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Abstract  

In response to the escalating SARS-CoV-2 pandemic, in March 2020 the COVID-19 

Genomics UK (COG-UK) consortium was established to enable national-scale genomic 

surveillance in the United Kingdom. By the end of 2020, 49% of all SARS-CoV-2 genome 

sequences globally had been generated as part of the COG-UK programme and to date this 

system has generated more than 3 million SARS-CoV-2 genomes. Rapidly and reliably 

analysing this unprecedented number of genomes was an enormous challenge. To fulfil this 

need and to inform public health decision making, we developed a centralised pipeline that 

performs quality control, alignment and variant calling, and provides the global phylogenetic 

context of sequences. We present this pipeline and describe how we tailored it as the 

pandemic progressed to scale with the increasing amounts of data and to provide the most 

relevant analyses on a daily basis. 
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Introduction 

In the decade prior to 2020, viral genomic epidemiology emerged as a dynamic and rapidly 

evolving field. Phylogenetic analysis was used to infer the origins and diversity of HIV [1] 

and influenza A virus, including during the 2009 swine flu epidemic [2]. The decreasing cost 

of sequencing allowed it to be applied further to “large-scale” datasets to infer transmission 

dynamics and influence public health decisions, first during the 2013-2016 West African 

Ebola epidemic [3,4], and for each major epidemic since (Zika [5,6], MERS[7], Ebola in DRC 

[8]). Concurrently, visualisation tools like Nextstrain [9] had been developed to enable 

interactive tracking of viral evolution. When the SARS-CoV-2 pandemic started, a global 

sequencing effort provided an unprecedented opportunity to use genomic surveillance to 

inform the public health response. 

 

In March 2020, the COVID-19 Genomics UK (COG-UK) consortium was set up to provide a 

framework for national-scale, rapid whole-genome sequencing of SARS-CoV-2 within the 

UK in order to understand viral transmission and evolution and inform public health 

responses in real-time. This national partnership included the four UK Public Health 

Agencies, NHS organisations, regional sequencing centres and academic partners [10]. The 

data generation arm of the consortium operated as a decentralised network of labs, in both 

healthcare and academic settings, collecting and genome sequencing SARS-CoV-2 samples. 

The genome sequences and associated metadata were then submitted to a central platform, 

CLIMB-COVID [11], where it was collected into a single canonical dataset. 

A genome sequence without appropriate associated metadata is of limited use, so we quickly 

established a minimal metadata standard that could contextualise genomes in time and space. 

This minimum standard facilitated informative analysis of the data whilst limiting the 

burden of participation. It required a collection date, or the date a sample was received by a 

lab, country and county level geographic information (administration levels 1 and 2 in the 

UK) and a record of whether the sample was collected as part of a random surveillance 

strategy or a targeted outbreak analysis. Additional metadata fields could be supplied and, in 

practice, this has resulted in a rich and detailed dataset with a consistency of useful 

information that has been invaluable to consortium members across the UK. This level of 

private metadata sharing was only possible within a controlled UK-based shared computing 

environment. 

To interpret any new genome sequence it needs to be compared to and contextualised within 

the recent local and global diversity, most commonly in the form of a phylogenetic tree. 

Most phylogenetic methods were not developed with this unprecedented amount of data in 

mind and require large computational resources that scale poorly with increasing numbers of 

sequences. To overcome this, we needed to  develop an analysis pipeline that processed this 

dataset centrally on a daily basis, performing alignment and variant calling, and amalgamated 
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the COG-UK data with publicly available global sequences to provide the phylogenetic 

context. Outputs of this pipeline were made available within the consortium and provided 

interpretable results for both local NHS health protection teams and the UK public health 

agencies. They were consumed by public data explorers including COG-UK-ME [12], 

Microreact [13] and the UCSC Genome Browser phylogenetic tree [14] and provided the 

basis of individual local outbreak investigations using CIVET [15]. 

Results 

The analysis pipeline that supported the UK efforts is divided into two workflows (Datapipe 

and Phylopipe, Figure 1) written in the nextflow [18] workflow language. Datapipe 

(https://github.com/COG-UK/datapipe) performs alignment and variant calling, and 

Phylopipe (https://github.com/virus-evolution/phylopipe) constructs the phylogenetic tree. 

These replace the original single snakemake [19] pipeline, grapevine 

(https://github.com/COG-UK/grapevine), which performed both workflows until February 

2021. A high level overview of each pipeline is provided here along with the design 

decisions, with further details provided in the Supplementary Materials. 

Datapipe 

This consumes the FASTA and metadata TSV file(s) generated by the ELAN pipeline 

(https://github.com/SamStudio8/elan-nextflow/) and runs variant calling and alignment. First 

we clean non-nucleotide symbols from sequences and reformat metadata.New samples are 

assigned a Pango lineage with pangolin [20], with all samples reassigned if the underlying 

model has been updated.. Sequences are deduplicated if they correspond to the same 

biological isolate and background/global sequences with the same sample_name are 

deduplicated by date. 

A trimmed FASTA alignment is generated using minimap v2.17 [21] to pairwise align each 

sequence to Wuhan-Hu-1 (GenBank: MN908947.3; 

https://www.ncbi.nlm.nih.gov/nuccore/MN908947) and gofasta [22] to combine and mask 5’ 

and 3’ ends. Insertions relative to the reference are discarded. All nucleotide mutations, 

insertions and deletions with respect to the reference are noted in the metadata. Sequences 

that consist of more than 5% unknown sites (‘N’) per genome after mapping are discarded. 

Geographical metadata is cleaned (https://github.com/COG-UK/geography_cleaning) and the 

UK dataset is combined with all non-UK sequences from GISAID [23], which we process 

similarly on a weekly basis.  

Finally, subsets of the metadata and alignment files are published using a configuration 

JSON. This includes outputs with sensitive data removed that can be made available to the 

public via the consortium website and s3 buckets (https://www.cogconsortium.uk/), as well 
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as specific subsets which are consumed by data explorers including the COG-UK Mutation 

Explorer [12], and CIVET [15].   

Design decisions 

Pango data releases were regular for most of the pandemic and often resulted in the most 

recent sequences being re-classified as new lineages were defined. For this reason we added a 

step to the pipeline to check if a new version had been released, in which case we would re-

classify all sequences. 

 

The very first implementations of the pipeline used Multiple Sequence Alignment, however 

this approach scales quadratically with the number of sequences and a pairwise approach 

using gofasta was necessary from very early in 2020. The alignment was trimmed with the 5’ 

and 3’ ends masked with N’s as these regions were typically more error prone. 

 

Whilst outputs were initially hardcoded, we later started generating outputs using a JSON 

“recipe” file. This allowed different subsets of the sequences and metadata to be defined 

easily as the downstream requirements for analysis changed over time. 

Phylopipe 

This consumes the FASTA and metadata CSV file(s) generated by the datapipe pipeline and 

either constructs a phylogenetic tree using FastTree [16], or adds to an existing tree with 

UShER [17].  

First, globally problematic sites (flagged homoplasic sites, sites with mutations arising 

multiple times across the canonical global phylogeny, and nanopore adaptor sites) are 

masked in the combined (UK and global) alignment, and sequences with too many 

ambiguous bases are excluded. 

 

To construct a new phylogenetic tree, non-unique sequences are hashed to a single 

representative. Optionally sequences are further reduced by heavy downsampling by date 

and lineage diversity. The reduced alignment is split based on Pango lineage assignment into 

6 large distinct sub-lineages and sub-trees are built independently for each using the Jukes-

Cantor model [24] in FastTree [16] v2.1.10 (double precision). The resulting sub-trees are 

rooted and grafted together by attaching the root of incoming trees to the same taxon’s tip in 

the parent tree, and non-unique sequences are inserted alongside their representative. 

Branch lengths less than 5E-6, which represent distances smaller than one SNP and result 

from ambiguities between sequences, are collapsed to 0.  
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UShER [17] is used to update this tree with additional sequences using maximum parsimony. 

Branches with more than 30 private mutations are pruned from the tree as artifactual, 

branch lengths rescaled and the tree rerooted on Wuhan/WH04/2020. 

 

The tips of the full tree are annotated with binary UK/non-UK trait information, and fine 

scale uk_linages representing independent UK introductions from other countries.    

 

The resulting annotated tree and metadata are disseminated to the consortium. Again specific 

outputs are published using a configuration JSON, including those for Microreact [13]. 

Design decisions 

As full tree construction typically scales worse than quadratically with the number of 

sequences, we implemented several steps to try and reduce the number of sequences 

considered by a tree-building algorithm. In the first case we hashed non-unique sequences, 

including only a single representative sequence type during the tree building step. These 

sequences were then inserted alongside their representative in the resulting tree. This 

approach is mirrored internally by some tree building methods such as FastTree but not all. 

Secondly we partitioned the sequences into groups based on their Pango lineage assignment, 

which we expected to represent well defined subtrees with a clear outgroup. When these 

groups are relatively evenly sized, this approach effectively divides the expected total time to 

construct the tree by the number of groups, with a much greater time saving if the subtrees 

are then constructed in parallel instead of consecutively. Finally, updating the tree with 

UShER allows only new sequences to be added in approximately linear time.  

 

In addition to defining UK introductions, the subtree for each UK lineage was annotated 

with phylotypes by codifying the internal nodes of the tree, effectively representing 

parent/child/sibling phylogenetic relationships in metadata. This proved hugely beneficial to 

public health agencies as it enabled interpretation of phylogenetic relationships in a format 

which could be represented on reports and without requiring tree visualisation software or 

interpretation.  

Discussion 

Scaling with the pandemic 

The pipelines described above have had to evolve considerably as the pandemic has 

progressed both in order to stay relevant to the questions being investigated by public health 

bodies, and in order to continue to scale with exponentially growing levels of data. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/advance-article/doi/10.1093/ve/veae083/7824573 by guest on 28 O

ctober 2024



 

 
 

 

 

 
  

A relevant resource 

In the early phase of the pandemic, key questions on a national and local health level focused 

on quantifying the number of introductions into an area and assessing subsequent spread 

(e.g. [25–27]). At this time, the pipeline automatically generated weekly reports that 

summarised the latest data at the national (UK-wide) level, within each of the four 

constituent countries of the UK (Wales, Scotland, Northern Ireland and England), and at a 

further regional level corresponding to several of the COG-UK sequencing partners. These 

reports included case counts of individual lineages as well as estimates of the numbers of new 

introductions and subsequent spread based on uk_lineage information. As cases rose the 

outputs fed into the COG-UK coverage maps used by government and as more bespoke 

investigative reports were in demand, we added specific pipeline outputs to support local 

report generation using CIVET [15], in addition to those that already existed to support 

Microreact [13].  

 

Following the first lockdown and as the initial variants of concern (VOCs)  emerged, the 

focus of investigations shifted to mutations, lineages and constellations for VOC and variants 

under investigation (VUI), rather than the previous focus on introductions. Relevant steps 

were added into the pipeline to type them and these classifications were fed into the COG-

UK Mutation Explorer [12] and GRINCH [28].  

Timely results 

The initial pipeline grapevine (https://github.com/COG-UK/grapevine) was written in 

snakemake [19]. By January 2021, it became clear that the phylogenetics steps of the pipeline 

were becoming prohibitively slow. To enable the continued rapid dissemination of sequence 

data to the consortium, the pipeline was separated into a data processing pipeline 

https://github.com/COG-UK/datapipe which rapidly performed the initial alignment, variant 

calling and lineage assignment steps, and a phylogenetics pipeline https://github.com/cov-

ert/phylopipe which consumed the output of the data processing pipeline and performed the 

tree building and post-processing steps. This allowed the data processing pipeline to run 

reliably every day, while the phylogenetics pipeline was allowed to run less frequently.  

 

During this rewrite, we moved from using Snakemake workflow language to Nextflow. This 

was motivated by the observation that the Nextflow workflow manager seemed better able 

to handle issues arising on the SLURM [29] computing cluster resource manager due to the 

large resource requirements, for example when a node became unresponsive. 

Scaling phylogenetic methods 

The phylogenetic tree construction steps have also had to adapt considerably with the 

growth of global data. Initially we used IQTREE to estimate the global phylogeny [30,31]. 

Then, for speed we introduced a process of assigning sequences to three distinct lineages A, B 
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or B.1, estimating these trees independently with IQTREE, and subsequently grafting 

together these subtrees to form our global tree. By June 2020, after a series of benchmarking 

experiments, we adopted FastTree [16] as the inference engine for parsimony-based tree 

reconstruction and this method was sufficient for our needs for the rest of 2020, with new 

subtrees (representing emerging sub-lineages such as B.1.1) added when appropriate.  

 

By January 2021, with the advent of variants of concern leading to a global surge in SARS-

CoV-2 genome sequence generation, the pipeline was again struggling to complete regularly 

and it was not possible to parallelize further with new subtree splits. As a result, in February 

we began downsampling the data before tree-building. We initially subset to the previous 6 

months, but as scaling continued to be a problem this was further restricted to 5 months, 

then 100 days, and finally to 30 days plus background data. Even with this heavy 

downsampling, construction of the split-grafted tree using FastTree at this time took more 

than 2 days, meaning an interim solution would be needed for “real-time” analysis. As such, 

we introduced daily tree updates with UShER [17], with less frequent tree rebuilds as and 

when the daily tree became unwieldy or gained errors.  

Surprising bottlenecks 

Because of the sheer scale of numbers of genome sequences, every aspect of the pipeline has 

been evaluated for both time and memory efficiencies. Simple processes such as reading and 

manipulating FASTA and metadata CSV files became significant bottlenecks because of how 

large these files had become. We found that the highly optimised pandas [32] dataframe 

library required too much memory and had to replace it with a custom metadata reader 

module based on the DictReader class from the python csv module. This custom suite of 

utility functions    (https://github.com/cov-ert/fastafunk) instead streamed the metadata file 

twice and used set manipulation in order to hold minimal data in memory.  

 

During the rewrite from grapevine to datapipe and phylopipe, we moved from a system 

where rows/sequences filtered at each stage were removed from the relevant files to one 

where the metadata table remained complete, with a column tracing why any given 

sequence had been eliminated from output FASTA. While there would have been 

performance gains from reducing metadata size, in practice, this method can easily log 

information for members of the consortium to know exactly why their sequences were 

missing from final metadata tables without becoming a time consuming tracing exercise for 

the pipeline maintainers. 

Recommendations for next time 

There are a number of design choices we would recommend for a centralised analysis 

pipeline in a future outbreak scenario. Firstly, genomic epidemiological analysis depends 

heavily on being able to index between genome sequence data and metadata: filtering to a 
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subset of sequences, applying some analysis and updating the metadata table with the results. 

We recommend working from the start either with a custom database, or with the most 

lightweight, optimised and well tested software libraries available. Secondly, we recommend 

using restricted metadata fields wherever possible (rather than free text) in order to remove 

an ongoing burden of maintenance. We also recommend that the first step in the pipeline is 

to check and clean sequences, sequence headers and metadata, including for non-unicode 

characters. Thirdly, we recommend building in sample traceability from the start, so that it is 

easy to identify why a given sample may not have been retained to the final analysis steps. 

Finally, the success of this pipeline was in our ability to adapt it to the most pressing analysis 

questions. We recommend designing code to be as clean and modular as possible, so that less 

relevant analysis steps can be removed and more relevant ones added over time, whilst 

retaining a consistency of output for downstream tools.   

The impact of centralised phylogenetic analysis 

The UK was one of the earliest countries to adopt a national genomic surveillance program 

for SARS-CoV-2 [10]. After the emergence of the Alpha variant, many more countries began 

to use genomics for surveillance. Many surveillance approaches make use of Nextstrain [9] 

builds, however these are heavily downsampled and only include a small subset of the data. 

Early in 2020, the sarscov2phylo public tree [33] or later the daily updated UCSC tree [14] 

provided a full global phylogeny of public data. However the early and extensive genomic 

sequencing within the UK, the detailed private metadata collected with governance to be 

shared within the distributed network of data users, and a requirement for numerous custom 

downstream analyses based on the full global phylogeny, all contributed to the requirement 

for a local pipeline. 

     

The real power of performing these analyses centrally was that all members of the 

consortium were able to access detailed analysis and relevant information about their 

submitted data without extensive bioinformatics knowledge or the requirement for large 

computational resources to build a phylogenetic tree.  

 

At the government level, simple representations of the data including the number of lineages 

over time fed national dashboards. COG-UK reports also fed into SAGE meetings. At the 

Public Health Agency level, unpublished summaries formed the basis of national surveillance 

projects and informed response (e.g. [34]). At the local or regional hospital level, the outputs 

enabled investigations of hospital onset SARS-CoV-2 infections [35] such as with the CIVET 

tool [15] informing outbreak management, and wider infection prevention and control 

measures. This tool directly accessed the output of initially grapevine, and later datapipe and 

phylopipe. Some of the resolution within these reports came from the uk_lineage and 

phylotype metadata fields. These provided a fine-scale text representation of the 
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phylogenetic relationships between samples in the uk and global tree which could be 

interpreted without specialist tree viewing software or bioinformatics expertise.  

 

More generally, outputs from this centralised analysis pipeline were used in analyses to 

reveal the multiple introductions of SARS-CoV-2 from mainland Europe into Scotland in 

2020 [26], and to show that Alpha variant was associated with increased clinical severity 

[36]. They were used to identify and verify early recombinant genomes [37] and to test 

lineage frequencies from wastewater surveillance sequencing by comparison with 

conventional surveillance sequencing in the same geographic location [38]. The phylogenetic 

trees were used to provide routine early tracking of emerging variants [39], investigate how 

genetic drift changes over time [40], and investigate the impact of viral mutations on 

recognition by T cells [41]. They also provided the means to select a targeted downsample for 

more in depth analyses, such as into the emergence and growth of the SARS-CoV-2 Delta 

variant in the UK [42]. 

 

Finally at a public level, data explorers such as COG-UK-ME [12], Microreact [13], GRINCH 

[28] and the UCSC Genome Browser phylogenetic tree [14] were able to ingest pipeline 

outputs and allow exploration of the vast data resource more widely. As a result, the outputs 

of this pipeline have fed into many applications and impacted analyses both within the UK 

and globally.  
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