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ABSTRACT: Herein we report an electrochemical deconstructive
functionalization approach for the synthesis of C(sp3)-rich
heterocycles. The reaction proceeds via the mesolytic cleavage of
anodically generated aromatic radical cations and the trapping of
formed carbocation intermediates with internal nucleophiles. The
method has been demonstrated across various arylalcohol
substrates to access a diverse range of C(sp3)-rich heterocycles
including tetrahydrofuran, tetrahydropyran, and pyrrolidine scaf-
folds (26 examples). The electrochemical method was demonstrated on a 5 mmol scale via single pass continuous flow, which
utilized lower supporting electrolyte concentration and exhibited increased productivity in relation to the batch process.

Electrochemistry can be utilized to selectively oxidize or
reduce organic molecules.1 Through control of various

electrochemical parameters,2 specific single electron transfer
processes can be targeted, which provide access to a diverse
array of synthetically versatile radical intermediates.3 Oxidation
of aromatic systems to the corresponding aromatic radical
cation results in the weakening of β-C−C σ-bonds present
within the molecule (Scheme 1A).4,5 This intriguing, yet

somewhat underutilized, mode of substrate activation has been
employed in the development of electrosynthetic method-
ologies,6 including the deconstructive functionalization of
arylcyclopropanes,7 donor−acceptor cyclopropanes/cyclobu-
tanes,8 and 5-, 6- and 7-membered arylcycloalkanes.9 In this
area, our group recently reported an electrochemical method
for the deconstructive functionalization of unstrained arylcy-
cloalkanols,10 where various alcohols, carboxylic acids, and N-
heterocycles were employed as external nucleophiles to
generate a diverse array of synthetically useful remotely
functionalized ketones (Scheme 1B).11

More than 85% of all biologically active chemical entities
contain a heterocycle,12 which highlights their importance in
the development of new pharmaceuticals. Saturated hetero-
cycles can offer further advantages such as improved aqueous
solubility and lower toxicity of metabolites, while increasing
the level of saturation (C(sp3)-rich) and structural diversity in
drug discovery programmes.13 Building upon our previous
work, it was envisaged that the electrochemical deconstructive
functionalization14 strategy could be applied to the synthesis of
C(sp3)-rich heterocycles through incorporation of an internal
nucleophile.15

Herein, we report the successful realization of this strategy,
which enables the electrochemical synthesis of various
heterocycles,16 including substituted tetrahydrofuran, tetrahy-
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Scheme 1. Background and Context
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dropyran, and pyrrolidine scaffolds (26 examples) (Scheme
1C).
The electrochemical conversion of 2-arylalcohol 1 (Ep/2 =

1.64 V vs Fc/Fc+) to form 2-phenyltetrahydrofuran (2) was
selected as the model system for reaction optimization due to
facile determination of conversion data via 1H NMR analysis of
crude reaction mixtures (Table 1).17 The optimized electro-

chemical reaction conditions employed n-Bu4NClO4 as the
supporting electrolyte in DCM:TFE (19:1, [1] = 0.05 M),
galvanostatic electrolysis (i = 7.5 mA, janode = 5.9 mA/cm2, 2
F), a graphite anode and a Pt foil cathode in an undivided cell
at 25 °C under N2, which gave 90% conversion to 2 (87%
isolated yield) (Table 1, entry 1). 2-Arylalcohol 1 was prepared
in one step from lactone 3 via reaction with MeLi (2.5 equiv.).
As such, a formal two-step carbonyl deletion sequence from
lactone 3 to tetrahydrofuran 2 has been achieved. A Faradaic
efficiency of 90% indicated that most of the electricity passing
through the cell is utilized productively. No product formation
or quantitative recovery of 1 was observed in the absence of
electricity (entry 2). Employing a constant cell potential (Ecell
= 7 V) resulted in only 67% conversion to 2 after 2 F of charge
was passed (entry 3). Alterations to the current applied (i = 5
or 10 mA) lowered the yield of 2 (entry 4), as did variation of
electrode materials (entries 5 and 6), electrolyte (entry 7),
electrolyte/substrate concentration (entries 8 and 9), solvent
mixture (entries 10 and 11), and the amount of charge passed
(entry 12). When DCM was replaced by MeCN in the solvent
mixture (entry 10), a high cell potential and anode fouling was
observed, which may be explained by DCM being reduced at
the cathode, acting as an electron sink. It was also found that
employing MeOH as cosolvent, which is more nucleophilic
and less acidic than TFE, resulted in lower conversion to 2

(entry 11). An experiment that involved lowering the
concentration of supporting electrolyte to 0.025 M was halted
due to the high cell potential observed.
With optimized electrochemical reaction conditions in hand,

the scope and limitations of the heterocycle formation were
investigated (Scheme 2). Initially, it was found that a variety of

substituents and functional groups were tolerated on the
aromatic ring present within the 2-arylalcohol substrates, which
enabled access to the corresponding 2-aryl substituted
tetrahydrofuran products in high isolated yields (products
4−10 and 13−17). These included halogens (4-F, 4-Cl, 4-Br,
4-I), electron-releasing groups (e.g., 4-OMe, 4-OTBS), aryl
(e.g., 4-Ph), and alkyl substituents (e.g., 4-t-Bu). A substrate
that contained a phenol motif was insoluble and did not result
in any observable conversion to the desired tetrahydrofuran
product 11, whereas a 2-arylalcohol that contained an electron-
withdrawing aromatic substituent (4-CF3) gave product 12 in a
modest 33% yield. This latter observation may be attributed to
the higher oxidation potential of the substrate (no observable
oxidation in the 0−2.5 V vs Fc/Fc+ potential window). 2-
Arylalcohol substrates that contained o-tolyl, mesityl, or 1-
naphthyl substituents were converted into the corresponding
2-aryl tetrahydrofurans 17−19 in 55−83% isolated yields,
which demonstrated that heterocycle formation was not
particularly sensitive toward increased steric encumbrance on
the aromatic ring. Additional heterocycles could be incorpo-
rated into the tetrahydrofuran products, including cyclic acetal
(20), 2-thiophenyl (21), and 2-furanyl (22) motifs. 2,4-
Disubstituted tetrahydrofuran 23 was formed as a 1.4:1

Table 1. Optimization of the Electrochemical Processa

entry variation from “standard” conditions yieldb (%)

1 none 90 (87)
2 no electricity <2
3 Ecell = 7 V 67
4 i = 5 mA or 10 mA 69, 80
5 Graphite as cathode 70
6 Pt foil as anode <2
7 n-Bu4NBF4 or n-Bu4NPF6 as electrolyte 75, 67
8 [n-Bu4NClO4] = 0.1 or 0.025 M 81, N.D.
9 [1] = 0.033 or 0.1 M 84,c 64d

10 MeCN:TFE (19:1) as solvent <2
11 DCM:MeOH (19:1) as solvent 52
12 1.5 F or 2.5 F 60, 73

aReactions performed with 0.3 mmol of 1 using the ElectraSyn 2.0
batch electrochemical reactor. [1] = 0.05 M. bAs determined by1H
NMR analysis of the crude reaction mixture with 1,3,5-trimethylben-
zene as the internal standard. Isolated yield given in parentheses. N.D.
= not determined. c1 (0.2 mmol). d1 (0.6 mmol).

Scheme 2. Scope and Limitations (2-Arylalcohols)a

aReactions performed using optimized reaction conditions (Table 1,
entry 1) with isolated yields after chromatographic purification
quoted unless stated otherwise. bAs determined by 1H NMR analysis
of the crude reaction mixture with 1,3,5-trimethylbenzene or 1,3,5-
trimethoxybenzene as the internal standard.
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mixture of diastereoisomers, which were isolated in a
combined 81% yield. 2,2-Disubstituted tetrahydrofuran prod-
ucts 24 and 25 were formed in 85% and 71% yields,
respectively, where 25 was derived from the nonsteroidal
anti-inflammatory drug, ibuprofen. Next, the impact of chain
length upon successful heterocycle formation was investigated.
While the electrosynthetic protocol was optimized for the
formation of 5-membered rings (e.g., tetrahydrofuran 2), it was
found that 2-phenyltetrahydro-2H-pyran 27 could also be
isolated in 41% yield. However, the electrosynthetic method
was not applicable to the formation of 4-membered rings (e.g.,
2-phenyloxetane 26) or 7-membered rings (e.g., 2-phenyl-
oxepane 28). Finally, substituting the internal hydroxyl
nucleophile for a sulfonamide enabled the formation of 2-
phenyl-1-tosylpyrrolidine (29) in 53% isolated yield. A
complex mixture of products was observed upon the attempted
formation of 2-phenyltetrahydrothiophene (30) using the
optimized reaction conditions, which may be attributed to
undesired reactivity resulting from oxidation of the sulfur atom.
Next, two 1-arylalcohol substrates were synthesized and

subjected to the optimized electrochemical reaction conditions
(Scheme 3). 2-Methyltetrahydrofuran (31) and 2,2-dimethyl-

tetrahydrofuran (32) were formed in 46% and 36% NMR
yields, respectively, which confirmed that nonaromatic
substituents could be incorporated at the 2-position within
the tetrahydrofuran products.
To demonstrate scalability, the electrochemical formation of

2-phenyltetrahydrofuran (2) was performed in flow employing
a syringe pump (flow rate = 2 mL/min) in combination with
the commercially available Ammonite8 flow electroreactor
(volume = 1 mL)18 equipped with a carbon anode and
platinum plate cathode (Scheme 4). Using galvanostatic

electrolysis (i = 320 mA, janode = 14.0 mA/cm2, 2 F), 2-
Arylalcohol 1 (5 mmol) was converted to 2 in 83% isolated
yield (0.62 g) in a continuous single pass. In comparison to
batch, the flow process was performed using a lower electrolyte
concentration ([n-Bu4NClO4] = 0.025 M vs [n-Bu4NClO4] =
0.05 M) and increased current density (janode = 16 mA/cm2 vs
janode = 5.9 mA/cm2), which resulted in higher productivity
(4.98 mmol/h vs 0.12 mmol/h).

A selection of experiments were performed to gain insight
into the reaction mechanism (Scheme 5). First, it was found

that aliphatic alcohol 33, which does not undergo any
observable oxidation in the 0−2.5 V vs Fc/Fc+ potential
window, was unreactive when subjected to the optimized
electrochemical reaction conditions (Scheme 5A). Replacing
the phenyl group present within substrate 1 with a homobenzyl
motif (substrate 34) also resulted in no observable conversion
to the corresponding tetrahydrofuran product 36. Taken
together, these results indicate that (i) a 1- or 2-arylalcohol
structural motif is required for successful heterocycle formation
(cf., Schemes 3 and 4); (ii) the reaction proceeds via an initial
oxidation of the aromatic ring to form an aromatic radical
cation; and (iii) alkoxy radical intermediates are not involved
in the reaction mechanism. Next, we investigated the impact of
the deconstructive functionalization strategy on the reaction
efficiency (Scheme 5B). When 4-phenylbutan-1-ol (37) (Ep/2
= 1.82 V vs Fc/Fc+) was subjected to the optimized
electrochemical reaction conditions, only 20% conversion to
2-phenyltetrahydrofuran (2) was observed alongside 70%
unreacted 37.19 Furthermore, it was found that a selection of
related substrates (38−40) that contained various aromatic
substituents (4-F, 4-OMe, and 4-CF3) underwent no
observable conversion to the corresponding tetrahydrofuran

Scheme 3. Further Substrate Scope (1-Arylalcohols)a

aReactions performed using optimized reaction conditions (Table 1,
entry 1). Yields as determined by 1H NMR analysis of the crude
reaction mixture with 1,3,5-trimethylbenzene as the internal standard.

Scheme 4. Electrochemical Scale up in Flow

Scheme 5. Reaction Mechanisma

aReactions performed using optimized reaction conditions (Table 1,
entry 1). Yields as determined by 1H NMR analysis of the crude
reaction mixture with 1,3,5-trimethylbenzene as the internal standard.
RSM = returned starting material.
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products. As such, it was clear that the deconstructive
functionalization strategy employed facilitated the electro-
chemical heterocycle formation. Finally, it was found that
subjecting (S)-1 (>99% e.e.) to the electrochemical reaction
conditions produced 2-phenyltetrahydrofuran (2) in racemic
form (Scheme 5C), which confirmed the involvement of a
planar benzylic secondary carbocation intermediate in the
reaction mechanism. Taking the formation of product 2 as a
representative example, and based upon related studies,6−11 a
plausible reaction mechanism initiates with single electron
anodic oxidation of the phenyl ring within the 2-arylalcohol
substrate to give the corresponding aromatic radical cation
(Scheme 5D). This species can be converted to the
corresponding benzylic carbocation via hydroxyl-assisted
mesolytic cleavage of the weakened benzylic β-C−C σ-bond
and single-electron anodic oxidation, while generating acetone
as an innocent byproduct. Subsequent intramolecular
nucleophilic attack by the hydroxyl group and deprotonation
generates the observed tetrahydrofuran products. The counter
cathodic reaction is hydrogen gas production via proton
reduction.
In summary, an electrochemical deconstructive functional-

ization strategy has been employed to access various C(sp3)-
rich heterocyclic products from readily accessible arylalcohol
substrates (26 examples). The reaction proceeds via the
mesolytic cleavage of anodically generated aromatic radical
cations and trapping of carbocation intermediates with internal
nucleophiles. The method was demonstrated on a 5 mmol
scale via single pass continuous flow, which exhibited increased
productivity in relation to the batch process. Ongoing work in
our laboratory is focused on developing further applications of
the mesolytic cleavage of anodically generated aromatic radical
cations in organic synthesis.
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