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Summary
Background Genome-wide association studies (GWAS) have revealed many brain disorder-associated SNPs residing
in the noncoding genome, rendering it a challenge to decipher the underlying pathogenic mechanisms.

Methods Here, we present an unsupervised Bayesian framework to identify disease-associated genes by integrating
risk SNPs with long-range chromatin interactions (iGOAT), including SNP-SNP interactions extracted from
∼500,000 patients and controls from the UK Biobank, and enhancer–promoter interactions derived from multiple
brain cell types at different developmental stages.

Findings The application of iGOAT to three psychiatric disorders and three neurodegenerative/neurological diseases
predicted sets of high-risk (HRGs) and low-risk (LRGs) genes for each disorder. The HRGs were enriched in drug
targets, and exhibited higher expression during prenatal brain developmental stages than postnatal stages,
indicating their potential to affect brain development at an early stage. The HRGs associated with Alzheimer’s
disease were found to share genetic architecture with schizophrenia, bipolar disorder and major depressive
disorder according to gene co-expression module analysis and rare variants analysis. Comparisons of this method
to the eQTL-based method, the TWAS-based method, and the gene-level GWAS method indicated that the genes
identified by our method are more enriched in known brain disorder-related genes, and exhibited higher
precision. Finally, the method predicted 205 risk genes not previously reported to be associated with any brain
disorder, of which one top-risk gene, MLH1, was experimentally validated as being schizophrenia-associated.

Interpretation iGOAT can successfully leverage epigenomic data, phenotype–genotype associations, and protein–
protein interactions to advance our understanding of brain disorders, thereby facilitating the development of new
therapeutic approaches.
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Research in context

Evidence before this study
Genome-wide association studies have revealed many SNPs
associated with brain disorders. Most of these SNPs reside in
non-coding regions, and it remains a major challenge to
decipher the pathogenicity of these risk SNPs. A commonly
used approach addresses this issue by aggregating SNP
associations to their nearest genes. However, increasing
evidence supports the claim that index SNPs often influence
the expression of genes at some considerable distance on the
chromosome. Another approach is gene-level genome-wide
association studies, which considers the associations between
a trait and all SNP markers within a gene rather than
individual SNPs. However, this approach combines the effects
of SNPs within genes without considering the biological
connection between the gene and the diseases. With the
rapid development of sequencing technology, multiple
sources of data are available for use in predicting SNP-linked
genes, which can contribute to exploring the pathogenicity of
risk SNPs. Currently, an appropriate model that
simultaneously integrates genotype data with gene networks
and cell-type/stage-specific epigenetic data is not yet
available.

Added value of this study
This study presents a Bayesian framework to predict genes
impacted by lead SNPs by integrating long-range chromatin
interactions including enhancer–promoter interactions (EPI)
derived from Hi-C data of multiple brain cell types at different

developmental stages, as well as SNP-SNP interactions
determined using about 500,000 samples from the UK
Biobank.
This method was applied to three psychiatric disorders and
three neurological disorders and predicted sets of high-risk
(HRGs) and low-risk (LRGs) genes for each disorder.
Comparisons between this method and an eQTL-based
method, a TWAS-based method, and a gene-level GWAS
method indicate that the HRGs identified by our method are
more enriched in known brain disorder-related genes and
exhibited higher precision. This method predicted 205 HRGs
not previously known to be brain disorder-related, of which
one top-ranking gene was experimentally validated as being
schizophrenia-associated.

Implications of all the available evidence
The application of this method to six brain disorders predicted
a set of HRGs. The HRGs exhibited higher levels of expression
during prenatal brain developmental stages than postnatal
stages, possibly reflecting the occurrence of the initial
neuronal damage at a relatively early stage of brain
development. The gene co-expression module analysis and
rare variants analysis indicated the HRGs associated with
neurodegenerative disorders shared genetic architecture with
the psychiatric disorders. The method proposed by this study
has advanced our understanding of the brain disorders and
facilitated the identification of new therapeutic approaches.
Introduction
With the rapid development of genome-wide association
studies (GWAS), more and more SNPs have been found
to be associated with disease.1 These GWAS findings
have provided potential causal SNPs of the disease but
precisely how these SNPs impact the gene expression
pathway or participate in the disease generation process
remains a challenging problem. In most cases, genes in
the immediate vicinity of the index SNP have been sim-
ply assumed to be causal. There is however increasing
evidence to support the contention that index SNPs may
often influence the expression of genes at some consid-
erable distance on the chromosome. Another commonly
used approach is gene-level genome-wide association
studies, which considers the associations between a trait
and all SNP markers within a gene rather than individual
SNPs.2–4 However, this approach only combines effects of
SNPs within genes without considering biological con-
nections between the genes and the diseases.
Researchers have endeavored to detect risk genes by
integrating GWAS loci with epigenomic and tran-
scriptomic data, and other genomics data.5 By accom-
modating positional information, expression
quantitative trait loci (eQTL), and chromatin interaction
mapping,6 a web-based platform, FUMA, has been
presented, which provides gene-based functional anno-
tation of GWAS results. Pardiñas et al. combined
genomic fine mapping, brain expression, and chromo-
some conformation data to detect causal genes for
schizophrenia (SCZ)7 whilst Fan et al. applied a systems-
level analysis integrating GWAS data with tran-
scriptomic information to identify genes associated with
Alzheimer’s disease.8 OSCA is a commonly-used
method leveraging omic data for analyzing associa-
tions between genes and complex traits.9 Another
method (iRIGS) was employed to identify risk genes in
SCZ by integrating GWAS data with regulation net-
works, distal regulatory information, and genetic variant
www.thelancet.com Vol 107 September, 2024
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data.10 More recently, we have proposed a risk gene
predictor, rGAT-omics,11 which integrates gene net-
works, gene distance to SNPs, distal regulatory ele-
ments, and gene expression information to identify
those candidate genes impacted by SCZ-associated
SNPs reported in.12 However, all these methods have
neglected to include important additional sources of
genomic or transcriptomic information. For example,
SNP-SNP interactions serve to define combinatorial ef-
fects of variants on the etiology of genetic disorders and
are important for providing long-distance interactions
between genes associated with disease.13–18 Moreover,
they have tended not to consider the potential utility of
epigenetic information involved in different tissues and
developmental stages for inferring gene candidacy. One
of the most popular computational methods
(H-MAGMA19) utilized long-range interactions in
disease-related tissues to identify disease-related genes.
Application of H-MAGMA to nine brain disorders
revealed interesting shared biological features. It there-
fore follows that information on long-range chromatin
interactions, such as enhancer–promoter interactions,
could be very important for the identification of genes
impacted by SNPs.

By identifying the genes potentially associated with
the disorders, many studies have been performed to
indicate the shared genetic mechanisms between dis-
orders. A recent publication20 that indicated the genetic
correlations between AD and psychiatric disorders by
integrating the GWAS results with human brain tran-
scriptomes and proteomes. Another study21 has per-
formed proteomic sequencing of the dorsolateral
prefrontal cortex in 438 older individuals, and indicated
that proteins and modules associated with cerebral
atherosclerosis were also associated with Alzheimer’s
disease, suggesting shared mechanisms between these
two disorders. Additionally, a recent study has investi-
gated the GWAS data from 1 million cases across ten
neurological diseases and 10 psychiatric disorders to
identify their shared genetic overlaps. In particular, they
have found the shared genetic mechanisms between
migraine, essential tremor, stroke and multiple sclerosis
with several psychiatric disorders.22 Thus, developing a
reliable method for identifying disease-associated genes
is a useful way to investigate the shared mechanisms of
diseases.

In this study, we have established an unsupervised
learning method integrating risk SNPs with long-range
chromatin interactions (iGOAT) to predict high-risk
genes associated with a given disease. This method
employs a Bayesian framework to integrate genomic
information and networks with the goal of identifying a
set of most likely disease-related genes. We considered
long-distance chromatin interactions, including
enhancer–promoter interactions derived from multiple
brain cell types at different developmental stages and
weighted SNP-SNP interactions constructed by
www.thelancet.com Vol 107 September, 2024
calculating the associations between genotypes and
clinical phenotypes, which were estimated using data
from about 500,000 samples in the UK Biobank (Fig. 1).
This method is not merely an enhancement of our
previous approach (rGAT-omics) by virtue of the inclu-
sion of SNP-SNP interactions and stage-specific and
cell-type-specific enhancer–promoter interactions (EPI)
data. It also predicts high-risk genes (HRGs) by
combining candidate genes for many SNPs into one set
and introducing empirical distributions of the candidate
gene set which can enlarge the sample size of the
candidate gene sets while controlling false positives,
thereby improving the accuracy of the predictions. This
method was then applied to psychiatric disorders
[schizophrenia (SCZ), bipolar disorder (BP), and major
depressive disorder (MDD)] and neurodegenerative/
neurological diseases [Alzheimer’s disease (AD), Par-
kinson’s disease (PD), and migraine (MG)] to identify
HRGs. The predicted HRGs were consistent with our
current understanding of the pathophysiology of psy-
chiatric and neurodegenerative diseases. Importantly,
iGOAT revealed many genes associated with brain dis-
orders, which are specifically expressed in brain cells
and are enriched for drug targets. Notably, experimental
validation has confirmed the association of MLH1, one
of the top ranked genes, with SCZ, a neuropsychiatric
disorder that is linked to dysregulation of neural stem
cell (NSC) proliferation and differentiation.23 This pre-
dictive approach shows great potential in uncovering the
underlying biological pathways, developmental win-
dows, and cell types contributing to specific brain dis-
orders. Thus, this type of prediction could be helpful in
characterizing brain disorders and providing new ther-
apeutic approaches.
Methods
Overview of iGOAT
An increasing number of GWAS have identified a
plethora of disease-associated SNPs. However, most of
these SNPs resided in noncoding genome regions,
which are hard to link to disease mechanisms for
further therapeutic design. Here, we developed an un-
supervised Bayesian framework-based method, inte-
grating risk SNPs with long-range chromatin
interactions (iGOAT) to identify genes associated with
diseases. iGOAT integrated risk SNPs with gene–gene
interactions, and long-range chromatin interactions,
including SNP-SNP interactions derived from genotype
data and enhancer–promoter interactions derived from
Hi-C data of multiple brain cell types at different
developmental stages. As shown in Fig. 1, iGOAT is
composed of four steps: (1) Assigning candidate genes
to SNPs by leveraging SNP-to-gene distance and chro-
matin interaction profiles (Hi-C); (2) Scoring candidate
genes by genomic data from multiple sources and
constructing gene networks based on SNP-SNP
3
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interaction, gene ontology and protein–protein in-
teractions; (3) Using the scores of genes as sampled
probabilities, Gibbs sampling was iteratively performed
to assess the association between genes and the disease
under a Bayesian framework until the frequencies
(posterior probabilities) of genes selected as risk genes
converged. We then computed empirical p-values for
candidate genes by generating null distributions of
posterior probabilities. After multi-correction (Benja-
mini-Hochberg: BH), genes with empirical pcorrected <
0.001 were considered high-risk genes (HRGs); genes
with empirical pcorrected > 0.5 were considered low-risk
genes (LRGs). (4) The biological features of the pre-
dicted high-risk genes (HRGs) were explored and
compared with those of low-risk genes (LRGs). The
computer code and output results are available at
(https://github.com/Dan-He/iGOAT).

Collecting SNPs and assigning candidate risk genes
The iGOAT was constructed by integrating multi-omics
data from a variety of different sources. We firstly
collected SNPs with genome-wide associations
p < 5 × 10−8 from published GWAS studies. In total, we
collated 108, 112, 102, 297, 181 and 75 SNPs that were
significantly associated with schizophrenia (SCZ), bipolar
disorder (BP), and major depressive disorder (MDD),
Alzheimer’s disease (AD), Parkinson’s disease (PD) and
migraine (MG), respectively. A detailed description on
the method of collecting SNPs is shown in Supplemental
Methods. The number of unique SNPs selected for this
study in relation to each disorder is shown in Table S1.
For each SNP, candidate risk genes were assigned to it by
considering SNP-to-gene distances and chromatin in-
teractions with genes. Briefly, a gene was considered to
be a candidate for a given SNP if the gene intersected
with 1 Mb of the SNP, or the SNP interacted with the
transcriptional start site (TSS) of the gene according to
Hi-C data.24 We considered the SNP to be capable of
interacting with the TSS if the interaction region in Hi-C
data was within 250 kb of the SNP, a distance suggested
by a previous study.25 In total, there were 1756, 1534,
1311, 1958, 1883 and 806 candidate risk genes for SCZ,
BP, MDD, AD, PD and MG, respectively.

Multi-omics data used in the study
This study integrated multi-omics data to predict risk
genes, including distance to index SNP (DTS), the sig-
nificance of differential expression (DE) in patients and
controls, and the number of enhancer–promoter
Fig. 1: Schematics of iGOAT. Step 1: iGOAT assigning candidate genes to
profiles (Hi-C). Step 2: iGOAT constructing a Bayesian framework for scorin
and protein–protein interactions with multi-omics data. Step 3: Using sc
assess associations between gene and disease by iteratively sampling un
genes converged. We then computed empirical p-values for candidate ge
(Benjamini-Hochberg: BH), genes with pcorrected < 0.001 were considered h
risk genes (LRGs). Step 4: The biological features of HRGs were explored an

www.thelancet.com Vol 107 September, 2024
interactions (EPI). The DTS is the distance in base-pairs
from the transcriptional start site of each gene to the
position of the index SNP. The DE is the significance
level (p-value) of genes expressed differentially in pa-
tients and controls by analysis of RNA-seq data from the
samples listed in Table S2. The EPI data were collected
from two studies.24,26 We also obtained fetal brain Hi-C
data from the paracentral cortex of three individuals at
the 17-18th gestation weeks24 and adult brain Hi-C data
from the DLPFC (dorsolateral prefrontal cortex) of three
individuals (aged 36, 44 and 64 years, respectively).27

The DTS gives the distance between the candidate
gene and the index SNPs, the DE provides p-values to
show the expression difference of the candidate in pa-
tients and controls, and EPI provides singles to show
interactions between the promoter of candidate gene
and the enhancers. Detailed descriptions of all these
data were included in Supplemental Material
(Supplemental Methods, Tables S2 and S3). All missing
data in these data sources were filled in by means of the
K-Nearest Neighbors algorithm.

Establishing a weighted gene network by
estimating the association between SNP-SNP
interactions and a given disorder
We utilized genotype and phenotype data from about
500,000 individuals downloaded from the UK Biobank
(UKB)28 to establish SNP-SNP interactions. The definition
of disease was based on the field description in the
directory of UKB data (Table S4). Samples with the prop-
erty “Date of disorder reported” were used to construct the
SNP-SNP interaction network. From the UKB, 1089, 1476,
115,031, 1048, 2173 and 3686 individuals were recruited as
SCZ, BP, MDD, AD, PD and MG patients, respectively.
These samples were filtered by genotype qualification that
was controlled by the standard PLINK inclusion proced-
ure29 (Supplemental Methods). The genotype data from
cases and matched controls were used to establish the
SNP-SNP interactions network.

For each disorder, we estimated associations be-
tween the SNP-SNP interactions with the disorders
under a dominant–dominant model (DDM). Under
the DDM, a SNP is encoded as MM = 2, Mm = 1, and
mm = 0, where MM, Mm, and mm are used to denote
the three genotypes of each SNP majority homozy-
gous, heterozygous, and minority homozygous,
respectively.

We used the hypergeometric test to measure associ-
ations between SNP-SNP interactions and phenotypes as
SNPs by leveraging SNP-to-gene distance and chromatin interaction
g candidate genes through integrating genotype data, gene ontology
ores of genes as sampled probabilities, Gibbs sampling was used to
til the frequencies (posterior probabilities) of genes selected as risk
nes by generating an empirical distribution. After p-value correction
igh-risk genes (HRGs); genes with pcorrected > 0.5 were considered low-
d compared with those of LRGs. GSEA: gene set enrichment analysis.
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recommended by a previous study.15 The effect of a pair
of binary-coded SNPs, Sx and Sy, that have genotype T in
a case–control cohort was calculated as Equation (1):

PT (Sx , Sy,C)= 1−∑X
f =0

(K
f
)(M−K

N−f
)

(M
N

)
(1)

where Sx and Sy are two SNPs; M is the total number of
samples; N is the total number of samples in a given
class C (phenotype); K is the total number of samples
that have genotype T (MM or Mm in a dominant model);
X is the total number of samples that have genotype T in
class C; the probability of taking any N samples from M
samples and the number of samples in the N samples
with genotype T in class C exceeds X is calculated by
PT (Sx , Sy, C). PT (Sx , Sy,C) represents the significance
level of the correlation between Sx-Sy and trait C. Then
we expand the trait-specific SNP-SNP interaction into a
trait-specific gene network. Sx was mapped to gene gx if
Sx was located within 1 kb upstream or downstream of gi.
The weight between gene gi and gj in a certain class C is
defined as Equation (2):

WSij =max{−log10(PT (Sx , Sy,C))| Sx ̅̅→mapped
gi, Sy ̅̅→mapped

gj}
(2)

Then, a weighted gene network was established,
which was denoted as a SNP-SNP network (WS).

In this study, we found the number of SNP-SNP
interactions in the patients and controls is a huge
number (e.g., SCZ patients have 5.63 × 109 SNP-SNP
interactions in DDM). To reduce the calculation
burden, only the dominant–dominant model was used
here.

Constructing GO and protein–protein interaction
networks
Gene networks used in this study include gene ontology
(GO),30 protein–protein interaction (PPI) from Bio-
GRID,31 and tissue-specific PPI networks from Tissue-
NET.32 We computed the weighted matrices for the GO
network (WG), BioGRID PPI network (WP), and tissue-
specific PPI network (WT ), respectively (Supplemental
Methods). The weight calculation is to evaluate the
difference between these candidate genes annotated
with certain functions compared to all the human genes
in the same situation. The same strategy was used in
our previous study to weight a gene–gene interaction
network.11 The Random Walking with Restart algorithm
(RWR) was used to calculate the probability of reaching
xi when starting from a set of selected genes x−i in the
weighted networks (SNP-SNP network WS, GO network
WG, PPI network WP , and tissue-specific network WT ),
respectively (Supplemental Methods).
Construction of a Bayesian framework for the
prediction of risk genes
A Bayesian framework was constructed to prioritize the
candidate risk genes with known omics and the net-
works including SNP-SNP interactions, GO networks,
and protein–protein interactions. Denote omics data as
D and the networks as N. Then, the goal was to maxi-
mize P(x1, x2,…, xm|D,N) so that we can identify most
likely risk genes. [x1, x2,…, xm] denotes a set of genes.
P(x1, x2,…, xm|D,N) denotes the probability of selecting
a given set of genes as associated with the disease under
the conditions of D and N. More details on the calcu-
lation of P(x1, x2,…, xm|D,N) is shown in Equation (2)
of the Supplementary Material. It is unrealistic to
directly calculate P(x1, x2,…, xm|D,N) of each combina-
tion case, since there will be a combination explosion.
Thus, we decomposed the overall probability into mul-
tiple factors (Equation (3)), which was more estimable.
The derivation process of Equation (3) is shown in the
Supplementary Material. Then we can maximize
P(x1, x2,…, xm|D,N) by selecting m genes with the
largest P(Dxi |xi)P(xi|x−i,N).

P(x1,x2,…,xm|D,N)∝∏
i=1,2,…,m[P(Dxi |xi)P(xi|x − i,N) ]

(3)

where

P(x1,x2,…,xm|D,N) = P(N)
P(D,N)P(x1,x2,…,xm|N)

∏m
i=1

P(Di|xi) ( P(N)
P(D,N) is a constant if D and N are fixed),

and P(x1,x2,…,xm|N) ≈∏m
i=1

P(xi|x−i,N) was approxi-

mated by one-dimensional conditional likelihoods as
performed in a previous study.10 [x1,x2,…,xm] denotes
genes to be selected, and x−i means (x1, x2,…, xi−1, xi+1,
…, xm), a set of selected genes. The overview of the
framework of this method is shown in Fig. 1.

For the first factor P(Dxi |xi), we estimated it using
gene features described by multi-omics data. Each
candidate gene was annotated in terms of multi-omics
features (Supplemental Methods). A cumulative
distribution of each feature in a set of candidate genes
was used to score the genes. In short, if a gene xi was an
element of a candidate gene set for a given disease, the
feature j of gene xi was given by xij. The percentile rank
of xij in feature j was used to represent the score of the
gene xi for feature j, which was denoted as pxij . pxij =
Cxij

M , where Cxij is the cumulative frequency of genes with
scores higher than or equal to the score of gene xi on
feature j (if the lower score means the higher risk of
functional impact on the gene, Cxij is the number of
candidate risk genes with scores higher than or equal to
the score of the candidate risk gene xi on feature j), andM
www.thelancet.com Vol 107 September, 2024
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is the total number of candidate risk genes for a specific
disorder. The pxij was converted to a -log scale, and greater
-log (pxij ) means higher risk of a gene to be disease-
associated. The summation of the -log (pxij ) yielded the
final score of gene xi (Equation (4)). The equation (4) de-
notes the importance of gene xi for all the feature, Di.

Then, we defined the weighted score of Dxi for xi
across each feature to be the sum of − log(pxij ), which
made greater scores mean higher risk. The pxij was
converted to a -log scale, and greater −log(pxij ) means
higher possibility of a gene to show feature D. Dxi rep-
resents the features of gene xi and it can be described as
vectors of feature scores (xi1,xi2,…,xin), and xi1, xi2,…, xin
are independent with each other (n is the number of
features). The summation of the −log(pxij ) yielded the
final score of gene xi to denotes the importance of gene
xi for all the feature D (Equation (4)).

P(Dxi |xi) ≈ −∑n
j=1

log(pxij) (4)

where n is the total number of features for gene xi, and
Dxi represents the multi-omics information for gene xi.

The above omics scores were integrated with the
second factor (gene network weights), P(xi|x−i, N), in
which x−i denotes the set of candidate risk genes already
selected (xi ∕∈ x−i), and N refers to the constructed
weighted gene networks (Supplemental Methods). The
Random walking with Restart algorithm (RWR) was
used to calculate the distance between the gene xi and
the set of previous-round selected genes x−i in the
network, N. P(xi|x−i,N) can be calculated as the sum of
the sub-vectors extracted from N, which are rows for xi
and columns for x−i in N. P(Dxi |xi) and P(xi|x−i,N) were
integrated together to form a Bayesian prior probability
factor P(xi|x−i,N)P(Dxi |xi), which means the probability
of selecting xi as risk gene based on x−i, information in
D (genomic data) and N (gene networks).
P(xi|x−i,N)P(Dxi |xi) was used as a sampled weight for
gene xi in Gibbs sampling. Here, Gibbs sampling was
used to approximate the posterior probabilities (PPs) of
each gene. After Gibbs sampling was converged,
according to PPs, a set of genes that were maximized
∏i=1,2,…,mP(Dxi |xi)P(xi|x−i,N) were selected as most
likely to be associated with the disease. Here, P(x1, x2,
…, xm|D,N) ∝ ∏i=1,2,…,mP(Dxi |xi)P(xi|x−i,N) represents
the probability of a set of genes associated with disease.
Gibbs sampling was initiated with 30 genes (initial x−i)
that were detected as being associated with index SNPs
with the lowest PFDR < 0.05 according to the cis-eQTL
result obtained from the dorsolateral prenatal cortex33

and trans-eQTL summary data of blood.34 The sam-
pling probability of each gene was P(xi|x−i,N)P(Dxi |xi).

In Gibbs sampling, x−i was initially set as a random

set of m genes from candidates (x(0)
−i = [x(0)1 , x(0)2 , …,
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x(0)m ]). Then in the next round of sampling, x(1)
−i was

updated based on x(0)
−i , D, and N. Using

P(x(1)i |x(0)
−i ,N)P(Dxi |xi) as sample weight of gene x(1)i , we

sampled another m genes, noted as x(1)
−i = [x(1)1 , x(1)2 ,…,

x(1)m ]. At the same time, we recorded the selected fre-
quency (posterior probability) of each candidate gene.

Set Freqi = # of times the gene xi is selected
# of sampling , F = [Freq1, Freq1,…,

FreqM]. In each round, we updated F when x−i changed.
Repeat the above sampling process many times until F
did not change much in the last two rounds. That is⃦⃦
Flast − Fpenultimate

⃦⃦
<EGibbs (EGibbs = 0.01). Flast were the

posterior probabilities (PPs) of candidate genes. Then
P(x1, x2,…, xm|D,N) was approximated by

∏i=1,2,…,mP(xi|x(last)−i ,N)P(Dxi |xi).
To address concerns of false positives, like genes

associated with many other genes in the network, we
built a null distribution of the posterior probability
(PP) for each candidate in order to identify real high-
risk genes (HRGs) and low-risk genes (LRGs). The
genes with pcorrected (Empirical p-value) < 0.001 were
considered as HRGs, and the genes with pcorrected
(Empirical p-value) > 0.5 were used as LRGs in this
study. The number of HRGs could further reduced by
considering the rank of the PP in the candidate
genes. More details are given in the Supplemental
Methods.

Tissue- and cell-type specificity analysis
iGOAT was evaluated by tissue specificity of the pre-
dicted HRGs. The tissue specificity analysis was per-
formed by using several gene expression data from brain
tissues. Briefly, we downloaded the median expression
levels, Reads Per Kilobase of transcript, per Million
mapped reads (RPKM) of genes in brain tissues from
GTEx (V8, https://gtexportal.org/home/datasets), and the
expression levels of genes in ten brain regions from
BrainEAC (http://www.braineac.org/, cerebellar cortex
[CRBL], frontal cortex [FCTX], hippocampus [HIPP],
medulla [MEDU], occipital cortex [OCTX], putamen
[PUTM], substantia nigra [SNIG], thalamus [THAL],
temporal cortex [TCTX], and intralobular white matter
[WHMT]). For the cell-type specificity analysis, we used a
single-cell transcriptomic dataset merged from three
sources.35–37 The dataset contains scRNAseq results from
4249 cell samples associated with 35 cell types from fetal
and adult brains. Only genes with expression values > 0
in more than 1% of samples from adult brains were
included in the analysis. The details of how the tissue-
and cell-type specificity of gene expression were evaluated
are given in the Supplemental Methods.

When plotting heatmaps, we used median expres-
sion levels of HRGs/LRGs in a cell type to represent the
expression level of the entire gene set in that cell type.
To compare expression levels across different cell types
7
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or gene sets, we normalized the median expression
values to obtain “scaled expression”.

Gene set enrichment analysis
Brain disorder-related gene sets
iGOAT was further evaluated by enrichment of pre-
dicted genes in many brain disorder-related gene sets.
We collated 41 brain disorder-related gene sets in total.
SCZ-related gene sets were collected by following the
procedures described in a previous study.11 There are
seven gene sets (CCS, FMRP.Ascano, FMRP.Darnell,
PRAZ, PRP, PSD and SYV) that are involved in synaptic,
presynaptic, or voltage-gated calcium-channel functions
considered to be associated with the six brain disorders
under study. We also collected genes reported to be
associated with the six brain disorders from the two
datasets, GenCLiP,38 and DisGeNET.39 In addition, we
obtained 13 disease-associated pathways from KEGG.40

These pathways were searched in KEGG by using
‘Schizophrenia’, ‘Bipolar disorder’, ‘Major depressive
disorder’, ‘Alzheimer’s disease’, ‘Parkinson’s disease’,
and ‘Migraine’ as keywords, respectively. Genes in these
pathways were collected since they are associated with
various brain disorders. The numbers of genes in the
gene sets and abbreviations ascribed to these gene sets
are listed in Table S5. The gene set enrichment
analysis were performed by GOST function in gprofiler2
package in R4.2. The results with pFDR < 0.05,
15≤“term_size”≤600 and “intersection_size” ≥5 were
considered as significant.

Genes harbouring de novo variants or rare variants
iGOAT was further evaluated by enrichment of pre-
dicted genes in genes harbouring de novo protein-
disrupting variants causing developmental disorders.
Genes that harbour de novo protein-disrupting variants
causing developmental disorders were obtained from
the Deciphering Developmental Disorders Study,41

which includes 93 developmental disorder (DD) risk
genes enriched in damaging de novo mutations (DNMs)
with genome-wide significance (p< 5 × 10−7). We also
obtained 102 Autism spectrum disorder (ASD)-associ-
ated genes harbouring a burden of rare variants with
pFDR < 0.1 in a cohort including 11,986 cases and 23,598
controls.42 Finally, from a previous study,43 we extracted
54 SCZ risk genes harbouring an elevated burden of
rare variants with pFDR < 0.3 by analyzing exomes from
4264 cases and 9343 controls. These variants were
employed as a comprehensive dataset of rare variants
and de novo variants associated with brain disorders.

Inherited disease genes from HGMD
We collected all genes known to harbour heritable muta-
tions either causing or associated with the six brain dis-
orders plus ASD from the Human Gene Mutation
Database (HGMD44). Here, we only considered genes with
mutations in the categories “DM” or “DM?” (Table S6).
We employed the one-sided Fisher’s Exact test to
evaluate the enrichment of the HRGs in these gene sets
compared to LRGs and treated Benjamini–Hochberg
corrected p< 0.05 (Fisher’s Exact test) as being statisti-
cally significant.

Spatiotemporal transcriptome profile
The spatiotemporal transcriptome profile was down-
loaded from GEO (GSE2521945–47) and was used to
explore the spatiotemporal transcriptome of HRGs in
the human brain. GSE25219 constitutes exon-level
transcriptome data from 16 brain regions from 1340
samples belonging to 57 postmortem human brains and
represents gene expression data from 15 developmental
stages of the human brain (ranging from pre-to post-
natal development). A detailed description of the
methods using these data is included in Supplemental
Methods.

Gene co-expression module analysis
The high-risk genes (HRGs) predicted by iGOAT were
examined on their enrichment in gene co-expression
modules that are associated with the brain disorders. In
order to construct the gene co-expression modules, we
downloaded the gene expression profiles of the six brain
disorders (SCZ, BP, MDD, AD, PD, and MG) and their
corresponding controls from the GEO database (Table S7).
From the profiles, we removed outliers which were
defined as those samples with standardized sample
network connectivity Z scores < −2. In total, 2400 samples
were used for the analysis after removing 124 samples as
outliers. Then, we used the gene expression profiles of all
controls (totally 1356 samples) to construct a gene co-
expression module by WGCNA.48 The associations be-
tween gene co-expression modules and disease were tested
by a linear regression model using contact country, plat-
form id, and tissue type as covariates [R code: lm (ME ∼
diagnosis + contact_country + platform_id + tissue_type,
data)], where ME is the module eigengene that is the first
principal component of the gene expression matrix of the
corresponding module. The linear regression model was
constructed by using data from all patients and controls.
Then, backward best subset selection was performed to
identify the best covariates. In the linear regression model
of a gene co-expression module and disease tags in all
samples, if β > 0 and pcorrected < 0.05 (t-test), then the co-
expression module was considered to be significantly
upregulated in the disease. If β < 0 and pcorrected < 0.05 (t-
test), we assumed the gene co-expression module to be
significantly downregulated in the disease.

Experimentally validating the association between
the MLH1 gene and SCZ
Cell culture
Validation was performed in mouse neural stem cells
(NSCs). NSCs that were derived from brain tissues of
embryonic day 14.5 C57BL/6 mice were purchased from
www.thelancet.com Vol 107 September, 2024
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Cyagen Biosciences (Guangzhou, People’s Republic of
China) and were grown in serum-free growth medium
(Dulbecco’s modified Eagle’s medium (DMEM)/F12
1:1; Gibco) containing 1 × B27 Supplement minus
vitamin A (ThermoFisher, Cat.NO: 12587010), 1 × N2
supplement (ThermoFisher, Cat.No: 17502048), 20 ng/
mL basic fibroblast growth factor (STEMCELL, Cat.No:
78003), 20 ng/mL epidermal growth factor (STEMCELL,
Cat.No: 78006), 2 μg/mL heparin (STEMCELL, Cat.No:
07980) and 1% penicillin/streptavidin. The multipotent
neurospheres were passaged every 3–4 days to single-
cell suspension for continuing growth and further ex-
periments. Cells were cultured at 37 ◦C with 95% air
and 5% CO2. Mycoplasma tests were performed peri-
odically using specific PCR primers, and no myco-
plasma contamination was detected in cells used in this
study.

Knockdown MLH1 in mouse NSCs
Two distinct short hairpin RNAs (shRNAs) targeting
MLH1 (MLH1-Sh#1 and MLH1-Sh#2) were constructed
using pLKO.1 vector. The 21 bp targeting sequences are
MLH1-Sh#1 (5′-GCTAATTCAGATCCAAGACAA-3′)
and MLH1-Sh#2 (5′-CCGAAGCATTTCACAGAAGAT-
3′). The control scramble shRNA sequence is Control
(5′-CCTAAGGTTAAGTCGCCCTCG-3′). Lentiviruses
were generated according to the manufacturer’s proto-
col. After 72 h viral infection, cells were treated with
puromycin (1 μg/mL) to select NSCs stably expressing
indicated shRNAs.

Western blotting
Whole-cell protein extracts were lysed by RIPA lysis
buffer (Epizyme, PC101) and centrifuged at 12,000 g for
15 min. The G250 (Beyotime) was used to quantify the
protein concentrations. Proteins were separated by 10%
SDS polyacrylamide gel electrophoresis, transferred to
polyvinylidene difluoride membrane, blocked by 5%
bovine serum albumin (BSA) for 1 h, and incubated
with primary antibodies overnight at 4 ◦C. Primary an-
tibodies used include rabbit anti-MLH1 (1:500, Affinity
DF6057), rabbit anti-NeuN (1:1000, ABclonal, A19086)
and mouse anti-GAPDH (1:10,000, Proteintech, 60004-
1-IG). The membrane was then incubated for 1 h at
room temperature with the appropriate secondary anti-
bodies (1:1,000, Abclonal, AS-003, AS-014). The chem-
iluminescence signals were detected with enhanced
chemiluminescence (ECL) and quantified by densitom-
etry using the ImageJ software (NIH, Bethesda, USA).
At least three independent experiments were carried out
and representative results are shown.

NSCs proliferation and differentiation
To investigate the role of MLH1 in mouse NSCs, we
performed proliferation and differentiation assays. The
cell proliferation capabilities were examined by the Cell
Counting Kit-8 (CCK-8) and EdU incorporation assays.
www.thelancet.com Vol 107 September, 2024
For CCK-8 assay, 1 × 104 cells were plated into 96-well
plates (pre-coated with 10 μg/mL laminin). When the
cells were cultured for 24 and 48 h, respectively, CCK-8
solution was added to the culture medium, and cells
were incubated for 2 h at 5% CO2, 37 ◦C. The absor-
bance at 450 nm wavelength was measured according to
the manufacturer’s instructions. For EdU assay, 1 × 106

NSCs were plated into 6-well plates. After these cells
were cultured for 12 h, 10 μM EdU (APE × BIO, K1078)
was added to label dividing cells. After incubation for
3 h, an EdU Flow Cytometry Assay Kit was used to
detect EdU-labeled cells as described in the protocol.
Briefly, cells were centrifuged, washed by PBS, fixed
with 4% PFA for 15 min, permeabilized with 0.5%
Triton X-100 in PBS for 20 min, and then incubated
with 100 μL Click-iT reaction mix for 30 min. The
treated cell suspension samples were analyzed by flow
cytometry (646/662 nm).

For the differentiation assay, NSCs were cultured for
three days in a differentiation medium that included
DMEM/F12 containing 1% penicillin/streptavidin,
1 × N2 supplement (Gibco), 1 × B27 supplement
(Gibco), and 2 μg/mL heparin. Immunostaining was
performed to count the number of neurons. Briefly,
cells were fixed with 4% PFA and permeabilized with
PBS containing 0.5% Triton-X100, then blocked with
5% bovine serum albumin (BSA) for 1 h at room tem-
perature. The cells were then incubated with rabbit anti-
NeuN antibody (1:50, ABclonal, A19086) overnight at
4 ◦C. Finally, they were incubated with goat anti-rabbit
antibody (1:100, Abbkine, A23420) at room tempera-
ture for 1 h. The numbers of NeuN + cells were quan-
tified with Image J software and statistical analysis was
performed using a two-tailed Student’s t-test. All ex-
periments were performed in three independent assays
with at least three replicates per group. Data were rep-
resented as mean ± SD. Differences were considered to
be statistically significant if p < 0.05.

Role of funders
The funders had no role in study design, data collection,
analysis, interpretation or writing of the report.
Results
High-risk genes predicted by iGOAT are enriched in
brain-disorder associated gene sets and account for
a significantly enriched heritability
iGOAT integrated enhancer–promoter interaction (EPI)
information from microglia, neurons, and oligoden-
drocytes, respectively. The numbers of HRGs predicted
by iGOAT using the three types of EPI data were listed
in Table S8. The total number of HRGs simultaneously
identified using three different EPI types are 199, 195,
187, 229, 210, and 122 for SCZ, BP, MDD, AD, PD, and
MG, respectively. A Venn diagram is shown in Fig. S1 to
describe the number of overlapped genes. We compared
9
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the impact of using EPI data from different cell types
(microglia, neurons and oligodendrocytes) by analysing
the extent of overlap of predicted high-risk genes
(HRGs) with brain disorder-related gene sets. As shown
in Fig. S2, the extent of overlap of the HRGs with the
brain disorder-related gene sets was similar when using
EPI from the three different cell types. The EPI data
from neurons were selected for use in iGOAT for
following analysis.

iGOAT predicted 305, 283, 265, 326, 325, and 192
genes with empirical pcorrected < 0.001 as high-risk genes
(HRGs) associated with SCZ, BP, MDD, AD, PD and
MG, respectively (Table S8), and 1298, 1123, 931, 1470,
1406, and 554 genes (pcorrected > 0.5) as low-risk genes
(LRGs) associated with these six disorders, respectively.
Only about 10–49% of the intergenic SNPs were pre-
dicted to impact the nearest HRGs, whilst 32–60% of
the intronic SNPs were predicted to impact HRGs
residing nearest to them (Fig. 2a), highlighting the
importance of using 3-D genomic evidence and SNP-
a
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HRGs predicted by iGOAT were significantly
enriched in brain disorder-associated genes from PSD,
FMRP and DisGeNET datasets (Methods) compared to
the LRGs (Fig. 2b and Table S9). More importantly, the
predicted HRGs associated with five disorders SCZ, BP,
MDD, PD and MG explained greater heritability
enrichment (Enrichment = 29.90, 20.07, 22.96, 47.04,
and 24.26, and nominal p = 3.66 × 10−12, 3.06 × 10−5,
2.79 × 10−5, 9.02 × 10−2, 4.27 × 10−2, and 3.80 × 10−2,
respectively. Supplemental Methods) than the LRGs
(Fig. 2c). No significant heritability enrichment was
observed for HRGs predicted to be associated with AD
(Enrichment = 138.38, nominal p = 9.02 × 10−2). The
enrichment score was calculated by the equation:
Enrichment = h2HRG/h

2
All

SNPHRG/SNPAll
, where h2HRG and h2All repre-

sent the heritability explained by SNPs around HRGs
and by all SNPs in 1000 Genomes Phase 3, respectively,
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and where SNPHRG and SNPAll denote the number of
SNPs around HRGs and the total number of SNPs in
1000 Genomes Phase 3, respectively (More details are
shown in Supplementary Material). The method of
analysing the disease heritability enrichment was shown
in Supplemental Methods.

The sample size may influence the quality of con-
struction of the SNP-SNP interaction network, and may
further influence the performance of iGOAT. We
enlarged the sample sizes of AD cases and controls to
construct SNP-SNP interaction network by considering
the family history of the individuals. By using this SNP-
SNP interaction network, iGOAT identified 329 HRGs,
most of which (87.8%) overlapped with the HRGs only
considering the AD patients. The detailed results are
shown in Supplementary Material (Fig. S3). The sensi-
tivity of iGOAT to window length for defining candidate
genes was tested by using five different distance pa-
rameters: 1 kb, 10 kb, 100 kb, 1 Mb and 2 Mb to
generate candidate genes for SCZ. As shown in
Table S10, iGOAT using different distances parameters
provided similar percentages of HRGs known to be
SCZ-related genes (ranging from 86.39% to 81.76%).
Longer distance leads to a higher number of candidates
and slightly lower coverage (Table S10). Thus, iGOAT is
robust to varying choices of gene window length. We
also tested the ability of iGOAT in controlling false
positives by using null SNP signals. The result indicated
that the HRGs identified by using the simulated SNPs
are not significantly enriched with SCZ-related genes
compared to the HRGs identified by using the SNPs
associated with SCZ (Fig. S4). The detailed results are
shown in Supplementary Material.

Incorporating epigenetics data reveals the
neurodevelopmental origin of brain disorders and
improves the predictive power of iGOAT
Since enhancer–promoter interactions (EPI) are highly
tissue-specific,24 we reasoned that the inclusion of EPI
from different brain developmental stages in iGOAT
might help to predict HRGs that reflect the neuro-
developmental origin of brain disorders. When we
replaced the childhood (child Hi-C) EPI used in iGOAT
with fetal Hi-C and adult Hi-C (see Methods) respec-
tively, the expression levels of the HRGs in the whole
brain developmental stages were similar to those iden-
tified using EPI from the three different developmental
stages (Fig. 3a and e). When we examined the expres-
sion of the most significant (top 1% of) HRGs over the
different brain developmental stages, we observed that
using the EPI from different brain developmental stages
influences the detected gene expression trajectories in
brain development stages (Supplemental Results and
Fig. S5).

We then examined the heritability enrichment scores
of the HRGs predicted by using EPI derived from the
fetal Hi-C, child Hi-C or adult Hi-C data, and found that
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the HRGs associated with the psychiatric disorders, and
predicted using EPI derived from the child Hi-C data,
have higher heritability enrichment scores than when
the fetal Hi-C data were used. The HRGs associated
with PD or MG, and predicted using the child Hi-C data,
showed lower heritability enrichment scores than when
the fetal Hi-C data were used (Fig. 3b). Thus, using EPI
derived from child Hi-C data may serve to identify
HRGs associated with psychiatric disorders that are
associated with higher heritability enrichment than us-
ing EPI derived from other brain developmental stages.
By contrast, using EPI derived from child Hi-C data may
serve to identify HRGs for PD and MG, which show
lower heritability enrichment than when using EPI
derived from fetal Hi-C data.

We next explored the impact of EPI on the prediction
of HRGs. We simply compared the HRGs predicted by
iGOAT using EPI to the HRGs predicted by iGOAT
without using EPI. Those HRGs which were predicted
by iGOAT using EPI but were not predicted as HRGs by
iGOAT without using EPI, were termed neuronDRGs,
whereas the HRGs predicted by iGOAT without using
EPI but were not predicted as HRGs by iGOAT using
EPI data were termed noHiCDRGs. The LRGs predicted
by both were termed cLRGs. The numbers of neu-
ronDRGs, noHiCDRGs, and cLRGs identified are listed
in Table S11. The neuronDRGs associated with all dis-
orders have higher extents of overlap with brain
disorder-related genes than the noHiCDRGs (Fig. 3c,
one-sided t-test, p = 0.24, t = 2.62) and a significantly
higher proportion of brain disorder-related genes than
that of cLRGs. Specifically, the neuronDRGs associated
with SCZ, BP, MDD and MG were enriched in more
brain disorder-related gene sets compared to cLRGs
than the noHiCDRGs (Fig. 3d). Moreover, the neu-
ronDRGs exhibit greater tissue specificity in all 13 brain
tissues from GTEx, and the three brain regions from
BrainEAC than the cLRGs (Fig. S6a and b). By contrast,
no noHiCDRGs were found to have greater tissue
specificity in brain regions from the BrainEAC dataset
than the cLRGs (Fig. S6b). We also observed that the
neuronDRGs associated with PD and MG showed cell-
type specificity in OPC, Oligo, and Micro compared to
cLRGs, whereas noHiCDRGs only specifically expressed
in one cell type (Oligo for PD and Endo for MG.
Fig. S6a). In cell expression profile, the neuronDRGs
associated with SCZ, MDD, AD, PD, and MG exhibited
higher expression levels in Astro, Endo, OPC, Micro,
Neuron, and Oligo than the noHiCDRGs and the
cLRGs, suggesting that the neuronDRGs have potential
functions in brain cells, especially neurons (Fig. S6c).
Over the various developmental stages, the expression of
the neuronDRGs was higher than the expression of
noHiCDRGs and cLRGs (Fig. 3e). The function
enrichment analysis of neuronDRGs was performed by
the GOST function in gprofiler2 package in R4.2. The
neuronDRGs for psychiatric disorders are enriched in
11
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Fig. 3: Effects of EPI data from the human fetus, child and adult on iGOAT. (a) Developmental expression trajectory of the HRGs predicted by
iGOAT using EPI data from the fetal (fetalHRG) and adult (adultHRG), respectively. (b) Heritability enrichment of HRGs predicted by iGOAT using
EPI from fetus, child or adult. The error bars indicate the standard errors of the enrichment. The “*” denotes significant enrichment (pEnrichment <
0.05). (c) Proportion of disease-related genes in neuronDRGs, noHiCDRGs, and cLRGs. The significance was obtained using one-sided Fisher’s
exact test comparing the number of disease-related genes in neuronDRGs/noHiCDRGs with that of cLRGs. *p < 0.05, **p < 0.01, ***p < 0.001,
ns: not significant. (d) Enrichment of neuronDRGs and noHiCDRGs in brain disorder-related gene sets using the cLRGs as background genes.
Only significant results are shown here. (e) Average expression levels of neuronDRGs, noHiCDRGs and cLRGs during the stages of brain
development.
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synaptic related functions, such as regulation of synaptic
plasticity (padjust = 1.30 × 10−3, Fisher’s exact test),
modulation of chemical synaptic transmission (padjust =
9.89 × 10−4, Fisher’s exact test), regulation of
trans-synaptic signalling (padjust = 9.95 × 10−4,
Fisher’s exact test) and long-term synaptic potentiation
(padjust = 1.90 × 10−3, Fisher’s exact test) (Table S12).
The neuronDRGs for neuron degeneration disorders
www.thelancet.com Vol 107 September, 2024
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Disorder ≤3 candidates ≤5 candidates ≤7 candidates ≤9 candidates

iGOATa TiGOATb iGOAT TiGOAT iGOAT TiGOAT iGOAT TiGOAT

SCZ 100.00% 80.00% 100.00% 83.33% 95.00% 84.62% 93.55% 88.89%

BP 100.00% 80.00% 50.00% 54.55% 50.00% 46.67% 55.56% 52.63%

MDD 100.00% 83.33% 93.75% 71.43% 68.97% 66.67% 61.90% 70.00%

AD 100.00% 60.00% 100.00% 72.73% 87.50% 64.71% 85.71% 72.73%

PD 0% 0% 53.85% 62.50% 55.00% 61.54% 48.28% 57.14%

MG 0% 0% 100.00% 40.00% 62.50% 44.44% 60.00% 50.00%

“≤n candidates” refers to SNPs mapped by no more than n candidate genes. The proportion denotes the extent
of overlap of HRGs with brain disorder-related gene sets. aiGOAT: HRGs associated with SNPs (≤n candidates)
predicted by iGOAT. bTiGOAT: HRGs associated with SNPs (≤n candidates) predicted by TiGOAT.

Table 1: Proportion of HRGs overlapping with brain disorder-related gene sets in terms of SNPs
that mapped to a small number of candidates.
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are enriched in neural tube related functions, such as
neural tube development (padjust = 1.29 ×10−2, Fisher’s
exact test), neural tube closure (padjust = 2.86 × 10−2,
Fisher’s exact test), and primary neural tube formation
(padjust = 3.22 × 10−2, Fisher’s exact test). They are also
enriched in post-synapse organization (padjust = 1.56 ×
10−2, Fisher’s exact test) (Table S12). In comparison, the
noHiCDRGs for psychiatric disorders and neuron
degeneration disorders were not found to be enriched
with any neuron function- or brain function-related GO
term. Taken together, these results indicate the key role
that EPI data had in allowing iGOAT to detect HRGs
specifically expressed in brain tissues and brain cells,
and more active in brain development.

Incorporating SNP-SNP interaction data improves
the predictive power of iGOAT
The evaluation of the impact of SNP-SNP interactions
on iGOAT was performed by excluding SNP-SNP in-
teractions from iGOAT and instead predicted HGRs and
LRGs by integrating the GO, BioGIRD PPI and Tissue-
specific PPI networks with omics data. We termed this
approach siGOAT. The HRGs predicted by iGOAT with
SNP-SNP interactions but not predicted by siGOAT
were termed nnDRGs. The HRGs predicted by siGOAT
but not predicted by iGOAT were termed snDRGs. The
common LRGs predicted by both siGOAT and iGOAT
were termed cLRGs. The numbers of nnDRGs,
snDRGs, and cLRGs identified are listed in Table S11.
Compared to snDRGs, the nnDRGs are more likely to
be brain disorder-related genes (Fig. S7a). The nnDRGs
associated with SCZ, MDD, PD, and MG were enriched
in more brain disorder-related gene sets than snDRGs
when compared to cLRGs (Fig. S7b). In tissue specificity
analysis, the nnDRGs of all disorders have greater
specificity in more than ten types of brain tissue than
the cLRGs whereas only the snDRGs associated with AD
showed more specificity in over ten types of brain tissue
than the cLRGs (Fig. S7c). The tissue specificity analysis
on brain regions from BrainEAC also indicated that the
nnDRGs have greater specificity in more brain regions
than the snDRGs did when compared to cLRGs
(Fig. S7d). Meanwhile, the nnDRGs associated with six
brain disorders were found to be expressed higher in
neuronal subtypes than the snDRGs (Fig. S8a), and the
nnDRGs associated with BP, MDD, AD and PD man-
ifested higher expression levels in Astro, OPC and
neuronal cells than the snDRGs (Fig. S8b). By com-
parison, the snDRGs associated with BP, AD and MG
tended to show higher expression levels in Endo, Micro,
and Oligo than the nnDRGs. During brain develop-
ment, the nnDRGs associated with BP and MDD were
expressed more highly than the snDRGs and cLRGs
(Fig. S8c). The expression of the nnDRGs increased over
time with brain development whereas the expression of
the snDRGs decreased with brain development. The
function enrichment analysis indicated that nnDRGs
www.thelancet.com Vol 107 September, 2024
are enriched in biological terms related to synapse or-
ganization, regulation of synapse, and synapse assembly
and protein dephosphorylation (Table S13).

We also evaluated the impact of SNP-SNP in-
teractions when only networks were used in iGOAT
(Supplemental Results), and found higher precision in
predicting brain disorder-related HRGs by the network
including SNP-SNP interactions than the network not
using SNP-SNP interactions (Table S14 and Fig. S9).
Taken together, SNP-SNP interactions served to
improve the ability of iGOAT to predict HRGs specif-
ically or highly expressed in brain tissues, multiple brain
regions and neurons.

Combining candidate genes associated with
multiple SNPs improves the predictive power of
iGOAT
iGOAT evaluated the associations of a group of candi-
date genes with the set of SNPs according to the null
distribution of the features of all the candidate genes
(Methods). This strategy differs from that used in pre-
vious studies10,11 in which each SNP was assumed to
affect only one gene, and the associations between SNPs
and genes were assessed by considering only the genes
mapping to one particular SNP. iGOAT using this
method when sampling was termed Transformed
iGOAT (TiGOAT). We compared iGOAT to TiGOAT in
terms of their performance in predicting HRGs associ-
ated with the six brain disorders by inputting SNPs
(GWAS p< 5 × 10−8) mapping to no more than five
candidate genes by the two distinct methods. As shown
in Table 1, higher proportions of HRGs associated with
SCZ, MDD, AD, and MG predicted by iGOAT were
included in brain disorder-related gene sets (50–100%)
than those predicted by TiGOAT (40–83%). When we
further compared iGOAT and TiGOAT in terms of their
ability to predict HRGs by inputting SNPs (GWAS
p< 5 × 10−8) mapping to no more than three, seven or
nine candidate genes (Table S15) by the two distinct
methods, we consistently observed that iGOAT pre-
dicted a higher proportion of HRGs overlapping with
13
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known brain disorder-related genes than TiGOAT
(Table 1). Thus, iGOAT, by jointly evaluating gene as-
sociations with a certain brain disorder through
combining candidate genes associated with multiple
SNPs, has improved the accuracy of the predictions
compared to the method considering genes mapped to
one individual SNP.

Tissue specificity, cell-type specificity, and
expression level of the predicted HRGs at different
brain developmental stages
We observed that all the HRGs identified in the six brain
disorders under study had higher Tissue-specificity
scores (TS scores) (pcorrected < 2.93 × 10−4, Wilcoxon
test) in 13 types of brain tissue from GTEx data (Fig. 4a)
than the LRGs, which was suggestive of the potential
impact of HRGs on brain activity. We also evaluated the
Tissue-specificity of the HRGs compared to LRGs in
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Fig. 4: Analysis on the expression of HRGs, LRGs and pleiotropic HRGs
GTEx dataset (Methods). “▴” denotes significant result (Fisher’s exact tes
LRGs using expression profiles from BrainEAC (Methods). (c) Cell specificity
shows the cell-type expression levels of HRGs and LRGs in subtypes of ne
column-scaled average expression levels of genes in that cell type. Astr
dendrocytes; OPC, oligodendrocyte progenitor cells; In, inhibitory neuron
levels of HRGs across different cell types. The colour indicates the row-
opmental expression trajectories of the HRGs and LRGs during the entir
shaded aeras represent the 95% confidence interval of expression levels. (f
developmental stages. (g) Row-scaled average cellular expression profiles
some tissues less related to brain disorders, like blood,
artery, testis and kidney (Fig. S10). We found that the
HRGs have significantly higher TS scores than the
LRGs in blood (pcorrected < 5.75 × 10−7, Wilcoxon test),
artery (aorta, coronary and tibial; pcorrected < 1.99 × 10−8,
Wilcoxon test) and adipose (visceral and subcutaneous;
pcorrected < 9.95 × 10−10, Wilcoxon test) but not in testis
(pcorrected > 0.89, Wilcoxon test) and kidney (pSCZ = 0.11,
pMDD = 0.07, Wilcoxon test). When we respectively
used the TS scores of HRGs in blood, artery, adipose,
testis and kidney as a negative control to compare the TS
scores in the brain tissues (Wilcoxon test), we found that
HRGs in the cerebellum and cerebellar hemisphere
have significantly higher TS scores than some unrelated
tissues. TS scores of HRGs in kidney cortex
(pcorrected < 0.020, Wilcoxon test) and blood
(pcorrected < 0.027, Wilcoxon test) were significantly lower
than those in most brain tissues (Fig. S11).
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Performing the analysis using BrainEAC data
(Fig. 4b) indicated the HRGs associated with all six
brain disorders exhibited significantly higher TS scores
(pcorrected < 0.025, Wilcoxon test) in the temporal cortex
(TCTX), frontal cortex (FCTX), and occipital cortex
(OCTX) than the LRGs. Further analysis of the cell-type
specificity indicated the HRGs associated with SCZ, BP,
MDD, AD and PD have more cell-type specificity in
OPC, Oligo, Micro, Endo and Astro than the LRGs. The
HRGs associated with MG have more cell-type speci-
ficity in OPC, Oligo, Micro and Endo than the LRGs
(Fig. 4c).

We then sought to determine the average expression
levels of the HRGs and the LRGs in specific cell types.
As shown in Fig. S14, the expression of the HRGs
associated with the six brain disorders in specific cell
types are all significantly higher than the LRGs. We
further compared their expression levels in neuronal
subtypes, and found that the HRGs were expressed
much more highly than the LRGs (Fig. S12). Further,
the cell specificity analysis indicated that the HRGs are
more specifically expressed in neurons comparing to
OPC (pcorrected < 5.03 × 10−4, Wilcoxon test) and Oligo
(pcorrected < 0.031; Fig. S13) but more specifically
expressed in Astro (pcorrected < 0.014, Wilcoxon test) and
Micro (pcorrected < 7.45 × 10−10, Wilcoxon test) than neu-
rons. Using cellular expression profiles of the HRGs in
six brain cell types, we found that the median expression
levels of the HRGs associated with AD, PD, BP and MG
have the greatest median expression in microglia while
the HRGs associated with SCZ and MDD have the
greatest median expression in neurons (Fig. 4d). This
result reflected the functional difference of the risk
genes associated with neurodevelopmental and neuro-
degenerative disorders. Comparison of the median
expression levels of the HRGs in 16 neuronal subtypes
indicated HRGs associated with SCZ, BP, MDD, AD
and MG were preferentially expressed in the excitatory
neurons rather than in the inhibitory neurons
(Fig. S16b) (pcorrected < 3.45 × 10−3Student’s t − test),
whereas the LRGs associated with MDD and MG were
more highly expressed in the inhibitory neurons than in
the excitatory neurons (Student’s t-test pcorrected < 3.68 ×
10−2, Fig. S16a and b).

Further analysis of the expression levels of the HRGs
in brain developmental stages indicated that the HRGs
associated with the six brain disorders showed remark-
ably similar expression patterns with decreases during
stages 1–7 (prenatal stage from 4 weeks prior to birth),
slight increases at stages 9–12 (infancy and childhood)
and a peak at stage 12 (12Y ≤ age <20Y, adolescence).
We noted that the HRGs associated with the three
psychiatric disorders exhibited higher expression levels
than the HRGs associated with AD, PD, or MG during
brain development (Fig. 4e). When we investigated the
expression of LRGs, we found that they exhibited much
lower expression than the HRGs in the brain
www.thelancet.com Vol 107 September, 2024
developmental stages whilst no obvious change in the
expression of LRGs was noted during brain develop-
ment (Fig. 4e).

Pleiotropic HRGs associated with brain disorders
show different expression profiles during brain
development
We next analysed pleiotropic HRGs (PRGs), defined as
being associated with two or more psychiatric disorders,
or two neurological diseases; these gene sets were termed
psyPRGs (91 genes) and dePRGs (71 genes), respectively
(Table S16). The expression profiles of these genes dur-
ing brain development are different. As shown in Fig. 4f,
the expression of psyPRGs during the prenatal stages
(1–7) is much higher than during the postnatal stages
(8–15), showing a decrease during stages 3–9, and a
slight increase in stages 10–12. By contrast, the expres-
sion of dePRGs is higher during the postnatal stages than
in the prenatal stages, showing a trend to increase during
stages 1–9 and then a trend to decrease during stages
10–15 (Fig. 4f). These results evidence the elevated ac-
tivity of HRGs associated with psychiatric disorders
during fetal stages of brain development, whereas the
HRGs associated with neurological diseases displayed
elevated activity only after the infant stage. The expres-
sion profiles of the psyPRGs and dePRGs were found to
expressed higher in Neurons and Microglia, respectively
(Fig. 4g). Specifically, in neuronal subtypes, the psyPRGs
exhibited high expression in almost all excitatory neurons
whilst the dePRGs did not; the dePRGs displayed high
expression in certain inhibitory neurons.

When we calculated the heritability enrichment of
psyPRGs and dePRGs in psychiatric disorders and
degenerative disorders, we found significant enrich-
ment of psyPRGs in SCZ (Enrichment = 44.44, nom-
inal p = 2.62 × 10−3), BP (Enrichment = 32.30, p =
2.20 × 10−3) and MDD (Enrichment = 44.01, nominal
p = 1.99 ×10−3). While dePRGs showed no significant
disease heritability enrichment in any degenerative
disorder (EnrichmentAD = 33.26, pAD = 0.34;
EnrichmentPD = 51.99, pPD = 0.08; EnrichmentMG =
28.11, pMG = 0.14). The higher p values of enrich-
ment for dePRGs in degenerative disorders may be
due to the lower number of genes in dePRGs (71; 91
in psyPRGs). Gene function analysis on psyPRGs and
dePRGs were shown in the Supplementary Material
and Fig. S17. The result indicated that the psyPRGs
are enriched with several development-related terms,
such as stem cell differentiation (padjust = 0.013), cell
morphogenesis involved in neuron differentiation
(padjust = 0.046), and positive regulation of cell devel-
opment (padjust = 1.16 × 10−3) (Fig. S17). In compari-
son, the dePRGs are enriched in positive regulation of
cell death (padjust = 8.28 ×10−3), and cellular response
to topologically incorrect protein (padjust = 1.22 ×10−5)
whereas no development-related terms were enriched
by dePRGs (Fig. S17).
15
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The predicted HRGs potentially disclosing shared
mechanisms between brain disorders
We next explored if the gene co-expression modules
participated by the HRGs are significantly shared
among the six brain disorders. We firstly constructed
the gene co-expression modules using brain tissue-
based RNA-seq data from controls (Method section)
through WGCNA analysis. From these modules, we
identified those modules significantly dysregulated in
the brain disorders by using the RNA-seq data of brain
tissues from both the patients and the controls through
a logistic regression model (Methods section). If one
module is significantly dysregulated in one brain dis-
order and enriched with the HRGs associated with
another brain disorder, this module is considered to
represent the shared mechanisms between two brain
disorders.

In total, the logistic regression identified 16 gene co-
expression modules significantly [|β|> 0 and
pcorrected < 0.05 (t-test)] dysregulated in the brain disor-
ders (Fig. 5a). Among them, module MEpink was found
to be significantly upregulated in MDD (= 1.42 ×10−3

and pcorrected−MDD = 5.04 × 10−3, t-test) and down-
regulated in neurodegenerative disorders (AD and PD,
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βAD = −3.30 ×10−3 and pcorrected−AD = 1.05 × 10−8, t-test;
βPD = −5.12 ×10−3 and pcorrected−PD = 1.14 ×10−7 t-test).
Further analysis indicated that MEpink was significantly
(Fisher’s Exact test p < 0.05) enriched by the HRGs
associated with BP, MDD, AD and PD compared to
LRGs. When the heritability enrichment analysis was
performed for MEpink module after excluding the
HRGs associated with specific disorders, we found it
had not achieved the significance for MDD (nominal
p = 0.33), AD (nominal p = 0.36) and PD (nominal p =
0.74) (Fig. S18). Besides, module MElightgreen was
found to be downregulated in BP and MDD
(βBP = −1.97 ×10−3 and t-test pcorrected−BP = 0.017; βMDD =
−3.14 ×10−3 and t-test pcorrected−MDD = 2.83 × 10−4), and
upregulated in AD and PD (βAD = 9.24 ×10−3 and t-test
pcorrected−AD = 7.10 × 10−22; βPD = 5.95 ×10−3 and t-test
pcorrected−PD = 3.87 × 10−4), and was enriched by HRGs
associated with AD as compared to the LRGs. However,
after removing the HRGs, the module MElightgreen was
not found with significant heritability enrichment for BP
(nominal p = 0.26), MDD (nominal p = 0.51), AD
(nominal p = 0.15), PD (nominal p = 0.35). Interestingly,
we found that the HRGs associated with psychiatric dis-
orders were enriched in the dysregulated gene-expression
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modules associated with neurodegenerative disorders
(MEcyan, MEred, and MEpink) and vice versa (MEblack,
MEpink, MElightgreen, MEred, and MEcyan). When we
explored the biological function enriched by MEpink,
we found that genes in MEpink are enriched by pre-
synaptic endocytosis (padj = 3.35 × 10−3), synaptic
vesicle cycle (padj = 0.028), regulation of GTPase ac-
tivity (padj = 0.033) and chromatin remodeling (padj =
0.046) functions (Table S17). Furthermore, we found
that the HRGs associated with all six brain disorders
were enriched in genes that were differentially
expressed (DEGs) between AD patients and controls
(Fig. 5b). The HRGs associated with SCZ were
enriched in DEGs of SCZ. The gene expression dif-
ference analysis identified 6 DEGs (|log2(Fold
change)| > 0 and t-test pcorrected < 0.05] for BP, among
which none are HRGs nor LRGs of BP. In similar
vein, 79 DEGs were found for PD, among which three
genes are HRGs of PD. The number of overlapping
genes between HRGs and DEGs for PD were
marginally higher (Fisher’s exact test p = 0.049) than
the LRGs. Thus, the enrichment of HRGs associated
with psychiatric disorders in the modules dysregu-
lated in neurodegenerative diseases may well reflect
shared neurological mechanisms between these
conditions.

The shared mechanisms between the six brain dis-
orders were further explored by searching for the
enrichment of HRGs identified by dint of their har-
bouring rare variants related to SCZ or ASD, or de novo
mutations related to developmental disorders (DD; see
Methods). The HRGs associated with SCZ, MDD, AD,
and PD were found to be enriched in genes known to
harbour rare variants related to ASD and DD (Fig. 5c,
Table S18). The HRGs associated with AD were also
enriched in genes harbouring rare variants associated
with SCZ. A Venn diagram in Fig. S19a depicts the
number of HRGs overlapping with those genes har-
bouring rare variants associated with brain disorders
(SCZ, ASD, or DD).

We next explored whether HGMD pathogenic var-
iants [disease-causing mutations (DM) or likely patho-
logical mutations (DM?)]44 were enriched in the HRGs
(see Methods). We found that the HRGs associated
with five of the disorders under study here (SCZ,
MDD, AD, PD, and MG) were all enriched among the
genes known to carry HGMD pathogenic variants
related to ASD (Fig. 5d). The HRGs identified as being
associated with SCZ, BP, MDD and AD were also
enriched in HGMD pathogenic variants related to SCZ.
A Venn diagram in Fig. S19b depicts the number of
HRGs overlapping with genes harbouring pathogenic
variants in HGMD associated with seven brain disor-
ders (SCZ, BP, MDD, ASD, AD, PD or MG). Thus, the
pathogenic variants harboured by the HRGs are
potentially indicative of shared genetic architecture
between the brain disorders.
www.thelancet.com Vol 107 September, 2024
Comparing iGOAT with eQTL-based gene
annotation tools and gene-level genome-wide
association analysis
Using SCZ as an example, we compared the output of
iGOAT with two eQTL-based approaches, coloc27 and
TWAS,49 and a recently developed a gene-level genome-
wide association analysis, H-MAGMA.19 Since both
TWAS and coloc were obtained from the adult human
DLPFC, we compared these two methods with results of
iGOAT using adult Hi-C data and H-MAGMA results
derived from the adult brain (v1.08). We detected a
significant overlap between the HRGs identified by iGOAT
and the three other sets of genes. Indeed, the HRGs were
significantly more likely to overlap with the genes pre-
dicted by coloc and TWAS than the LRGs (Fig. 6a. p =
3.76 × 10−3, OR = 1.87 [coloc]; p = 2.68 × 10−4,
OR = 2.60 [TWAS], Fisher’s Exact test).

Then, we compared the precisions of these methods in
predicting SCZ-associated genes. H-MAGMA predicted
6664 SCZ-associated genes, including 187 genes that
iGOAT identified as HRGs, which represented a signifi-
cant enrichment compared to LRGs (p = 4.32 × 10−11,
OR = 2.35, Fisher’s exact test). We calculated the preci-
sion of the top predictions generated by these four
methods (rank by p values). As shown in Fig. 6b, iGOAT
exhibited a precision of 100% for its top 19 predictions,
and a precision larger than 85% for its top 200 predictions.
TWAS showed a comparable precision with coloc, which
did not exceed 65%. H-MAGMA predicted more risk
genes but with lower precisions (<45%) than other
methods.

In total, 328 genes were predicted to be associated
with SCZ by coloc or TWAS but were not predicted as
HRGs by iGOAT, whereas 255 genes were predicted to
be HRGs associated with SCZ by iGOAT but were not
predicted as risk genes associated with SCZ by coloc or
TWAS. These two sets of genes were termed eQTL-only
and iGOAT-only, respectively. The iGOAT-only gene set
was found to be significantly enriched in nine SCZ-
related gene sets compared to the eQTL-only gene set
(Fig. 6c). Briefly, 80.00% of the iGOAT-only genes were
present in the SCZ-related gene sets whereas only
39.33% of the eQTL-only genes were present in the
SCZ-related gene sets. When comparing the expression
levels of iGOAT-only and eQTL-only genes in the
developmental stages of brain, we observed higher
expression levels of iGOAT-only than eQTL-only genes
(Fig. 6d).

A recent TWAS study50 has identified 67 SCZ-
associated genes, termed nMHCGs. Among them, 51
genes were not identified as HRGs by iGOAT, which
were termed nMHCG-only genes. Out of 305 HRGs
identified by the iGOAT, 289 did not show significance
in the TWAS study, and which were termed HRG-only
genes. From the HRG-only genes, 83.93% were in the
SCZ-gene database while only 56.72% nMHCG-only
genes were in the SCZ-gene database. Further analysis
17
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indicated that the HRG-only genes were enriched
(pcorrected ≤ 4.93 × 10−2, Fisher’s exact test) in six SCZ-
related gene sets compared to the nMHCG-only genes
(Fig. S20). The nMHCG-only genes were not enriched
in any SCZ-related gene sets as compared to the HRG-
only genes (Fig. S20). However, these two sets of genes
have not shown tissue-specificity differences whether
using HRG-only as background genes (pcorrected > 0.20,
Fisher’s exact test) or using nMHCG-only as back-
ground genes (pcorrected > 0.33, Fisher’s exact test) in the
BrainEAC dataset. A similar conclusion was drawn
when they were compared on the GTEx dataset
(pcorrected > 0.34 using HRG-only as background genes,
and pcorrected > 0.99 using nMHCG-only as background
genes).

Further, we extracted risk genes (FDR< 0.05) detec-
ted by H-MAGMA,19 a gene-level genome-wide associa-
tion analysis incorporating chromatin interaction
profiles and GWAS summary statistics to predict risk
genes for brain disorders, and compared these genes
with HRGs predicted by iGOAT. Compared to the
HRGs predicted by iGOAT, 111 HRGs were not
predicted as risk genes by H-MAGMA, whereas 6477
risk genes were predicted by H-MAGMA but were not
predicted as HRGs by iGOAT. These genes were termed
iGOAT-onlyH and H-MAGMA-only, respectively.
Compared to H-MAGMA-only, iGOAT-onlyH were
enriched in ten SCZ-related gene sets (Fig. 6c) with
81.98% SCZ-related genes while the value for H-
MAGMA-only was 23.48%. Additionally, we observed
that iGOAT-onlyH genes were characterized by higher
expression levels during all brain developmental stages
than H-MAGMA-only genes (Fig. 6d).

Taken together, iGOAT is a more powerful tool for
the detection of true disease-related genes and predicted
HRGs highly expressed in all brain developmental
stages than coloc, TWAS, and H-MAGMA.

HRGs identified by iGOAT and experimental
validation of an association between MLH1 gene
and SCZ
In total, iGOAT predicted that 1393 HRGs (empirical
pcorrected < 0.001) were associated with at least one of the
six brain disorders studied here. The biological
www.thelancet.com Vol 107 September, 2024
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functions implicated by these HRGs are listed in Sup-
plemental Results (Fig. S21 and Table S19). We addi-
tionally found all the HRGs were significantly more
likely to interact with drugs than the LRGs (pcorrected ≤
7.23 × 10−3, OR ≥ 1.76, Table S20, Fisher’s exact test),
suggesting that the HRGs are likely to be potential drug
targets.

Among these HRGs, 205 genes were not included in
any of the brain disorder-related gene sets (Table S21).
The expression level of these HRGs in brain develop-
ment was higher during the prenatal stage than the
postnatal stage51 (Fig. 7a). Moreover, cell-type profiling
indicated that these HRGs exhibited higher expression
levels in neurons than in other cell types (Fig. 7b).
Among these genes, MLH1 (PP = 0.0016, empirical
p< 10−4) was the top-ranked gene predicted to be asso-
ciated with SCZ. The MLH1 gene, located at chromo-
some 3p22.2, plays a crucial role in genome integrity by
replacing mis-paired nucleotides during DNA replica-
tion. As a key component of the DNA mismatch repair
(MMR) system, inactivated MLH1 can affect growth
regulation and apoptosis-related genes,52 and over-
expression of MLH1 induces apoptosis and/or a muta-
tor phenotype.53 Therefore, maintaining precise control
over the cellular levels ofMLH1 is essential for ensuring
genome stability. Despite evidence suggesting that
reduced MLH1 expression can result in genomic
instability and tumorigenesis, little is known about its
potential contribution to neurodevelopmental disorders.
Huckins et al., using conditional analyses, identified
independent associations between MLH1 and SCZ.50

However, no experiments have been performed to vali-
date the association between MLH1 and SCZ.

Experimental validation of the association of MLH1
with SCZ was performed using neural stem cells (NSCs)
from mouse. We validated the identity of the isolated
NSCs with a Stemness marker (NESTIN) for NSCs
(Fig. S22a). We first knocked down the expression of
MLH1 in the mouse NSCs, and then examined the
knockdown efficiency of the designed shRNAs by
western blotting (Fig. 7c and Fig. S22b). To assess the
effect of MLH1 on the proliferation of these cells, we
performed EdU incorporation and CCK-8 assays. Both
assays showed that MLH1 knockdown significantly
inhibited the proliferation of NSCs (Fig. 7d, e, and f).
We further investigated the functional roles of MLH1 in
NSC differentiation and found that the proportion of
neuronal nuclei (NeuN, a marker of mature neurons)
positive cells, was significantly decreased in MLH1
knockdown groups compared with controls (Fig. 7g and
h). Consistently, the expression levels of NeuN protein
were significantly decreased in MLH1 knockdown
groups compared with controls (Fig. S22c and d), indi-
cating that the differentiation abilities of NSCs were
impaired by MLH1 knockdown. Overall, these experi-
ments indicated the important role of MLH1 in the
proliferation and differentiation of NSCs, two important
www.thelancet.com Vol 107 September, 2024
neurodevelopmental processes that have been
frequently reported to be affected by SCZ risk genes.54–57

The association of MLH1 and SCZ was further
examined by RNA sequencing (RNA-seq) of murine
NSCs. The NSCs were divided into two groups, a
MLH1 knockdown group and the control group. RNA-
seq data analysis indicated that 66 human homologous
genes (DEGs) were expressed differentially (|log
(FC)| > 0.30 and FDR < 0.05) in the two groups. We
further explored the enrichment of these 66 DEGs in
SCZ-related gene sets compared to background genes
(FDR > 0.1, Fisher’s exact test), and found that they were
significantly enriched in eight gene sets (Fig. 7i), including
one SCZ-related pathway (pcorrected = 5.52 × 10−4, Fisher’s
exact test) and a literature-reported set of genes (GenCLiP
and DisGeNET; pcorrected = 7.58 ×10−3 and 2.86 × 10−3,
Fisher’s exact test), suggesting the potential role of MLH1
in SCZ. The expression profile of DEGs overlapping with
the eight significant gene sets are shown in Fig. 7j. We
observed significantly higher expression levels of DEGs in
MLH1 knockdown cells than in control cells.
Discussion
Here, we present an unsupervised method, iGOAT, that
predicts high-risk genes (HRGs) associated with various
neurological conditions. By integrating gene networks
and multi-omics features, we identified HRGs for each
disorder. These genes were consistent with results from
other studies. In AD, we found AD-related HRGs were
enriched in GO terms related to inflammation58,59

(regulation of inflammatory response), immune sys-
tem60 (immune response-activating signalling pathway,
immune response-regulating cell surface receptor sig-
nalling pathway, immune system development) and
glial cell,61 which have been reported to relate to AD. In
PD, HRGs associated with PD include monogenic PD
gene LRRK2, which was identified in GWAS as a risk
locus for sporadic PD. Mutations in LRRK2make a large
contribution to both sporadic and familial forms of PD.
The HRGs were enriched in functions related to pro-
teolytic stress, which underlines nigral pathology in
PD.62 In SCZ, SCZ-related HRGs were enriched in
processes related to synapse and immune system, which
are key factors in the development of SCZ.63 Moreover,
SCZ-related HRGs were also enriched in dopaminergic
function that highly related to SCZ.64 In BP, BP-related
HRGs were enriched in functions related to mitochon-
drial and oxidative stress. Researchers have found evi-
dence on mitochondrial abnormalities in BP.65,66 There
is evidence to show oxidative damage in proteins in
BP67,68 and oxidative stress plays a key role in the path-
ophysiology of BP.69 Moreover, dysfunction in the
endoplasmic reticulum-related stress response may be
associated with BP and illness progression70 and HRGs
associated with BP were enriched in response to endo-
plasmic reticulum stress. Overall, HRGs were enriched
19

http://www.thelancet.com


C
on

tr
ol

A
D

O
R

A
2B

A
R

H
G

E
F

9

A
T

C
A

Y

C
D

H
10

C
D

H
2

C
H

R
N

A
4

D
IS

C
1

D
LG

A
P

1

D
S

C
A

M

E
LA

V
L4

E
P

B
41

L3

F
S

C
N

1

G
A

B
R

A
2

G
A

B
R

A
3

G
R

IN
3A

K
C

N
A

B
2

K
H

D
R

B
S

3

M
A

R
C

H
F

6

N
E

U
R

L1

N
E

U
R

O
D

1

N
R

X
N

3

O
P

C
M

L

P
R

IC
K

LE
2

P
R

K
A

R
2B

P
R

K
D

1

Q
P

C
T

R
A

P
1G

A
P

2

S
E

P
T

IN
6

S
LC

6A
1

S
R

E
B

F
2

S
Y

N
2

T
B

C
1D

9

T
M

E
M

13
2A

W
W

C
1

X
Y

LT
1

Z
E

B
1

Control1

Control2

Control3

Control4

-1

0

1

Column scaled FPKM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5

0.6

0.7

0.8

0.9

4PCW
8PCW

10PCW
13PCW

16PCW
19PCW

24PCW
Birth 6M 1Y 6Y 12Y 20Y 40Y 60Y

Developmental stage

noisserpxe
dezila

mro
N

Novel HRGs

Astro Endo Micro Neuron Oligo OPC

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8

-1 0 1
Scaled expression

In1 In2 In3 In4 In5 In6 In7 In8

-1 0 1
Scaled expression

a b

c

e

f

f

i

j

M
LH

1-
S

h#
1

Sh#1-1

Sh#1-2

Sh#1-3

0

1

2

3

A
ut

D
B

C
C

S

D
is

G
eN

E
T

D
P

S

E
C

G

E
G

E
rb

B

F
M

R
P

.A
sc

an
o

F
M

R
P

.D
ar

ne
ll

F
U

M
A

G
A

B
A

G
en

C
lip

H
G

M

H
R

A
R

m
iR

.1
37

.ta
rg

et
s

N
LR

I

P
R

A
Z

P
R

P

P
S

D

S
Y

V

gol-
10

(p
detcerroc
)

OR

0

10

20

30

40

50

d

g

h

Articles

20 www.thelancet.com Vol 107 September, 2024

http://www.thelancet.com


Articles
in many disorder-related gene sets and functions
affecting neurons and synapses, which suggested the
close connection between HRGs and these disorders.

iGOAT is an approach to construct a Bayesian
framework integrating enhancer–promoter interaction
(EPI) information with other genomics data including
SNP-SNP interactions. We compared iGOAT with
eQTL-based gene annotation tools and gene-level
genome-wide association analysis, and indicated
iGOAT is a more powerful tool for the detection of
brain-disorder related genes (Fig. 6). iGOAT can be
modified to predict genes associated with other types of
heritable disease by including features pertaining to that
specific disease. The general approach promises to be
especially suitable for diseases where a large amount of
omics data (e.g., epigenomic, transcriptomic, genomic)
are available.

The impact of EPI and SNP-SNP interactions on
iGOAT was evaluated by excluding sequentially these
two sources of information. We found that using EPI in
iGOAT increases its ability to identify genes specifically
expressed in brain tissues and regions (Fig. S6a and b).
In similar vein, the use of EPI data increased the
probability of revealing genes that are highly expressed
in multiple brain cell types. However, using EPI iGOAT
predicted HRGs associated with BP or AD were found
to be expressed in Astro, Endo, OPC, Micro, Neuron
and Oligo at a lower or comparable level than the HRGs
predicted by iGOAT without using EPI (Fig. S6c). The
underlying reason may be that the EPI data used in this
study were derived from the neurons of 11 different
individuals aged between 5 months and 18 years, and
hence do not represent all the EPI information present
in brain cells, especially in different brain develop-
mental stages. Many studies have indicated that micro-
glia play a significant role in AD. Our study also found
that the HRGs associated with AD expressed signifi-
cantly higher in microglia than in other cell types
(except neurons, p ≤ 4.96 × 10−5, Wilcoxon test
Fig. S23). When we only used EPI data of microglia in
iGOAT, we observed the median expression level of
HRGs associated with AD is significantly (pcorrected ≤
1.35 × 10−5, Wilcoxon test) higher in microglia and
neurons than in other cell types (Fig. S24). This finding
suggests that including the EPI data from the specific
cell type having important roles in the brain disorders is
helpful in identifying the HRGs highly expressed in that
Fig. 7: Expression feature of HRGs and experimental validation of MLH
brain development. (b) Row-scaled cell-type expression of the HRGs. (c) W
lentivirus or empty control lentivirus. (d) Edu assay showing that MLH1 k
data for (d). (f) CCK-8 assay showing that MLH1 knockdown promoted s
calculated using the two-tailed Student’s t-test. *p < 0.05, **p < 0.01
knockdown decreased the differentiation of NSCs into NeuN-positive neu
(identified by analysing RNA-seq of murine NSCs) in SCZ-related gene set
test. The dashed line was − log10(0.05). (j) Expression profile of DEGs that
were log2 transformed and scaled for each gene.
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cell type. Moreover, as shown in Fig. S6c, including EPI
of neurons in iGOAT can lead to the discovery of more
genes highly expressed in neurons. For diseases that are
not unrelated to neurons, we suggest that users should
exclude the EPI of neurons when they run iGOAT using
the data and the code in Github. More comprehensive
EPI information is required to further improve the
predictive ability of iGOAT in the context of identifying
HRGs mapped in various cell types.

iGOAT potentially revealed the neurodevelopmental
origin of the brain disorders, when it was applied to
psychiatric disorders and neurological disorders. There
is a long-standing debate as to whether or not adult-
onset brain disorders have a neurodevelopmental
origin.71 It has become widely accepted that disturbances
that occur early in brain development can contribute to
the pathogenesis of SCZ later in life.72 Applying iGOAT
to the psychiatric disorders SCZ, BP and MDD, we
found that the expression of HRGs associated with these
disorders exhibited potential spatiotemporal and devel-
opmental convergence during brain development from
the prenatal to postnatal stages (Fig. 4e). Similar con-
clusions were reached for AD, PD and MG, although the
burden of these disorders increases with age. When we
examined the expression of the top 1% most significant
HRGs associated with AD, PD and MG (Fig. S5), we
found that the HRGs associated with AD and MG
showed gradual increases across the lifespan using child
and adult Hi-C data. This finding is consistent with the
result in H-MAGMA,19 and suggests that HRGs with
different levels of significance may have different
expression trends during brain development. When we
excluded the pleiotropic genes for the HRGs, in total
243, 226, 197, 278, 263 and 150 HRGs were only asso-
ciated with SCZ, BP, MDD, AD, PD and MG, respec-
tively. The temporal patterns of these HRGs were found
to be like the HRGs not excluding the pleiotropic genes
(Fig. S25). This result illustrated that the HRGs associ-
ated with AD and PD indeed exhibit a similar temporal
expression pattern during brain development, which are
not the same as the pleiotropic genes associated with
both. However, HRGs associated with PD decreased
during development. Although PD is generally associ-
ated with advanced age, it is possible that the initial
neuronal damage occurs at a relatively early stage of
brain development.73 One study has even shown that
epigenetic factors operating during fetal brain
1. (a) The expression level of the HRGs at different stages of human
estern blot of MLH1 in NSCs infected with MLH1 shRNA containing
nockdown slightly enhanced proliferation of NSCs. (e) Quantification
ignificant proliferation of NSCs. n = 6 for each group. p values were
, ***p < 0.001. (g) MLH1 promotes differentiation of NSCs. MLH1
rons. (h) Quantification data for (g). (i) Enrichment analysis of DEGs
s. The point size represents the OR value in a one-sided Fisher’s exact
were significantly enriched in SCZ-related gene sets. The FPKM values
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development may result in PD later in life.74 The find-
ings of the present study provide support for the concept
of a link between PD and brain development in the
fetus, on the basis that the HRGs associated with PD
appear to play an important role in the early stages of
brain development. In this study, the genes predicted as
HRGs by iGOAT using EPI but not predicted as HRGs
by the method without using EPI, were termed neu-
ronDRGs. As shown in Fig. 3e, the neuronDRGs were
expressed much more highly than all the cLRGs and
noHiCDRGs (HRGs predicted by method without using
EPI), and they have not shown obvious expression pat-
terns in any brain developmental stage. These results
indicated that the EPI data are helpful in identifying
genes highly expressed at the whole brain develop-
mental stages.

However, this study has found the insignificant
enrichment score explained by HRGs for AD. The
reason may be due to the low heritability of AD. When
we used LDSC to estimate the proportion of the heri-
tability explained by all SNPs of AD, h2AD reached 0.0045
that is much lower than the heritability of other diseases
(h2SCZ = 0.363, h2BP = 0.251, h2MDD = 0.0311, h2PD =
0.247, and h2MG = 0.0275). When we estimated the
heritability explained by SNPs around HRGs, the h2AD
was reduced to 0. Thus, the low heritability of AD is a
potential reason for the enrichment score explained by
the HRGs being close to random. Besides the low her-
itability of AD, other factors may also influence the
heritability enrichment score. When we estimated the
heritability enrichment of nonHiCDRs and neu-
ronDRGs for AD, we found that noHiCDRGs
(Enrichment = 185.003, pcorrected = 0.023) were more
enriched in terms of heritability than neuronDRGs
(Enrichment = 0.199, pcorrected = 0.971), suggesting EPI
in iGOAT influences the identification of HRGs
enriched with heritability of AD. To examine if the EPI
from microglia can improve the heritability enrichment
of HRGs for AD, we performed iGOAT only using EPI
data of microglia to predict HRGs (microDRGs). The
result indicated that microDRGs (Enrichment = 26.337,
pcorrected = 0.239) have no significant enrichment of AD
heritability. The underlying reason for the low herita-
bility enrichment of HRGs for AD is hard to ascertain
based on the current analysis. We may obtain clear
interpretation after we have more EPI data and more
powerful GWAS of AD in the future.

Additionally, applying iGOAT to multiple brain dis-
orders yielded clues as to the shared mechanisms be-
tween psychiatric disorders and several
neurodegenerative diseases. Of special note, we found
that the AD-associated gene co-expression modules
(MEpink and MEcyan) are all enriched by HRGs that are
associated with BP, MDD or SCZ (Fig. 5a). In total, 133,
133, 106, 146, 146 and 86 HRGs associated with SCZ,
BP, MDD, AD, PD, and MG overlapped with differen-
tially expressed genes (DEG) of AD. We performed
function enrichment analysis to identify the GO terms
enriched by these genes. These HRGs associated with
SCZ and AD are all enriched in GO terms related with
neuron projection, regulation of synapse structure or
activity, DNA repair, regulation of DNA metabolic pro-
cess and learning or memory (Table S22). The HRGs
associated with BP and overlapping with DEGs of AD
are enriched in GO terms related with DNA repair,
regulation of DNA metabolic process and RNA trans-
port, the HRGs associated with MDD and overlapped
with DEGs of AD are enriched in GO terms pertaining
to learning or memory and calcium ion transport, the
HRGs associated with AD and MG are all enriched in
GO terms related with neuron differentiation, neuron
projection and regulation of synapse structure or activ-
ity. More detailed results are shown in Table S22. The
HRGs associated with SCZ, BP, MDD and PD are
enriched in rare variants related to developmental dis-
orders (DD) (Fig. 5c). This finding may reflect shared
genetic architecture between AD/PD and psychiatric
disorders.75–78

The HRGs associated with SCZ are not enriched
with SCZ de novo/rare mutations. The underlying
reason is the limited number of SCZ-associated de novo/
rare mutations. One study43 collected 118 rare mutations
that were obtained by analysing exomes from 4264 cases
and 9343 controls, and had an elevated burden related to
SCZ with pFDR < 0.3. These mutations were harboured
by 54 genes. A recent study has shown a higher burden
of rare loss-of-function variants in individuals with se-
vere, and extremely treatment-resistant SCZ, but did not
find that any rare variants located in genes reached
genome-wide significance with the gene-level burden
test.79 This previous study performed four collapsing
analyses to show the association of the rare variants with
SCZ; from each analysis we selected the top 10 signifi-
cant rare variants and compared them to the HRGs
obtained in our study. These rare variants mapped to 32
genes. Only 4 out of 32 genes were SCZ candidate genes
(1,756) of our study. The most recent meta-analysis80 of
24,248 cases, 97,322 controls and de novo mutations
from 3402 trios implicates ten genes in which ultra-rare
coding variants (URVs) are associated with SCZ and 32
genes at an FDR <5%. Out of these 32 genes, two
(GRIN2A and STAG1) are indicated as HRGs by our
method that has identified 305 HRGs and 1298 LRGs
for SCZ. Using the LRGs as background genes, the
binomial test has shown that the HRGs significantly
enriched with more genes (binomial test, p = 0.023)
resided by the rare variants associated with SCZ. There
are two additional studies focusing on detecting genes
resided by rare variants associated with SCZ. One
study81 has analysed the exomes of 12,332 unrelated
Swedish individuals, which include 4877 affected with
schizophrenia. The analysis identified 244,246 coding-
sequence and splice-site ultra-rare variants (URVs) that
were unique to individual Swedes. However, the single
www.thelancet.com Vol 107 September, 2024
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gene burden analysis has not found individual genes
significantly enriched more disruptive or damage rare
variants (dURVs) in cases comparing to controls exome
widely. Similarly, our method only identified one
(KCNH7) out of the genes resided by the dURVs with
burden test p< 0.01 as HRGs of SCZ, indicating the
HRGs not significantly (binomial test, p = 0.76)
enriched with dURVs when comparing to the LRGs.
Additional study82 has presented an approach for
detecting risk genes of SCZ by analysing rare variant,
and have identified SCZ risk genes using extTADA.
However, only 24 candidate risk genes were identified
with FDR< 0.3 and two genes were individually signif-
icant at FDR< 0.05. Among these 24 genes, only
HSPA8 gene was identified as HRGs by our method. In
summary, our method has defined candidate genes as
those close to common variants associated with SCZ,
which is hard to identify genes significantly enriched
with rare variants associated with SCZ. To enhance the
predictive capabilities of our methodology, it is imper-
ative to broaden its application to forecast disease–gene
associations that are influenced by rare genetic variants
in proximity to genes.

ASD is highly genetically heterogeneous and may be
caused by both inherited and de novo variants. We found
that HRGs for MDD are enriched in de novo mutations
associated with ASD. Indeed, many studies have indi-
cated that depression or depressive symptoms are
prevalent in ASD patients.83,84 Another study through
MTAG analysis indicated shared genetic loci between
ASD and MDD.85 Additionally, ASD has shown strong
genetic correlations with MDD.86 The HRGs for MDD
were also found to be enriched with de novo mutations
associated with DD. Many studies have revealed that
developmental characteristics increase the risk of
MDD.87,88 Common variants in the RBFOX1 gene and
22q11.2 region have been indicated as being associated
with both MDD and DD.89,90 Few studies have investi-
gated the shared de novo variants of MDD with ASD and
DD. More investigations are required to validate the
roles of these de novo mutations in MDD.

A previous study20 has investigated the shared ge-
netics between eight psychiatric traits (major depressive
disorder (MDD), bipolar disorder (BP), schizophrenia
(SCZ), anxiety, post-traumatic stress disorder (PTSD),
alcoholism, neuroticism, and insomnia), and five
neurodegenerative diseases (Alzheimer’s disease (AD),
Lewy body dementia (LBD), frontotemporal dementia
(FTD), amyotrophic lateral sclerosis (ALS), and Parkin-
son’s disease (PD)), which has found the genetic cor-
relations between AD and MDD, BD, PTSD, and other
psychiatric diseases but not identified any genetic cor-
relations between PD and the psychiatric diseases. This
previous study did not investigate the genetic correla-
tions between PD and ASD. Here, we found the HRGs
associated with PD were enriched with de novo muta-
tions associated with ASD (Fig. 5c).
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In this study, we have provided a score (posterior
probability, PP) and an empirical P-value to evaluate the
significance of one gene associated with disease. Higher
PP and lower p-value indicated a gene having a higher
probability to be associated with the disease, and lower
probability for the gene to be random. More stringent
thresholds will lead to a lower false positive rate but a
higher false negative rate. When we used a stringent
threshold to select the top 0.5% HRGs, we observed an
increasing trend of HRGs for AD, and a decreasing
trend of HRGs for BP, MDD and PD during the life
span (Fig. S26). This observation is similar to the result
for analysing the top 1% of HRGs. Users can select
genes according to the study requirement. If they need
to find more HRGs for validation, a lax threshold is
useful.

This methodology has many limitations. First, SNP-
SNP interactions were constructed by identifying paired
SNPs using r2 < 0.1 as a cutoff to exclude SNPs exhib-
iting a high level of linkage disequilibrium. Although
this cutoff is commonly used, it may oversimplify the
complexities of linkage disequilibrium in the SNP-SNP
interaction network. Second, this study collected over 20
brain disorder-related gene sets to measure the predic-
tive ability of iGOAT. These genes were shown by
different methods to be associated with brain disorders,
and their involvement in the causation of brain disor-
ders is not equal. They may however represent a
comprehensive dataset of genes that are associated with
brain disorders, and which may therefore facilitate the
identification of new disease genes from the sets of
HRGs predicted by iGOAT. Thirdly, the HRGs pre-
dicted by iGOAT are dependent on the power of the
original GWAS. It follows that the further development
of GWAS studies should dramatically improve the pre-
dictive power of iGOAT. Finally, to reduce the compu-
tational burden, we only used pairwise SNP-SNP
interactions integrating with GO interactions and
protein–protein interactions in constructing the
Bayesian framework. The pairwise SNP-SNP in-
teractions may miss the information on a more complex
network. Nevertheless, the missing information may be
compensated for by protein–protein interactions and
GO interactions. Moreover, while this study validated
the roles of MHL1 gene in SCZ experimentally, more
experiments on other genes will be required in future.

Altogether, we have presented here an approach,
iGOAT, which integrates heterogeneous genomic data
into a Bayesian framework to allow the prediction of
disease-associated genes. The application of iGOAT to
both psychiatric disorders and neurological diseases
revealed the importance of EPI and SNP-SNP in-
teractions in the predictions. iGOAT can potentially
facilitate the development of neurologically relevant
hypotheses from GWAS study results. For example,
iGOAT can help us to generate the hypothesis that many
SNPs associated with the disorders play a regulatory role
23
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through remote regulatory elements by identifying the
HRGs rather than the nearest gene to the index SNPs.
Additionally, iGOAT identified many HRGs that are not
reported to be associated with brain disorders in widely
used known gene sets. These HGRs can help us to
generate the hypothesis that the disorders are involved
in a new gene network. iGOAT is also able to be applied
to non-brain disorders by taking SNPs associated with a
non-brain disorder as input, and utilizing multi-omics
data from tissues related to a specific disorder to
construct the Bayesian framework.
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