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Abstract: Following a High-Throughput Screening campaign to discover inhibitors of acid ceramidase,
we report the novel and extremely potent covalent inhibitor, 1. Following resynthesis and stability
monitoring, we discovered that 1 is chemically unstable and reacts with DMSO at room temperature.
This mode of decomposition is likely general for this class of compound, and we urge caution for
their use in drug discovery research.
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1. Introduction

Despite continuing advances in structure-driven research, High-Throughput Screening
(HTS) is still a valuable resource to find novel chemical starting points in drug discovery [1].
Recently, the Medicines Discovery Institute initiated an HTS looking for small-molecule
inhibitors of acid ceramidase, a lysosomal enzyme. Using a modified reported acid cerami-
dase assay [2,3], a number of potential chemical starting points were identified, the most
potent of which was 1, with an IC50 value of 340 nM with a structurally related compound
also showing moderate inhibition (Figure 1). Samples of 1 and 2 were subsequently tested
in our in-house cell lysate acid ceramidase inhibition assay, showing an increased activity
of 11 nM and 237 nM, respectively. This substantial increase in potency can be explained
by the fact that to function properly, acid ceramidase requires a co-factor present in cells
which was not present in the original HTS assay, Saposin D [4].
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but was inactive. The final step proceeded smoothly, again via an acid chloride. 

Figure 1. Chemical structures and HTS IC50 curves.

Although we could not find any direct mention of N-(benzoyloxy)benzamides as
Pan-Assay Interference Compounds (PAINS), we were extremely sceptical of 1 as a useful
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chemical starting point for our project due to the unusual and potentially reactive func-
tionality at the centre of the molecule. There are instances of hydroxamic acids in clinical
use, such as the histone deacetylase inhibitor Vorinostat (3) [5,6], whose mechanism of
action was linked to the chelation of Zn2+. There were also several reports of the biological
activity of N-(benzoyloxy)benzamide (4) and close analogues [7–9]. Worryingly, linked to
these reports was the mention of the general mutagenic properties of many hydroxamic
acids [10], believed to occur through a Lossen rearrangement reaction to form the highly
reactive isocyanate product (Figure 2) [11].
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Figure 2. Examples of biologically active hydroxamic acids and the Lossen rearrangement reaction.

2. Results and Discussion

Before committing to a resynthesis of 1, we decided to rule out products of the Lossen
rearrangement as potential culprits for the observed biological activity. Compound libraries
are often kept for a long period of time and undergo several freeze/thaw cycles, where 1
may have undergone Lossen rearrangement. LCMS QC analysis of the supplied sample
of 1 suggested a purity of 82% by UV. It was still possible, however, that either a small
amount had undergone the rearrangement to form an extremely potent product, or that
rearrangement had occurred under the conditions of our assay.

To verify this, a sample of the rearrangement product, isocyanate 7, was purchased
and tested in our cell lysate assay. 7 was also hydrolysed with water, giving 8, which
was also tested in our cell lysate assay (Scheme 1) [12]. Both samples only inhibited acid
ceramidase very weakly (IC50 value of around 100 µM). LCMS analysis of the isocyanate
DMSO stock sample indicated that 7 had already fully hydrolysed to 8, which explains the
near-identical level of inhibition. It was still possible that the other product of the Lossen
rearrangement, the carboxylic acid 12, was the active species. However, since this acid was
not commercially available and was an intermediate in the resynthesis of 1, the decision
was made to commit to the resynthesis of the hit compound.
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Scheme 1. Hydrolysis of isocyanate 7.

Formation of the hydroxamic acid via the acid chloride proceeded smoothly, giving 10
in 86% yield. The carboxylic acid 12 was accessed through an SNAr reaction of azepane
onto 4-chloro-3-nitrobrenzoic acid. Conversion to the product was slow using conventional
heating methods. Prolonged heating in a Biotage microwave with excess amine drove the
reaction to completion, giving 12 in 80% yield. Since 12 was the other possible product from
the Lossen rearrangement, it was tested in our cell lysate inhibition assay but was inactive.
The final step proceeded smoothly, again via an acid chloride. Purification by automated
reverse-phase chromatography gave the target compound, 1, in 18% yield (Scheme 2).
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Scheme 2. Synthesis of hit compound 1.

With a freshly synthesised sample in hand, 1 was tested in both our cell lysate and
purified protein acid ceramidase inhibition assays. 1 was confirmed as an extremely potent
inhibitor of acid ceramidase, with an IC50 value of 3.2 nM and 163 nM in the respective
assays. Despite the apparent impressive potency of this compound, we continued to have
concerns over using 1 as a chemical starting point.

To check whether biological activity was driven either by hydroxamic acid chelation
of Zn2+ or due to the metal impurities present [13], 1 was re-tested in our cell lysate
assay with the addition of the general metal chelator ethylenediaminetetraacetic acid
(EDTA) and, separately, N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine, a high-
affinity chelator of Zn2+. The IC50 of 1 remained consistent in both cases (7 nM and 8 nM,
respectively), thus ruling out metal chelation/contamination. Further confirmation of the
correct structure and lack of metal ions present came from a single-crystal X-ray structure
solved following slow vapour diffusion crystallisation (Figure 3).
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3. Mechanism of Action

Almost all reported small-molecule inhibitors of acid ceramidase are covalent in
their mechanism of action by reaction with cysteine 143 [14–22]. In some cases, the cova-
lent warhead itself is linked to promiscuity and intrinsic chemical instability. To probe
whether 1 was chemically reactive in this way, a sample was stirred with the amino acid
cysteine. LCMS analysis indicated that 1 slowly decomposed into two main chemical
species; however, neither mass corresponded to the expected addition of cysteine (see
Supplementary Material).

This result prompted us to check the stability of the DMSO stock solution of 1. Al-
though clean once freshly prepared, it was clear that the sample slowly degraded into two
species when left for extended periods of time at room temperature (see Supplementary
Material). This partly degraded sample was again tested in our cell lysate assay and gave
slightly reduced IC50 values relative to the freshly prepared sample. One of the degradation
species was identified as the carboxylic acid 12, exhibiting the same retention time and
mass by LCMS in addition to exhibiting the same Rf by TLC analysis (see Supplementary
Material). The identification of the other chemical species proved more difficult. Key to this
was running LCMS analysis on a d6-DMSO NMR sample that was left at room temperature
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for 6 weeks. Despite also degrading into the carboxylic acid 12, the mass of the other species
was different by +6 Daltons compared to the non-deuterated sample. This not only strongly
suggested that the other side of the molecule had reacted with d6-DMSO, but that both
CD3 units were present. To monitor the speed of degradation, a fresh sample was analysed
periodically by 1H and 19F NMR spectroscopy (Figure 4). The relative integrations of 1, 12,
and 13 were plotted against time, which gave an estimated half-life of just over two days
(see Supplementary Material).
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Figure 4. 1H and 19F NMR studies monitoring the reaction of 1 with d6-DMSO.

A partially degraded sample was purified by reverse-phase chromatography to isolate
the DMSO-addition species. Although only a small amount of material was isolated, 1H
NMR spectroscopic analysis was consistent with the proposed structure (Scheme 3). The
1H NMR data, in particular, were in line with that reported for a related compound
(3f, see Supplementary Material) [23]. Such reactivity has been reported between N-
pivaloyloxybenzamides and sulfoxides in the presence of an iron catalyst [23]. The decom-
position reaction to form a sulfoximine reported in this paper should be of interest to the
synthetic community as it proceeds cleanly at ambient temperature without the need for
reagents nor a catalyst; however, further optimisation of the reaction is beyond the scope
of this paper. 13 was tested in our cell lysate assay and showed no activity, suggesting
that the original hit compound 1 was indeed the active species, likely reacting covalently
with an active site cysteine amino acid residue of acid ceramidase. To confirm this, 1 was
pre-incubated at 0, 1, and 3 h, showing the time-dependent inhibition pattern expected of a
covalent inhibitor (Figure 5).
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Recent in silico modelling efforts to find suitable replacements to the N-(benzoyloxy)
benzamide scaffold have been reported, which could de-risk this motif [24], but our current
decision is to not pursue 1 further.

4. Conclusions

Following HTS efforts, 1 was identified as an extremely potent inhibitor of acid
ceramidase. Despite this, following resynthesis and stability studies of 1, it became apparent
that the active compound was not chemically stable and its degradation products were
biologically inactive. 1 reacts with DMSO at room temperature over time and is very
likely an extremely promiscuous compound which is unsuitable as a starting point in
drug discovery. The reported biological activity of N-(benzoyloxy)benzamides and their
analogues should be treated with caution and we suggest removal of such compounds
from screening libraries in future.
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