive rankingQuery to obtain ten alternative
address rankings based on the total score, resulting in one
overall ranking.

The results are given in Tables 18 and 19. The final anal-
ysis showed that alternative address A10 was ranked first in
the overall score. It is ranked first in both the main criteria of
safety and economy and second in the main criterion of con-
struction, Table 19. Thus, alternative site A10 is identified as
the optimal site for the UEES construction. This site, which
is located in Beijing’s Shijingshan District, benefits from its
large area and the ability to supply a large population, mak-
ing it remarkably appropriate for large-scaleUEES. In a close
contest, alternative site A2 was ranked second in the overall
ranking. It leads in the construction criterion, places second
in the economic criterion, and third in safety. It is located in
Beijing’s Haidian District, which is the location of a concen-
tration of universities and high-tech companies, pointing out
its suitability for UEES deployment. On the contrary, alter-
native site A7 ranks lowest overall, primarily due to its weak
performance in the planning and construction criteria and its
lower ranking in economic efficiency, although it scores well
in safety.

In the actual decision-making process, the views of the
individual in the EDM team may vary due to a variety of
reasons, such as experience, learning, anddifferences in opin-
ion. Hence, sensitivity analysis is necessary to determine
how changes in decision information may affect the ranking
results. Tables 20 and 21 show a sensitivity analysis to verify
the effect of slight changes in themain criteria weights on the
ranking, allowing the rationality and stability of the model’s
design to be evaluated. The main criterion, S1, is the most
heavily weighted. Hence, the change in the main criterion
S1 weight is used as an example to provide insights into the
fluctuation of scores for each alternative address. The weight
of S1 is adjusted to see how changes in this weight affect the

final scores and rankings of the alternatives. Typically, the
weight is both increased and decreased by a certain percent-
age. For instance, ±5% (Table 20) and ±15% (Table 21).
This adjustment is done whilst ensuring that the total sum of
all criteria weights remains 1 (or 100%). After adjusting the
weights, the scores for each alternative site are recalculated
by multiplying each criterion’s adjusted weight by the site’s
score on that criterion, and summing these products to obtain
a new total score for each site.

The final scores, Table 22, show that sites A2 and A10 are
close in condition. The final score is higher in the ontology
score only because of the higher safety score due to the dis-
tance from the earthquake centre. When the main criterion
S1 weighting changed slightly, A2 scored more than A10,
but both remained in the top two positions. Conversely, sites
A1 and A7 consistently rank lowest, suggesting that shifts in
S1’s weight impact their evaluations. This could indicate that
other criteria where they score poorly are more influential in
their ranking or that other sites across most criteria signif-
icantly outperform them. Other sites like A3, A4, A5, A6,
A8, and A9 experience some shifts in rankings with changes
to S1 weight, but these shifts are not significant, and these
sites maintain a middle-tier position. This indicates a moder-
ate sensitivity to the changes in the weight of S1 but overall
stability in their rankings.

The sensitivity analysis, therefore, confirms that the deci-
sion model is well-designed, with the rankings showing
rational behaviour in response to changes in criterionweight-
ings. It indicates that the ontology’s design is capable of
producing a rational and stable ranking of alternative sites,
even when accounting for the natural variability in the views
and opinions of the individual decision-makers within the
decision-making team.

7 Managerial Implications

This study aims to highlight the critical importance of strate-
gically placing UEES within rapidly modernising urban
areas as a vital component of urban disaster preparedness.
The proposed framework, which integrates the FAHP with
ontology-based modelling, effectively addresses significant
challenges in UEES site selection, such as inconsisten-
cies in data representation and the integration of diverse
hazard-related data. By providing a structured and stan-
dardised approach to managing the complexities of urban
environments, this framework enhances decision-making by
better handling uncertainties in expert judgments. It enables
disaster management professionals to conduct a more com-
prehensive evaluation of potential shelter sites, prioritising
them based on a robust set of criteria, including safety, plan-
ning, economic benefits, and infrastructure interactions.
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Table 19 Final ranking of
alternative addresses

Final Score S1 Score_Sa S2 Score_Pn S3 Score_Ec S4 Score_Cn
Address Score Address Score Address Score Address Score Address Score

A10 3.707 A10 1.222 A8 0.966 A10 0.875 A2 0.951

A2 3.575 A4 1.15 A6 0.904 A2 0.817 A10 0.951

A3 2.961 A2 1.074 A1 0.869 A5 0.759 A8 0.906

A4 2.918 A7 1.07 A4 0.839 A3 0.623 A3 0.735

A6 2.906 A9 1.006 A5 0.822 A6 0.584 A6 0.606

A8 2.883 A1 0.896 A9 0.804 A4 0.584 A5 0.519

A5 2.84 A3 0.816 A3 0.787 A8 0.525 A9 0.474

A9 2.575 A6 0.812 A2 0.733 A7 0.407 A4 0.345

A1 2.418 A5 0.74 A10 0.659 A1 0.35 A1 0.303

A7 2.283 A8 0.486 A7 0.69 A9 0.291 A7 0.216

Table 20 Weight and score of main standard S1 after adding and reducing 5%

Original weight of main criteria and global sub-criteria weight

Main standards S1:0.333 S2:0.276 S3:0.176 S4:0.215

Sub-criteria C11 C12 C13 C21 C22 C23 C24 C31 C32 C33 C41 C42

Global weights 0.148 0.11 0.076 0.095 0.078 0.045 0.057 0.058 0.04 0.077 0.129 0.087

Weight and score after adding 5% to main standard S1

Main standards S1:0.350 S2:0.269 S3:0.172 S4:0.210

Sub-criteria C11 C12 C13 C21 C22 C23 C24 C31 C32 C33 C41 C42

Global weights 0.156 0.114 0.080 0.093 0.076 0.044 0.056 0.057 0.039 0.075 0.125 0.085

Alternative sites A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Score 2.451 3.787 2.974 2.956 2.857 2.925 2.323 2.878 2.611 3.738

Weight and score after reduced 5% to main standard S1

Main standards S1:0.316 S2:0.283 S3:0.180 S4:0.220

Sub-criteria C11 C12 C13 C21 C22 C23 C24 C31 C32 C33 C41 C42

Global weights 0.1410.1030.0720.0980.0800.0460.0590.0600.0410.0790.1310.089

Alternative sitesA1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Score 2.4133.7712.9732.9032.8582.9202.2582.9192.5653.709

The ontology framework, in particular, facilitates the
structuring and analysis of selection criteria, thereby improv-
ing information exchange and reusability, which is an essen-
tial capability in disaster-prone urban areas where quick and
informed decision-making is crucial. The successful appli-
cation of this framework in Beijing illustrates its practical
utility in optimising UEES placement, contributing to the
development of more resilient urban emergency manage-
ment systems. This approach supports local governments in
effective disaster preparedness by providing a data-driven,
holistic decision-making tool. Moreover, by addressing the
inherent complexities of UEES site selection, this framework
also supports the digital transformation of urban emergency
management systems, paving the way for more responsive
and adaptive disaster management strategies.

8 Conclusion

This paper presented a novel approach that integrates the
FAHP with ontology-based modelling to enhance the selec-
tion of UEES. The FAHP method effectively addresses
inherent uncertainties and subjective elements in expert judg-
ments,whilst the ontology framework structures and captures
domain knowledge, enhancing information exchange and
reusability. Applied to a case study in Beijing, the approach
successfully evaluated potential shelter locations and identi-
fied the Shijingshan andHaidian districts as themost suitable
sites based on safety, economic benefits, and infrastructure
interactions. This research not only demonstrates the prac-
tical utility of the integrated decision-making model but
also contributes to the theoretical foundations for optimising
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Table 21 Weight and score of main standard S1 after adding and reducing 15%

Original weight of main criteria and global sub-criteria weight

Main standards S1:0.333 S2:0.276 S3:0.176 S4:0.215

Sub-criteria C11 C12 C13 C21 C22 C23 C24 C31 C32 C33 C41 C42

Global weights 0.148 0.11 0.076 0.095 0.078 0.045 0.057 0.058 0.04 0.077 0.129 0.087

Weight and score table after adding 15% to main standard S1

Main standards S1:0.383 S2:0.255 S3:0.163 S4:0.199

Sub-criteria C11 C12 C13 C21 C22 C23 C24 C31 C32 C33 C41 C42

Global weights 0.170 0.125 0.087 0.088 0.072 0.042 0.053 0.054 0.037 0.071 0.118 0.081

Alternative sites A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Score 2.440 3.738 2.921 2.955 2.796 2.872 2.350 2.776 2.609 3.704

Weight and score table after reduced 15% to main standard S1

Main standards S1:0.283 S2:0.297 S3:0.189 S4:0.231

Sub-criteria C11 C12 C13 C21 C22 C23 C24 C31 C32 C33 C41 C42

Global weights 0.126 0.093 0.065 0.103 0.084 0.049 0.062 0.063 0.044 0.083 0.138 0.094

Alternative sites A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Score 2.400 3.787 2.999 2.877 2.889 2.944 2.213 2.990 2.543 3.711

Table 22 Change of S1 weight
of main standard and ranking of
address

Final Score S1 Score_Sa S2 Score_Pn S3 Score_Ec S4 Score_Cn

Address Score Address Score Address Score Address Score Address Score

A10 3.707 A2 3.787 A2 3.771 A2 3.738 A2 3.787

A2 3.575 A10 3.738 A10 3.709 A10 3.704 A10 3.711

A3 2.961 A3 2.974 A3 2.973 A4 2.955 A3 2.999

A4 2.918 A4 2.956 A6 2.92 A3 2.921 A8 2.99

A6 2.906 A6 2.925 A8 2.919 A6 2.872 A6 2.944

A8 2.883 A8 2.878 A4 2.903 A5 2.796 A5 2.889

A5 2.84 A5 2.857 A5 2.858 A8 2.776 A4 2.877

A9 2.575 A9 2.611 A9 2.565 A9 2.609 A9 2.543

A1 2.418 A1 2.451 A1 2.413 A1 2.44 A1 2.4

A7 2.283 A7 2.323 A7 2.258 A7 2.35 A7 2.213

UEES site selection within urban emergency management
systems. The findings underscore the value of a holistic,
data-driven approach to urban disaster preparedness and the
potential for digital transformation in emergency manage-
ment.

Despite the promising results, the proposed approach has
several limitations. One limitation is the reliance on expert
judgments for criteriaweighting,which can introduce subjec-
tivity and bias. Exploring more objective weighting methods
or leveraging machine learning to enhance the robustness of
the decision-making process is important. Additionally, the
case study was conducted in a specific urban context (Bei-
jing), which may limit the generalizability of the findings
to other cities with different geographic, demographic, or

infrastructural characteristics. The complexity of the multi-
criteria decision-making model also presents challenges,
particularly in terms of computational requirements and data
availability. Furthermore, whilst the ontology framework
enhances the structuring and analysis of criteria, it may not
fully capture the dynamic and evolving nature of urban envi-
ronments, necessitating frequent updates and refinements.

Future research should concentrate on refining the com-
plexities inherent in multi-criteria decision-making, improv-
ing weighting procedures, and collecting more accurate
data to enhance the model’s accuracy. This could involve
the development of more advanced techniques for han-
dling uncertainty and subjectivity in expert judgments, as
well as the incorporation of real-time data to enhance the
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model’s responsiveness to changing conditions. Addition-
ally, expanding the scope of case studies to include diverse
urban contexts would improve the generalisability of the
findings and provide insights into the model’s adaptability
across different environments. Further exploration of both the
theoretical and empirical boundaries of FAHP is also recom-
mended, particularly in managing the complex and dynamic
relationship amongst site selection criteria. Finally, integrat-
ing this approach with other emerging technologies, such as
machine learning, could further enhance its applicability and
effectiveness in urban emergency management. By provid-
ing a data-driven, structured approach to decision-making,
this research contributes to the ongoing efforts to develop
smarter, more resilient cities, ultimately aiding local govern-
ments with tools for earthquake disaster prevention planning
and improving the overall safety and preparedness of urban
populations.
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