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Abstract 

In response to the escalating SARS-CoV-2 pandemic, in March 2020 the COVID-19 Genomics UK (COG-UK) consortium was established 
to enable national-scale genomic surveillance in the UK. By the end of 2020, 49% of all SARS-CoV-2 genome sequences globally had 
been generated as part of the COG-UK programme, and to date, this system has generated >3 million SARS-CoV-2 genomes. Rapidly 
and reliably analysing this unprecedented number of genomes was an enormous challenge. To fulfil this need and to inform public 
health decision-making, we developed a centralized pipeline that performs quality control, alignment, and variant calling and provides 
the global phylogenetic context of sequences. We present this pipeline and describe how we tailored it as the pandemic progressed to 
scale with the increasing amounts of data and to provide the most relevant analyses on a daily basis.
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Introduction
In the decade prior to 2020, viral genomic epidemiology emerged 
as a dynamic and rapidly evolving field. Phylogenetic analysis was 
used to infer the origins and diversity of HIV (Sharp and Hahn 
2011) and influenza A virus, including during the 2009 swine flu 
epidemic (Smith et al. 2009). The decreasing cost of sequencing 
allowed it to be applied further to ‘large-scale’ datasets to infer 
transmission dynamics and influence public health decisions, first 
during the 2013–16 West African Ebola epidemic (Gire et al. 2014, 
Mate et al. 2015), and for each major epidemic since [Zika (Faria 
et al. 2017, Grubaugh et al. 2017), Middle East respiratory syn-
drome (Sabir et al. 2016), and Ebola in DRC (Kinganda-Lusamaki 
et al. 2021)]. Concurrently, visualization tools like Nextstrain (Had-
field et al. 2018) had been developed to enable interactive tracking 
of viral evolution. When the SARS-CoV-2 pandemic started, a 
global sequencing effort provided an unprecedented opportunity 
to use genomic surveillance to inform the public health response.

In March 2020, the COVID-19 Genomics UK (COG-UK) consor-
tium was set up to provide a framework for national-scale, rapid 

whole-genome sequencing of SARS-CoV-2 within the UK in order 
to understand viral transmission and evolution and inform public 

health responses in real-time. This national partnership included 

the four UK Public Health Agencies, National Health Service (NHS) 

organizations, regional sequencing centres, and academic part-

ners (COVID 2020). The data generation arm of the consortium 

operated as a decentralized network of labs, in both healthcare 

and academic settings, collecting and genome sequencing SARS-

CoV-2 samples. The genome sequences and associated meta-
data were then submitted to a central platform, CLIMB-COVID 

(Nicholls et al. 2021), where it was collected into a single canonical

dataset.
A genome sequence without appropriate associated metadata 

is of limited use, so we quickly established a minimal metadata 
standard that could contextualize genomes in time and space. 
This minimum standard facilitated informative analysis of the 
data while limiting the burden of participation. It required a col-
lection date, or the date a sample was received by a lab, country- 
and county-level geographic information (administration levels 1 
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and 2 in the UK), and a record of whether the sample was col-
lected as part of a random surveillance strategy or a targeted 
outbreak analysis. Additional metadata fields could be supplied 
and, in practice, this has resulted in a rich and detailed dataset 
with a consistency of useful information that has been invalu-
able to consortium members across the UK. This level of private 
metadata sharing was only possible within a controlled UK-based 
shared computing environment.

To interpret any new genome sequence, it needs to be com-
pared to and contextualized within the recent local and global 
diversity, most commonly in the form of a phylogenetic tree. 
Most phylogenetic methods were not developed with this unprece-
dented amount of data in mind and require large computational 
resources that scale poorly with increasing numbers of sequences. 
To overcome this, we needed to develop an analysis pipeline that 
processed this dataset centrally on a daily basis, performing align-
ment and variant calling, and amalgamated the COG-UK data 
with publicly available global sequences to provide the phyloge-
netic context. Outputs of this pipeline were made available within 
the consortium and provided interpretable results for both local 
NHS health protection teams and the UK public health agencies. 
They were consumed by public data explorers, including COG-UK-
ME (Wright et al. 2022), Microreact (Argimón et al. 2016), and the 
UCSC Genome Browser phylogenetic tree (McBroome et al. 2021), 
and provided the basis of individual local outbreak investigations 
using CIVET (O’Toole et al. 2022).

Results
The analysis pipeline that supported the UK efforts is divided 
into two workflows (‘Datapipe’ and ‘Phylopipe’, Fig. 1) writ-
ten in the nextflow (Di Tommaso et al. 2017) workflow lan-
guage. Datapipe (https://github.com/COG-UK/datapipe) performs 
alignment and variant calling, and Phylopipe (https://github.
com/virus-evolution/phylopipe) constructs the phylogenetic tree. 
These replace the original single snakemake (Mölder et al. 
2021) pipeline, grapevine (https://github.com/COG-UK/grapevine), 
which performed both workflows until February 2021. A high-level 
overview of each pipeline is provided here along with the design 
decisions, with further details provided in the Supplementary 
material.

Datapipe
This consumes the FASTA and metadata TSV file(s) gener-
ated by the ELAN pipeline (https://github.com/SamStudio8/elan-
nextflow/) and runs variant calling and alignment. First, we clean 
non-nucleotide symbols from sequences and reformat metadata. 
New samples are assigned a Pango lineage with pangolin (O’Toole 
et al. 2021b), with all samples reassigned if the underlying model 
has been updated. Sequences are deduplicated if they correspond 
to the same biological isolate and background/global sequences 
with the same sample_name are deduplicated by date.

A trimmed FASTA alignment is generated using minimap 
v2.17 (Li 2018) to pairwise align each sequence to Wuhan-Hu-
1 (GenBank: MN908947.3; https://www.ncbi.nlm.nih.gov/nuccore/
MN908947) and gofasta (Jackson 2022) to combine and mask 5′

and 3′ ends. Insertions relative to the reference are discarded. All 
nucleotide mutations, insertions, and deletions with respect to the 
reference are noted in the metadata. Sequences that consist of 
>5% unknown sites (‘N’) per genome after mapping are discarded. 
Geographical metadata is cleaned (https://github.com/COG-UK/
geography_cleaning) and the UK dataset is combined with all 
non-UK sequences from Global Initiative on Sharing All Influenza 

Data (GISAID) (Elbe and Buckland-Merrett 2017), which we process 
similarly on a weekly basis.

Finally, subsets of the metadata and alignment files are pub-
lished using a configuration JSON. This includes outputs with 
sensitive data removed that can be made available to the pub-
lic via the consortium website and s3 buckets (https://www.
cogconsortium.uk/), as well as specific subsets that are con-
sumed by data explorers including the COG-UK Mutation Explorer 
(Wright et al. 2022) and CIVET (O’Toole et al. 2022).

Design decisions
Pango data releases were regular for most of the pandemic and 
often resulted in the most recent sequences being reclassified as 
new lineages were defined. For this reason, we added a step to the 
pipeline to check if a new version had been released, in which case 
we would reclassify all sequences.

The very first implementations of the pipeline used Multiple 
Sequence Alignment; however, this approach scales quadratically 
with the number of sequences and a pairwise approach using 
gofasta was necessary from very early in 2020. The alignment was 
trimmed with the 5′ and 3′ ends masked with N’s as these regions 
were typically more error prone.

While outputs were initially hardcoded, we later started gen-
erating outputs using a JSON ‘recipe’ file. This allowed different 
subsets of the sequences and metadata to be defined easily as the 
downstream requirements for analysis changed over time.

Phylopipe
This consumes the FASTA and metadata CSV file(s) generated by 
the datapipe pipeline and either constructs a phylogenetic tree 
using FastTree (Price et al. 2010) or adds to an existing tree with 
UShER (Turakhia et al. 2021).

First, globally problematic sites (flagged homoplasic sites, sites 
with mutations arising multiple times across the canonical global 
phylogeny, and nanopore adaptor sites) are masked in the com-
bined (UK and global) alignment, and sequences with too many 
ambiguous bases are excluded.

To construct a new phylogenetic tree, nonunique sequences 
are hashed to a single representative. Optionally sequences are 
further reduced by heavy downsampling by date and lineage 
diversity. The reduced alignment is split based on Pango lineage 
assignment into six large distinct sublineages and subtrees are 
built independently for each using the Jukes–Cantor model (Jukes 
and Cantor 1969) in FastTree (Price et al. 2010) v2.1.10 (double pre-
cision). The resulting subtrees are rooted and grafted together by 
attaching the root of incoming trees to the same taxon’s tip in the 
parent tree, and nonunique sequences are inserted alongside their 
representative. Branch lengths less than 5E-6, which represent dis-
tances smaller than one SNP and result from ambiguities between 
sequences, are collapsed to 0.

UShER (Turakhia et al. 2021) is used to update this tree 
with additional sequences using maximum parsimony. Branches 
with >30 private mutations are pruned from the tree as artefac-
tual, branch lengths are rescaled, and the tree is rerooted on 
Wuhan/WH04/2020.

The tips of the full tree are annotated with binary UK/non-UK 
trait information and fine scale uk_linages representing indepen-
dent UK introductions from other countries.

The resulting annotated tree and metadata are disseminated 
to the consortium. Again specific outputs are published using a 
configuration JSON, including those for Microreact (Argimón et al. 
2016).
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Figure 1. An overview of the analysis pipeline, split into two workflows represented by Datapipe and Phylopipe. Blue boxes represent the main outputs, 
with specific subsets and combinations of these files published on CLIMB-COVID. Datapipe accepts incoming FASTA and metadata TSV files generated 
by the ELAN pipeline (Nicholls et al. 2021) and performs initial QC of sequences and metadata, lineage assignment, alignment and variant calling, 
deduplication, filtering and geography cleaning. It combines the dataset with sequences from GISAID which have been processed similarly. Phylopipe 
consumes datapipe output and either constructs a new phylogenetic tree by grafting together subtrees constructed with FastTree (Price et al. 2010), or 
adds to an existing tree with UShER (Turakhia et al. 2021). The resulting newick tree is annotated, and phylogenetic summary information is inferred 
including uk_lineages and phylotypes.  

Design decisions
As full tree construction typically scales worse than quadrati-
cally with the number of sequences, we implemented several 
steps to try and reduce the number of sequences considered by 
a tree-building algorithm. In the first case, we hashed nonunique 
sequences, including only a single representative sequence type 
during the tree-building step. These sequences were then inserted 
alongside their representative in the resulting tree. This approach 
is mirrored internally by some tree-building methods such as 
FastTree but not all. Secondly, we partitioned the sequences 
into groups based on their Pango lineage assignment, which 
we expected to represent well-defined subtrees with a clear 
out-group. When these groups are relatively evenly sized, this 
approach effectively divides the expected total time to construct 
the tree by the number of groups, with a much greater time saving 
if the subtrees are then constructed in parallel instead of con-
secutively. Finally, updating the tree with UShER allows only new 
sequences to be added in approximately linear time.

In addition to defining UK introductions, the subtree for each 
UK lineage was annotated with phylotypes by codifying the inter-
nal nodes of the tree, effectively representing parent/child/sib-
ling phylogenetic relationships in metadata. This proved hugely 
beneficial to public health agencies as it enabled interpretation 
of phylogenetic relationships in a format that could be repre-
sented on reports without requiring tree visualization software or 
interpretation.

Discussion
Scaling with the pandemic
The pipelines described earlier have had to evolve considerably as 
the pandemic has progressed both in order to stay relevant to the 
questions being investigated by public health bodies and in order 
to continue to scale with exponentially growing levels of data.

A relevant resource
In the early phase of the pandemic, key questions on a national 
and local health level focused on quantifying the number of intro-
ductions into an area and assessing subsequent spread (Da Silva 
Filipe et al. 2020, Du Plessis L et al. 2021, Lycett et al. 2021). At this 
time, the pipeline automatically generated weekly reports that 
summarized the latest data at the national (UK-wide) level, within 
each of the four constituent countries of the UK (Wales, Scot-
land, Northern Ireland, and England), and at a further regional 
level corresponding to several of the COG-UK sequencing part-
ners. These reports included case counts of individual lineages 
and estimates of the numbers of new introductions and subse-
quent spread based on uk_lineage information. As cases rose the 
outputs fed into the COG-UK coverage maps used by government 
and as more bespoke investigative reports were in demand, we 
added specific pipeline outputs to support local report generation 
using CIVET (O’Toole et al. 2022), in addition to those that already 
existed to support Microreact (Argimón et al. 2016).
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Following the first lockdown and as the initial variants of con-
cern (VOCs) emerged, the focus of investigations shifted to muta-
tions, lineages, and constellations for VOCs and variants under 
investigation, rather than the previous focus on introductions. 
Relevant steps were added into the pipeline to type them and 
these classifications were fed into the COG-UK Mutation Explorer 
(Wright et al. 2022) and GRINCH (O’Toole et al. 2021a).

Timely results
The initial pipeline grapevine (https://github.com/COG-UK/grape
vine) was written in Snakemake (Mölder et al. 2021). By January 
2021, it became clear that the phylogenetics steps of the pipeline 
were becoming prohibitively slow. To enable the continued rapid 
dissemination of sequence data to the consortium, the pipeline 
was separated into a data processing pipeline (https://github.com/
COG-UK/datapipe), which rapidly performed the initial alignment, 
variant calling, and lineage assignment steps, and a phylogenetics 
pipeline (https://github.com/cov-ert/phylopipe), which consumed 
the output of the data processing pipeline and performed the tree 
building and post-processing steps. This allowed the data pro-
cessing pipeline to run reliably every day, while the phylogenetics 
pipeline was allowed to run less frequently.

During this rewrite, we moved from using Snakemake work-
flow language to Nextflow. This was motivated by the observation 
that the Nextflow workflow manager seemed better able to handle 
issues arising on the SLURM (Jette and Wickberg 2023) computing 
cluster resource manager due to the large resource requirements, 
for example when a node became unresponsive.

Scaling phylogenetic methods
The phylogenetic tree construction steps have also had to adapt 
considerably with the growth of global data. Initially, we used IQ-
TREE to estimate the global phylogeny (Nguyen et al. 2015, Minh 
et al. 2020). Then, for speed we introduced a process of assign-
ing sequences to three distinct lineages A, B, or B.1, estimating 
these trees independently with IQ-TREE and subsequently graft-
ing together these subtrees to form our global tree. By June 2020, 
after a series of benchmarking experiments, we adopted FastTree 
(Price et al. 2010) as the inference engine for parsimony-based 
tree reconstruction and this method was sufficient for our needs 
for the rest of 2020, with new subtrees (representing emerging 
sublineages such as B.1.1) added when appropriate.

By January 2021, with the advent of VOCs leading to a global 
surge in SARS-CoV-2 genome sequence generation, the pipeline 
was again struggling to complete regularly and it was not possi-
ble to parallelize further with new subtree splits. As a result, in 
February we began downsampling the data before tree-building. 
We initially subset to the previous 6 months, but as scaling con-
tinued to be a problem, this was further restricted to 5 months, 
then 100 days, and finally to 30 days plus background data. Even 
with this heavy downsampling, construction of the split-grafted 
tree using FastTree at this time took >2 days, meaning an interim 
solution would be needed for ‘real-time’ analysis. As such, we 
introduced daily tree updates with UShER (Turakhia et al. 2021), 
with less frequent tree rebuilds as and when the daily tree became 
unwieldy or gained errors.

Surprising bottlenecks
Because of the sheer scale of numbers of genome sequences, every 
aspect of the pipeline has been evaluated for both time and mem-
ory efficiencies. Simple processes such as reading and manipulat-
ing FASTA and metadata CSV files became significant bottlenecks 

because of how large these files had become. We found that 
the highly optimized pandas (McKinney 2010) dataframe library 
required too much memory and had to replace it with a custom 
metadata reader module based on the DictReader class from the 
python csv module. This custom suite of utility functions (https://
github.com/cov-ert/fastafunk) instead streamed the metadata file 
twice and used set manipulation in order to hold minimal data in 
memory.

During the rewrite from grapevine to datapipe and phylopipe, 
we moved from a system where rows/sequences filtered at each 
stage were removed from the relevant files to one where the meta-
data table remained complete, with a column tracing why any 
given sequence had been eliminated from output FASTA. While 
there would have been performance gains from reducing meta-
data size, in practice, this method can easily log information for 
members of the consortium to know exactly why their sequences 
were missing from final metadata tables without becoming a 
time-consuming tracing exercise for the pipeline maintainers.

Recommendations for next time
There are a number of design choices we would recommend for a 
centralized analysis pipeline in a future outbreak scenario. First, 
genomic epidemiological analysis depends heavily on being able 
to index between genome sequence data and metadata: filtering 
to a subset of sequences, applying some analysis, and updating the 
metadata table with the results. We recommend working from the 
start either with a custom database or with the most lightweight, 
optimized, and well-tested software libraries available. Secondly, 
we recommend using restricted metadata fields wherever possi-
ble (rather than free text) in order to remove an ongoing burden 
of maintenance. We also recommend that the first step in the 
pipeline is to check and clean sequences, sequence headers, and 
metadata, including nonunicode characters. Thirdly, we recom-
mend building in sample traceability from the start so that it is 
easy to identify why a given sample may not have been retained in 
the final analysis steps. Finally, the success of this pipeline was in 
our ability to adapt it to the most pressing analysis questions. We 
recommend designing code to be as clean and modular as possible 
so that less relevant analysis steps can be removed and more rele-
vant ones added over time while retaining a consistency of output 
for downstream tools.

The impact of centralized phylogenetic analysis
The UK was one of the earliest countries to adopt a national 
genomic surveillance programme for SARS-CoV-2 (COVID 2020). 
After the emergence of the Alpha variant, many more coun-
tries began to use genomics for surveillance. Many surveillance 
approaches make use of Nextstrain (Hadfield et al. 2018) builds; 
however, these are heavily downsampled and only include a small 
subset of the data. Early in 2020, the sarscov2phylo public tree 
(Mansfield 2020) or later the daily updated UCSC tree (McBroome 
et al. 2021) provided a full global phylogeny of public data. How-
ever, the early and extensive genomic sequencing within the UK, 
the detailed private metadata collected with governance to be 
shared within the distributed network of data users, and a require-
ment for numerous custom downstream analyses based on the 
full global phylogeny, all contributed to the requirement for a local 
pipeline.

The real power of performing these analyses centrally was that 
all members of the consortium were able to access detailed anal-
ysis and relevant information about their submitted data without 
extensive bioinformatics knowledge or the requirement for large 
computational resources to build a phylogenetic tree.
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At the government level, simple representations of the data 
including the number of lineages over time fed national dash-
boards. COG-UK reports also fed into SAGE meetings. At the Public 
Health Agency level, unpublished summaries formed the basis of 
national surveillance projects and informed responses (COG-UK). 
At the local or regional hospital level, the outputs enabled inves-
tigations of hospital-onset SARS-CoV-2 infections (Stirrup et al. 
2021) such as with the CIVET tool (O’Toole et al. 2022) inform-
ing outbreak management and wider infection prevention and 
control measures. This tool directly accessed the output of ini-
tially grapevine and later datapipe and phylopipe. Some of the 
resolutions within these reports came from the uk_lineage and 
phylotype metadata fields. These provided a fine-scale text rep-
resentation of the phylogenetic relationships between samples 
in the UK and global tree, which could be interpreted without 
specialist tree viewing software or bioinformatics expertise.

More generally, outputs from this centralized analysis pipeline 
were used in analyses to reveal the multiple introductions of 
SARS-CoV-2 from mainland Europe into Scotland in 2020 (Da Silva 
Filipe et al. 2020) and to show that the Alpha variant was asso-
ciated with increased clinical severity (Pascall et al. 2023). They 
were used to identify and verify early recombinant genomes (Jack-
son et al. 2021) and to test lineage frequencies from wastewater 
surveillance sequencing by comparison with conventional surveil-
lance sequencing in the same geographic location (Brunner et al. 
2023). The phylogenetic trees were used to provide routine early 
tracking of emerging variants (Drake et al. 2024), investigate how 
genetic drift changes over time (Yu et al. 2024), and investigate the 
impact of viral mutations on recognition by T cells (De Silva et al. 
2021). They also provided the means to select a targeted down-
sample for more in-depth analyses, such as into the emergence 
and growth of the SARS-CoV-2 Delta variant in the UK (McCrone 
et al. 2022).

Finally, at a public level, data explorers such as COG-UK-ME 
(Wright et al. 2022), Microreact (Argimón et al. 2016), GRINCH 
(O’Toole et al. 2021a), and the UCSC Genome Browser phylogenetic 
tree (McBroome et al. 2021) were able to ingest pipeline outputs 
and allow exploration of the vast data resource more widely. As a 
result, the outputs of this pipeline have fed into many applications 
and impacted analyses both within the UK and globally.
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