# scientific reports

## OPEN



## Relationship between inherited genetic variation and survival from colorectal cancer stratified by tumour location

Christopher Wills<sup>1</sup>, Katie Watts<sup>1</sup>, Amy Houseman<sup>1</sup>, Timothy S. Maughan<sup>2</sup>, David Fisher<sup>3</sup>, Nada A. Al-Tassan<sup>0</sup><sup>4</sup>, Richard S. Houlston<sup>5</sup>, Valentina Escott-Price<sup>6</sup> & Jeremy P. Cheadle<sup>1</sup>

The location of a patient's colorectal cancer (CRC) influences their outcome but inherited factors may also be involved. We studied 1899 patients with advanced CRC (514 had proximal colonic, 493 distal colonic and 892 rectal tumours) and carried out genome-wide association studies for survival. Single nucleotide polymorphisms (SNPs) suggestive of association ( $P < 1.0 \times 10^{-5}$ ) were tested for replication in 5078 CRC patients from the UK Biobank. We investigated the relationship between Phosphatidylinositol 4-Kinase Type 2 Beta (*PI4K2B*) expression in colorectal tumours and survival in 597 patients from The Human Protein Atlas (THPA). We also analysed 3 SNPs previously associated with survival by anatomical site. We found that SNPs at 54 independent loci were suggestive of an association with survival when stratified by tumour location. rs76011559 replicated in patients with proximal tumours (COIN, COIN-B and UK Biobank combined Hazard Ratio [HR] = 1.53, 95% Confidence Intervals [CI] = 1.19–1.86,  $P = 7.5 \times 10^{-7}$ ) and rs12273047 replicated in patients with rectal tumours (combined HR = 1.27, 95% CI = 1.09–1.46,  $P = 4.1 \times 10^{-7}$ ). In gene analyses, *PI4K2B* associated with survival in patients with distal cancers ( $P = 2.1 \times 10^{-6}$ ) and increased *PI4K2B* expression in colorectal tumours was associated with improved survival ( $P = 9.6 \times 10^{-5}$ ). No previously associated SNPs were replicated. Our data identify novel loci associated with survival when stratified by tumour location.

Keywords Colorectal cancer, Survival, Tumour location, Germline variation

Proximal and distal colonic cancers have distinct clinicopathological and molecular features, reflective of their embryological origin and biology<sup>1,2</sup>. Proximal colonic cancers are frequently *KRAS*<sup>3,4</sup> and *BRAF*<sup>1,4</sup> mutated, have microsatellite instability and a CpG island methylator phenotype<sup>5</sup>. They are more common in women and older patients, and while having a poorer prognosis, tend have a better response to 5-fluorouracil chemotherapy<sup>2</sup>. Distal cancers are typified by chromosomal abnormalities and aneuploidy<sup>6</sup>. Rectal cancers have higher rates of locoregional relapse, a preference for lung metastases and a lower frequency of *KRAS* and *BRAF* mutations<sup>7–9</sup>.

The prognosis for patients with the same stage of colorectal cancer (CRC) can vary and in addition to clinicopathological features and somatic mutations it is being recognised that germline variation also influences outcome. Our recent work identified germline variants associated with survival in patients with advanced CRC from the clinical trials COIN and COIN-B<sup>10</sup>. Given the inherent differences in the pathobiology of proximal and distal cancers, here we report on the impact of germline variation on CRC prognosis by tumour anatomical site.

## Results

## Our study cohort

We studied 2244 unrelated patients with metastatic or locally advanced CRC recruited into the MRC clinical trials COIN<sup>11</sup> and COIN-B<sup>12</sup>. After quality control (QC), whole genome genotyping and survival data were

available on 1948 patients. We assigned patients to groups by location of their primary tumour (for 49 patients this data was missing, leaving n = 1899)<sup>13</sup>. Proximal tumours—those within the hepatic flexure, transverse colon, cecum and ascending colon (514 patients, 413 with events); Distal tumours—those within the descending colon, sigmoid colon and splenic flexure (n = 493 patients, 358 with events); Rectal tumours—those within the rectosigmoid junction and rectum (892 patients with 645 events) (Fig. 1).

Patients with proximal CRCs had a higher frequency of *KRAS* (39.1%) and *BRAF* (16.0%) mutations and worse prognosis (median survival 397 days) compared to patients with distal (25.6%, 4.3% and 514 days, all  $P < 1.0 \times 10^{-4}$ , respectively) and rectal cancers (33.3%,  $P = 1.2 \times 10^{-2}$ ; 4.1%,  $P < 1.0 \times 10^{-4}$  and 520 days,  $P < 1.0 \times 10^{-4}$ , respectively) (Table 1).

### Relationship between germline variation and survival by tumour location

We investigated whether germline single nucleotide polymorphisms (SNPs) were associated with survival when considering the anatomical site of a patient's primary tumour. Genome-wide survival analyses of patients from COIN and COIN-B were stratified by primary tumour location using the first five principal components as covariates, which explained 78–80% of the total variance for previously established prognostic factors<sup>10</sup>. There was no detectable genomic inflation (lambda = 1.03–1.12). We found that no SNPs passed genome-wide significance ( $P < 5.0 \times 10^{-8}$ ) for association with survival, regardless of tumour location (Fig. 2).

We did however find that SNPs at 15 independent loci were suggestive of an association with survival in patients with tumours in the proximal colon, 23 loci in those with tumours in the distal colon and 16 loci in those with tumours in the rectum (Fig. 2, Table 2).

#### Independent replication

We sought to independently replicate the lead SNPs at each of these loci in 5078 patients with CRC from the United Kingdom (UK) Biobank (UKB). Patients were stratified according to the location of their tumour; however, for 326 patients there was insufficient information to assign the anatomical site. In total, 1433 (473 with events) had proximal disease, 1450 (420 events) had distal disease and 1869 (495 events) had rectal disease (Fig. 1).

We found that rs76011559 mapping to 7q36.1 (123 kb upstream of *CUL1*) replicated in patients with proximal tumours (Hazard Ratio [HR] = 1.31, 95% Confidence Intervals [CI] = 1.03-1.66,  $P = 2.8 \times 10^{-2}$ , Supplementary Fig. 1, Table 2). In the advanced disease setting, patients carrying at least one copy of the minor (C) allele had a median reduction in survival of 121 days compared to patients homozygous for the major (A) allele (Supplementary Fig. 1). The prevalence of *KRAS* and *BRAF* mutations in proximal tumours from carriers of the rs76011559 minor allele (35% and 19%, respectively) was similar to non-carriers (Table 1).

rs12273047 at 11p15.4 replicated in patients with rectal tumours (HR = 1.19, 95% CI = 1.03-1.38,  $P = 1.6 \times 10^{-2}$ ; Supplementary Fig. 2, Table 2). Patients carrying at least one copy of the minor (C) allele had a median reduction in survival of 132 days compared to patients homozygous for the major (T) allele (Supplementary Fig. 2). No other lead SNPs were replicated (Table 2).



**Fig. 1**. Flow diagram depicting the genetic and survival analyses of patients from COIN and COIN-B by primary tumour location. 514 patients had primary tumours in the proximal colon, 493 in the distal colon and 892 in the rectum. Lead single nucleotide polymorphisms from independent loci suggestive of association with survival were tested for replication in participants from the UK Biobank with proximal colon (n = 1433), distal colon (n = 1450) and rectal cancers (n = 1869), respectively.

.....

|                            |                         | Proximal tumour |      | Distal tumour |      | Rectum        |      |                           |  |
|----------------------------|-------------------------|-----------------|------|---------------|------|---------------|------|---------------------------|--|
|                            |                         | (n=514)         |      | (n=493)       |      | (n=892)       |      |                           |  |
| Clinicopathological factor |                         | n               | %    | n             | %    | n             | %    | Р                         |  |
| C arr                      | Male                    | 307             | 59.7 | 312           | 63.3 | 625           | 70.1 | $2.2 \times 10^{-4}$      |  |
| Sex                        | Female                  | 207             | 40.3 | 181           | 36.7 | 267           | 29.9 |                           |  |
| Age                        | Median (years)          | 65              | -    | 64            | -    | 63            | -    | -                         |  |
| Overall survival           | Median days<br>(95% CI) | 397 (359–444)   | -    | 514 (471–556) | -    | 520 (496-581) | -    | $<\!1.0\!\times\!10^{-4}$ |  |
|                            | 0                       | 216             | 42.0 | 209           | 42.4 | 459           | 51.5 | 1.3×10 <sup>-3</sup>      |  |
| WHO performance status     | 1                       | 251             | 48.8 | 249           | 50.5 | 375           | 42.0 |                           |  |
|                            | 2                       | 47              | 9.1  | 35            | 7.1  | 58            | 6.5  |                           |  |
| Status of primary tumour   | Resected                | 316             | 61.5 | 270           | 54.8 | 421           | 47.2 | < 1.0 × 10 <sup>-4</sup>  |  |
| Status of primary tumour   | Unresected              | 198             | 38.5 | 223           | 45.2 | 471           | 52.8 |                           |  |
| Timing of metastases       | Metachronous            | 136             | 26.5 | 119           | 24.1 | 311           | 34.9 | $< 1.0 \times 10^{-4}$    |  |
| Thining of metastases      | Synchronous             | 378             | 73.5 | 374           | 75.9 | 581           | 65.1 | <1.0×10 <sup>+</sup>      |  |
| Type of metastases         | Liver only              | 86              | 16.7 | 151           | 30.6 | 185           | 20.8 | < 1.0 × 10 <sup>-4</sup>  |  |
|                            | Liver plus<br>others    | 272             | 52.9 | 255           | 51.7 | 474           | 53.3 |                           |  |
|                            | Non-liver               | 156             | 30.4 | 87            | 17.6 | 231           | 26.0 |                           |  |
|                            | 0                       | 0               | 0.0  | 0             | 0.0  | 2             | 0.2  | 0.23                      |  |
| Number of metastatic sites | 1                       | 175             | 34.0 | 196           | 39.8 | 310           | 34.8 |                           |  |
| Number of metastatic sites | 2                       | 200             | 38.9 | 181           | 36.7 | 367           | 41.1 |                           |  |
|                            | ≥3                      | 139             | 27.0 | 116           | 23.5 | 213           | 23.9 |                           |  |
|                            | Mutated                 | 201             | 39.1 | 126           | 25.6 | 297           | 33.3 |                           |  |
| KRAS status                | Wild-type               | 224             | 43.6 | 283           | 57.4 | 453           | 50.8 | $< 1.0 \times 10^{-4}$    |  |
|                            | n/k                     | 89              | 17.3 | 84            | 17.0 | 142           | 15.9 |                           |  |
|                            | Mutated                 | 16              | 3.1  | 20            | 4.1  | 30            | 3.4  |                           |  |
| NRAS status                | Wild-type               | 397             | 77.2 | 373           | 75.7 | 699           | 78.4 | 0.66                      |  |
|                            | n/k                     | 101             | 19.6 | 100           | 20.3 | 163           | 18.3 |                           |  |
| BRAF status                | Mutated                 | 82              | 16.0 | 21            | 4.3  | 37            | 4.1  | < 1.0 × 10 <sup>-4</sup>  |  |
|                            | Wild-type               | 332             | 64.6 | 373           | 75.7 | 695           | 77.9 |                           |  |
|                            | n/k                     | 100             | 19.5 | 99            | 20.1 | 160           | 17.9 |                           |  |
|                            | Mutated                 | 62              | 12.1 | 45            | 9.1  | 79            | 8.9  |                           |  |
| PIK3CA status              | Wild-type               | 308             | 59.9 | 315           | 63.9 | 594           | 66.6 | 0.065                     |  |
|                            | n/k                     | 144             | 28.0 | 133           | 27.0 | 219           | 24.6 |                           |  |

 Table 1. Clinicopathological features of COIN and COIN-B patients by tumour site. Data are n (%) or

 median. Differences between patients were analysed using a Chi-squared test, Fisher's exact test (for number

 of metastatic sites) or log rank test (for overall survival). \*Non-liver metastases included those in the lungs,

 peritoneum and lymph nodes. n/k—not known—some data for somatic mutation status was not known due to

 the lack of availability of tumour tissue or failed amplification.

Gene analyses

Gene analyses were performed on the summary statistics from the association analyses to identify genes containing significant numbers of highly associated SNPs. Only Phosphatidylinositol 4-Kinase Type 2 Beta (*PI4K2B*) was significantly associated with survival in COIN and COIN-B patients with distal cancers, beyond the threshold for multiple testing ( $P=2.1 \times 10^{-6}$ ; Fig. 3). Patients carrying one copy of the minor (A) allele in the lead SNP, rs313566 in intron 1 of *PI4K2B*, had a median increase in survival of 245 days compared to patients homozygous for the major (G) allele (HR=0.52, 95% CI=0.4–0.7,  $P=1.8 \times 10^{-7}$ , Fig. 3). In contrast, rs313566 genotype was not associated with survival in patients with proximal cancers (HR=1.10, 95% CI=0.89–1.36, P=0.37,  $P_{Z-test}$  compared to distal cancers =  $6.5 \times 10^{-6}$ ) or those with rectal cancers (HR=1.16, 95% CI=0.97–1.39, P=0.09,  $P_{Z-test}$  compared to distal cancers =  $1.9 \times 10^{-7}$ ) (Supplementary Fig. 3).

## **Expression analyses**

We sought mechanistic understanding of the effect of rs313566 on survival. rs313566 was an expression quantitative trait loci (eQTL) for *PI4K2B* in several cell types ( $P < 3.8 \times 10^{-5}$ ) with the A-allele associated with increased *PI4K2B* expression (Supplementary Fig. 4).

We sought an association between *PI4K2B* expression levels in colorectal tumours and survival in 597 unrelated patients with CRC from The Human Protein Atlas (THPA). We found that higher *PI4K2B* expression was associated with improved survival (log rank  $P = 9.6 \times 10^{-5}$ , Supplementary Fig. 5). This finding was replicated under a linear Cox-proportional hazards model (HR = 0.94, 95% CI = 0.9–1.0,  $P = 7.0 \times 10^{-3}$ ).



**Fig. 2.** Manhattan plots of single nucleotide polymorphism (SNP) associations with survival in patients from COIN and COIN-B with primary tumours in (**A**) the proximal colon (n = 514), (**B**) the distal colon (n = 493) and (**C**) the rectum (n = 892). SNPs are ordered by chromosome position and plotted against the  $-\log_{10}(P)$  for their association with survival. The red line represents the threshold for genome-wide significance ( $P < 5.0 \times 10^{-8}$ ) and the blue line is the threshold for suggestive significance ( $P < 1.0 \times 10^{-5}$ ).

| Primary   |              |          |        |                                                 | COI  | N and COIN | [-B                  | UK Biobank |           |                      |
|-----------|--------------|----------|--------|-------------------------------------------------|------|------------|----------------------|------------|-----------|----------------------|
| location  | SNP          | Locus    | allele | Genes                                           | HR   | 95% CI     | Р                    | HR         | 95% CI    | Р                    |
|           | rs12062055   | 1q32.3   | G      |                                                 | 2.02 | 1.53-2.67  | $8.2 \times 10^{-7}$ | 0.90       | 0.68-1.19 | 0.46                 |
|           | rs4304342    | 8p23.2   | С      | CSMD1 0                                         |      | 0.57-0.79  | $8.8 \times 10^{-7}$ | 0.98       | 0.84-1.13 | 0.77                 |
|           | rs62135742   | 2p22.3   | С      | LTBP1                                           | 1.80 | 1.42-2.29  | $1.4 \times 10^{-6}$ | 0.97       | 0.78-1.20 | 0.75                 |
|           | rs147899046* | 17q25.3  | А      | DNAH17 1.4                                      |      | 1.23-1.65  | $1.7 \times 10^{-6}$ | 1.11       | 0.97-1.27 | 0.14                 |
|           | rs76011559   | 7q36.1   | С      |                                                 | 1.78 | 1.40-2.25  | $1.7 \times 10^{-6}$ | 1.31       | 1.03-1.66 | $2.8 \times 10^{-2}$ |
|           | rs10857917   | 1p13.2   | G      | LOC643355                                       | 1.44 | 1.24-1.67  | $1.8 \times 10^{-6}$ | 0.97       | 0.84-1.12 | 0.67                 |
|           | rs6460936    | 7p21.3   | С      | TMEM106B, VWDE                                  | 1.57 | 1.30-1.90  | $2.2 \times 10^{-6}$ | 1.00       | 0.83-1.21 | 0.99                 |
| Proximal  | rs35955655*  | 1p36.12  | CTA    | CDA, DDOST, MIR6084, PINK1, PINK1-AS            | 0.71 | 0.62-0.82  | $3.5 \times 10^{-6}$ | 1.05       | 0.92-1.19 | 0.47                 |
|           | rs1388194    | 13q31.3  | Т      |                                                 | 0.71 | 0.62-0.82  | $3.7 \times 10^{-6}$ | 0.93       | 0.81-1.06 | 0.29                 |
|           | rs112651521  | 2q31.1   | Т      | BBS5, FASTKD1, KLHL41, PPIG                     | 1.71 | 1.36-2.16  | $5.8 \times 10^{-6}$ | 0.99       | 0.80-1.24 | 0.96                 |
|           | rs1514081    | 11p14.3  | С      |                                                 | 0.73 | 0.63-0.83  | 6.1×10 <sup>-6</sup> | 0.97       | 0.85-1.10 | 0.64                 |
|           | rs10878838   | 12q15    | Т      | LOC100507195                                    | 1.64 | 1.32-2.03  | $6.9 \times 10^{-6}$ | 1.09       | 0.88-1.35 | 0.44                 |
|           | rs148684057  | 9q21.32  | GT     | LOC101927575                                    | 1.72 | 1.35-2.19  | $8.6 \times 10^{-6}$ | 0.98       | 0.80-1.30 | 0.89                 |
|           | rs11048907   | 12p11.23 | Т      | ARNTL2, C12orf71, MED21, STK38L, TM7SF3         | 1.71 | 1.35-2.16  | 9.3×10 <sup>-6</sup> | 1.06       | 0.86-1.32 | 0.57                 |
|           | rs78738433   | 5q33.3   | С      | ADAM19, CYFIP2, NIPAL4                          | 1.90 | 1.43-2.52  | $1.0 \times 10^{-5}$ | 1.04       | 0.81-1.33 | 0.77                 |
|           | rs313566     | 4p15.2   | A      | ANAPC4, PI4K2B, SEPSECS, SEPSECS-AS1,<br>ZCCHC4 | 0.52 | 0.41-0.67  | $1.8 \times 10^{-7}$ | 1.15       | 0.93-1.42 | 0.19                 |
|           | rs2837637*   | 21q22.2  | A      | DSCAM                                           |      | 1.26-1.72  | $1.0 \times 10^{-6}$ | 1.10       | 0.96-1.26 | 0.17                 |
|           | rs7907707    | 10p14    | С      |                                                 |      | 1.33-1.99  | $1.8 \times 10^{-6}$ | 1.04       | 0.86-1.26 | 0.70                 |
|           | rs10182527   | 2q14.1   | Т      | DPP10, DPP10-AS1                                |      | 1.24-1.67  | $2.0 \times 10^{-6}$ | 1.08       | 0.95-1.24 | 0.24                 |
|           | rs76041099   | 3q23     | С      | LOC100507389                                    |      | 1.57-2.94  | $2.0 \times 10^{-6}$ | 0.83       | 0.61-1.14 | 0.26                 |
|           | rs11159167   | 14q12    | G      |                                                 | 1.43 | 1.23-1.67  | $2.3 \times 10^{-6}$ | 0.97       | 0.84-1.12 | 0.69                 |
|           | rs117589090  | 10p14    | G      |                                                 | 2.08 | 1.53-2.81  | $2.3 \times 10^{-6}$ | 0.89       | 0.64-0.24 | 0.50                 |
|           | rs4718825    | 7q11.22  | G      |                                                 | 1.55 | 1.29-1.87  | $2.3 \times 10^{-6}$ | 0.98       | 0.82-1.17 | 0.83                 |
|           | rs7656285    | 4q25     | С      | LRIT3, RRH                                      | 1.42 | 1.22-1.64  | $3.0 \times 10^{-6}$ | 0.93       | 0.81-1.07 | 0.34                 |
|           | rs6921841    | 6p12.2   | A      |                                                 | 1.62 | 1.32-1.98  | $3.2 \times 10^{-6}$ | 1.05       | 0.88-1.26 | 0.56                 |
|           | rs10510552   | 3p24.2   | Т      |                                                 | 1.45 | 1.24-1.69  | $3.4 \times 10^{-6}$ | 0.88       | 0.76-1.00 | 0.06                 |
| Distal    | rs34507557   | 1q42.13  | CT     | CDC42BPA                                        | 1.66 | 1.34-2.07  | $4.9 \times 10^{-6}$ | 1.10       | 0.91-1.34 | 0.33                 |
|           | rs28583014   | 4q25     | A      | EGF, ELOVL6                                     | 1.73 | 1.37-2.20  | $5.0 \times 10^{-6}$ | 0.93       | 0.74-1.17 | 0.53                 |
|           | rs2057331    | 6q14.1   | G      | C6orf7                                          | 1.80 | 1.40-2.33  | $5.1 \times 10^{-6}$ | 0.96       | 0.75-1.23 | 0.75                 |
|           | rs41268739   | 1q42.13  | Т      | CDC42BPA                                        |      | 1.50-2.78  | $5.4 \times 10^{-6}$ | 0.90       | 0.65-1.25 | 0.54                 |
|           | rs9995789    | 4q25     | Т      | ELOVL6                                          | 1.52 | 1.27-1.83  | $5.6 \times 10^{-6}$ | 0.98       | 0.82-1.17 | 0.84                 |
|           | rs7319699    | 13q12.12 | G      | TNFRSF19                                        |      | 1.24-1.71  | $5.8 \times 10^{-6}$ | 1.10       | 0.95-1.27 | 0.21                 |
|           | rs7826050    | 8q24.13  | G      | DERL1                                           |      | 1.23-1.70  | $7.0 \times 10^{-6}$ | 0.99       | 0.85-1.15 | 0.87                 |
|           | rs11842682   | 13q21.1  | Т      |                                                 |      | 1.26-1.81  | $8.4 \times 10^{-6}$ | 0.94       | 0.79-1.12 | 0.50                 |
|           | rs1033393    | 6q22.1   | Т      |                                                 |      | 1.29-1.92  | $8.9 \times 10^{-6}$ | 1.02       | 0.85-1.23 | 0.80                 |
|           | rs2796466    | 9q21.32  | Т      | TLE1                                            | 1.41 | 1.21-1.64  | $9.2 \times 10^{-6}$ | 0.87       | 0.76-1.01 | 0.06                 |
|           | rs7660386    | 4q35.2   | G      |                                                 | 0.66 | 0.55-0.79  | 9.6×10 <sup>-6</sup> | 0.95       | 0.81-1.11 | 0.51                 |
|           | rs72702433   | 4q34.3   | G      |                                                 | 1.86 | 1.41-2.44  | $1.0 \times 10^{-5}$ | 0.97       | 0.74-1.30 | 0.87                 |
| Continued |              |          |        | 1                                               |      |            |                      |            |           |                      |

| Primary            |             |         |        |              | COIN | N and COIN | -В                   | UK Biobank |           |                      |
|--------------------|-------------|---------|--------|--------------|------|------------|----------------------|------------|-----------|----------------------|
| tumour<br>location | SNP         | Locus   | allele | Genes        | HR   | 95% CI     | Р                    | HR         | 95% CI    | Р                    |
|                    | rs73011737  | 4q34.3  | Т      |              | 1.68 | 1.38-2.04  | $2.1 \times 10^{-7}$ | 0.97       | 0.78-1.22 | 0.82                 |
|                    | rs77984832  | 12q12   | Т      |              | 1.82 | 1.45-2.29  | $3.0 \times 10^{-7}$ | 0.87       | 0.67-1.12 | 0.28                 |
|                    | rs1562098   | 4p14    | Т      |              | 1.32 | 1.18-1.48  | $1.6 \times 10^{-6}$ | 0.99       | 0.86-1.13 | 0.85                 |
|                    | rs10067149  | 5p15.33 | G      |              | 1.31 | 1.17-1.47  | $2.0 \times 10^{-6}$ | 1.04       | 0.92-1.19 | 0.50                 |
|                    | rs74602176  | 1q25.2  | А      | BRINP2       | 1.72 | 1.38-2.15  | $2.1 \times 10^{-6}$ | 0.91       | 0.69-1.21 | 0.53                 |
|                    | rs2949938   | 17q24.2 | А      | PITPNC1      | 1.69 | 1.36-2.10  | $2.2 \times 10^{-6}$ | 0.98       | 0.71-1.34 | 0.90                 |
|                    | rs60453441  | 1p36.13 | G      |              | 0.69 | 0.59-0.81  | $2.9 \times 10^{-6}$ | 1.02       | 0.87-1.20 | 0.81                 |
| Poctal             | rs2822995   | 21q11.2 | Т      | NRIP1        | 1.37 | 1.20-1.56  | $3.8 \times 10^{-6}$ | 1.13       | 0.97-1.33 | 0.12                 |
| Rectai             | rs268872    | 2p14    | Т      | ACTR2        | 1.39 | 1.21-1.60  | $4.1 \times 10^{-6}$ | 0.98       | 0.84-1.15 | 0.81                 |
|                    | rs12273047  | 11p15.4 | С      |              | 1.33 | 1.18-1.50  | $4.4 \times 10^{-6}$ | 1.19       | 1.03-1.38 | $1.6 \times 10^{-2}$ |
|                    | rs35066664  | 1p36.32 | G      |              | 1.69 | 1.35-2.11  | $5.5 \times 10^{-6}$ | 0.98       | 0.77-1.27 | 0.90                 |
|                    | rs34529111  | 4p14    | G      |              | 1.45 | 1.24-1.71  | $6.3 \times 10^{-6}$ | 1.09       | 0.90-1.31 | 0.37                 |
|                    | rs112063020 | 13q34   | AGTTT  | CDC16, UPF3A | 1.31 | 1.17-1.48  | $7.0 \times 10^{-6}$ | 1.07       | 0.93-1.23 | 0.36                 |
|                    | rs16878917  | 4p15.2  | А      |              | 0.74 | 0.64-0.84  | $7.1 \times 10^{-6}$ | 0.98       | 0.84-1.14 | 0.78                 |
|                    | rs113230287 | 7p15.3  | С      | STEAP1B      | 1.45 | 1.23-1.72  | $8.2 \times 10^{-6}$ | 0.86       | 0.71-1.05 | 0.14                 |
|                    | rs78745358  | 15q14   | А      | C15orf41     | 1.63 | 1.31-2.02  | $9.7 \times 10^{-6}$ | 1.01       | 0.72-1.34 | 0.93                 |

**Table 2**. Replication of loci suggestive of association with survival in COIN and COIN-B. Independent replication of lead SNPs was carried out using participants from the UK Biobank (UKB) with proximal colon, distal colon and rectal tumours. Tumour location, minor allele, Hazard Ratio, 95% confidence intervals and *P* value are listed for survival (time from trial recruitment to death or end of study for COIN and COIN-B, and time from diagnosis to death or data distribution date for the UKB). rs76011559 replicated in patients with proximal tumours and rs12273047 replicated in patients with rectal tumours (in bold). \*rs35955655, rs147899046 and rs2837637 were not available in the UKB and so were replaced with the proxies rs12021613 (1000 genomes project  $R^2 = 1$  and D' = 1), rs4969218 ( $R^2 = 0.99$  and D' = 1) and rs1012846 ( $R^2 = 0.6$  and D' = 1), respectively.

Despite these supportive expression data, we failed to replicate the genetic association between rs313566 and survival in UKB patients with distal (HR=1.15, 95% CI=0.93-1.42, P=0.19), proximal (HR=1.03, 95% CI=0.84-1.29, P=0.74) or rectal (HR=1.11, 95% CI=0.91-1.34, P=0.29) cancers, despite having over 99% power (Supplementary Fig. 3).

## Gene-set analyses

Gene-set analyses were also performed on the summary statistics from the association analyses to identify enriched gene-sets. Four gene-sets (negative regulation of phospholipid biosynthetic process, phosphatidic acid biosynthetic process, 1-acylglycerophosphocholine O-acyltransferase activity and long-term memory) reached significance beyond multiple testing thresholds in patients from COIN and COIN-B with rectal cancers (Supplementary Table 1).

## Meta-analysis of COIN, COIN-B and UKB by tumour location

To increase our power to detect associations, we carried out GWAS for survival in UKB patients by tumour location and meta-analysed the data with COIN and COIN-B. No SNPs reached genome-wide significance although three SNPs were close to this threshold in patients with rectal tumours (rs3980660 at 2q14.3, HR=0.79, 95% CI=0.61-0.97,  $P=2.2 \times 10^{-7}$ ; rs17237514 at 15q22.2, HR=0.73, 95% CI=0.50-0.97,  $P=2.9 \times 10^{-7}$  and rs12273047 at 11p15.4, HR=1.27, 95% CI=1.09-1.46,  $P=4.1 \times 10^{-7}$ ; Supplementary Fig. 6). No genes reached genome-wide significance. Three gene-sets (negative regulation of phospholipid biosynthetic process, phosphatidic acid biosynthetic process and positive regulation of response to endoplasmic reticulum stress) reached significance in patients with rectal cancers (Supplementary Table 2).

## Relationship between previously reported prognostic SNPs and tumour location

Three SNPs have previously been associated with CRC-specific survival for cases with tumours in the distal colon (rs698022, HR = 1.48, 95% CI = 1.30–1.69,  $P = 8.47 \times 10^{-9}$ ) and the proximal colon (rs189655236, HR = 2.14, 95% CI = 1.65–2.77,  $P = 9.19 \times 10^{-9}$  and rs144717887, HR = 2.01, 95% CI = 1.57–2.58,  $P = 3.14 \times 10^{-8}$ )<sup>13</sup>. We sought to replicate these observations and analysed these SNPs in patients from COIN and COIN-B.

rs698022 was not replicated despite having 84% power. rs189655236 also failed replication but with more limited power (54%). Although rs144717887 (INFO score = 0.92) was associated with survival in patients with proximal tumours under multivariate analyses (HR = 0.56, 95% CI = 0.32–0.97, P = 3.7×10<sup>-2</sup>), the direction of effect was opposite to that in the original study and therefore not replicated (Table 3).

## Discussion

We considered the relationship between inherited genetic variation and survival by location of the patient's CRC. rs76011559 lies upstream of *CUL1* and replicated as a prognostic biomarker in patients with proximal tumours. Proximal tumours from carriers of the rs76011559 minor allele had similar frequencies of *KRAS* and *BRAF* mutations as compared to non-carriers, suggesting that the prognostic effect was independent of somatic mutation status. *CUL1* encodes Cullin1 a member of the Cullin protein family which provides a scaffold for the ubiquitin ligase E3, mediating the degradation of proteins involved in signal transduction, transcription and cell cycle progression. As a consequence, Cullin1 regulates the cell cycle, cell proliferation, invasion, migration and metastasis<sup>14</sup> and upregulation of Cullin1 in CRC tissue is a negative prognostic biomarker<sup>14–16</sup>. However, rs76011559 was not an eQTL for *CUL1* so further studies are necessary to determine the regulatory mechanism for this SNP.

rs12273047 at 11p15.4 was also replicated in our study in patients with rectal tumours; however, this SNP is intergenic with no clear mechanism of action. It is important to note that the effect sizes associated with both rs12273047 and rs76011559 are modest and therefore unlikely to have direct applications to patient management.

*PI4K2B* was associated with survival in patients with distal cancers, beyond the threshold for multiple testing and the lead SNP rs313566 was not associated with survival in patients with proximal or rectal tumours suggesting anatomical specificity. We sought further mechanistic understanding of this SNP. rs313566 was an eQTL for *PI4K2B* in several cell types with the A-allele associated with increased expression. Interestingly, we found that higher *PI4K2B* expression in tumour tissue was associated with improved survival in patients with colorectal tumours from THPA. *PI4K2B* encodes a member of the type II PI4 kinase protein family, responsible for overall PI4-kinase activity of the cell and PI4KII beta depletion has been associated with a more invasive phenotype in minimally invasive cell lines<sup>17</sup>. It remains unclear how this function relates to the apparent anatomical specificity that we observed. It should be noted that we failed to replicate the association between rs313566 and survival in UKB patients with distal tumours which may indicate that this was a false positive association, although it may also reflect the heterogeneous stages of cancers in patients from the UKB (whereas in COIN and COIN-B they were all from the advanced disease setting). Further studies are therefore necessary to substantiate our observations.

The gene-sets 'negative regulation of phospholipid biosynthetic process' and 'phosphatidic acid biosynthetic process' remained significant in our meta-analyses in patients with rectal cancers. Phospholipids have a wide range of physiological functions, including forming the cell membrane, regulating apoptosis and mitochondrial physiology, and phospholipid-derived messenger molecules are involved in intra and extra-cellular signalling. Interestingly, total amount of phospholipid composition being predictive of CRC metastases<sup>18</sup>. Phosphatidic acid is an important molecule for the stability and activity of the mTOR complex, a protein kinase that suppresses apoptotic signals in cancer cells<sup>19</sup>. These associations are intriguing given their probable biology and are candidates that warrant further investigation.

## Methods

## Patients and genotyping

Our analyses were based on 2244 unrelated patients with metastatic or locally advanced CRC recruited into the MRC clinical trials COIN (NCT00182715)<sup>11</sup> and COIN-B (NCT00640081)<sup>12</sup> who received oxaliplatin and fluoropyrimidine chemotherapy, with or without cetuximab. All patients gave informed consent for bowel cancer research (approved by NHS Research Ethics Committee [04/MRE06/60]) and all methods were performed in accordance with the relevant guidelines and regulations. Since there was no evidence of heterogeneity in overall survival (OS; time from trial randomisation to death or end of trial) between patients when analysed by trial, trial arm, type of chemotherapy received, or cetuximab use, we considered the group as a whole<sup>10</sup>.

DNA was extracted from EDTA-blood samples by conventional methods and genotyped using Affymetrix Axiom Arrays<sup>20</sup>. Prediction of untyped SNPs was carried out with IMPUTE2 v2.3.0<sup>21</sup> using data from the 1000 Genomes Project as reference<sup>22,23</sup>. Discordant sex, individual and SNP missingness, heterozygosity, relatedness, principal component analysis (PCA), minor allele frequency (MAF) and Hardy Weinberg Equilibrium (HWE) QC steps were performed as previously described<sup>10</sup>. In brief, we excluded SNPs with MAFs < 5%, poor imputation scores (INFO score < 0.8), missingness > 0.02 or HWE exact test  $P < 1.0 \times 10^{-6}$ . After QC, genotype data was available on 1950 patients for whom 2 were missing data on survival, leaving 1948 with germline genotyping and survival data.

DNA was extracted from formalin fixed paraffin embedded CRC for 1647 patients (301 tissue samples were not available or were of insufficient quality) and screened for *KRAS* (codons 12, 13 and 61), *NRAS* (codons 12 and 61), *BRAF* (codons 594 and 600) and *PIK3CA* (codons 542, 545, 546 and 1047) mutations using Pyrosequencing and Sequenom technologies<sup>24</sup>. Overall, *KRAS* mutations were identified in 637/1589 (40.1%), *NRAS* mutations in 54/1546 (3.5%), *BRAF* mutations in 143/1554 (9.2%) and *PIK3CA* mutations in 212/1448 (14.6%) CRCs.

## **Replication cohort**

To replicate findings, we used UKB participant data (under project application number 65833), who were aged between 40 and 69 years at time of recruitment<sup>25</sup>. Germline genotyping of UKB patients was performed using the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix. Briefly, 850,000 SNPs were genotyped and imputed to > 90 million using the Haplotype Reference Consortium<sup>26</sup>, UK10K and 1000 genomes project<sup>27</sup> reference panels. SNPs were removed if they had INFO scores < 0.8, missingness > 5%, MAF < 5% or HWE exact test<sup>28</sup>  $P < 1.0 \times 10^{-6}$ . We excluded individuals from analysis if they failed one or more of the following thresholds: overall successfully genotyped SNPs < 99% or low heterozygosity (inbreeding coefficient > 0.2), duplication or



cryptic relatedness (KING-kinship coefficient>0.0442 for up to third degree cousins), and evidence of nonwhite European ancestry by PCA-based analysis. After QC, genotype data was available on 5,078 patients with CRC (assigned by ICD10 code).

## Statistical analyses

We previously identified 11 clinicopathological factors associated with survival in patients from COIN and COIN-B<sup>10</sup>. Due to the number of covariates added to the regression models, dimensionality reduction was performed using PCA to guard against overfitting. A threshold of 70% total variance explained was used to select the number of principal components to include<sup>29</sup>. We carried out GWAS for OS by location of the primary tumour under an additive model. For any SNPs suggestive of an association ( $P < 1.0 \times 10^{-5}$ ) we performed

**∢ Fig. 3**. Relationship between gene, genotype and survival in patients from COIN and COIN-B with primary tumours in the distal colon. (**A**) Manhattan plot of gene associations with survival. Genes are ordered by chromosome position and plotted against the  $-\log_{10}(P)$  for their association with survival. The red line represents the threshold for genome-wide significance  $(P=2.5 \times 10^{-6})$ . (**B**) Regional locus zoom plot shows results of the analysis for single nucleotide polymorphisms (SNPs) and recombination rates.  $-\log_{10}(P)$  (y axis) of the SNPs are shown according to their chromosomal positions (x axis) for an area 200 Kb upstream and downstream of *PI4K2B*. The sentinel SNP (purple) is labelled by its rsID (rs313566). The colour intensity of each symbol reflects the extent of linkage disequilibrium with the sentinel SNP, deep blue ( $r^2=0$ ) through to dark red ( $r^2=1.0$ ). Genetic recombination rates, estimated using 1000 Genomes Project samples, are shown with a blue line. Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative positions of genes and transcripts mapping to the region of association. Genes have been redrawn to show their relative positions; therefore, maps are not to physical scale. (**C**) Kaplan–Meier plot of the relationship between rs313566 genotype and survival. Time in days plotted against survival probability for patients homozygous for the major allele (GG) and heterozygous (GA) or homozygous for the minor allele (AA). The number of patients still at risk at each time point is shown beneath.

| SNP         | Allele | Tumour location | N   | Events | MAF    | INFO | HR   | 95% CI    | Р                     |
|-------------|--------|-----------------|-----|--------|--------|------|------|-----------|-----------------------|
| rs189655236 | Т      | Proximal        | 514 | 413    | 0.0078 | 0.73 | 0.71 | 0.31-1.58 | 0.4                   |
| rs144717887 | А      | Proximal        | 514 | 413    | 0.016  | 0.92 | 0.56 | 0.32-0.97 | $3.7 \times 10^{-2*}$ |
| rs698022    | Т      | Distal          | 493 | 358    | 0.089  | 0.83 | 0.96 | 0.73-1.26 | 0.78                  |

**Table 3**. Replication of previously reported SNP associations with survival. Independent replication was carried out using patients from COIN and COIN-B. We had 54, 71 and 84% power to replicate the associations for rs189655236, rs144717887 and rs698022, respectively. Minor allele, tumour location, sample size, number of events, minor allele frequency (MAF) and imputation score (INFO) are shown for each SNP as well as the Hazard ratio (HR), 95% confidence intervals (CI) and *P* value for multivariate analyses. \*Although rs144717887 reached statistical significance, the effect was in the opposite direction to the original report and therefore not validated.

clumping and tested lead SNPs at independent loci (n = 54) in replication cohorts from the UKB. P < 0.05 was used as the significance threshold for replication. Results are reported in accordance with STREGA guidelines.

Power to detect an effect of rs313566 on survival in UKB patients with proximal, distal and rectal tumours was estimated using an additive model, HR = 0.52 (as observed in COIN and COIN-B), P = 0.05 and sample sizes of 1433 (473 events), 1450 (420 events) and 1869 (495 events), respectively.

To increase the power to detect associations, we also performed GWAS for survival in UKB patients by location of their colorectal tumour, using age and sex as covariates, followed by genome-wide meta-analysis with the COIN and COIN-B data using a fixed-effects model.

Gene and gene-set analyses: The threshold for significance at gene level was set at  $P < 2.5 \times 10^{-6}$ , corresponding to a Bonferroni correction for 20,000 independent tests<sup>30</sup>. Correction for multiple testing for gene-set analysis was made by adjusting *P* values for the false discovery rate (Q < 0.05)<sup>31,32</sup>.

#### **Bioinformatic analyses**

Regional association plots were created using LocusZoom (http://locuszoom.org). PCA, survival analyses and Manhattan/quantile-quantile plots were performed using the psych (https://cran.r-project.org/web/packages/p sych/index.html), gwasurvivr<sup>33</sup> and qqman R (https://www.r-project.org/)<sup>34</sup> packages, respectively. Meta-analys es were performed using the '-meta-analysis' command in PLINK v1.9<sup>35</sup>.

Gene and gene-set analyses were performed with FUMA<sup>36</sup> using MAGMA<sup>37</sup> v1.08 (https://ctg.cncr.nl/soft ware/magma). SNPs were annotated to genes if they were located 35 kilobases before the gene's transcription zone or up to 10 kilobases after. The SNP-wise and competitive models were used for gene and gene-set analyses, respectively<sup>36</sup>.

eQTL analysis was performed by searching the Genotype-Tissue Expression (GTEx) project database (https://gtexportal.org/home/)<sup>38</sup> for associations between SNPs and gene expression.

We sought an association between *PI4K2B* expression levels in colorectal tumours and survival in 597 CRC patients from THPA<sup>39</sup> (https://www.proteinatlas.org/ENSG00000038210-PI4K2B/pathology/colorectal+canc er). RNA-seq data was reported as the median number of fragments per kilobase of exon per million reads (FPKM) generated by The Cancer Genome Atlas. Samples were classified as high expression using a threshold of FPKM>7.38 as per THPA recommendations<sup>39</sup>. We also performed survival analysis using a linear Coxproportional hazards model.

### Data availability

The GWAS summary statistics are available through the NHGRI-EBI GWAS Catalog under study accession numbers GCST90250827 (Proximal Colon), GCST90250828 (Distal Colon) and GCST90250829 (Rectum).

Received: 10 March 2023; Accepted: 25 October 2024 Published online: 18 January 2025

#### References

- Missiaglia, E. et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann. Oncol. 25(10), 1995–2001. https://doi.org/10.1093/annonc/mdu275 (2014).
- 2. Iacopetta, B. Are there two sides to colorectal cancer?. Int. J. Cancer 101(5), 403-408. https://doi.org/10.1002/ijc.10635 (2002).
- Rosty, C. et al. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod. Pathol. 26(6), 825–834. https://doi.org/10.1038/modpathol.2012.240 (2013).
- Li, W. B. et al. Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages. *BMC Cancer* 15, 9. https://doi.org/10.1186/s12885-015-1345-3 (2015).
- Sanz-Pamplona, R. et al. Gene expression differences between colon and rectum tumors. *Clin. Cancer Res.* 17(23), 7303–7312. https://doi.org/10.1158/1078-0432.ccr-11-1570 (2011).
- Bufill, J. A. Colorectal-cancer—evidence for distinct genetic categories based on proximal or distal tumor location. Ann. Intern. Med. 113(10), 779–788. https://doi.org/10.7326/0003-4819-113-10-779 (1990).
- 7. Yang, J. et al. Characteristics of differently located colorectal cancers support proximal and distal classification: A population-based study of 57,847 patients. *PLoS ONE* 11(12), 12. https://doi.org/10.1371/journal.pone.0167540 (2016).
- Phipps, A. I. et al. Colon and rectal cancer survival by tumor location and microsatellite instability: The colon cancer family registry. Dis. Colon Rectum 56(8), 937–944. https://doi.org/10.1097/DCR.0b013e31828f9a57 (2013).
- 9. Meguid, R. A., Slidell, M. B., Chang, D. C. & Ahuja, N. Is there a difference in survival between right—Versus left-sided colon cancers. Ann. Surg. Oncol. 14(2), 96 (2007).
- Wills, C. et al. A genome-wide search for determinants of survival in 1926 patients with advanced colorectal cancer with follow-up in over 22,000 patients. *Eur. J. Cancer* 159, 247–258. https://doi.org/10.1016/j.ejca.2021.09.047 (2021).
- 11. Maughan, T. S. et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. *Lancet* **377**(9783), 2103–2114. https://doi.org/10.1016/s014 0-6736(11)60613-2 (2011).
- 12. Wasan, H. et al. Intermittent chemotherapy plus either intermittent or continuous cetuximab for first-line treatment of patients with KRAS wild-type advanced colorectal cancer (COIN-B): a randomised phase 2 trial. *Lancet Oncol.* **15**(6), 631–639. https://doi.org/10.1016/s1470-2045(14)70106-8 (2014).
- 13. Labadie, J. D. et al. Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival. Sci. Rep. 12(1), 127. https://doi.org/10.1038/s41598-021-03945-x (2022).
- Wang, W. M. et al. Synergistic role of Cull and c-Myc: Prognostic and predictive biomarkers in colorectal cancer. Oncol. Rep. 38(1), 245–252. https://doi.org/10.3892/or.2017.5671 (2017).
- Wang, W. M. et al. Synergistic role between Cull and PARP1: Prognostic and predictive biomarkers in colorectal cancer. Int. J. Clin. Exp. Med. 10(9), 13992 (2017).
- Wang, W. M. et al. Cullin1 is a novel prognostic marker and regulates the cell proliferation and metastasis in colorectal cancer. J. Cancer Res. Clin. Oncol. 141(9), 1603–1612. https://doi.org/10.1007/s00432-015-1931-4 (2015).
- Alli-Baloguna, G. O. et al. Phosphatidylinositol 4-kinase II beta negatively regulates invadopodia formation and suppresses an invasive cellular phenotype. *Mol. Biol. Cell* 27(25), 4033–4042. https://doi.org/10.1091/mbc.E16-08-0564 (2016).
- Dobrzynska, I., Szachowicz-Petelska, B., Sulkowski, S. & Figaszewski, Z. Changes in electric charge and phospholipids composition in human colorectal cancer cells. *Mol. Cell. Biochem.* 276(1–2), 113–119. https://doi.org/10.1007/s11010-005-3557-3 (2005).
- Foster, D. A. Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells. BBA-Mol. Cell Biol. L. 1791(9), 949–955. https://doi.org/10.1016/j.bbalip.2009.02.009 (2009).
- Al-Tassan, N. A. et al. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci. Rep. 5, 10442. https://doi.org/10.1038/srep10442 (2015).
- Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genomewide association studies. *PLoS Genet* 5(6), e1000529. https://doi.org/10.1371/journal.pgen.1000529 (2009).
- Altshuler, D. M. et al. A global reference for human genetic variation. *Nature* 526(7571), 68. https://doi.org/10.1038/nature15393 (2015).
- Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 Genes/Genetics 1(6), 457. https://doi.org/10.1534/g3.111.001198 (2011).
- Smith, C. G. et al. Somatic profiling of the epidermal growth factor receptor pathway in tumors from patients with advanced colorectal cancer treated with chemotherapy +/- cetuximab. *Clin. Cancer Res.* 19(15), 4104–4113. https://doi.org/10.1158/1078-0 432.Ccr-12-2581 (2013).
- Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209. https://doi.org/ 10.1038/s41586-018-0579-z (2018).
- McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48(10), 1279–1283. https://doi.org /10.1038/ng.3643 (2016).
- Chou, W.-C. et al. A combined reference panel from the 1000 Genomes and UK10K projects improved rare variant imputation in European and Chinese samples. Sci. Rep. 6(1), 39313. https://doi.org/10.1038/srep39313 (2016).
- Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A note on exact tests of hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76(5), 887–893. https://doi.org/10.1086/429864 (2005).
- Jolliffe, I. T. & Cadima, J. Principal component analysis: A review and recent developments. *Philos. Trans. Ser.A Math. Phys. Eng. Sci.* 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202 (2016).
- Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44(6), 623–630. https://doi.org/10.1038/ng .2303 (2012).
- Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B-Stat. Methodol. 64, 479–498. https://doi.org/10.1111/1 467-9868.00346 (2002).
- 32. Storey JD, Bass AJ, Dabney A, Robinson D. qvalue: Q-value estimation for false discovery rate control. 2019.
- Rizvi, A. A. et al. gwasurvivr: An R package for genome-wide survival analysis. *Bioinformatics* 35(11), 1968–1970. https://doi.org/ 10.1093/bioinformatics/bty920 (2019).
- 34. R\_Core\_Team. R: A language and environment for statistical computing. 2018.
- Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575. https://doi.org/10.1086/519795 (2007).
- Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. *Nat. Commun.* 8(1), 1826. https://doi.org/10.1038/s41467-017-01261-5 (2017).
- de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. *Plos Comput. Biol.* 11(4), 19. https://doi.org/10.1371/journal.pcbi.1004219 (2015).
- Carithers, L. J. & Moore, H. M. The genotype-tissue expression (GTEx) project. *Biopreserv. Biobank.* 13(5), 307–308. https://doi.org/10.1089/bio.2015.29031.htm
- 39. Uhlen, M. et al. Tissue-based map of the human proteome. Science 347(6220), 10. https://doi.org/10.1126/science.1260419 (2015).

## Acknowledgements

We thank Hywel Williams for advice, the patients who participated in this research and clinicians who submitted samples. COIN and COIN-B were conducted with the support of the National Institute of Health Research Cancer Research Network. This research was conducted using the UK Biobank Resource under application number 65833.

## Author contributions

JPC obtained funding for and directed this study. The study was designed by CW and JPC. TSM was CI of COIN and provided clinical advice and supported the translational research. DF facilitated access to the clinical data, NAA oversaw the genotyping and RSH oversaw the imputation and quality control. CW undertook all of the statistical analyses with supervision from VEP and JPC. CW and JPC interpreted the data with input from KW, AH and VEP. CW wrote the first draft of the paper with subsequent input from JPC, and all authors provided comments.

## Funding

This work was supported by Tenovus Cancer Care, Cancer Research Wales and Cardiff University School of Medicine. NAA was funded and supported by KFSHRC. The work of the Houlston laboratory was supported by Cancer Research UK (C1298/A8362). DF was supported by the Medical Research Council under award number MC\_UU\_00004/06. The COIN and COIN-B trials were funded by Cancer Research UK and an unrestricted educational grant from Merck-Serono. The study sponsors had no involvement in the study design, collection, analysis and interpretation of the data, the writing of the report, nor the decision to submit this article for publication.

## Additional information

**Supplementary Information** The online version contains supplementary material available at https://doi.org/1 0.1038/s41598-024-77870-0.

**Correspondence** and requests for materials should be addressed to J.P.C.

Reprints and permissions information is available at www.nature.com/reprints.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025