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Abstract

This thesis focuses on the design of efficient strategies for the low-rank approxima-

tion of positive semidefinite matrices via column sampling. A special emphasis is

placed on investigating the properties of the energy setting, which relates the low-

rank approximation of Hilbert-Schmidt integral operators with the approximation

of potentials in reproducing kernel Hilbert spaces. The implications of the energy

setting in the matrix framework are investigated, leading to the definition of differ-

entiable surrogate error maps for the characterisation of low-rank approximations.

Classes of gradient-based sampling strategies leveraging the properties of these

error maps are then proposed and analysed, and the possibility to improve the

numerical efficiency of these approaches via stochastic approximations is explored.
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Chapter 1

Introduction

In this chapter, we provide an overview of the motivation behind the thesis, describe

its main contributions, and outline the organisation of the manuscript.

1.1 Motivation

Positive semidefinite (PSD) matrices are ubiquitous in mathematics and its appli-

cations. For instance, in probability and statistics, covariance matrices are PSD

matrices; such matrices also play a central role in kernel methods, an important

class of techniques in machine learning and approximation theory. PSD matrices

also characterise quadratic forms, and are therefore of importance in geometry and

optimisation. More generally, PSD matrices correspond to discrete instances of

PSD operators, and the diagonalisation of such matrices is at the core of numerous

spectral approximation techniques.

From a numerical standpoint, the worst-case time complexity of diagonalising a

PSD matrix of order N is cubic in N , making this operation intractable for large

N (not to mention the issues related to the storage of large matrices). This has

motivated the development of numerical approaches for low-rank approximation

based on the notion of column sampling; the induced approximations are then

referred to as Nyström approximations1 (see for instance Williams and Seeger

(2000)). The idea of approximating a PSD matrix from a sample of its columns

naturally raises questions related to the characterisation of samples leading to
1In the literature on PSD matrix approximation, Nyström approximation refers to the low-rank

approximation of PSD matrices through column sampling; although related, this terminology
should not be confused with the quadrature method for the approximation of integral equations.
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Chapter 1: Introduction

accurate Nyström approximations. This problem is referred to as the column-

sampling problem (CSP). The CSP is inherently difficult; it is indeed combinatoric

in nature, and in practical applications, the assessment of the quality of a given

column sample is numerically challenging. As an alternative, a wide variety of

heuristic-based approaches for column sampling have been developed (see Chapter 2

for an overview).

The focus of this thesis is the development and analysis of sampling strategies

for the CSP which leverage connections between PSD matrices, reproducing kernel

Hilbert spaces (RKHSs) and approximation in Hilbert-Schmidt (HS) spaces.

1.2 Main contributions and organisation of the
manuscript

In Chapter 2, we provide an overview of the key concepts related to the approx-

imation of general matrices via column sampling and to the assessment of the

accuracy of such approximations. We then place a special emphasis on the Nyström

approximation of PSD matrices, and describe some popular approaches to the CSP.

In Chapter 3, we give a detailed description of the energy setting, which

consists of representing HS integral operators acting on an RKHS as potentials

in the associated squared-kernel RKHS (see Gauthier (2024)). By interpreting

PSD matrices and their approximations as HS operators, we can then relate the

characterisation of low-rank approximations of PSD matrices to the approximation

of specific discrete potentials.

Chapters 4 and 5 consist of the main original contributions of the manuscript. In

Chapter 4, we describe a class of sequential sampling strategies for the CSP which

leverage the properties of an energy-based differentiable pseudoconvex relaxation of

the problem, where column samples are characterised through the non-zero entries

of selection vectors; such selection vectors can be regarded as discrete measures,

and together with the considered PSD matrix, define integral operators acting

on the RKHS defined by the matrix (see Section 3.1.3). Following Gauthier and

Suykens (2018) and Gauthier (2024), the norm of the corresponding HS space can

be used to discriminate among selection vectors, and enforcing an invariance with

respect to the rescaling of selection vectors gives rise to a quasiconvex differentiable

2



Chapter 1: Introduction

error map on the selection-vector space (the map is in addition pseudoconvex on

a specific convex cone of interest). The proposed sampling strategies relate to

kernel-herding-type strategies (see e.g. Chen et al. (2010) and Bach et al. (2012)),

and are based on gradient-based minimisation procedures with sparse initialisations

and sparse descent directions; sparsity of the samples is then enforced via early

stopping of the optimisation. Stochastic variants are also discussed, which aim at

improving the computational efficiency of the approaches.

Chapter 5 focuses on the specific case of kernel matrices, where, rather than

being characterised by subsets of columns, Nyström approximations can more

generally be characterised by sets of landmark points. In this framework, and using

a variant of the previously introduced rescaling-invariant error map, we describe

a class of particle-flow-based techniques for the local optimisation of landmark

points. We prove the convergence of such algorithms in the deterministic setting,

and discuss their stochastic approximation.

Algorithmic implementations of the methods described in Chapters 4 and 5 are

available at https://github.com/matthutchings/energy-sampling in the form

of illustrative code examples. These examples include Python functions for the

described algorithms, so that the reader may experiment with the methods using

alternative data and initialisations.

3
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Chapter 2

Low-rank approximation of
positive semidefinite matrices

In this chapter, we provide an overview of the key concepts related to the approx-

imation of general matrices via column sampling and to the assessment of the

accuracy of such approximations. We then place a special emphasis on the Nyström

approximation of positive semidefinite (PSD) matrices, and describe some popular

approaches to the column-sampling problem (CSP).

2.1 Low-rank approximation: general case

In this section, we present some classical results concerning the low-rank approxi-

mation of general matrices (the particular case of PSD matrices will be discussed

in Section 2.2).

2.1.1 Approximation accuracy

Although infinitely-many different norms could be considered, in the literature

on low-rank matrix approximation, the three most commonly encountered norms

used to assess the approximation accuracy are the trace, Frobenius and spectral

norms; they are defined below. These norms all relate to the singular values of the

considered matrices.

Definition 2.1. (Unitary matrix). With I denoting the N ×N identity matrix, a

square complex matrix U ∈ CN×N is called unitary if U∗U = UU∗ = I, that is, if

its inverse exists and is equal to its conjugate transpose.

4



Chapter 2: Low-rank approximation of positive semidefinite matrices

Definition 2.2. (Singular value decomposition). Let A ∈ CNr×Nc be a complex

matrix. A singular value decomposition (SVD) of A is a factorisation of the form

A = UΣV∗,

where U ∈ CNr×Nr and V ∈ CNc×Nc are unitary matrices, and Σ ∈ CNr×Nc is a

matrix whose diagonal entries are non-negative real numbers (referred to as the

singular values of A) and whose off-diagonal entries are all zero. We refer to the

columns of U and V as left- and right-singular vectors of A, respectively.

Remark 2.1. The singular values of a matrix A ∈ CNr×Nc are unique up to

reordering; see e.g. Trefethen and Bau (2022), Thm. 4.1 for a proof. However, the

SVD of A is not unique, since the singular values of A and their corresponding

left- and right-singular vectors may always be reordered, and the result is also an

SVD of A. Additionally, if some of the singular values of A are repeated, then

another SVD of A can be obtained by permuting singular vectors corresponding to

the same singular value. An SVD in which the singular values appear in decreasing

order along the diagonal of Σ is sometimes referred to as an ordered SVD. ◁

We now define the trace, Frobenius and spectral norms of a matrix.

Definition 2.3. Let A ∈ CNr×Nc be a complex matrix with (i, j) entry denoted by

Ai, j. Let σ1 ⩾ . . . ⩾ σR denote the non-zero singular values of A, repeated with

multiplicity.

(i) The trace norm of A is given by

∥A∥tr =
R∑

r=1
σr.

(ii) The Frobenius norm of A is given by

∥A∥F =

√√√√√ Nr∑
i=1

Nc∑
j=1

A2
i, j =

√
trace(A∗A) =

√√√√ R∑
i=1

σ2
i .

(iii) The spectral norm of A is given by

∥A∥sp = σ1,

the largest singular value of A.

5



Chapter 2: Low-rank approximation of positive semidefinite matrices

For a matrix A ∈ CNr×Nc , let Â ∈ CNr×Nc be an approximation of A. The

accuracy of Â relative to A is classically assessed via the trace, Frobenius or

spectral norm of the approximation error, that is

∥A − Â∥tr, ∥A − Â∥F, or ∥A − Â∥sp. (2.1)

The closer a norm error is to zero, the more accurate the approximation Â is

deemed to be with respect to the associated norm.

2.1.2 Rank-optimal approximations

Given a matrix norm ∥ · ∥ and a target matrix A ∈ CNr×Nc , a rank-optimal approx-

imation of A is a matrix Â ∈ CNr×Nc that achieves the minimum approximation

error with respect to ∥ · ∥ among all Nr ×Nc complex matrices of the same rank;

that is, if rank(Â) = m, we have

∥A − Â∥ = min
rank(M)=m

∥A − M∥.

In this section, we will show that the optimal rank-m approximation of a A

with respect to the trace, Frobenius and spectral norm errors can be obtained by

truncating an SVD of A.

Unitarily invariant norms are a class of matrix norms which are invariant with

respect to left- and right-multiplication by unitary matrices.

Definition 2.4. (Unitarily invariant norm). Let ∥ · ∥ denote a matrix norm on

CNr×Nc ; we say that ∥ · ∥ is unitarily invariant if for all A ∈ CNr×Nc and for all

unitary matrices X ∈ CNr×Nr and Y ∈ CNc×Nc , we have

∥XA∥ = ∥AY∥ = ∥A∥.

Proposition 2.1. The trace, Frobenius and spectral norms on CNr×Nc are unitarily

invariant.

Proof. Let A ∈ CNr×Nc , and let X ∈ CNr×Nr and Y ∈ CNc×Nc be unitary. Let

UΣV∗ be an SVD of A, with U ∈ CNr×Nr and V ∈ CNc×Nc unitary. We have that

XA = (XU)ΣV∗, and AY = UΣV∗Y = UΣ(Y∗V)∗. As products of unitary

matrices, the matrices XU and Y∗V are also unitary. Thus the decompositions

above are SVDs of XA and AY, respectively, and so the singular values of XA

and AY are the same as those of A. The result follows from Definition 2.3.

6



Chapter 2: Low-rank approximation of positive semidefinite matrices

The following theorem is a classical result which characterises the optimal

rank-m approximation of a complex matrix with respect to a unitarily invariant

norm.

Theorem 2.1. (Eckhart–Young–Mirsky theorem; Mirsky (1960), Thm. 3). Let

∥ · ∥ denote any unitarily invariant norm on CNr×Nc . Let A ∈ CNr×Nc , and let

UΣV∗ be a singular value decomposition of A; write U = [u1| · · · |uNr ] and

V = [v1| · · · |vNc ], where uj,vj ∈ CN denote the j-th columns of U and V,

respectively. Let m ⩽ min{Nr, Nc}, and consider the matrix

A⋆
m =

m∑
k=1

σkukv∗
k, (2.2)

obtained by truncating the SVD of A to its first m terms. If m ⩽ rank(A), we

have

inf
rank(M)=m

∥A − M∥ = ∥A − A⋆
m∥;

otherwise, we have A⋆
m = A.

The Eckhart–Young–Mirsky theorem combined with Proposition 2.1 tells us

that an approximation A⋆
m of the form (2.2) is rank-optimal with respect to the

trace, Frobenius and spectral norms on CNr×Nc . Due to their reliance on an SVD

of the target matrix, rank-optimal approximations are often too costly to compute

in applications involving large matrices, hence motivating the development of

alternative low-rank approximation techniques based on column sampling.

2.1.3 Low-rank approximation via column sampling

Let A ∈ CNr×Nc be a complex rectangular matrix, and let the columns of A be

indexed by [Nc] = {1, . . . , Nc}. For a subset I ⊆ [Nc] with |I| = m, a low-rank

approximation of A based on the columns of A with indices in I is of the form

A•, IM for some M ∈ Cm×Nc , where A•, I is the submatrix of A consisting of the

columns indexed by I. A popular choice for M is the matrix (A•, I)†A, where

(A•, I)† denotes the Moore–Penrose pseudoinverse of A•, I (see Penrose (1955), and

also Barata and Hussein (2012) for a review). This is due to the fact that taking

M = (A•, I)†A gives the best approximation of A based on the columns indexed

7



Chapter 2: Low-rank approximation of positive semidefinite matrices

by I in terms of the Frobenius norm error, that is,

∥A − A•, I(A•, I)†A∥F = min
X∈Cm×Nc

∥A − A•, IX∥F; (2.3)

see the work of Drineas et al. (2008) for more details.

The search for accurate low-rank approximations of rectangular matrices through

subsets of their columns is often referred to as the column subset selection problem

(CSSP); see e.g. Boutsidis et al. (2007), Farahat et al. (2015) and Derezinski et al.

(2020) for examples of contemporary approaches to the CSSP.

2.2 Positive-semidefinite matrices

We now discuss the particular case of PSD matrices, the primary focus of this thesis.

The following Remark 2.2 gives expressions for the norm errors of rank-optimal

approximations of a PSD matrix (with respect to the trace, Frobenius and spectral

norms) in terms of its eigenvalues.

Remark 2.2. For a complex PSD matrix K ∈ CN×N , let K⋆
m be the optimal rank-

m approximation of K of the form (2.2) for some m ⩽ N . The trace, Frobenius

and spectral norms of the approximation error K − K⋆
m are given by:

∥K − K⋆
m∥tr =

N∑
k=m+1

λk; ∥K − K⋆
m∥F =

√√√√ N∑
k=m+1

λ2
k ; ∥K − K⋆

m∥sp = λm+1, (2.4)

where λ1 ⩾ . . . ⩾ λN denote the eigenvalues of K (since K is PSD, its eigenvalues

and its singular values coincide). For m ⩾ rank(K), we note that K⋆
m = K, in

which case the above error norms vanish. ◁

2.2.1 Nyström approximation

As discussed in Section 2.1.3, low-rank approximations of matrices can be defined

through subsets of their columns. The Nyström method is a specific instance of

this type of approach for PSD matrices.

Let K ∈ CN×N be a PSD matrix, and let the columns of K be indexed by

[N ] = {1, . . . , N}; the Nyström approximation of K induced by I ⊆ [N ] is the

matrix K̂(I) defined as

K̂(I) = K•, I(KI, I)†KI, •, (2.5)

8
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where K•, I denotes the submatrix of K consisting of the columns indexed by I,

KI, • = (K•, I)∗, and KI, I denotes the principal submatrix of K consisting of the

rows and columns indexed by I.

We refer to an index set I with |I| = m as a Nyström sample of K of size m.

The Nyström approximation matrix K̂(I) is of rank at most m, and is guaranteed

to be of rank m when K has full rank. Thus, choosing a Nyström sample of a small

enough size ensures that the induced Nyström approximation K̂(I) is low-rank.

Remark 2.3. The Nyström method is just one approach to the low-rank approx-

imation of PSD matrices; other approaches exist in the literature, such as the

work by on the sparse approximation of the Cholesky inverse via Kullback-Leibler

divergence. For kernel matrices specifically, examples include approximation via

random projections of the input data onto low-dimensional subspaces (see e.g.

the work by Blum (2005)), and the random Fourier features approach of Rahimi

and Recht (2007). An advantage of the Nyström method is that it only requires

a sample of columns from K to build the approximation; however, this can be

a limitation when compared to other contempory methods that allow for more

freedom in the sampling process.

The motivations behind the Nyström approximation K̂(I) and its properties

are discussed further in Chapter 3; see also the following Remark 2.4.

Remark 2.4. A similar result to (2.3) holds for Nyström approximations of PSD

matrices. For a given subset of columns I of K, with |I| = m ⩽ N , the m × N

matrix Xopt = (KI, I)†KI, • satisfies

Xopt ∈ arg min
X∈Cm×N

∥K − K•, IX∥tr

see Rasmussen and Williams (2006), Chap. 8. The matrix K•, IXopt is precisely

the Nyström approximation K̂(I) defined in (2.5). ◁

2.2.2 The column-sampling problem

The definition of Nyström approximations naturally raises questions related to the

characterisation of subsets of columns leading to accurate low-rank approximations

9
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of a PSD matrix; we refer to the search for such subsets as the column-sampling

problem (CSP).

The CSP is inherently difficult for two main reasons. Firstly, enumerating

over all possible column samples of size m is a combinatorial problem, with
(

N
m

)
different samples to consider, and secondly, the computation of the approximation

norm errors becomes expensive when N is large, especially for the Frobenius and

spectral norms. Indeed, the evaluation of each of the norm errors first requires the

pseudoinversion of the submatrix KI, I in (2.5), requiring O(m3) operations. After

this, the trace norm error is the cheapest to obtain of the three, as it only requires

the computation of the N diagonal entries of the matrices K and K̂(I). For the

Frobenius norm error, one must compute all N2 entries of the two matrices, and

the spectral norm error additionally requires the diagonalisation of the error matrix

K − K̂(I). Table 2.1 summarises the computational costs of evaluating each of

these quantities.

Table 2.1: Computational complexities of evaluating the trace, Frobenius and spectral
norms of the approximation error for a Nyström approximation K̂(I) with |I| = m ⩽ N .

Approx. norm error Complexity
∥K − K̂(I)∥tr O(m3 +m2N)
∥K − K̂(I)∥F O(m3 +mN2)
∥K − K̂(I)∥sp O(m3 +mN2 +N3)

As a result, the direct minimisation of the trace, Frobenius or spectral norm

errors over all possible Nyström samples of a given size is generally impractical.

This has motivated the development and study of a wide range of heuristic-based

sampling strategies for the CSP.

2.2.3 Approaches to the column-sampling problem

In this section, we discuss some popular types of sampling strategy for Nyström

approximations; many other approaches exist in the literature (see e.g. Sun et al.

(2015) for a review).

2.2.3.1 Naive sampling strategies

We present two examples of “naive” column-sampling strategies, that is, strategies

which require a minimal amount of computation. Although enjoying interesting

10



Chapter 2: Low-rank approximation of positive semidefinite matrices

properties, they typically require relatively large column samples to achieve given

target accuracies when compared to more sophisticated approaches see e.g. the

experiments of Gittens and Mahoney (2016).

Uniform-random sampling. Perhaps the simplest and most computationally

efficient sampling strategy for the CSP involves sampling columns of the PSD

matrix K uniformly at random without replacement. Indeed, this was the sampling

strategy used in the work of Williams and Seeger (2000), the original paper on

the Nyström method. Probabilistic bounds on the accuracy of uniform-sampling-

induced Nyström approximations with respect to the Frobenius and spectral norm

errors were obtained in Kumar et al. (2012).

Squared-diagonal-random sampling. In the work of Drineas and Mahoney

(2005), the authors propose sampling columns with probabilities proportional to

the squared diagonal entries of K, that is, with probabilities

pi =
K2

i, i∑N
j=1 K2

j, j

, i ∈ [N ];

the main result of the paper is a set of statistical bounds on the induced Frobenius

and spectral Nyström approximation errors for this sampling strategy.

2.2.3.2 Leverage scores

Leverage-score-based column sampling typically involves sampling columns of the

target PSD matrix K with probabilities proportional to their statistical leverage

scores. These scores are interpreted as measures of the relative “importance” of

the columns of K.

Definition 2.5. (Leverage scores; Gittens and Mahoney (2016)). Let N ∈ N,

and let K ∈ CN×N be a complex PSD matrix with eigenvalue decomposition

K = PΛP∗, where Λ ∈ RN×N is the diagonal matrix formed from the eigenvalues

of K in descending order, repeated with multiplicity, and the columns of P ∈ CN×N

consist of the corresponding eigenvectors. Let k ⩽ N , and let Pk ∈ CN×k be the

matrix formed from the first k columns of P, that is, the top k eigenvectors of K.

11
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For j ∈ [N ], the j-th leverage score of K relative to its optimal rank-k approxi-

mation is given by

lkj = ∥(Pk)j, •∥2,

where (Pk)j, • denotes the j-th row of Pk.

A number of leverage-score-based approaches to the CSP can be found in

the work of Gittens and Mahoney (2016), where the authors describe column-

sampling techniques based on both exact and approximate leverage scores. For

the approximate leverage score case, the authors use an algorithm from the paper

(Drineas et al., 2012) which computes approximations of the leverage scores using a

modified Johnson–Lindenstrauss Transform first proposed in the work (Ailon and

Chazelle, 2006). Leverage scores may also be approximated more naively through

uniform sampling; see e.g. Cohen et al. (2015).

More recently, there has been interest in the use of so-called ridge leverage

scores and their approximations for solving the CSP. Ridge leverage scores add

an additional regularisation parameter λ > 0 which is often problem-dependent;

techniques involving ridge leverage scores have been developed to approximate

kernel ridge regression problems, see, for example, the works of Alaoui and Mahoney

(2015) and Chen and Yang (2021).

Definition 2.6. (Ridge leverage scores; Alaoui and Mahoney (2015)). Let

K = PΛP∗ ∈ CN×N be a complex PSD matrix, and let λ > 0. Let the singu-

lar values of K, repeated with multiplicity, be denoted by σ1 ⩾ . . . ⩾ σN ⩾ 0. For

j ∈ [N ], the j-th λ-ridge leverage score of K is given by

lj(λ) =
N∑

i=1

σi

σi +Nλ
P 2

i, j.

As with the standard leverage scores, ridge leverage scores are costly to obtain

due to the need to diagonalise K. Techniques involving approximate ridge leverage

scores have been developed to address this issue, two of which being the Recursive-

RLS algorithm of Musco and Musco (2017) and the Divide and Conquer algorithm

proposed in Cherfaoui et al. (2022).
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2.2.3.3 Determinantal point processes

With origins in the field of random matrix theory (see e.g. Mehta and Gaudin

(1960) and Ginibre (1965)), determinantal point processes (DPPs) were formalised

in the work of Macchi (1975), albeit under the name of “fermion processes”; they

describe a class of point processes which exhibit repulsion between points. DPPs

also appear naturally in the field of randomised numerical linear algebra (see e.g.

Derezinski and Mahoney (2021)), and have been utilised in a variety of machine

learning applications due to their ability to sample data in a diverse way (see

Kulesza et al. (2012) for a review).

Definition 2.7. (DPP; Kulesza et al. (2012)). Let N ∈ N, and let K ∈ RN×N be a

real symmetric positive semidefinite (SPSD) matrix which satisfies 0 ⪯ K ⪯ I, with

I the N × N identity matrix, and where ⪯ denotes the Löwner partial ordering

(see e.g. Zhan (2004), Chap. 1).

A determinantal point process (DPP) on [N ] with marginal kernel K is a

probability measure P on the power set 2[N ] which satisfies the following: if S ⊆ [N ]

is a random sample from P, then for every T ⊆ [N ], we have

P({T ⊆ S}) = det(KT, T );

we say that S ∼ DPP(K).

A particular type of DPP is the L-ensemble, which removes the restriction

0 ⪯ K ⪯ I in Definition 2.7.

Definition 2.8. (L-ensemble; Kulesza et al. (2012)). Let L ∈ RN×N be a real

SPSD matrix. An L-ensemble is a probability measure PL on 2[N ] which satisfies

the following: if S ⊆ [N ] is a random sample from PL, then for every T ⊆ [N ], we

have

PL({S = T}) ∝ det(LT, T ).

We note that every L-ensemble is a DPP with marginal kernel K = L(L + I)−1.

For the CSP, it is often desirable to sample subsets of a fixed size k. The result

is a k-DPP, defined below.
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Definition 2.9. (k-DPP; Kulesza et al. (2012)). A k-DPP is an L-ensemble

conditioned on subsets of size k. If Pk
L is a k-DPP, and S is a random sample from

Pk
L, then for every T ⊆ [N ] with |T | = k, we have

Pk
L(S = T ) = det(LT, T )∑

|T ′|=k det(LT ′, T ′) .

For rectangular matrices and the CSSP (see Section 2.1.3), the authors of

Derezinski et al. (2020) use k-DPP sampling to build Nyström approximations of a

PSD matrix, giving theoretical guarantees on the resulting trace approximation

errors. There have also been efforts to improve the computational efficiency of

DPP sampling, including, but not limited to, the Gibbs sampler described in the

work of Li et al. (2016) and the DPP-VFX sampler of Derezinski et al. (2019).
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Chapter 3

Reproducing kernel Hilbert spaces
and kernel energies

In this chapter, we describe the link between the low-rank approximation of positive

semidefinite (PSD) matrices, the approximation of Hilbert–Schmidt (HS) integral

operators with PSD kernels, and the approximation of potentials in reproducing

kernel Hilbert spaces (RKHSs) with squared kernels. Section 3.1 is devoted to gen-

eral results about RKHSs, HS operators and the notions of energies and potentials

in RKHSs; the connection between this setting and the low-rank approximation of

PSD matrices is then investigated in Section 3.2.

3.1 Hilbert–Schmidt operators and reproducing
kernel Hilbert spaces

In this section, we give a brief overview of some key concepts in Hilbertian analy-

sis. Notably, we describe the connections between the approximation of integral

operators on RKHSs and the approximation of potentials, which is central to our

study.

3.1.1 Reproducing kernel Hilbert spaces

In this section and throughout this chapter, we consider reproducing kernel Hilbert

spaces of C-valued functions for generality, however the results also hold for RKHSs

of real-valued functions. We assume that all inner products are linear in the second

argument and conjugate-linear in the first.
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Definition 3.1. (RKHS). Let X be a general set. A reproducing kernel Hilbert

space of C-valued functions on X is a Hilbert space H of functions from X to C

such that for every x ∈ X , the evaluation functional Ex, defined by Ex[f ] = f(x),

f ∈ H, is bounded.

Let H be an RKHS of C-valued functions on X ; by the Riesz representation

theorem (see e.g. Roman et al. (2005), Thm. 13.32), for every x ∈ X , there exists

a unique kx ∈ H such that

f(x) = Ex[f ] = ⟨kx | f⟩H, f ∈ H, (3.1)

where ⟨· | ·⟩H denotes the inner product on H. The function K : X × X → C

defined by

K(x, y) = ky(x) = ⟨kx | ky⟩H, x, y ∈ X , (3.2)

is called the reproducing kernel for H.

Remark 3.1. For any RKHS H, its associated reproducing kernel K is PSD;

indeed, for n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ C, we have

n∑
i=1

n∑
j=1

cicjK(xi, xj) =
〈

n∑
i=1

cikxi

∣∣∣∣∣∣
n∑

j=1
cjkxj

〉
H

=
∥∥∥∥∥∥

n∑
i=1

cikxi

∥∥∥∥∥∥
2

H

≥ 0.

Conversely, the Moore–Aronszajn theorem (see Aronszajn (1950), pg. 344) states

that any PSD kernel function K : X × X → C defines an RKHS on X for which

it is the reproducing kernel. ◁

3.1.2 Hilbert–Schmidt operators

This brief section introduces the notion of Hilbert spaces of Hilbert–Schmidt

operators between two Hilbert spaces (see e.g. Dunford and Schwartz (1975) for

more details).

Definition 3.2. (HS operator). Let H1 and H2 be Hilbert spaces over C, equipped

with the norms ∥ · ∥H1 and ∥ · ∥H2 , respectively. Let A : H1 → H2 be a linear

operator. A is called Hilbert–Schmidt (HS) if there exists an orthonormal basis

(ONB) {hj}j∈J of H1 such that

∑
j∈J

∥Ahj∥2
H2 < +∞.
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Let A and B be two HS operators from H1 to H2, and let {hj}j∈J be an ONB

of H1. We define

⟨A |B⟩HS(H1,H2) =
∑
j∈J

⟨Ahj |Bhj⟩H2 ;

notably, ⟨A |B⟩HS(H1,H2) does not depend on the choice of the considered ONB (see

Dunford and Schwartz (1975), Chap. XI Sec. 6).

Endowed with the Hermitian form ⟨· | ·⟩HS(H1,H2), the linear space HS(H1,H2)

of all HS operators from H1 to H2 is a Hilbert space. The corresponding HS norm

is defined as

∥A∥HS(H1,H2) =
√

⟨A |A⟩HS(H1,H2) =
√∑

j∈J

∥Ahj∥2
H2 , A ∈ HS(H1,H2).

Remark 3.2. In the framework of Definition 3.2, in the case H2 = H1, we refer to

A as a HS operator on H1 and write A ∈ HS(H1). ◁

3.1.3 Integral operators and the energy setting

In this section, we show how HS integral operators involving a PSD kernel can be

interpreted as potentials in the associated squared-kernel RKHS; we refer to this

as the energy setting, and this is the framework in which the approaches to the

CSP described in Chapters 4 and 5 are based.

Let H be a separable RKHS, i.e. an RKHS with a countable ONB, with

associated kernel function K : X × X → C. Let Σ be a σ-algebra on X , so that

(X ,Σ) is a measurable space. We make the following assumptions on K and Σ:

• for all t ∈ X , the function kt : x 7→ K(x, t), x ∈ X , is measurable;

• the function x 7→ K(x, x), x ∈ X , is measurable.

This implies that every function h ∈ H is measurable (see Steinwart and Christmann

(2008) for a detailed discussion on kernels and measurability).

Let M denote the set of all signed measures on (X ,Σ), and let M+ denote

the real convex cone of all nonnegative measures in M. Define the set

T (K) =
{
µ ∈ M

∣∣∣∣ τµ =
∫

X
K(x, x)d|µ|(x) < +∞

}
, (3.3)

where |µ| denotes the variation of µ ∈ M; denote by T+(K) = T (K) ∩ M+ the

real convex cone of nonnegative measures in T (K).
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3.1.3.1 Integral operators with PSD kernels

For h, f ∈ H and µ ∈ T (K), consider the integral

Ih,f,µ =
∫

X
h(t)f(t)dµ(t);

from the Cauchy–Schwarz inequality in H and equation (3.1), we have

|Ih,f,µ| ⩽
∫

X
|h(t)||f(t)|d|µ|(t) =

∫
X

|⟨kt |h⟩H||⟨kt | f⟩H|d|µ|(t)

⩽
∫

X
∥h∥H∥f∥H∥kt∥2

Hd|µ|(t)

= ∥h∥H∥f∥H

∫
X
K(t, t)d|µ|(t)

= τµ∥h∥H∥f∥H, (3.4)

where τµ is defined in (3.3). By (3.4), the linear map Ξh,µ : f 7→ Ih,f,µ, f ∈ H, is

bounded, therefore, by the Riesz representation theorem, for all h ∈ H there exists

Lµ[h] ∈ H such that

Ξh,µ[f ] =
∫

X
h(t)f(t)dµ(t) = ⟨Lµ[h] | f⟩H, f ∈ H. (3.5)

Let h ∈ H, and let Lµ[h] be as above. For all x ∈ X , we have

Lµ[h](x) = ⟨kx |Lµ[h]⟩ = ⟨Lµ[h] | kx⟩

=
∫

X
h(t)kx(t)dµ(t)

=
∫

X
kx(t)h(t)dµ(t)

=
∫

X
K(x, t)h(t)dµ(t). (3.6)

Lemma 3.1. For µ ∈ T (K), the integral operator Lµ : H → H, defined by (3.6)

for x ∈ X and h ∈ H, is a Hilbert–Schmidt operator on H.

Proof. Let {hj}j∈J be an ONB of H. From (3.5) and (3.6), we have

∥Lµ∥2
HS(H) =

∑
j∈J

∥Lµ[hj]∥2
H =

∑
j∈J

⟨Lµ[hj] |Lµ[hj]⟩H

=
∑
j∈J

∫
X
hj(x)Lµ[hj](x)dµ(x)

=
∑
j∈J

∫∫
X
hj(x)K(x, t)hj(t)dµ(t)dµ(x)

=
∫∫

X
K(x, t)

∑
j∈J

hj(x)hj(t)dµ(t)dµ(x)
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=
∫∫

X
K(x, t)K(t, x)dµ(t)dµ(x)

=
∫∫

X
|K(x, t)|2dµ(t)dµ(x)

⩽
∫∫

X
K(x, x)K(t, t)dµ(t)dµ(x) = τ 2

µ,

where the inequality follows from (3.2) and Cauchy–Schwarz, and the exchange of

the integrals and the sum is justified by Fubini’s theorem.

Remark 3.3. For µ ∈ T+(K), the integral operator Lµ ∈ HS(H) can be written as

Lµ = ι∗µιµ, with ιµ : H → L2(µ) the natural embedding of H into L2(µ), where ιµ[h]

is the equivalence class of all measurable functions that are µ-almost everywhere

equal to h ∈ H. We may then also consider the operators

ι∗µ : L2(µ) → H, ιµι
∗
µ : L2(µ) → L2(µ), and ιµι

∗
µιµ : H → L2(µ). (3.7)

For a detailed discussion and study of these types of integral operators in their

most general setting, we refer the reader to the work of Gauthier (2024). ◁

3.1.3.2 Potentials in squared-kernel RKHSs

The function |K|2 = K ·K, given by |K(x, t)|2, x, t ∈ X , is a valid kernel function,

since the product of two kernels is a kernel (see e.g. Paulsen and Raghupathi (2016),

Thm. 5.24 and Cor. 5.27). Let G be the RKHS on X for which |K|2 is reproducing.

For g ∈ G and µ ∈ T (K), we define

Ig,µ =
∫

X
g(t)dµ(t).

Similarly to (3.4), we have

|Ig,µ| ⩽
∫

X
|g(t)|d|µ|(t) ⩽ τµ∥g∥G,

and by the Riesz representation theorem, there exists gµ ∈ G such that

Ig,µ = ⟨gµ | g⟩G, g ∈ G;

we refer to gµ as the potential of µ in G. For all x ∈ X , we have

gµ(x) = ⟨|kx|2 | gµ⟩ =
∫

X
|kx|2(t)dµ(t) =

∫
X

|K(x, t)|2dµ(t),
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where the function |kx|2 ∈ G is given by |kx|2(t) = |K|2(x, t) = |K(x, t)|2, t ∈ X .

It follows that

∥gµ∥2
G = ⟨gµ | gµ⟩G =

∫
X
gµ(x)dµ(x) =

∫∫
X

|K(x, t)|2dµ(t)dµ(x) = ∥Lµ∥2
HS(H),

and we refer to the quantity ∥gµ∥2
G as the energy of µ in G. In this way, for every

µ ∈ T (K), the integral operator Lµ in HS(H) given by (3.6) is naturally associated

with the potential gµ ∈ G.

In particular, for µ and ν in T (K), by Cauchy–Schwarz, we have

∥Lµ − Lν∥HS(H) = ∥gµ − gν∥G = sup
g∈BG

∣∣∣∣ ∫
X
g(t)dµ(t) −

∫
X
g(t)dν(t)

∣∣∣∣,
with BG the closed unit ball of G. The map (µ, ν) 7→ ∥Lµ −Lν∥HS(H), µ, ν ∈ T (K),

is therefore a generalised maximum mean discrepancy (MMD; see e.g. Muandet

et al. (2017) and Tolstikhin et al. (2016)) for the squared-kernel function |K|2 (by

generalised, we mean that not only probability measures are considered). The

representation of this map as the norm difference of potentials in G will form the

basis for the energy-based optimisation framework considered in Chapters 4 and 5.

3.2 Reproducing kernel Hilbert spaces and PSD
matrix approximation

The entries of a PSD matrix K ∈ CN×N can be interpreted as the values of a kernel

function K : [N ] × [N ] → C, and as such, define an RKHS of C-valued functions on

[N ]. This RKHS can be identified with the subspace H = span{K} ⊆ CN endowed

with the inner product

⟨h | f⟩H = h∗K†f , h,f ∈ H. (3.8)

A subset I ⊆ [N ] indexing a column sample of K then defines a closed lin-

ear subspace HI = span{K•, I} ⊆ H of dimension |I|. Introducing the matrix

PI = K•,I(KI, I)†II, • ∈ CN×N , we have

K̂(I) = PIK = KP∗
I = PIKP∗

I ,

where the matrix K̂(I) is the Nyström approximation of K induced by I, given by

(2.5). The matrix PI corresponds to the orthogonal projection from H onto HI ;
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for all h,f ∈ H, we indeed have

span{PIK} = HI , P2
I = PI , and ⟨h | PIf⟩H = ⟨PIh | f⟩H,

so that the matrix K̂(I) = PIK is the reproducing kernel for the subspace HI ; see

e.g. Paulsen and Raghupathi (2016).

3.2.1 Nyström approximations and projections

In this section, we discuss how orthogonal projections of a PSD matrix K may be

viewed as Hilbert–Schmidt operators, and show that we are able to recover the

trace, Frobenius and spectral norms of the approximation error in this framework.

Denoting by E the Euclidean Hilbert space CN (with ⟨u | v⟩E = u∗v, u,v ∈ E),

and observing that for all h ∈ H, there exists α ∈ CN such that h = Kα, we in

particular have

⟨h | Kv⟩H = ⟨h | v⟩E , h ∈ H,v ∈ E . (3.9)

We denote by {ei}i∈[N ] the canonical basis of CN . In light of (3.9), the matrices K

and PIK can be regarded as HS operators from, and to, E or H = span{K}.

Case 1: E → H Following Section 3.1.2, we set

HS(E ,H) = {M ∈ CN×N | span{M} ⊆ H}. (3.10)

For all M,T ∈ HS(E ,H), we have

⟨M | T⟩HS(E,H) =
N∑

i=1
⟨Mei | Tei⟩H = trace(M∗K†T).

Endowed with ⟨· | ·⟩HS(E,H), the linear space HS(E ,H) is a Hilbert space (indeed,

we have ∥M∥HS(E,H) = 0 if and only if Mei = 0 for all i ∈ [N ], that is, if and only

if M = 0).

The trace norm of the approximation error corresponds to the squared HS norm

of the PSD error matrix K − K̂(I) when interpreted as an operator from E to H;

indeed, setting P0I = I − PI (so that K − K̂(I) = P0IK = KP∗
0I) and observing

that the matrix P0I corresponds to an orthogonal projection on H, from (3.9) we

obtain

∥P0IK∥2
HS(E,H) =

N∑
i=1

∥P0IKei∥2
H =

N∑
i=1

⟨P0IKei | Kei⟩H
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=
N∑

i=1
⟨P0IKei | ei⟩E = trace(P0IK) = ∥(K − K̂(I))∥tr. (3.11)

Case 2: H → E. The Frobenius and spectral norms of the matrix K − K̂(I)

correspond to the HS and spectral norms of this matrix when regarded as an

operator on E . For the Frobenius norm, we observe that

∥P0IK∥2
HS(E) =

N∑
i=1

∥P0IKei∥2
E =

N∑
i=1

e∗
i KP∗

0IP0IKei

= trace((P0IK)∗(P0IK)) = ∥K − K̂(I)∥2
F. (3.12)

Case 3: H → H. In the spirit of (3.10), we have the following characterisation

of the space HS(H):

HS(H) = {M ∈ CN×N | span{MK} ⊆ H}, (3.13)

that is, a matrix M belongs to HS(H) if and only if Mh ∈ H for all h ∈ H.

Observe that for any orthonormal basis (ONB) {hj}j∈J of H, J ⊆ [N ], we have

K = ∑
j∈J hjh

∗
j (see e.g. Paulsen and Raghupathi (2016)); it follows that for

M,T ∈ HS(H),

⟨M | T⟩HS(H) =
∑
j∈J

⟨Mhj | Thj⟩H = trace(KM∗K†T) (3.14)

Endowed with ⟨· | ·⟩HS(H), the linear space HS(H) is a semi-Hilbert space, that is, a

complete inner product space in which the inner product is only required to be

PSD. We have that ∥M∥HS(H) = 0 if and only if MK = 0 (see Remark 3.4). If K

is invertible, then HS(H) is a Hilbert space.

Remark 3.4. When the matrix K is singular, the matrices representing a given

operator on H are nonunique. Indeed, for v ∈ CN with v ̸= 0 and Kv = 0, we have

v∗h = 0 for all h ∈ H; for M ∈ HS(H) and u ∈ CN , we obtain (M + uv∗)h = Mh,

so that the matrices M and M + uv∗ represent the same operator on H. ◁

We now present a result which provides a link between ∥ · ∥HS(H) and the

Frobenius inner product on E for orthogonal projections of K.

Lemma 3.2. Let P,Q ∈ CN×N be two matrices corresponding to orthogonal

projections onto closed linear subspaces of H. We have

∥PKQ∥2
HS(H) = ⟨PK | QK⟩F.
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Proof. We first observe that PK = KP∗ = PKP∗ (the same property holds for

Q). From (3.9), we indeed have

e∗
i PKej = e∗

i KK†PKej = ⟨Kei | PKej⟩H

= ⟨PKei | Kej⟩H = ⟨PKei | ej⟩E = ⟨Kei | P∗ej⟩E

= ⟨Kei | KP∗ej⟩H = e∗
i KK†KP∗ej = e∗

i KP∗ej, i, j ∈ [N ];

in particular, the equality e∗
i PKej = e∗

i KK†PKej follows by noticing that since

PKej ∈ H, there exists α ∈ CN such that PKej = Kα. From (3.14), we then get

∥PKQ∥2
HS(H) = trace(KQ∗KP∗K†PKQ) = trace(KQ∗PKK†KP∗Q)

= trace(PKP∗QKQ∗) = trace(KP∗QK) = ⟨PK | QK⟩F,

where we have used the fact that trace(AB) = trace(BA) for all A,B ∈ CN×N .

Applying Lemma 3.2 with P = P0I and Q = P[N ] = I, we obtain

∥P0IK∥2
HS(H) = ∥P0IKI∥2

HS(H) = ⟨P0IK | IK⟩F = ⟨K − K̂(I) | K⟩F (3.15)

Similarly, we have (with Re(z) the real part of z ∈ C)

∥K − PIKPI∥2
HS(H) = ∥K∥2

HS(H) − 2Re(⟨K | PIKPI⟩HS(H)) + ∥PIKPI∥2
HS(H)

= ∥K∥2
F − ∥PIKPI∥2

HS(H) = ∥K∥2
F − ∥K̂(I)∥2

F, (3.16)

where we have applied Lemma 3.2 with P = Q = PI , and we have used the fact

that for any orthogonal projection P on H,

⟨K | PKP⟩HS(H) = ∥PKP∥2
HS(H). (3.17)

Remark 3.5. By interpreting Nyström approximations of K as HS operators on H,

we can relate the low-rank approximation of PSD matrices to the approximation of

potentials in squared-kernel RKHSs. This allows for the definition of energy-based

surrogate error maps for column sampling; see Chapters 4 and 5.

Case 4: H → E. Any matrix M ∈ CN×N can be regarded as an operator from

H to E , and in this case, we in particular have

∥K − PIKPI∥HS(H,E) = trace(K3) + trace((K̂(I))2(K̂(I) − 2K));

further details on this norm can be found in the work of Gauthier (2024). Due to

its high computational complexity, we will not consider this case in the manuscript.
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3.2.2 Error maps and Hilbert–Schmidt norms

Following Section 3.2.1, we define the following maps, relating to the trace, Frobenius

and spectral norm errors

(C.1) Ctr(I) = ∥K − K̂(I)∥tr, the trace error map;

(C.2) CF(I) = ∥K − K̂(I)∥2
F, the Frobenius error map;

(C.3) Csp(I) = ∥K − K̂(I)∥2
sp, the spectral error map.

For Ctr, note that the norm is not squared, as in (3.11). We also introduce two

more error maps based on (3.15) and (3.16):

(C.4) CP(I) = ⟨K − K̂(I) | K⟩F, the projection error map;

(C.5) CPP(I) = ∥K∥2
F − ∥K̂(I)∥2

F, the double-projection error map.

Lemma 3.3. For all I ⊆ [N ], the following inequalities hold:

Csp(I) ⩽ CF(I) ⩽ CP(I) ⩽ CPP(I).

Proof. The inequality Csp(I) ⩽ CF(I) follows from the relation between the Frobe-

nius and spectral norms. From Lemma 3.2, we have

CF(I) = ∥K∥2
F + ∥K̂(I)∥2

F − 2Re
(
⟨K̂(I) | K⟩F

)
= ∥K∥2

F + ∥PIKPI∥2
HS(H) − 2∥PIK∥2

HS(H). (3.18)

The matrix P0I corresponds to the orthogonal projection from H onto the orthogonal

complement of HI in H, and so

∥PIK∥2
HS(H) = ∥PIKPI∥2

HS(H) + ∥PIKP0I∥2
HS(H) ⩾ ∥PIKPI∥2

HS(H). (3.19)

Combining (3.18) and (3.19), we obtain

CF(I) ⩽ ∥K∥2
F − ∥PIK∥2

HS(H) = CP(I) ⩽ ∥K∥2
F − ∥PIKPI∥2

HS(H) = CPP(I),

completing the proof.

In Chapter 4, further properties of these projection-based error maps will

be explored; indeed, we will see that they are closely related to the proposed

energy-based optimisation framework.
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Chapter 4

Sequential column sampling
strategies

In this chapter, we propose a class of sequential sampling strategies for the Nyström

method which leverage the properties of a differentiable pseudoconvex relaxation of

the column-sampling problem (CSP), in which samples of columns are characterised

through the non-zero entries of selection vectors.

The chapter is organised as follows. In Section 4.1, we describe the overall

framework surrounding the considered relaxation of the CSP, and introduce an

energy-based error map R on the selection-vector space that is differentiable and

pseudoconvex. In Section 4.2, we present a class of sequential column-sampling

strategies which utilise the gradient of the error map R; stochastic variants of

these strategies are discussed in Section 4.3. Section 4.4 is devoted to numerical

experiments, and an additional figure for the experiment in Section 4.4.2 is provided

in the appendix of this chapter.

4.1 Relaxing the column-sampling problem

In this section, we describe and discuss a number of relaxations to the CSP. Firstly,

we introduce the notion of selection vectors, and show that this alone leads to a

convex, but non-differentiable, relaxation. Following this, we present an error map

defined on the selection-vector space that is both convex and differentiable. Finally,

we introduce an invariance with respect to rescaling of the input vectors, leading to

a pseudoconvex differentiable error map, on which the proposed sampling strategies

in Section 4.2 are based.
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As in Section 3.2, we let K ∈ CN×N be a PSD matrix, and we identify the

RKHS H as the vector subspace H = span{K} ⊆ CN equipped with the inner

product ⟨· | ·⟩H given by

⟨h | f⟩H = h∗K†f , h,f ∈ H.

4.1.1 First relaxation: selection vectors

For υ = (υi)i∈[N ] ∈ RN , we set Iυ = {i ∈ [N ] | υi ̸= 0}, and we refer to Iυ as the

support of υ. Through its support, a selection vector υ characterises a subset of

columns of K; following Section 3.2, we introduce the simplified notations

K̂(υ) = K̂(Iυ), Hυ = HIυ and Pυ = PIυ .

We then define the following error maps on RN , which are analogous to the maps

Ctr, CF and Csp in Chapter 3:

Ctr : υ 7→ ∥K − K̂(υ)∥tr; CF : υ 7→ ∥K − K̂(υ)∥2
F; Csp : υ 7→ ∥K − K̂(υ)∥2

sp.

Theorem 4.1. The error maps CX, X ∈ {tr,F, sp}, are convex on the convex cone

RN
⩾0, and for υ,η ∈ RN

⩾0, we have

lim
ρ→0+

1
ρ

[
CX
(
υ + ρ(η − υ)

)
− CX(υ)

]
∈ {−∞, 0},

that is, the directional derivatives of these maps take values in {−∞, 0}.

Theorem 4.1 illustrates that the error maps on the selection-vector space

induced by the trace, Frobenius and spectral norms are akin to convex piecewise-

constant functions on RN
⩾0; see Figure 4.1 for an illustration. The selection-vector

formulation can hence be regarded as a nondifferentiable convex relaxation of

the CSP. Introducing |υ| = (|υi|)i∈[N ] ∈ RN
⩾0, we observe that CX(υ) = CX(|υ|),

X ∈ {tr,F, sp}.

The following Lemma 4.1 is a supporting result for the proof of Theorem 4.1.

Lemma 4.1. For J ⊆ I ⊆ [N ], we have

∥K − K̂(I)∥X ⩽ ∥K − K̂(J)∥X, X ∈ {tr,F, sp}.
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Proof. Let H0I be the orthogonal complement of HI in H; we set P0I = I − PI .

The matrix P0I corresponds to the orthogonal projection from H onto H0I (and

K − K̂(I) = P0IK). For J , we similarly introduce the subspace H0J and the

matrix P0J = I − PJ . Since J ⊆ I, we have HJ ⊆ HI , and we denote by He the

orthogonal complement of HJ in HI ; the matrix Pe = PI − PJ corresponds to the

orthogonal projection from H onto He.

Trace norm. From (3.11), and noticing that ⟨PeK | P0IK⟩HS(E,H) = 0, we have

∥K−K̂(J)∥tr = ∥P0JK∥2
HS(E,H) = ∥P0IK∥2

HS(E,H) +∥PeK∥2
HS(E,H) ⩾ ∥K−K̂(I)∥tr.

Frobenius norm. Since H0I and He are orthogonal in H, the matrices P0IKP0I ,

PeKPe, P0IKPe and PeKP0I are orthogonal in HS(H). From (3.12) and using

Lemma 3.2, we obtain

∥K − K̂(J)∥2
F = ∥P0JK∥2

F = ∥P0JKP0J∥2
HS(H)

= ∥P0IKP0I∥2
HS(H) + ∥PeKPe∥2

HS(H)

+ ∥P0IKPe∥2
HS(H) + ∥PeKP0I∥2

HS(H)

⩾ ∥P0IKP0I∥2
HS(H) = ∥P0IK∥2

F = ∥K − K̂(I)∥2
F.

Spectral norm. We first observe that if P ∈ CN×N is an orthogonal projection on

H, then the PSD operator on E related to PK and the PSD operator on H related

to PKP have the same strictly-positive eigenvalues. Indeed, if PKv = λv, with

v ∈ E , v ̸= 0, and λ > 0, then

λPv = P(λv) = PPKv = PKv = λv,

and so λ(Pv − v) = 0; as λ > 0, we obtain v = Pv ∈ H and PKPv = λv.

Conversely, if PKPh = λh, with h ∈ H, h ̸= 0 and λ > 0, then

λPh = P(λh) = PPKPh = PKPh = λh,

and so λ(Ph − h) = 0; as λ > 0, we have Ph = h and PKh = λh.

For the spectral norm error, observing that H0I ⊆ H0J , we get

∥K − K̂(J)∥sp = ∥P0JK∥sp = max{⟨v | P0JKv⟩E | v ∈ E , ∥v∥E = 1}

= max{⟨h | P0JKP0Jh⟩H | h ∈ H, ∥h∥H = 1}
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= max{⟨P0Jh | KP0Jh⟩H | h ∈ H, ∥h∥H = 1}

= max{⟨h | Kh⟩H | h ∈ H0J , ∥h∥H = 1}

⩾ max{⟨h | Kh⟩H | h ∈ H0I , ∥h∥H = 1}

= ∥K − K̂(I)∥sp,

completing the proof.

We now prove Theorem 4.1.

Proof of Theorem 4.1. For ξ = υ + ρ(η − υ), υ,η ∈ RN
⩾0, ρ ∈ (0, 1), we have

Iξ = Iυ ∪ Iη, and the maps ρ 7→ CX(υ + ρ(η − υ)), X ∈ {tr,F, sp}, are thus

constant on the open interval (0, 1). From Lemma 4.1, we also have CX(ξ) ⩽ CX(υ)

and CX(ξ) ⩽ CX(η), concluding the proof.

4.1.2 Second relaxation: quadrature approximation

A selection vector υ ∈ RN can be regarded as a signed measure on [N ], and as

such, defines together with K a discrete integral operator of the form u 7→ KVu,

u ∈ CN , with V = diag(υ) ∈ CN×N the diagonal matrix with diagonal υ; the

matrix KV belongs to HS(H). Let ω ∈ RN be another selection vector, and set

W = diag(ω). From (3.14), we have

⟨KW | KV⟩HS(H) = trace(KWKK†KV) = trace(KWKV) = ω∗Sυ, (4.1)

where S = K⊙K (element-wise product) is the N×N PSD matrix with (i, j) entry

|Ki, j|2, the squared modulus of the (i, j) entry of K; we remark that the matrix S

is real, symmetric and PSD. Introducing 1 = (1)i∈[N ] ∈ RN , we in particular have

diag(1) = I and ∥K∥2
HS(H) = 1∗S1 = ∥K∥2

F.

We denote by D : RN → R⩾0, the error map defined as

D(υ) = ∥K − KV∥2
HS(H) = (1 − υ)∗S(1 − υ)

= ∥K∥2
F + υ∗Sυ − 2g∗υ, υ ∈ RN , (4.2)

with g = S1 ∈ RN
⩾0. We refer to g as the target potential (see Remark 4.1), since

this corresponds to sampling every column of K, the target matrix, and assigning

them all equal weight.
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Lemma 4.2. The error map D is convex on RN , and the gradient of D at υ is

given by ∇D(υ) = 2(Sυ − g).

Proof. For υ ∈ RN , and using standard differentiation rules, from (4.2) we obtain

∇D(υ) = ∇∥K∥2
F + ∇υ∗Sυ − ∇2g∗υ = 0 + 2Sυ − 2g = 2(Sυ − g).

The map D is convex on RN if and only if for all υ,η ∈ RN ,

D(υ) −D(η) − ∇D(η)∗(υ − η) ⩾ 0.

Let υ,η ∈ RN . We have

D(υ) −D(η) − ∇D(η)∗(υ − η) = υ∗Sυ − 2g∗υ − η∗Sη + 2g∗η

− 2(Sη − g)∗(υ − η)

= υ∗Sυ − 2η∗Sυ + η∗Sη

= (υ − η)∗S(υ − η) ⩾ 0,

where the inequality follows from the fact that S is PSD.

Remark 4.1. The PSD matrix S defines a RKHS that can be identified with the

vector space G = span{S} ⊆ CN endowed with the inner product ⟨g | j⟩G = g∗S†j

for g, j ∈ G. In view of (4.1), we have

⟨KW | KV⟩HS(H) = ω∗Sυ = ω∗SS†Sυ = ⟨Sω | Sυ⟩G, ω,υ ∈ RN .

We refer to Sυ as the potential of υ in G, and to ∥Sυ∥2
G = ∥KV∥2

HS(H) = υ∗Sυ as

the energy of υ with respect to S. In fact, these correspond to gν and ∥gν∥2
G in the

energy setting of Section 3.1.3 when ν is taken to be the discrete measure ∑N
i=1 υiδi.

The energy-based error map D on RN then corresponds to the square of the MMD

(µ, ν) 7→ ∥Lµ − Lν∥HS(H), µ, ν ∈ T (K) (see Section 3.1.3.2). ◁

4.1.3 Invariance under rescaling

For υ ∈ RN and c > 0, we have Iυ = Icυ; the error maps CX, X ∈ {tr,F, sp}

are thus invariant under rescaling, that is, CX(cυ) = CX(υ). To enforce a similar

invariance within (4.2), we introduce the error map

R(υ) = min
c⩾0

D(cυ) =
∥K∥2

F − (g∗υ)2/(υ∗Sυ) if g∗υ > 0,

∥K∥2
F otherwise,

(4.3)
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and we set D = {υ ∈ RN |g∗υ > 0}.

The appearance of the error maps D, R and CF in two dimensions is illustrated

in Figure 4.1.

𝝊 ↦ 𝐷(𝝊)

1𝜐1
𝜐2

𝝊 ↦ 𝑅(𝝊)

1𝜐1
𝜐2

𝝊 ↦ 𝐶F(𝝊)

1𝜐1
𝜐2

Figure 4.1: Schematic representation of the error maps D, R and CF on RN
⩾0; the red

star represents the selection vector 1 ∈ RN . The presented graphs correspond to a 2 × 2
PSD matrix K such that K1, 1 = 1.225, K2, 2 = 0.894 and K2, 1 = K1, 2 = 0.316. In the
graphs of R and CF, the point on the vertical axis indicates the value of these maps at
υ = 0 (that is ∥K∥2

F), and the bold lines indicate the constant values taken by these
maps along the horizontal axes. The scaling invariance of R is further illustrated by the
fact that the surface is flat (and minimal) along the line passing through the origin and
the red star at υ = 1.

From the Cauchy-Schwarz inequality, if υ ∈ D , then υ∗Sυ > 0; we indeed have

|g∗υ|2 = |1∗Sυ|2 ⩽ (1∗S1)(υ∗Sυ). We also have R(υ) = D(cυυ), with

cυ =
(g∗υ)/(υ∗Sυ) if υ ∈ D ,

0 otherwise.

For η ∈ RN , the directional derivative Θ(υ; η) of R at υ ∈ RN along η − υ is

Θ(υ; η) = lim
ρ→0+

1
ρ

[
R
(
υ + ρ(η − υ)

)
−R(υ)

]

=
−∞ if υ ∈ Z and η ∈ D ,

2cυ(η − υ)∗(cυSυ − g) otherwise,
(4.4)

with Z = {υ ∈ RN | Sυ = 0}. As D ∩ Z = ∅, the gradient of R at υ ∈ D is

∇R(υ) = 2cυ(cυSυ − g).

We may observe that for all υ ∈ D , υ∗(cυSυ − g) = 0.

Theorem 4.2. The map R is quasiconvex on RN , and pseudoconvex on the convex

cone D .

Proof. We first show the quasiconvexity of R on RN . For ξ = υ + ρ(η − υ),

υ,η ∈ RN , ρ ∈ [0, 1], there always exists c ⩾ 0 and ρ′ ∈ [0, 1] such that cξ =

(1 − ρ′)cυυ + ρ′cηη; indeed:
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• for υ /∈ D and η /∈ D , the condition is verified for c = 0 and for any ρ′ ∈ [0, 1];

• for υ /∈ D and η ∈ D , the condition is verified for c = 0 and ρ′ = 0;

• for υ ∈ D and η /∈ D , the condition is verified for c = 0 and ρ′ = 1;

• for υ ∈ D and η ∈ D , we have coni{υ,η} = coni{cυυ, cηη} (with coni{υ,η}

the conical hull of {υ,η}), so that ξ ∈ coni{cυυ, cηη} (in this case, ξ ∈ D

and c > 0).

From the definition of R and the convexity of D, we obtain

R(ξ) ⩽ D(cξ) ⩽ (1 − ρ′)D(cυυ) + ρ′D(cηη)

= (1 − ρ′)R(υ) + ρ′R(η) ⩽ max{R(υ), R(η)},

and R is therefore quasiconvex on RN .

We now show the pseudoconvexity of R on D . Let υ and η ∈ D be such

that Θ(υ; η) ⩾ 0. As υ∗S(cυυ − 1) = 0, the condition Θ(υ; η) ⩾ 0 reads

η∗S(cυυ − 1) ⩾ 0, that is,

(υ∗S1)(η∗Sυ) ⩾ (υ∗Sυ)(η∗S1). (4.5)

As υ and η ∈ D , we have υ∗S1 > 0, υ∗Sυ > 0 and η∗S1 > 0, and so, from

(4.5), η∗Sυ > 0. The matrix S being PSD, the Cauchy-Schwarz inequality gives

(η∗Sυ)2 ⩽ (υ∗Sυ)(η∗Sη); combining this inequality with (4.5), we get (note that

we also have η∗Sη > 0 as η ∈ D)

(υ∗S1)2

(υ∗Sυ)2 ⩾
(η∗S1)2

(η∗Sυ)2 ⩾
(η∗S1)2

(υ∗Sυ)(η∗Sη) .

We hence obtain (η∗S1)2/(η∗Sη) ⩽ (υ∗S1)2/(υ∗Sυ), that is R(υ) ⩽ R(η), and

R is therefore pseudoconvex on D .

For υ⋆ = c1 + ϵ, with c > 0 and ϵ ∈ RN such that Sϵ = 0, we have R(υ⋆) = 0,

and R is thus minimum at υ⋆. For suitable step sizes, the pseudoconvexity of R

on D ensures the convergence to such a minimum of any gradient descent starting

from a vector in D (see e.g. Lee et al. (2016)). Lemma 4.3 provides an analytical

expression for the optimal step size and for the improvement induced by a descent

with optimal step size in the case of interest for Section 4.2.
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Lemma 4.3. For υ ∈ D and η ∈ RN such that Θ(υ; η) < 0 and Θ(η; υ) ⩽ 0, the

function ρ 7→ R
(
υ + ρ(η − υ)

)
, ρ ∈ [0, 1], is minimum at ρ = r ∈ (0, 1], with

r = T1

T1 + T2
, (4.6)

where T1 = (υ∗Sυ)(g∗η) − (g∗υ)(υ∗Sη) and T2 = (η∗Sη)(g∗υ) − (g∗η)(υ∗Sη);

introducing I(υ; η) = R(υ) −R
(
υ + r(η − υ)

)
⩾ 0, we have

I(υ; η) =

(
η∗(cυSυ − g)

)2(
(η∗Sη) − (υ∗Sη)2/(υ∗Sυ)

) . (4.7)

Proof. We set a = g∗υ > 0, b = g∗η, c = υ∗Sυ > 0, d = η∗Sη, and e = υ∗Sη.

For x ∈ R, we also set ξ(x) = υ + x(η − υ), and we introduce the functions

φ(x) = g∗ξ(x) = x(b− a) + a

and

ψ(x) = ξ(x)∗Sξ(x) = x2(c+ d− 2e) + 2x(e− c) + c.

The condition Θ(υ; η) < 0 ensures that the degree-2 polynomial ψ is strictly

positive; indeed, ψ is nonnegative and admits a real root if and only if e2 = cd, that

is, from the Cauchy-Schwarz inequality, if η = αυ + ϵ, with α ∈ R and ϵ ∈ RN

such that Sϵ = 0, and we would in this case have Θ(υ; η) = 0.

We define f(x) = −φ2(x)/ψ(x) for all x ∈ R, so that if ξ(x) ∈ D , then we have

f(x) = R(ξ(x)) − ∥K∥2
F. The derivative of f is given by

f ′(x) = 2 φ(x)
ψ2(x)

[
x
(
(bc− ae) + (ad− be)

)
− (bc− ae)

]
, x ∈ R,

so that f admits at most two stationary points on R. The conditions on υ

and η and the pseudoconvexity of R on D ensure that the function ρ 7→ R(ξρ)

admits a minimum on (0, 1]; the argument of this minimum is the optimal step

size r, and corresponds to a stationary point of f . If a = b, the function φ is

constant and strictly positive (as a > 0). If a ̸= b, for x1 = a/(a − b), we have

φ(x1) = 0, and so f ′(x1) = 0. However, we then have g∗ξ(x1) = 0, and so

R(ξ(x1)) = ∥K∥2
F > R(υ); we can therefore conclude that r ̸= x1. Cancelling the

linear function x 7→ x
(
(bc− ae) + (ad− be)

)
− (bc− ae), we obtain f ′(x2) = 0 with

x2 = bc− ae

bc− ae+ ad− be
;
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we therefore necessarily have r = x2, and

I(υ; η) = f(0) − f(x2) = (bc− ae)2

c(cd− e2) ,

as required.

4.1.4 Additional error maps and further properties

In Section 3.2.2, we introduced two projection-based error maps CP and CPP. We

now define their corresponding error maps in the selection-vector setting:

CP(υ) = ⟨K − K̂(υ) | K⟩F and CPP(υ) = ∥K∥2
F − ∥K̂(υ)∥2

F, υ ∈ RN .

The maps CP and CPP are of the same type as the maps CX, X ∈ {tr,F, sp}, as

illustrated by Proposition 4.1.

Proposition 4.1. The maps CP and CPP are convex on the convex cone RN
⩾0, and

their directional derivatives take values in the discrete set {−∞, 0}.

Proof. We follow the proof of Theorem 4.1, and show that if J ⊆ I ⊆ [N ], then

∥K − PIK∥HS(H) ⩽ ∥K − PJK∥HS(H)

and

∥K − PIKPI∥HS(H) ⩽ ∥K − PJKPJ∥HS(H).

Using the same notations as in the proof of Lemma 4.1, and noticing that H0I and

He are orthogonal in H, we have

∥K − K̂(J)∥2
HS(H) = ∥P0JK∥2

HS(H)

= ∥P0IK∥2
HS(H) + ∥PeK∥2

HS(H) ⩾ ∥K − K̂(I)∥2
HS(H),

as required. Next, by (3.17),

∥K − PKP∥2
HS(H) = ∥K∥2

HS(H) − ∥PKP∥2
HS(H). (4.8)

Observing that the matrices PJKPJ , PeKPe, PJKPe and PeKPJ are orthogonal

in HS(H), we obtain

∥PIKPI∥2
HS(H) = ∥PJKPJ∥2

HS(H) + ∥PeKPJ∥2
HS(H)

+ ∥PJKPe∥2
HS(H) + ∥PeKPe∥2

HS(H)

⩾ ∥PJKPJ∥2
HS(H),

giving, in combination with (4.8), the expected inequality.
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The following Lemma 4.4 shows that the error maps CX, X ∈ {F, sp,P,PP},

are upper-bounded by R. We may also notice that

CX(1) = R(1) = 0, X ∈ {tr,F, sp,P,PP},

and

CX(0) = R(0) = ∥K∥2
F, X ∈ {F,P,PP}.

Lemma 4.4. For all υ ∈ RN , we have

Csp(υ) ⩽ CF(υ) ⩽ CP(υ) ⩽ CPP(υ) ⩽ R(υ) ⩽ D(υ);

in addition, CPP(ei) = R(ei) for all i ∈ [N ].

Proof. The chain of inequalities Csp(υ) ⩽ CF(υ) ⩽ CP(υ) ⩽ CPP(υ) follows

directly from Lemma 3.3. For the remainder, we begin by observing that KVh =

PυKVPυh for all h ∈ H (indeed, we have span{KV} ⊆ Hυ, and e∗
i Pυh = e∗

i h

for all i ∈ Iυ), and so ⟨K − PυKPυ | PυKPυ − KV⟩HS(H) = 0. We hence obtain

∥K − KV∥2
HS(H) = ∥K − PυKPυ∥2

HS(H) + ∥PυKPυ − KV∥2
HS(H),

and so CPP(υ) ⩽ D(υ). Observing that CPP(υ) ⩽ ∥K∥2
F = R(0) and that

R(υ) = minc⩾0 D(cυ), we necessarily have CPP(υ) ⩽ R(υ) ⩽ D(υ), completing

the expected sequence of inequalities.

We conclude the proof by observing that if Si, i > 0 for all i ∈ [N ], then

∥K̂(ei)∥2
F = (g∗ei)2/Si, i, and if Si, i = 0, then ∥K̂(ei)∥2

F = 0 and ei /∈ D .

In view of the above developments, we propose to use the error map R as a

differentiable surrogate for the characterisation of samples of columns for Nyström

approximation through the supports of selection vectors. In the forthcoming

Section 4.2, we describe a class of sequential sampling strategies driven by the

gradient of R.

4.2 Gradient-based sequential sampling

From now on, we assume that the diagonal entries of K are strictly positive, so

that RN
⩾0 \ {0} ⊂ D (this assumption is nonrestrictive: if a diagonal entry of K is
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zero, then by Cauchy-Schwarz, the corresponding row and column of K are also

zero). For f = (fi)i∈[N ] ∈ RN
>0 and κ > 0, we introduce

Af = {υ ∈ RN
⩾0 | f∗υ = κ} ⊂ D ;

we refer to f as the restriction vector. The set Af is convex, and its extreme

points are the vectors {ξi}i∈[N ], with ξi = κei/fi ∈ RN
⩾0. Below, we describe a

column-sampling procedure based on the minimisation of R over Af via line search

with sparse descent directions (specifically, the directions defined by the extreme

points of Af ). Many variants could be considered, see for instance Remarks 4.2,

4.3 and 4.4; stochastic variants are discussed in Section 4.3. Due to the invariance

under rescaling of R, the value of κ does not impact the sampling procedure (and

we may thus set κ = 1, for instance).

The procedure is initialised at υ(1) = ξb ∈ Af , with

b ∈ arg min
i∈[N ]

R(ξi) = arg max
i∈[N ]

g2
i /Si, i, (4.9)

with gi = e∗
ig the i-th entry of g = S1, and the selection vector at step q ∈ N is

denoted by υ(q) ∈ Af . An iteration of our sampling procedure consists of selecting

a descent direction ξu − υ(q), with u ∈ [N ] such that Θ(υ(q); ξu) < 0, and of

next performing a descent with the optimal step size r given by (4.6). As descent

direction, we consider the Frank-Wolfe (FW) direction ξu − υ(q), with

u ∈ arg min
i∈[N ]

Θ(υ(q); ξi) = arg min
i∈[N ]

[∇R(υ(q))]i/fi. (4.10)

The initialisation of the procedure via (4.9) ensures that if Θ(υ(q); ξi) < 0, i ∈ [N ],

then Θ(ξi; υ(q)) < 0, so that the descents necessarily occur within the framework

of Lemma 4.3.

A pseudocode of the procedure is given in Algorithm 4.1. The algorithm

produces a sequence υ(1),υ(2), . . . of selection vectors with increasing support. At

stage q ∈ N, the number mq of non-zero entries of υ(q) verifies mq ⩽ min(q,N),

so that early stopping ensures sparsity of the resulting selection vector (see also

Remark 4.3). The algorithm stops if υ(q) minimises R over Af , or when q = Q,

where Q ∈ N is a given maximum number of iterations, with in practice Q ≪ N

(different stopping rules could be considered). We observe that υ⋆ = κ1/(f∗1) ∈ Af

verifies R(υ⋆) = 0.
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Algorithm 4.1: Column sampling with FW direction and optimal step
size.

Input: matrix S; vector f ; number of iterations Q ∈ N;
1 Preliminary: compute g = S1 (stochastic approximations may be

considered, see Section 4.3);
2 Initialisation: compute b ∈ [N ] using (4.9); set q = 1, υ(1) = ξb and

Iυ(1) = {b};
3 while q < Q and R(υ(q)) > 0 do
4 compute u ∈ [N ] using (4.10);
5 compute the optimal step size r from (4.6) with υ = υ(q) and η = ξu;
6 set υ(q+1) = (1 − r)υ(q) + rξu and Iυ(q+1) = Iυ(q) ∪ {u}; increment q;

Output: subset Iυ(q) ⊆ [N ];

The implementation of Algorithm 4.1 involves the preliminary computation of

the target potential g = S1. Although easily parallelisable, this operation has a

O(N2) worst-case time-complexity (it requires reading every entry of S once); this

cost can nevertheless be reduced by considering stochastic approximations of g, as

discussed in Section 4.3. Once g is known, each iteration of Algorithm 4.1 has a

O(N) time-complexity. For q ∈ N, we for instance have

Sυ(q+1) = (1 − r)Sυ(q) + r(κ/fu)S•, u,

so that sparse updates of the terms Sυ, υ∗Sυ and g∗υ can be easily implemented.

Assuming that the entries of S can be accessed on demand, the space-complexity

of Algorithm 4.1 is O(N).

In view of (4.10), the sequence of subsets Iυ(1) ⊆ Iυ(2) ⊆ . . . generated by

Algorithm 4.1 depends on the choice of the restriction vector f . Our experiments

suggest that considering f = diag(K), the diagonal of K, appears to be a relevant

choice. Interestingly, taking f = g turns out to be a poor choice in practice.

A variant of Algorithm 4.1 with an alternative descent direction is described in

Remark 4.2.

Remark 4.2 (Best-improvement direction). Instead of considering the steepest

conditional descent directions (4.10), we can combine the information provided by

(4.4) and (4.7) to characterise the conditional descent directions inducing the best

one-step-ahead improvements. In Algorithm 4.1, we may hence replace the FW
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direction (4.10) by the best improvement (BI) direction

u ∈ arg max
i∈[N ]

{I(υ(q); ξi) | Θ(υ(q); ξi) < 0}.

The complexity of each iteration of the BI variant of Algorithm 4.1 is still O(N);

however, in comparison to FW, the resulting procedure is costlier as it additionally

requires the computation of the relevant improvement scores. ◁

Remark 4.3 (Enforcing the selection of new columns). In Algorithm 4.1, at step

q ∈ N, the FW direction (4.10) might lead to the selection of a column which

already belongs to the sample, that is, we could have u ∈ Iυ(q) ; we refer to such an

event as a correction step, since instead of adding a new column to the sample, we

are “correcting” the weight associated with an existing column in the sample. To

enforce the selection of a new column at each iteration, we may replace the FW

direction (4.10) by

u ∈ arg min
i∈[N ]

{Θ(υ(q); ξi) | i /∈ Iυ(q) and Θ(υ(q); ξi) < 0}; (4.11)

if the set characterising (4.11) is empty, the sampling should stop (or an alternative

direction should be considered). Such a variant of Algorithm 4.1 ensures a faster,

although less accurate, exploration of the columns of K; it appears to be of

particular interest in the stochastic setting of Section 4.3. ◁

Remark 4.4 (Weight optimisation). For a subset I ⊆ [N ] of size m ⩽ N , let

υ̃(I) ∈ RN
⩾0 be a vector minimising D over the set of all selection vectors υ ∈ RN

⩾0

such that Iυ ⊆ I (the nonnegativity of the entries of the PSD matrix S ensures

that such a vector always exists). The non-trivial entries [υ̃(I)]I of υ̃(I) are

provided by solutions to the quadratic program (QP) associated with the min-

imisation of the function x 7→ x∗SI, Ix − 2g∗
Ix over Rm

⩾0. The rescaled vector

υ(I) = κυ̃(I)/(f∗υ̃(I)) ∈ Af then minimises R over the set of all selection vectors

υ ∈ Af such that Iυ ⊆ I. In Algorithm 4.1 and its BI variant, at iteration q ∈ N,

after selection a descent direction u, rather than performing a descent with optimal

step size, we may instead set υ(q+1) = υ(Iυ(q) ∪ {u}). We refer to this modified

update rule as weight optimisation (WO); the algorithm then converges in at most

N iterations.
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In terms of numerical complexity and in comparison to descents with optimal

step sizes, for the WO variants, the computation of υ(q+1) involves solving a QP

over Rmq+1 (in practice, υ̃(q) can be used as a warm start for the computation of

υ̃(q+1)). As a technical remark, for q ∈ N, the support of υ(q+1) might sometimes

be a strict subset of Iυ(q) ∪ {u}; this situation occurs when some entries of the

solution to the underlying QP are zero. In the experiments of Section 4.4, instead

of the true support Iυ(q+1) , we keep track of the virtual support Ĩυ(q+1) = Ĩυ(q) ∪ {u},

so that |Ĩυ(q) | = q for all q ⩽ N (that is, once a column of K has been selected, it

is kept inside the sample even if its associated weight vanishes at some stage of the

optimisation process). Enforcing the WO rule on the BI variant of Algorithm 4.1

described in Remark 4.2 leads to a procedure that produces sequences of subsets

that are independent of the choice of the restriction vector f ; in the framework of

Lemma 4.3, we may indeed observe that I(υ; η) = I(cυ; c̃η) for c, c̃ > 0. ◁

4.3 Stochastic approximation of the target po-
tential

In practical applications and due to its quadratic complexity in N , the preliminary

computation of the target potential g might be prohibitive. An alternative approach

consists in relying on numerically affordable stochastic approximations of g. Many

approaches could be considered, and below, we simply describe one possible way to

proceed. We assume that N > 1.

Direct Monte Carlo approximation. The entries of g = S1 correspond to the

row sums of S; as such, they can be approximated by random sampling. The matrix

S being PSD, we handle its diagonal separately and only sample off-diagonal entries

of S; each row is sampled independently of the others, with the same sample size

ℓ ∈ N. The sampling is performed uniformly, and for simplicity, with replacement.

For all i ∈ [N ], that is, for each row of S, this operation amounts to forming a

random multiset Si of ℓ indices in [N ] \ {i}. Denoting by F the N × N random

matrix whose (i, j) entry counts the number of times j ∈ [N ] appears in Si (so

that F1 = ℓ1), the random vector

ĝF = diag(S) + (N−1)
ℓ

(S ⊙ F)1, (4.12)
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corresponds to an unbiased estimator of g. We may observe that the off-diagonal

entries of F follow a binomial distribution with parameters ℓ and 1
N−1 .

Accounting for the symmetry of S. In the framework of (4.12) and for ℓ fixed,

the number of entries of S involved in the approximation of g can be increased by

accounting for the symmetry of S. Indeed, let i, j ∈ [N ] with i ̸= j, and suppose

that i ∈ Sj, that is, suppose that the term Sj, i appears in the approximation of

gj, the j-th entry of g. We may notice that the same term Si, j = Sj, i can be

incorporated into the approximation of gi. The corresponding entries of S are

provided by the matrix F∗, and the random vector l = (li)i∈[N ] = F∗1 indicates the

number of additional entries per row of S. The rows of F being independent random

vectors, for all i ∈ [N ], the random variables {F∗
i, j}j∈[N ]\{i} are independent, and

li follows a binomial distribution with parameters ℓ(N − 1) and 1
N−1 . Observing

that E(F∗
i, j | li) = li

N−1 (conditional mean of F∗
i, j given li; see Lemma 4.5 below),

and denoting by (1/l) = (1/l) ∈ RN the vector with i-th entry 1/li if li ̸= 0, and 0

otherwise (element-wise pseudoinversion), the random vector

ĝF∗ = diag(S) + (N−1)
l

⊙
(
(S ⊙ F∗)1

)
is an unbiased estimator of g (cf. Bernoulli sampling). From the independence

between the rows of F, for all i ∈ [N ], the i-th entries of ĝF and ĝF∗ are independent;

by considering sample-size-dependent convex combinations of these entries, we can

form the following unbiased estimator of g:

ĝsym = ℓ
ℓ+l

⊙ ĝF + l
ℓ+l

⊙ ĝF∗ = diag(S) + N−1
ℓ+l

⊙
(
[S ⊙ (F + F∗)]1

)
,

where ℓ+ l is a simplified notation for ℓ1 + l. Accounting for the symmetry of S

therefore results in increasing the number of independent samples per row of S at

the cost of introducing a small residual dependence between the entries of ĝsym

(indeed, contrary to ĝF, the entries of ĝF∗ are dependent); the mean of l being ℓ1,

for each row, we in average double the sample size, hence reducing the variance of

the approximation.

Lemma 4.5 below gives a statistical result that justifies the expected value of

the (i, j) entry of the matrix F∗ conditioned on li, the number of additional entries

included in the approximation of gi when accounting for symmetry.
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Lemma 4.5. Let X and Y be two independent random variables following binomial

distributions with size parameters m and n ∈ N, respectively, and with the same

probability parameter p ∈ [0, 1]. We have E(X|X + Y ) = m
m+n

(X + Y ).

Proof. We set X = ∑m
i=1 Bi and Y = ∑m+n

i=m+1 Bi, with {Bi}i∈[m+n] a set of indepen-

dent random variables following a Bernoulli distribution with parameter p. We

have

X + Y = E(X + Y |X + Y ) =
m+n∑
i=1

E(Bi|X + Y ) = (m+ n)E(B1|X + Y ),

and E(X|X + Y ) = ∑m
i=1 E(Bi|X + Y ) = mE(B1|X + Y ). The result follows.

Remark 4.5. Computing a realisation of ĝF, ĝF∗ or ĝsym involves sampling (ℓ+1)N

entries of S, with in practice ℓ ≪ N . If ℓ is chosen independently of N , the time-

complexity of forming such approximations is linear in N (here, we assume that the

complexity of the considered random generator does not depend on N). Assuming

that the entries of S can be accessed on demand, the space-complexity of forming

such approximations is also linear in N , and the computation can in addition be

easily parallelised. ◁

Sampling driven by an approximate potential. In (4.2) and (4.3), substitut-

ing g with an approximation ĝ ∈ RN
⩾0 \ {0} gives rise to approximate error maps D̂

and R̂. Let 1̂ ∈ RN
⩾0 \ {0} be a vector minimising D̂ over RN

⩾0 (the nonnegativity of

the entries of the PSD matrix S ensures that such a vector always exists). When

g is replaced by ĝ, Algorithm 4.1 produces a sequence of selection vectors with

increasing supports converging to a vector minimising R̂ over Af , that is, a vector of

the form κ1̂/(f∗1̂). A similar approximation scheme can be applied to the BI and

WO variants of the algorithm. The same approximation of g is used throughout the

optimisation process (alternative strategies, where the approximation is updated

during the optimisation process, could be considered).

Remark 4.6. When a realisation of ĝF or ĝsym is considered, for ℓ ≪ N , our

experiments suggest that the underlying vector 1̂ is often sparse (that is, 1̂ has

many zero entries); the sparsity of 1̂ appears to decrease as ℓ increases. These

observations suggest that the sample size ℓ should be selected in accordance with
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the number m of columns of K one wishes to extract; see Section 4.4 for illustrations.

Following Remark 4.3, for the stochastic variant of Algorithm 4.1, we also observe

that considering the modified FW direction (4.11) improves the behaviour of the

sampling procedure by preventing the apparition of early correction steps resulting

from the sparsity of 1̂. Furthermore, in comparison to ĝF, the reduced variance of

the estimator ĝsym appears to have a beneficial impact on the column-sampling

process. ◁

4.4 Numerical experiments

We now illustrate the behaviour of Algorithm 4.1 and its variants on a series of

examples. To assess the accuracy of the Nyström approximation induced by a

subset I ⊆ [N ] of size m ⩽ N , we consider the approximation factors (see e.g.

Derezinski et al. (2020)).

EP(I) = ∥K − K̂(I)∥HS(H)

∥K − K⋆
m∥HS(H)

, EPP(I) = ∥K − PIKPI∥HS(H)

∥K − K⋆
m∥HS(H)

,

and EX(I) = ∥K − K̂(I)∥X

∥K − K⋆
m∥X

, X ∈ {tr,F, sp},
(4.13)

where K⋆
m is an optimal rank-m approximation of K (that is, an approximation

obtained by spectral truncation; see Section 2.1.2). The values of the approximation

factors are necessarily larger than or equal to 1, and the smaller the value, the

more accurate the approximation.

Remark 4.7. Denoting by λ1 ⩾ . . . ⩾ λN ⩾ 0 the eigenvalues of K (repeated with

multiplicity), for all m < N , we have ∥K − K⋆
m∥2

HS(H) = ∥K − K⋆
m∥2

F = ∑N
l=m+1 λ

2
l ,

∥K − K⋆
m∥tr = ∑N

l=m+1 λl and ∥K − K⋆
m∥sp = λm+1 (see Remark 2.2). ◁

We implement Algorithm 4.1 (referred to as FW, for short) and its BI variant

(referred to as BI); see Remark 4.2. In addition to the optimal-step-size update rule,

for both the FW and BI descent directions, we also implement the WO update rule

(the resulting procedures are referred to as FW-WO and BI-WO); see Remark 4.4.

In the stochastic case, that is, when stochastic approximations of g are considered

(see Section 4.3), we rely on the estimator ĝsym and implement the modified FW

direction (4.11); we refer to this variant as S-MFW. The affine restrictions are

defined with f = diag(K) and κ = 1.
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Due to the specificity of our sampling procedures (which rely on early stopping

of optimisation procedures with sparse initialisations and sparse descent directions),

in all our experiments, we placed a special emphasis on approximations involving

a relatively small number of columns. We compare the resulting column samples

with samples obtained through random sampling with respect to uniform weights

and weights proportional to the square of the diagonal of K, leverage-score-based

random sampling, and determinantal-point-process-based (DPP-based) random

sampling (see Section 2.2.3).

4.4.1 Random PSD matrix

We consider a random PSD matrix K ∈ CN×N , with N = 1,500; the eigenvalues

of K are independent realisations of a log-normal distribution (µ = −2.5 and

σ = 3), and a set of associated eigenvectors is defined using a random unitary

matrix (multiplication-invariant Haar measure; see Mezzadri, 2007). In this first

experiment, we use the exact target potential g.

The evolution of the error maps R and CX, X ∈ {F,P,PP}, during the first

100 iterations of Algorithm 4.1 and its BI variant is illustrated in Figure 4.2 (these

four error maps are considered since they take the same value at υ = 0).
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Figure 4.2: For the random PSD matrix example of Section 4.4.1, evolution of the value of
the error maps R and CX, X ∈ {F, P, PP}, during the first 100 iterations of Algorithm 4.1
(left) and its BI variant (right). The exact target potential g is used.

In accordance with Lemma 4.4, we see that the error maps CX, X ∈ {F,P,PP}

are bounded by R throughout. We observe a strong similarity between the evolution

of these maps, further supporting the use of R as surrogate error map for Nyström

approximation.

We then compare, for various sampling strategies, the evolution of the five

approximation factors EX, X ∈ {tr,F, sp,P,PP} as functions of m (number of
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sampled columns). For the stochastic strategies, 100 repetitions are performed.

The results are presented in Figure 4.3. In the considered regime (that is, m ≪ N),

and for all the approximation factors, we observe that the Nyström approximations

induced by Algorithm 4.1 and its variants are more accurate than the ones obtained

using uniform random sampling, squared-diagonal random sampling or leverage-

score-based random sampling. For this particular example, we may also notice

the similarity and small variability of the approximation factors induced by the

considered stochastic procedures.
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Figure 4.3: For the random PSD matrix example of Section 4.4.1, and for various sampling
strategies, evolution of the five approximation factors (4.13) as functions of the number
of sampled columns m. The 200 largest eigenvalues of K are also displayed. For the
stochastic methods, the solid line represents the median over 100 repetitions, and the
boundaries of the shaded regions indicate the corresponding maximum and minimum
values. For the four considered variants of Algorithm 4.1, the exact target potential g is
used.

4.4.2 Abalone data set

We consider the Abalone data set (UCI Machine Learning Repository; see Dua and

Graff, 2019). Two entries of the data set appearing as outliers are removed, and

the features are standardised; the resulting data set consists of N = 4,175 points in

Rd, with d = 8. We use this data set and a Gaussian kernel with kernel parameter

γ > 0, given by K(x, y) = e−γ∥x−y∥2
2 , x, y ∈ Rd, to generate a PSD matrix K. To

illustrate the impact of the decay of the spectrum of K on the sampling process, we
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consider different values of γ, namely γ = 0.1, 0.25 and 1, chosen so that the the

eigenvalues of K exhibit relatively steep, moderate and shallow decays, respectively;

see Figure 4.4.

4.4.2.1 Exact target potential

We first consider the exact target potential g and compare the accuracy of the

Nyström approximations induced by four variants of Algorithm 4.1 (namely FW,

BI, FW-WO and BI-WO) with the accuracy of the approximations obtained via

uniform random sampling, leverage-score-based random sampling and k-DPP-based

random sampling. The experiments involving random sampling are repeated 100

times. The results are presented in Figure 4.4, where we display the evolution of

the approximation factors EF and EP up to m = 100 (the evolution of the other

approximation factors is provided in Figure 4.7 in the appendix of this chapter;

in terms of behaviour, Etr and Esp appear closely related to EF, while EPP shows

similarities with EP).

Remark 4.8. Following Remark 4.7, in Figure 4.4 (and in the complementary

Figure 4.7 in appendix), to illustrate the decay of the spectrum of K we indicate

the thresholds

τX = min
{
m ⩽ N

∣∣∣ ∥K − K⋆
m∥X ⩽ 0.01∥K∥X

}
, X ∈ {tr,F, sp},

and with τP = τPP = τF. For a given X ∈ {tr,F, sp,P,PP}, the smaller τX is, the

faster the decay. ◁

In comparison to the considered random-sampling procedures, we observe that

Algorithm 4.1 and its variants lead to more accurate approximations, especially in

the range corresponding to the significant eigenvalues of K (this range is illustrated

by the thresholds τX, X ∈ {tr,F, sp,P,PP}, defined in Remark 4.8). After a certain

number of iterations, which appears to be related to the decay of the spectrum of

K, the relative accuracy of the approximations induced by Algorithm 4.1 and its

BI variant deteriorates; this is especially visible for γ = 0.1. The deterioration is

stronger for EF, Etr and Esp than for EP and EPP, and the WO update rule appears

to be able to mitigate this drop-off in accuracy. Following Lemma 4.4, we recall
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Figure 4.4: For the Abalone data set example of Section 4.4.2, evolution of the ap-
proximation factors EF and EP as functions of the number of sampled columns m (the
evolution of the other approximation factors in provided in Figure 4.7 in appendix).
Each column in the figure corresponds to a different value of the kernel parameter γ.
For each γ, the 100 largest eigenvalues of K are displayed, together with the decay, in
logarithmic scale, of the error map R during the first 100 iterations of the FW and
BI variants of Algorithm 4.1, with both optimal-step-size and WO update rules (the
exact target potential g is used). The evolutions of EF and EP are represented for the
four considered variants of Algorithm 4.1, as well as for random sampling strategies
based on uniform weights, leverage scores and k-DPPs. For the stochastic strategies,
we present the median, minimum and maximum of the approximation factors over 100
repetitions (see Figure 4.3). The vertical dashed lines indicate the value of the thresholds
τX, X ∈ {F, P}, defined in Remark 4.8 (when the threshold is outside the plot window,
we only report its value).

that among the considered error maps, CP and CPP are the ones that are the most

closely related to R.

4.4.2.2 Approximate target potential

We now consider the stochastic variant S-MFW of Algorithm 4.1, that is, we

use realisations of the estimator ĝsym (see Section 4.3) in combination with the
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modified FW direction (4.11), and we investigate the impact of the row-sample-size

parameter ℓ on the accuracy of the induced Nyström approximations. For the

kernel parameter, we use γ = 0.25 (intermediate case, see Figure 4.4) and we

consider three different values of ℓ, namely ℓ = 100, 250 and 500. The results are

presented in Figure 4.5.
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Figure 4.5: For the Abalone data set example of Section 4.4.2 with kernel parameter
γ = 0.25, evolution of the five approximation factors (4.13) as functions of the number of
sampled columns m, for samples obtained using the S-MFW variant of Algorithm 4.1
(modified FW direction with realisations of ĝsym; see Remark 4.3 and Section 4.3). Three
different values of the row-sample-size parameter ℓ are considered. For each value of
ℓ, we present the median, minimum and maximum of the approximation factors over
100 repetitions. For comparison, the approximation factors for the column samples
obtained with Algorithm 4.1 (FW direction with exact target potential g) and through
k-DPP-based random sampling (median over 100 repetitions) are also presented. The
bottom-right plot displays the distribution of the maximum number of iterations of the
S-MFW procedure for the considered values of ℓ (see Remark 4.3).

We observe that as ℓ increases, the accuracy of the Nyström approximations

induced by the S-MFW procedure approaches that of the deterministic FW algo-

rithm, and the variability in the approximation factors decreases. In the considered

range of values of m, the obtained column samples maintain a high level of accuracy,

even for small values of ℓ. Following Remarks 4.3 and 4.6, the maximum number

of iterations of the S-MFW procedure tends to increase with ℓ. For this particular

example, considering ℓ = 500 allows for a consistent exploration of the range

m ⩽ 100 (see Section 4.4.3 for a further illustration of the link between ℓ and the

maximum number of S-MFW iterations).
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4.4.3 HIGGS data set

We now illustrate the ability of the proposed approach to handle large PSD matrices.

We consider the HIGGS dataset (UCI Machine Learning Repository; see Dua and

Graff, 2019), consisting of N = 11,000,000 points in Rd, with d = 21; all the features

are standardised. To define a PSD matrix K, we use a Gaussian kernel (same

expression as in Section 4.4.2) with γ = 0.1. In double-precision floating-point

format, storing all the entries of K or S would require more than 968 terabytes of

memory; as an alternative, rather than being stored, the entries of the matrix S

are computed on demand from the data set and the kernel (on-the-fly evaluation).

In Figure 4.6, we display the decay of the error map R during the first 50,000

iterations of Algorithm 4.1 (exact target potential). Lemma 4.4 ensures that the

evolution of the error maps CX, X ∈ {sp,F,P,PP} is bounded by the decay of

R (see Figure 4.2 for an illustration). We also present the eigenvalues of the

approximation K̂(υ(q)) of K for q = 1,000; this approximation involves mq = 1,000

columns of K.
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Figure 4.6: For the HIGGS data set example of Section 4.4.3, decay of the the error map
R during the first 50,000 iterations of Algorithm 4.1 (logarithmic scale). The non-zero
eigenvalues of the Nyström approximation of K obtained at q = 1,000 are also presented.

We next implement the S-MFW variant of Algorithm 4.1 for 10 realisations of

the estimator ĝsym with ℓ = 10,000. For these 10 realisations, the maximum number

of S-MFW iterations is distributed between 65,000 and 67,000 (see Remark 4.3).

We extract 10 samples of columns of size m = 1,000 and 2,000, and compare the

trace errors of these samples with those of 10 random column samples of the same

sizes (uniform sampling); the relatively small values of m are chosen to ensure

a reasonably fast computation of the trace errors. The results are presented in

Table 4.1.

As observed in Sections 4.4.1 and 4.4.2, the samples of columns obtained using

Algorithm 4.1 and its S-MFW stochastic variant are noticeably more accurate than
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Table 4.1: For the HIGGS data set, summary statistics for the trace errors (rounded to
the nearest integer) of various Nyström approximations of K for m = 1,000 and 2,000.
Results are presented for 10 random column samples (uniform sampling), and for 10
samples generated by the S-MFW variant of Algorithm 4.1 with ℓ = 10,000 (stochastic
approximations of g), as well as for the deterministic column samples produced by
Algorithm 4.1 (exact target potential g).

Method Number of Trace error
columns m Minimum Median Maximum

Uniform-random 1,000 7,090,945 7,117,127 7,149,980
2,000 6,121,979 6,142,811 6,166,798

S-MFW (ℓ = 10,000) 1,000 6,525,128 6,527,669 6,532,889
2,000 5,698,986 5,703,138 5,707,372

FW (exact g) 1,000 — 6,439,653 —
2,000 — 5,605,268 —

the ones obtained through random uniform sampling, and for the considered values

of m, the S-MFW variant is able to achieve an accuracy that is on par with the

deterministic FW variant at a fraction of the numerical cost (here, N/ℓ = 1,100).
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Appendix: Additional figure for Abalone data set

Figure 4.7 complements Figure 4.4 by providing the evolution, as functions of the

number of sampled columns m, of the approximation factors EX, X ∈ {tr, sp,PP},

for the various sampling strategies considered in Section 4.4.2.1 involving the exact

target potential g.
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Figure 4.7: For the Abalone data set example of Section 4.4.2, and in complement to
Figure 4.4, evolution of the approximation factors EX, X ∈ {tr, sp, PP}, as functions
of the number of sampled columns m for the various sampling strategies considered in
Section 4.4.2.1; the values of the corresponding thresholds τX, X ∈ {tr, sp, PP}, are also
indicated (see Remark 4.8).
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Chapter 5

Particle flow-based sampling
strategies

In this chapter, we study a relaxed version of the column-sampling problem (CSP)

for the Nyström approximation of kernel matrices, where approximations are defined

from multisets of landmark points in the ambient space.

The chapter is organised as follows. In Section 5.1, we describe the considered

landmark-point relaxation of the CSP, and we define the trace, Frobenius and

spectral error maps in this setting; in Section 5.2, we introduce an energy-based

differentiable map R that is used as a surrogate for these classical error maps.

Section 5.3 consists of Theorem 5.1, the main theoretical result of this chapter,

which guarantees the convergence of gradient descent iterates of R under reasonable

assumptions. A discussion of stochastic approximations of the gradient of R is

contained in Section 5.4, and we present a number of numerical experiments in

Section 5.5. The appendix of this chapter contains a proof of Theorem 5.1.

In this chapter, we for simplicity only consider real symmetric positive semidefi-

nite (SPSD) matrices.

5.1 Approximation of PSD kernel matrices

Let X be a general space, and let K : X × X → R be a real-valued PSD kernel

function (popular PSD choices for K include the Gaussian kernel and the Matérn

kernels; see e.g. Rasmussen and Williams, 2006). A kernel function and a multiset

D = {x1, . . . , xN} ⊆ X define an SPSD kernel matrix K ∈ RN×N with (i, j) entry

K(xi, xj), i, j ∈ [N ].
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5.1.1 Nyström approximation through landmark points

Consider the CSP as discussed in Section 2.2.2, and let K be a kernel matrix defined

from a PSD kernel K : X × X → R and a multiset D = {x1, . . . , xN} ⊆ X . A

sample of columns from K is thus naturally associated with a subset of D; more

precisely, a sample of m ∈ N columns of K, indexed by I = {i1, . . . , im} ⊆ [N ],

defines a multiset {xi1 , . . . , xim} ⊆ D, so that the induced Nyström approximation

may be regarded as an approximation induced by a subset of points in D. Conse-

quently, in the kernel-matrix setting, instead of relying only on subsets of columns,

we can more generally consider Nyström approximations defined from a multiset

S ⊆ X . Using matrix notation, the Nyström approximation of K defined by a

subset S = {s1, . . . , sm} is the N ×N SPSD matrix K̂(S), with (i, j) entry

[
K̂(S)

]
i, j

= kT
S (xi)K†

SkS(xj), (5.1)

where KS is the m×m kernel matrix defined by the kernel K and the subset S,

and where

kS(x) =
(
K(x, s1), . . . , K(x, sm)

)T
∈ Rm.

Throughout this chapter, we use the terminology “Nyström sample” to refer to a

set or multiset S ⊆ X , as opposed to a column sample I ⊆ N of the matrix K

discussed in previous chapters. We call the elements of S landmark points (the

terminology inducing points can also be found in the literature, see e.g. Meanti et al.,

2022); the notation K̂(S) emphasises that the considered Nyström approximation

of K is induced by S.

Remark 5.1. Denoting by H the RKHS of real-valued functions on X with

reproducing kernel K, we note that the matrix K̂(S) is the kernel matrix defined

by KS and D, with KS the reproducing kernel of the closed linear subspace

HS = span{ks1 , . . . , ksm} ⊆ H,

where, for t ∈ X , the function kt ∈ H is defined as kt(x) = K(x, t), x ∈ X . ◁

Remark 5.2. When equipped with weights {υi}m
i=1 ∈ Rm, the landmark points

{si}m
i=1 ⊆ X may be regarded as particles in the context of particle flow-based
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optimisation techniques, in which a target measure µ is approximated by a discrete

measure ν which is a weighted sum of Dirac measures at points in X , that is,

ν =
m∑

i=1
υiδsi

.

The particle flow formulation has connections to optimal transport theory (see

e.g. Santambrogio (2015)), and gradient descent techniques performed on the weight

and position parameters of the particles have been developed, with for instance

applications in the training of neural networks (see e.g. Chizat and Bach (2018)).

Particle-flow-based techniques have also been applied to the problem of batch

Bayesian optimisation (see e.g. Crovini et al. (2022)). ◁

As in the column-sampling case, the landmark point framework naturally raises

questions related to the efficient characterisation and design of accurate Nyström

samples (i.e. samples leading to accurate approximations of K).

In this chapter, for a fixed m ∈ N, we interpret Nyström samples of size m as

elements of X m, and we investigate the possibility of directly optimising Nyström

samples over X m. We consider the case X = Rd, but X may more generally be

a differentiable manifold.

5.1.2 Approximation accuracy

For a Nyström sample S ⊆ X of size m ⩽ N , the accuracy of the induced Nyström

approximation K̂(S) can be assessed through the following error maps, which are

based on the trace, Frobenius and spectral norms of the approximation error:

(C.1) Ctr(S) =
∥∥∥K − K̂(S)

∥∥∥
tr

;

(C.2) CF(S) =
∥∥∥K − K̂(S)

∥∥∥
F
;

(C.3) Csp(S) =
∥∥∥K − K̂(S)

∥∥∥
sp

.

As discussed in Section 2.1.1, the computation of the trace, Frobenius and

spectral norm errors becomes prohibitively expensive when N is large (see Table 2.1).

Additionally, the evaluation of the partial derivatives of these maps (regarded as

functions from X m = Rmd to R) with respect to a single coordinate of a landmark

point has a complexity similar to the complexity of evaluating the maps themselves

(and there are in this case md such partial derivatives). Consequently, a direct

optimisation of these maps over X m is intractable in most practical applications.
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5.2 An energy-based error map

As a surrogate for the error maps (C.1)-(C.3), for S = {s1, . . . , sm}, we introduce

the map

R(S) =


∥K∥2

F − 1
∥KS∥2

F

(
N∑

i=1

m∑
j=1

K2(xi, sj)
)2

, if ∥KS∥F > 0,

∥K∥2
F, otherwise,

(5.2)

where K2(xi, sj) stands for
(
K(xi, sj)

)2
. We may note that 0 ⩽ R(S) ⩽ ∥K∥2

F.

In (5.2), the evaluation of the term ∥K∥2
F has complexity O(N2); nevertheless,

this term does not depend on the Nyström sample S, and may thus be regarded as

a constant. The complexity of the evaluation of the term R(S) − ∥K∥2
F, that is, of

evaluating R(S) up to the constant ∥K∥2
F, is O(m2 +mN); for X = Rd, the same

holds for the complexity of the evaluation of the partial derivative of R(S) with

respect to a coordinate of a landmark point (see equation (5.4) below). Importantly,

and in contrast to the error maps discussed in Section 5.1.2, the evaluation of R(S)

or of its partial derivatives does not involve the inversion or pseudoinversion of the

m×m matrix KS .

Remark 5.3. From a theoretical standpoint, the map R arises as a scaling-invariant

(see Section 4.1.3) version of the square of the MMD described in Section 3.1.3.2

when interpreted in the landmark-point setting. In this case, the measure µ is

taken to be the uniform measure on D, that is

µ =
N∑

i=1
δxi
.

The Nyström sample S = {s1, . . . , sm} ⊆ X = Rd is regarded as a set of landmark

points, and we take ν to be the uniform measure on S, that is,

ν =
m∑

j=1
δsj
.

The map R may also be defined for non-uniform measures ν, and in this case

depends not only on S, but also on a set of relative weights associated with each

landmark point in S. In this chapter, we for simplicity only focus on the uniform

case. ◁
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The following inequalities hold:

∥∥∥K − K̂(S)
∥∥∥2

sp
⩽
∥∥∥K − K̂(S)

∥∥∥2

F
⩽ R(S) ⩽ ∥K∥2

F,

and
1
N

∥∥∥K − K̂(S)
∥∥∥2

tr
⩽
∥∥∥K − K̂(S)

∥∥∥2

F
,

which, in complement to the theoretical properties enjoyed by the error map R,

further support the use of R as a numerically-affordable surrogate for (C.1)-(C.3)

(see also the numerical experiments in Section 5.5).

From now on, we assume that X = Rd for some d ∈ N. Let [s]l, with l ∈ [d],

be the l-th coordinate of s in the canonical basis of Rd. For x ∈ X , we denote by

(assuming they exist)

∂
[l]
[s]lK

2(s, x) and ∂
[d]
[s]lK

2(s, s) (5.3)

the partial derivatives of the maps s 7→ K2(s, x) and s 7→ K2(s, s) at s and with

respect to the l-th coordinate of s, respectively; the notation ∂[l] indicates that the

left entry of the kernel is considered, while ∂[d] refers to the diagonal of the kernel;

we use similar notations for any kernel function on X × X .

For a fixed number of landmark points m ∈ N, R can be regarded as a function

from X m to R. For a Nyström sample S = {s1, . . . , sm} ∈ X m, and for k ∈ [m]

and l ∈ [d], we denote by ∂[sk]lR(S) the partial derivative of the map R : X m → R

at S with respect to the l-th coordinate of the k-th landmark point sk ∈ X . We

have

∂[sk]lR(S) = 1
∥KS∥4

F

(
N∑

i=1

m∑
j=1

K2(sj, xi)
)2(

∂
[d]
[sk]lK

2(sk, sk) + 2
m∑

j=1,
j ̸=k

∂
[l]
[sk]lK

2(sk, sj)
)

− 2
∥KS∥2

F

(
N∑

i=1

m∑
j=1

K2(sj, xi)
)(

N∑
i=1

∂
[l]
[sk]lK

2(sk, xi)
)
.

(5.4)

By mutualising the evaluation of the terms in (5.4) that do not depend on k

and l, the evaluation of the md partial derivatives of R at S has a complexity of

O
(
(d+ 1)(m2 +mN)

)
; by contrast (and although the pseudoinversion of KS can

be mutualised), evaluating the md partial derivatives of the trace error map has a

complexity of O
(
d(m4 +m3N)

)
.
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In this chapter, we investigate the possibility to use the partial derivatives

(5.4), or stochastic approximations of these derivatives, to directly optimise the

error map R over X m via gradient or stochastic gradient descent; the stochastic

approximation schemes we consider aim at reducing the burden of the numerical

cost induced by the evaluation of the partial derivatives of R when N is large.

5.3 A convergence result

We use the same notation as in Section 5.2 (in particular, we still assume that

X = Rd), and by analogy with (5.3), for s, x ∈ X , and for l ∈ [d], we denote by

∂
[r]
[s]lK

2(x, s) the partial derivative of the map s 7→ K2(x, s) with respect to the l-th

coordinate of s. Also, for a fixed m ∈ N, we denote by ∇R(S) ∈ X m = Rmd the

gradient of R : X m → R at S; in matrix notation, we have

∇R(S) =
((

∇s1R(S)
)T
, . . . ,

(
∇s1R(S)

)T
)T

,

with ∇sk
R(S) =

(
∂[sk]1R(S), . . . , ∂[sk]dR(S)

)T
∈ Rd for k ∈ [m].

Theorem 5.1. We make the following assumptions on the squared-kernel K2,

which we assume hold for all x, y ∈ X = Rd, and all l, l′ ∈ [d], uniformly:

(A.1) there exists α > 0 such that for all x ∈ Rd,

K2(x, x) ⩾ α;

(A.2) there exists M1 > 0 such that for all x, y ∈ Rd and all l ∈ [d],
∣∣∣∂[d]

[x]lK
2(x, x)

∣∣∣ ⩽M1 and
∣∣∣∂[l]

[x]lK
2(x, y)

∣∣∣ ⩽M1;

(A.3) there exists M2 > 0 such that for all x, y ∈ Rd and all l, l′ ∈ [d],∣∣∣∂[d]
[x]l∂

[d]
[x]l′

K2(x, x)
∣∣∣ ⩽M2,

∣∣∣∂[l]
[x]l∂

[l]
[x]l′

K2(x, y)
∣∣∣ ⩽M2,

and
∣∣∣∂[l]

[x]l∂
[r]
[y]l′

K2(x, y)
∣∣∣ ⩽M2.

Under the above assumptions, there exists an L > 0 such that for any two Nyström

samples S,S ′ ∈ Rmd,
∥∥∥∇R(S) − ∇R(S ′)

∥∥∥
2
⩽ L

∥∥∥S − S ′
∥∥∥

2
,
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with ∥ · ∥2 the Euclidean norm of Rmd; in other words, the gradient of R : Rmd → R

is Lipschitz-continuous with Lipschitz constant L.

Since R is bounded from below, for 0 < ρ ⩽ 1/L and independently of the

considered initial Nyström sample S(0), Theorem 5.1 entails that a gradient descent

from S(0), with fixed step size ρ, for the minimisation of R over X m produces a

sequence of iterates that converges to a critical point of R. Barring some specific

and largely pathological cases, the resulting critical point is likely to be a local

minimum of R (see for instance Lee et al., 2016). A proof of Theorem 5.1 is

provided in the appendix of this chapter.

The conditions considered in Theorem 5.1 ensure the existence of a general

Lipschitz constant L for the gradient of R; they, for instance, hold for all sufficiently

regular Matérn kernels (thus including the Gaussian kernel). We stress that these

conditions are only sufficient conditions for the convergence of a gradient descent

for the minimisation of R; by introducing additional problem-dependent conditions,

some convergence results could be obtained for more general kernels K2 and

adequate initial Nyström samples S(0). For instance, the condition (A.1) simply

ensures that ∥KS∥2
F ⩾ mα > 0 for all S ∈ X m; this condition could be relaxed to

account for kernels with vanishing diagonal, but one might then need to introduce ad

hoc conditions to ensure that ∥KS∥2
F remains large enough during the minimisation

process.

5.4 Stochastic approximation of the gradient

The complexity of evaluating a single partial derivative of R : X m → R is

O(m2 +mN), which might become prohibitive for large values of N . To overcome

this limitation, stochastic approximations of the gradient of R can be considered

(see e.g. Bottou et al., 2018).

The evaluation of (5.4) involves, for instance, terms of the form ∑N
i=1 K

2(s, xi),

with s ∈ X and D = {x1, . . . , xN}. Introducing a random variable X with a

uniform distribution on D, we can observe that
N∑

i=1
K2(s, xi) = NE

[
K2(s,X)

]
,
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and the mean E[K2(s,X)] can then, classically, be approximated by random

sampling. More precisely, if X1, . . . , Xb are b ∈ N independent copies of X, we have

E
[
K2(s,X)

]
= 1
b

b∑
j=1

E
[
K2(s,Xj)

]

and

E
[
∂

[l]
[s]lK

2(s,X)
]

= 1
b

b∑
j=1

E
[
∂

[l]
[s]lK

2(s,Xj)
]
,

so that we can easily define unbiased estimators of the various terms appearing in

(5.4). We refer to the sample size b as the batch size.

Let k ∈ [m] and l ∈ [d]; the partial derivative (5.4) can be rewritten as

∂[sk]lR(S) = T 2
1

∥KS∥4
F

Υ(S) − 2T1T
k,l
2

∥KS∥2
F
,

with

T1 =
N∑

i=1

m∑
j=1

K2(sj, xi) and T k,l
2 =

N∑
i=1

∂
[l]
[sk]lK

2(sk, xi),

and

Υ(S) = ∂
[d]
[sk]lK

2(sk, sk) + 2
m∑

j=1,
j ̸=k

∂
[l]
[sk]lK

2(sk, sj).

The terms T1 and T k,l
2 are the only terms in (5.4) that depend on D. From a

random sample X = {X1, . . . , Xb}, we define the unbiased estimators T̂1(X) of T1,

and T̂ k,l
2 (X) of T k,l

2 , as

T̂1(X) = N

b

m∑
i=1

b∑
j=1

K2(si, Xj) and T̂ k,l
2 (X) = N

b

b∑
j=1

∂
[l]
[sk]lK

2(sk, Xj).

In what follows, we discuss the properties of some stochastic approximations of the

gradient of R that can be defined from such estimators.

One-Sample Approximation. Using a single random sample X = {X1, . . . , Xb}

of size b, we can define the following stochastic approximation of the partial

derivative (5.4):

∂̂[sk]lR(S; X) = T̂1(X)2

∥KS∥4
F

Υ(S) − 2T̂1(X)T̂ k,l
2 (X)

∥KS∥2
F

. (5.5)

An evaluation of ∂̂[sk]lR(S; X) has complexity O(m2 + mb), as opposed to

O(m2 +mN) for the corresponding exact partial derivative. However, due to
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the dependence between T̂1(X) and T̂ k,l
2 (X), and to the fact that ∂̂[sk]lR(S; X)

involves the square of T̂1(X), the stochastic partial derivative ∂̂[sk]lR(S; X) will

generally be a biased estimator of ∂[sk]lR(S).

Two-Sample Approximation. To obtain an unbiased estimator of the par-

tial derivative (5.4), instead of considering a single random sample, we may

define a stochastic approximation based on two independent random samples

X = {X1, . . . , XbX} and Y = {Y1, . . . , YbY}, consisting of bX and bY ∈ N copies

of X (i.e. consisting of uniform random variables on D), with b = bX + bY. The

two-sample estimator of (5.4) is then given by

∂̂[sk]lR(S; X,Y) = T̂1(X)T̂1(Y)
∥KS∥4

F
Υ(S) − 2T̂1(X)T̂ k,l

2 (Y)
∥KS∥2

F
, (5.6)

and since E
[
T̂1(X)T̂1(Y)

]
= T 2

1 and E
[
T̂1(X)T̂ k,l

2 (Y)
]

= T1T
k,l
2 , we have

E
[
∂̂[sk]lR(S; X,Y)

]
= ∂[sk]lR(S).

Although being unbiased, for a common batch size b, the variance of the two-

sample estimator (5.6) will generally be larger than the variance of the one-sample

estimator (5.5). In our numerical experiments, the larger variance of the unbiased

estimator (5.6) seems to actually slow down the descent when compared to the

descent obtained with the one-sample estimator (5.5).

Remark 5.4. While considering two independent samples X and Y, the two

terms T̂1(X)T̂1(Y) and T̂1(X)T̂ k,l
2 (Y) in (5.6) are dependent. This dependence may

complicate the analysis of the properties of the resulting SGD; nevertheless, this

issue might be overcome by considering four independent samples instead of two. ◁

5.5 Numerical experiments

Throughout this section, the considered matrices K are defined from multisets

D = {x1, . . . , xN} ⊂ Rd and from Gaussian kernels K with kernel parameter γ > 0,

that is, kernels of the form K(x, y) = e−γ∥x−y∥2 , x, y ∈ Rd. Except for the synthetic

example of Section 5.5.1, all the multisets D we consider consist of the entries of

data sets available on the UCI Machine Learning Repository (see Dua and Graff,

2019).
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Our experiments are based on the following protocol: for a given m ∈ N, we

consider an initial Nyström sample S(0) consisting of m points drawn uniformly at

random, without replacement, from D. The initial sample S(0) is regarded as an

element of X m, and is used to initialise an SGD (except in Section 5.5.1, where GD

is used), with fixed step size ρ > 0, for the minimisation of R over X m, yielding,

after T ∈ N iterations, a locally optimised Nyström sample S(T ). The SGDs are

performed with the one-sample estimator (5.5) and are based on independent and

identically distributed uniform random variables on D (i.e. i.i.d. sampling), with

batch size b ∈ N; see Section 5.4.

We assess the accuracy of the Nyström approximations of K induced by S(0)

and S(T ) in terms of the error map R and of the classical error maps (C.1)-(C.3)

(for large matrices, we only consider the trace norm). We in parallel investigate

the impact of the Nyström sample size (Sections 5.5.1 and 5.5.3) and of the kernel

parameter (Section 5.5.2), and demonstrate the ability of the proposed approach

to tackle problems of relatively large size (Section 5.5.4).

For a Nyström sample S ∈ X m of size m ∈ N, the matrix K̂(S) is of rank at

most m. Following the works (Gittens and Mahoney, 2016; Derezinski et al., 2020),

to assess the accuracy of the approximation of K induced by S, we consider the

approximation factors

Etr(S) = ∥K − K̂(S)∥tr

∥K − K⋆
m∥tr

, EF(S) = ∥K − K̂(S)∥F

∥K − K⋆
m∥F

,

and Esp(S) = ∥K − K̂(S)∥sp

∥K − K⋆
m∥sp

,

(5.7)

where K⋆
m denotes an optimal rank-m approximation of K (i.e. the approximation

of K obtained by truncation of a spectral expansion of K and based on m of the

largest eigenvalues of K; see Section 2.1.2). The closer Etr(S), EF(S) and Esp(S)

are to 1, the more accurate the approximation.

5.5.1 Bi-Gaussian example

We consider a kernel matrix K defined by a set D consisting of N = 2,000 points

in [−1, 1]2 ⊂ R2 (i.e. d = 2); for the Gaussian kernel parameter, we use γ = 1.

A graphical representation of the set D is given in Figure 5.1; it consists of N

59



Chapter 5: Particle flow-based sampling strategies

independent realisations of a bivariate random variable whose density is proportional

to the restriction of a bi-Gaussian density to the set [−1, 1]2 (the two modes of the

underlying distribution are located at (−0.8, 0.8) and (0.8,−0.8), and the covariance

matrix of each Gaussian density is I2/2, with I2 the 2 × 2 identity matrix).
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t

Figure 5.1: For the bi-Gaussian example of Section 5.5.1, graphical representation of the
path t 7→ S(t) followed by the landmark points of a Nystrom sample during the local
minimisation of R through GD, with m = 50, ρ = 10−6 and T = 1,300; the green squares
are the landmark points of the initial sample S(0), the red dots are the landmark points of
the locally optimised sample S(T ), and the purple lines correspond to the paths followed
by each landmark point. The grey crosses are the points in D (left). The evolution,
during the GD, of R and the trace error map is also presented (right).

The initial samples S(0) are optimised via GD with step size ρ = 10−6 and for

a fixed number of iterations T . A graphical representation of the paths followed

by the landmark points during the optimisation process is given in Figure 5.1 (for

m = 50 and T = 1,300); we observe that the landmark points exhibit a relatively

complex dynamic, some of them showing significant displacements from their initial

positions. The optimised landmark points concentrate around the regions where

the density of points in D is the largest, and inherit a space-filling-type property

in accordance with the stationarity of the kernel K. We also observe that the

minimisation of R induces a significant decay of the trace error (C.1).

To assess the improvement, in terms of Nyström approximation, yielded by the

optimisation of R, for a given number of landmark points m ∈ N, we randomly draw

an initial Nyström sample S(0) from D (uniform sampling without replacement)

and compute the corresponding locally optimised sample S(T ) (GD with ρ = 10−6

and T = 1,000). We then compare R
(
S(0)

)
with R

(
S(T )

)
, and compute the

60



Chapter 5: Particle flow-based sampling strategies

corresponding approximation factors with respect to the trace, Frobenius and

spectral norms, see (5.7). We consider three different values of m, namely m = 20,

50 and 80, and each time perform n = 1,000 repetitions of this experiment.

Our results are presented in Figure 5.2; we observe that, independently of

m, the local optimisation produces a significant improvement in the Nyström

approximation accuracy for all the considered error maps; the improvements

are particularly noticeable for the trace and Frobenius norms, and slightly less

for the spectral norm (which, of the three, appears the coarsest measure of the

approximation accuracy). Remarkably, the accuracies of the locally optimised

Nyström samples are relatively close to each other, in particular in terms of trace

and Frobenius norms, suggesting that a large proportion of the local minima of the

error map R induce approximations of comparable quality.
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Figure 5.2: For the bi-Gaussian example, comparison of the values of R and of the
approximation factors (5.7) for the initial random samples S(0) and the locally optimised
samples S(T ) obtained through GD with ρ = 10−6 and T = 1,000. Each row corresponds
to a different value of the Nyström sample size m; in each case n = 1,000 repetitions are
performed. The first column corresponds to R, and the following three correspond to the
approximation factors defined in (5.7).

To further illustrate the relationship between the error map R and the error

maps (C.1)-(C.3), for n = 200 random initial samples of size m = 15, we perform

direct minimisations, through GD, of the maps R and Ctr (we consider the trace

norm as it is the least costly to implement). For each descent, we assess the accuracy
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of the locally-optimised Nyström samples in terms of R and the trace norm; the

results are presented in Figure 5.3. We observe some strong similarities between the

landscapes of R and Ctr, further supporting the use of R as a surrogate for the trace

error map (the minimisation of R being, from a numerical standpoint, significantly

more affordable than the minimisation of the trace norm; see Section 5.2).
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Figure 5.3: For the bi-Gaussian example of Section 5.5.1, graphical representation of the
paths followed by the landmark points of a random initial Nyström sample of size m = 15
during the local minimisations of R and Ctr through GD; the green squares are the initial
landmark points, and the red dots and orange triangles are the optimised landmark points
for R and Ctr, respectively. The solid purple lines correspond to the paths followed by
the points during the minimisation of R, and the dashed blue lines to the paths followed
during the minimisation of Ctr (left). For n = 200 random initial Nyström samples of
size m = 15, comparison of the improvements yielded by the minimisations of R and Ctr
in terms of R (middle) and trace norm (right). Each GD uses T = 1,000 iterations, with
ρ = 10−6 for R and ρ = 8 × 10−5 for Ctr.

5.5.2 Abalone data set

We now consider the d = 8 attributes of the Abalone data set. After removing two

observations that are clear outliers, we are left with N = 4,175 entries. Each of the

eight features is standardised such that it has zero mean and unit variance. We

set m = 50 and consider three different values of the Gaussian kernel parameter γ,

namely γ = 0.25, 1, and 4; these values are chosen so that the eigenvalues of the

kernel matrix K exhibit sharp, moderate and shallower decays, respectively. For

the Nyström sample optimisation, we use SGD with i.i.d. sampling and batch size

b = 50, T = 10,000 and ρ = 8 × 10−7; these values were chosen to obtain relatively

efficient optimisations for the whole range of values of γ we consider. For each

value of γ, we perform n = 200 repetitions. The results are presented in Figure 5.4.
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Figure 5.4: For the Abalone data set example of Section 5.5.2 with m = 50 and Gaussian
kernel parameter γ ∈ {0.25, 1, 4}, comparison of the values of R and of the approximation
factors (5.7) for the initial Nyström samples S(0) and the locally optimised samples S(T )

obtained through SGD with i.i.d. sampling (b = 50, ρ = 8 × 10−7 and T = 10,000). Each
row corresponds to a given value of γ; in each case, n = 200 repetitions are performed.

We observe that regardless of the value of γ, in comparison with the initial

Nyström samples, the accuracies of the locally optimised samples in terms of

trace, Frobenius and spectral norms are significantly improved. As observed in

Section 5.5.1, the gains yielded by the local optimisations are more evident in terms

of trace and Frobenius norms, and the impact of the initialisation appears limited.

5.5.3 MAGIC data set

We consider the d = 10 attributes of the MAGIC Gamma Telescope data set. In

pre-processing, we remove the 115 duplicated entries in the data set, leaving us

with N = 18,905 data points; we then standardise each of the d = 10 features of

the data set. For the kernel parameter, we use γ = 0.2.

In Figure 5.5, we present the results obtained after the local optimisation

of n = 200 random initial Nyström samples of size m = 100 and 200. Each

optimisation was performed through SGD with i.i.d. sampling, batch size b = 50

and stepsize ρ = 5 × 10−8; for m = 100, we used T = 3,000 iterations, and

T = 4,000 iterations for m = 200. The optimisation parameters were chosen

to obtain relatively efficient but not fully completed descents, as illustrated in
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Figure 5.5. Alongside the error map R, we only compute the approximation factor

corresponding to the trace norm, since the trace norm is indeed the least costly to

evaluate of the three matrix norms we consider (see Table 2.1 in Section 2.1.1). As

in the previous experiments, we observe a significant improvement of the initial

Nyström samples obtained by local optimisation of R.
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Figure 5.5: For the MAGIC data set example of Section 5.5.3, boxplots of the error
map R and of the approximation factor Etr before and after the local optimisation
via SGD of random Nyström samples of size m = 100 and 200; for each value of m,
n = 200 repetitions are performed. The SGD is based on i.i.d. sampling, with b = 50 and
ρ = 5 × 10−8; for m = 100, the descent is stopped after T = 3,000 iterations, and after
T = 4,000 iterations for m = 200 (left). A graphical representation of the decay of R is
also presented for m = 200 (right).

5.5.4 MiniBooNE data set

In this last experiment, we consider the d = 50 attributes of the MiniBooNE

particle identification data set. In pre-processing, we remove the 471 entries in the

data set with missing values, and one entry appearing as a clear outlier, leaving us

with N = 129,592 data points; we then standardise each of the d = 50 features of

the data set. We use γ = 0.04 for the Gaussian kernel parameter.

We consider a random initial Nyström sample of size m = 1,000, and optimise

it through SGD with i.i.d. sampling (batch size b = 200 and step size ρ = 2 × 10−7);

the descent is stopped after T = 8,000 iterations. The resulting decay of the error

map R is presented in Figure 5.6 (the cost is evaluated every 100 iterations), and

the trace norm of the Nyström approximation error for the initial and locally

optimised samples are reported.
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Figure 5.6: For the MiniBooNE data set of Section 5.5.4, decay of the error map R
during the optimisation of a random initial Nyström sample of size m = 1,000. The SGD
is based on i.i.d. sampling with b = 200 and ρ = 2 × 10−7, and the descent is stopped
after T = 8,000 iterations; the cost is evaluated every 100 iterations.

In terms of computational time (and for our experimental setup), in this specific

example, the full optimisation process of R (without checking the decay of the

cost) is roughly five times faster than a single evaluation of the trace error.

Appendix: Proof of Theorem 5.1

In this appendix, we prove Theorem 5.1 of Section 5.3.

Proof of Theorem 5.1. We consider a Nyström sample S ∈ X m and introduce the

quantity

cS = 1
∥KS∥2

F

N∑
i=1

m∑
j=1

K2(xi, sj). (5.8)

In view of (5.4), the partial derivative of R at S with respect to the l-th coordinate

of the k-th landmark point sk can be written as

∂[sk]lR(S) = c2
S

(
∂

[d]
[sk]lK

2(sk, sk) + 2
m∑

j=1,
j ̸=k

∂
[l]
[sk]lK

2(sk, sj)
)

− 2cS

N∑
i=1

∂
[l]
[sk]lK

2(sk, xi).

(5.9)

For k, k′ ∈ [m] with k ̸= k′, and for l, l′ ∈ [d], the second-order partial derivatives

of R at S, with respect to the coordinates of the landmark points in S, verify

∂[sk]l∂[sk]l′R(S) = c2
S∂

[d]
[sk]l∂

[d]
[sk]l′

K2(sk, sk) + 2cS(∂[sk]l′cS)∂[d]
[sk]lK

2(sk, sk)

+ 2c2
S

m∑
j=1,
j ̸=k

∂
[l]
[sk]l∂

[l]
[sk]l′

K2(sk, sj) + 4cS(∂[sk]l′cS)
m∑

j=1,
j ̸=k

∂
[l]
[sk]lK

2(sk, sj)

− 2cS

N∑
i=1

∂
[l]
[sk]l∂

[l]
[sk]l′

K2(sk, xi) − 2(∂[sk]l′cS)
N∑

i=1
∂

[l]
[sk]lK

2(sk, xi),

(5.10)
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and

∂[sk]l∂[sk′ ]l′R(S) = 2cS(∂[sk′ ]l′cS)∂[d]
[sk]lK

2(sk, sk) + 2c2
S∂

[l]
[sk]l∂

[r]
[sk′ ]l′

K2(sk, sk′)

+ 4cS(∂[sk′ ]l′cS)
m∑

j=1,
j ̸=k

∂
[l]
[sk]lK

2(sk, sj)

− 2(∂[sk′ ]l′cS)
N∑

i=1
∂

[l]
[sk]lK

2(sk, xi); (5.11)

the partial derivative of cS with respect to the l-th coordinate of the k-th landmark

point sk is

∂[sk]lcS = 1
∥KS∥2

F

(
N∑

i=1
∂

[l]
[sk]lK

2(sk, xi)−cS∂
[d]
[sk]lK

2(sk, sk)−2cS

m∑
j=1,
j ̸=k

∂
[l]
[sk]lK

2(sk, sj)
)
.

(5.12)

From (A.1), we have

∥KS∥2
F =

m∑
i=1

m∑
j=1

K2(si, sj) ⩾
m∑

i=1
K2(si, si) ⩾ mα. (5.13)

By the Schur product theorem, the squared kernel K2 is SPSD; we denote by G the

RKHS of real-valued functions on X for which K2 is reproducing. For x, y ∈ X ,

we have K2(x, y) = ⟨k2
x | k2

y⟩G , with ⟨· | ·⟩G the inner product on G, and where k2
x ∈ G

is such that k2
x(t) = K2(t, x), for all t ∈ X . From the Cauchy-Schwarz inequality,

we have
N∑

i=1

m∑
j=1

K2(sj, xi) =
N∑

i=1

m∑
j=1

⟨k2
sj

| k2
xi

⟩G =
〈

m∑
j=1

k2
sj

∣∣∣∣∣
N∑

i=1
k2

xi

〉
G

⩽

∥∥∥∥∥
m∑

j=1
k2

sj

∥∥∥∥∥
G

∥∥∥∥∥
N∑

i=1
k2

xi

∥∥∥∥∥
G

= ∥KS∥F∥K∥F. (5.14)

By combining (5.8) with inequalities (5.13) and (5.14), we obtain

0 ⩽ cS ⩽
∥K∥F

∥KS∥F
⩽

∥K∥F√
mα

=: C0. (5.15)

Let k ∈ [m] and let l ∈ [d]; from equation (5.12), and using inequalities (5.13) and

(5.15) together with (A.2), we obtain

|∂[sk]lcS | ⩽ M1

mα
[N + (2m− 1)C0] =: C1. (5.16)

In addition, let k′ ∈ [m] \ {k} and l′ ∈ [d]; from equations (5.10), (5.11), (5.15) and

(5.16), and conditions (A.2) and (A.3), we get

|∂[sk]l∂[sk]l′R(S)| ⩽ C2
0M2 + 2C0C1M1 + 2(m− 1)C2

0M2 + 4(m− 1)C0C1M1
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+ 2C0M2N + 2C1M1N

= (2m− 1)C2
0M2 + (4m− 2)C0C1M1 + 2N(C0M2 + C1M1),

(5.17)

and

|∂[sk]l∂[sk′ ]l′R(S)| ⩽ 2C0C1M1 + 2C2
0M2 + 4(m− 1)C0C1M1 + 2C1M1N

= 2C2
0M2 + (4m− 2)C0C1M1 + 2NC1M1. (5.18)

For k, k′ ∈ [m], we denote by Bk,k′ the d × d matrix with (l, l′) entry given

by (5.10) if k = k′, and by (5.11) otherwise. The Hessian ∇2R(S) can then be

represented as a block-matrix, that is

∇2R(S) =


B1,1 . . . B1,m

... . . . ...
Bm,1 . . . Bm,m

 ∈ Rmd×md.

The d2 entries of each of the m diagonal blocks of ∇2R(S) are of the form (5.10),

and the d2 entries of each of the m(m − 1) off-diagonal blocks of ∇2R(S) are of

the form (5.11). From inequalities (5.17) and (5.18), we obtain

∥∇2R(S)∥2
sp ⩽ ∥∇2R(S)∥2

F =
m∑

k=1

d∑
l=1

d∑
l′=1

[Bk,k]2l,l′ +
m∑

k=1

m∑
k′=1,
k′ ̸=k

d∑
l=1

d∑
l′=1

[Bk,k′ ]2l,l′ ⩽ L2,

with

L =
(
md2[(2m− 1)C2

0M2 + (4m− 2)C0C1M1 + 2N(C0M2 + C1M1)]2

+ 4m(m− 1)d2[C2
0M2 + (2m− 1)C0C1M1 +NC1M1]2

) 1
2 .

For all S ∈ X m, the constant L is an upper bound for the spectral norm of the

Hessian matrix ∇2R(S), so the gradient of R is Lipschitz continuous over X m,

with Lipschitz constant L.
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Chapter 6

Concluding discussion

In this chapter, we give a final overview of the main contributions of the thesis,

and discuss some potential extensions of the presented work.

6.1 Summary of the contributions of the thesis

In Chapters 2 and 3, we investigated the connections between the low-rank approx-

imation of integral operators and the Nyström approximation of PSD matrices. In

this framework, we described two main classes of sampling strategies for Nyström

approximation leveraging the properties of the energy setting.

Sequential column sampling. In Chapter 4, we described an energy-based

pseudoconvex differentiable relaxation of the CSP for PSD-matrix approximation,

and described a class of gradient-based sequential sampling strategies leveraging

the properties of this relaxation. The considered column-sampling procedures rely

on the preliminary computation of a target potential, and we described a stochastic

approximation scheme to reduce the time-complexity of this operation. For PSD

matrices of order N , and when relying on such stochastic approximations, the

overall time-complexity of the discussed strategies is then linear in N . For instance,

the worst-case time-complexity of performing m iterations of the S-MFW variant

of Algorithm 4.1 is O(m2 +mN + ℓN), with in practice m and ℓ ≪ N , where ℓ is

the row-sample size parameter for the approximation of the target potential g; the

algorithm then extracts a sample of m columns.

We presented a series of experiments which demonstrate the ability of the

proposed sequential sampling strategies to produce accurate Nyström approxi-
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mations while efficiently handling large PSD matrices. Notably, the discussed

strategies appear to be able to achieve high levels of accuracy in ranges where

other approaches (such as leverage-score and DPP-based sampling strategies) do

not seem to lead to significant improvements over naive random column-sampling

techniques, hence offering an interesting complement to the existing methodologies.

The described procedures are in addition straightforward to implement, and the

involved computations can be easily parallelised.

Particle-flow sampling. In Chapter 5, we described the landmark-point frame-

work for the Nyström approximation of PSD kernel matrices. We introduced an

energy-based error map R which is differentiable on the landmark-point space, and

provided sufficient conditions for the Lipschitz continuity of the gradient of this

error map, ensuring the convergence of gradient-descent iterates with suitable step

sizes. Stochastic approximations of the partial derivatives of R were discussed,

and we described a stochastic gradient descent procedure for the local optimisa-

tion of an initial Nyström sample of landmark points. We performed numerical

experiments on a range of data sets, and observed that optimising column samples

drawn uniformly at random led to consistent improvements in the quality of the

induced Nyström approximations. We also demonstrated the ability of the proposed

approach to handle large-scale problems.

As a side note, in addition to the two main classes of sampling strategies

discussed in this thesis (that is, sequential and particle-flow-based techniques),

a third type of energy-based approach to the CSP may be considered, based on

sparsity-inducing regularisation; this was investigated in (Gauthier and Suykens,

2018).

6.2 Extensions and future work

In this section, we discuss potential extensions of our investigations that are directly

related to the presented work. We also suggest possible directions for future research

in line with the developed methodologies.
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6.2.1 Extensions of the presented work

Regarding the sequential strategies described in Chapter 4, and especially for the

optimal-step-size update rule, the range in which the discussed strategies are able

to maintain high levels of accuracy appears to relate to the decay of the spectrum

of K; gaining a deeper understanding of the mechanisms at play could improve the

operating framework of the proposed procedures. In addition, although the error

maps CX, X ∈ {sp,F,P,PP}, are upper-bounded by the surrogate error map R,

obtaining tighter approximation bounds could help further support the considered

relaxation. The impact of the stochastic approximation of the target potential on

the column-sampling process could also warrant a more in-depth investigation.

Regarding the particle-flow-based strategies described in Chapter 5, in our

experiments, we used stochastic gradient descents with i.i.d. sampling, fixed step

size and fixed number of iterations. Although already bringing satisfactory results,

to improve the efficiency of the approach, the optimisation could be accelerated

by considering for instance adaptive step sizes or momentum-type techniques (see

Bottou et al., 2018 for an overview), and parallelisation may be implemented. The

initial Nyström samples we considered were drawn uniformly at random without

replacement; while our experiments suggest that the local minima of the error map

R often induce approximations of comparable quality, the use of more efficient

initialisation strategies could be investigated (for instance, the sequential sampling

strategies of Chapter 4 could be used to design initial samples).

6.2.2 Other research directions

The extent to which the energy setting may be adapted to the low-rank approxi-

mation of general matrices (that is, not necessarily PSD) could be an interesting

avenue for future research. For instance, a general matrix X actually characterises

two RKHSs, the RKHS H1 related to X∗X and the RKHS H2 related to XX∗; the

matrix X can then be regarded as an operator from H1 to H2. Further investigating

the implications of this interpretation could potentially lead to some interesting

developments in the CSSP setting (see Chapter 2) and for the approximation of

the SVD of large matrices.
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The rescaling-invariance mechanism described in Chapter 4 could also be ap-

plied to the solving of large unconstrained quadratic programs. In this setting, the

introduction of suitable restrictions on the search space could benefit the develop-

ment of conditional-gradient-based optimisation strategies for the minimisation of

quadratic functions on high-dimensional spaces (and consequently, could support

the development of novel strategies for approximating the solutions to large systems

of linear equations).

More generally, the enforcement of rescaling invariances, its connections to

generalised convexity and inherent suitability for the implementation of conditional-

gradient-type optimisation techniques could be worth exploring in the wider context

of approximate linear algebra and large-scale optimisation.
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