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We consider the intermediate mass-ratio inspiral of a stellar-mass compact object with an intermediate-
mass black hole that is surrounded by a dark matter density spike. The interaction of the inspiraling black
hole with the dark matter particles in the spike leads to dynamical friction. This can alter the dynamics of
the black hole binary, leaving an imprint on the gravitational wave signal. Previous calculations did not
include in the evaluation of the dynamical friction coefficient the contribution from particles that move
faster than the inspiraling black hole. This term is neglected in the standard Chandrasekhar treatment where
only slower moving particles contribute to the decelerating drag. Here, we demonstrate that dynamical
friction produced by the fast moving particles can have a significant effect on the evolution of a massive
binary within a dark matter spike. For a density profile ρ ∝ r−γ with γ ≲ 1, the dephasing of the
gravitational waveform can be several orders of magnitude larger than estimated using the standard
treatment. As γ approaches 0.5 the error becomes arbitrarily large. Finally, we show that dynamical friction
tends to make the orbit more eccentric for any γ < 1.8. However, energy loss by gravitational wave
radiation is expected to dominate the inspiral, leading to orbital circularization in most cases.
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I. INTRODUCTION

The inspiral of an intermediate mass black hole (IMBH)
and a solar mass type object will be observable by space-
based gravitational wave (GW) detectors such as the Laser
Interferometer Space Antenna (LISA) [1–4]. Around these
IMBHs, a dark matter (DM) halo could grow adiabatically
into a DM spike [5,6]. These spikes have extremely high
densities and can leave an imprint on the GW signal emitted
by the binary by modifying its orbital evolution. This opens
up the possibility to infer the existence and the properties
of the DM spike from measuring its impact on the GW
signal [7,8].
The predicted effect is a dephasing of the gravitational

waveform due to dynamical friction the secondary object
experiences while passing through the mini spike. This
decelerates the secondary object and results in a faster
inspiral, which would be observable in the phase evolution
of the GW signal [e.g., 9–14].
The dynamical friction force on the massive binary is

calculated in the literature following the standard formulation

of Chandrasekhar [15,16]. This has been also somewhat
modified to include the back reaction of the DM spike to
the binary motion [13], which is expected to flatten the
inner cusp [e.g., 17,18]; the inclusion of relativistic terms
in the treatment of the orbital dynamics and distribution of
DM [19,20]; and DM accretion into the small compact
object [10,11].
The calculation of the coefficient of dynamical friction is

done by assuming that only DM particles that move slower
than the inspiraling object contribute to the decelerating
force. This corresponds to Chandrasekhar’s result that stars
moving faster than an inspiraling object have a negligible
contribution to dynamical friction [15,21]. However, this
approximation has been shown to break down when the
gravitational potential around the binary is nearlyKeplerian,
as it is the case under consideration. [22,23] showed that in a
cusp where the density falls off more slowly than ρ ∝ r−1,
the contribution of the fast-moving particles to the fictional
force becomes dominant and cannot be neglected.
In this work, we present a proof-of-concept analysis of

the evolution of a massive binary in a DM cusp. For the first
time, we include the dynamical friction force due to DM
particles moving faster than an inspiraling black hole (BH).
We compare to the standard treatment, and quantify the
error made when this term is neglected.
We begin in Sec. II by introducing our formulation,

including the orbit-averaged equations that describe the
binary evolution due to dynamical friction and energy loss
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due to GW radiation. In Sec. III we explore the effect of
the additional dynamical friction term on the orbital decay
time of the binary, the evolution of its eccentricity, and
study their dependence on the density profile slope of the
DM spike. Finally, in Sec. IV we study the effect on the
dephasing of the GW signal emitted by the binary. In
Sec. V we summarize our main results and conclude.

II. FORMULATION

The general formula for the dynamical friction force a BH
experiences during its inspiral inside a DM cusp is [22,23]

Fdf ≈ −4πG2mρðrÞ υ
υ3

×

�
lnΛ

Z
υ

0

dυDM4πfðυDMÞυ2DM

þ
Z

υesc

υ
dυDM4πfðυDMÞυ2DM

�
ln

�
υDM þ υ

υDM − υ

�

− 2
υ

υDM

��
ð1Þ

where υ is the velocity of the inspiraling BH andm its mass;
ρðrÞ is the local density of the DM particles, fðvÞ ¼
ð1=nMÞd6N=d3xd3vwith nM ¼ d3N=d3x is the normalized
phase distribution (assumed to be isotropic), and vesc is the
escape velocity. The quantity lnΛ is the Coulomb logarithm
defined as

lnΛ ¼ ln

�
bmax

bmin

�
≈ ln

�
bmaxv2c
Gm

�
ð2Þ

where bmax and bmin are the maximum and minimum
impact parameters respectively and v2c ¼ GM•=r the
circular velocity around the IMBH of mass M•. The first
integral term in the right-hand side (rhs) of Eq. (1)
represents the decelerating drag due to DM particles
moving slower than the infalling BH. The second integral
term instead, represents the contribution from particles
moving faster than the BH. This latter term is often
neglected because it is typically a factor ∼ lnΛ smaller
than the former term. But, we will show below that under
some specific conditions about the surrounding DM
density profile and kinematics, the fast particle contribu-
tion becomes dominant.
We can rewrite the dynamical friction force as

Fdf ¼ ϵðr; vÞ v
v3

ð3Þ

where we defined

ϵðr; vÞ ¼ −4πG2ρðrÞm½lnΛ αðvÞ þ βðvÞ þ δðvÞ� ð4Þ

αðvÞ ¼ 4π

Z
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��
dυDM ð6Þ

δðvÞ ¼ 4πv
Z

vesc

v
fðυDMÞð−2υDMÞdυDM: ð7Þ

The osculating orbital element time-evolution equations
of the inspiraling BH inside the DM cusp surrounding the
IMBH due to dynamical friction are [23]

da
dt

¼ 2ϵðr; vÞ
n3a2

ð1 − e2Þ1=2
ð1þ e2 þ 2e cos fÞ1=2 ð8Þ

de
dt

¼ 2ϵðr;vÞ
n3a3

ð1−e2Þ3=2 eþ cosf

ð1þe2þ2ecosfÞ3=2 ð9Þ

dω
dt

¼ 2ϵðr; vÞ
n3a3

ð1 − e2Þ3=2
ð1þ e2 þ 2e cos fÞ3=2

sin f
e

ð10Þ

df
dt

¼ nð1þ e cos fÞ2
ð1 − e2Þ3=2 −

dω
dt

− cos i
dΩ
dt

: ð11Þ

where a is the semi-major axis, e the eccentricity, ω the
argument of periapsis, Ω the longitude of the ascending
node and f the true anomaly. M ¼ mþM• is the total
binary mass and n ¼ 2π=T ¼ ðGM=a3Þ1=2 the orbital
angular frequency. We note that the perturbation of the
binary orbit in this case is caused only by dynamical
friction. Since there is no vertical component of the
dynamical friction force to the orbital plane, the inclination
i and the longitude of the ascending node Ω remains
constant in the absence of other perturbing forces and thus
i̇ ¼ Ω̇ ¼ 0. Dynamical friction, however, induces a pre-
cession to the argument of periapsis, ω, and changes the
orbital semimajor axis a and eccentricity e. This latter can
either increase or decrease depending on the density profile
slope of the DM spike adopted.
Since the time evolution of the orbital elements occur

over many orbits, in order to determine the time evolution
of the massive binary orbit we can orbit-average the above
equations. In order to orbit-average a quantity along the
orbit, we need to know how the true anomaly is changing
over time. This is described by Eq. (11), which shows that
apart from the unperturbed Keplerian evolution described
by the first term on the rhs of Eq. (11), the true anomaly can
also evolve due to possible precessions and specifically the
periapsis precession ω̇ and the longitude of the ascending
node precession Ω̇. Given that due to dynamical friction we
have ω̇ ≪ 1 and that Ω̇ ¼ 0, we can compute the secular
evolution of the orbital elements neglecting the second and
third term in Eq. (11) and use
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df ¼ n
ð1þ e cos fÞ2
ð1 − e2Þ3=2 dt: ð12Þ

Under these considerations, the secular time-evolution
equations of the binary orbit are�
da
dt
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¼ð1−e2Þ2
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ð14Þ�
dω
dt

	
DF

¼ 0: ð15Þ

Thus, over many orbits dynamical friction will change the
semi-major axis and eccentricity of the orbit but on average
it will cause no in-plane precession of the orbit.
Below a certain distance between the two BHs, energy

loss by GWs becomes important and needs to be added to
the dynamical friction effect. This is certainly the case for a
massive binary in the LISA frequency band 0.1 mHz–1 Hz.
The orbital evolution due to GW energy loss is [24]�

da
dt

	
GW

¼ −
64G3mM•ðmþM•Þ
5c5a3ð1 − e2Þ7=2 f1ðeÞ ð16Þ

�
de
dt

	
GW

¼ −
304G3mM•ðmþM•Þ
15c5a4ð1 − e2Þ5=2 f2ðeÞ ð17Þ

where the eccentricity dependent terms are f1 ¼
1þ 73

24
e2 þ 37

96
e4 and f2 ¼ 1þ 121

204
e4.

Finally, we obtain the evolution of the inspiraling BH
orbit by integrating the following coupled set of first order
differential equations�

da
dt

	
¼
�
da
dt

	
DF

þ
�
da
dt

	
GW

ð18Þ
�
de
dt

	
¼
�
de
dt

	
DF

þ
�
de
dt

	
GW

: ð19Þ

III. EFFECT ON THE BINARY ORBIT

We consider here the simple case in which the DM cusp
is a power law profile

ρðrÞ ∝ r−γ: ð20Þ

Assuming that the gravitational potentialΦ is dominated
by the central IMBH and neglecting the effect of the
surrounding DM particles we can write Φ ≈ −GM•=r.

Eddington’s formula then uniquely leads to the following
distribution function of the DM particle velocities [25]

fðυDMÞ ¼
Γðγ þ 1Þ
Γðγ − 1

2
Þ

1

2γπ3=2v2γc
ð2v2c − υ2DMÞγ−3=2 ð21Þ

where the normalization corresponds to unit total number.
We employ the distribution function to calculate the effect
of dynamical friction on the orbit of the inspiraling BH.
We consider a binary with primary IMBH mass

M• ¼ 1.4 × 103M⊙, mass ratio q ¼ m=M• ¼ 10−3, initial
a0 ¼ 10−8 pc and e0 ¼ 0.1. Based on these initial con-
ditions, the binary is intially in the LISA frequency band,
0.1 mHz–1 Hz, with a small but finite eccentricity. We
evaluate the importance of dynamical friction on the
evolution of the binary a and e, and comment on the
effect of the “nondominant” terms.
Figure 1 shows the quantity R ¼ 1

e hėiDF= 1
a hȧiDF as a

function of γ; R represents an approximation of the
fractional change in eccentricity in a time a=hȧiDF, i.e.,
the orbital decay timescale due to dynamical friction. For
R < 0 the orbit becomes more eccentric, for R > 0 it
circularizes, and for R ¼ 0 the eccentricity remains con-
stant. From the value ofR, we expect dynamical friction to
have a small effect on the evolution of the binary’s
eccentricity. The evolution remains dominated by GW

FIG. 1. Evolution of eccentricity due to dynamical friction,
including the contribution form the fast moving particles. In
cusps with γ > 1.8, dynamical firction causes the orbit to
circularize faster than if it was evolved only due to energy loss
by GW radiation. For shallower slopes, instead, the orbit is
expected to circularize at a slower rate. Note that in the standard
treatment of Chandrasekhar, the transition occurs at γ ¼ 1.5. In
this calculation we did not include the 2.5 pN terms that are
always dominant and cause the orbit to circularize.
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energy loss, which leads to the circularization of the binary.
This conclusion is in contrast to what stated in [26], who
finds that generally the binary becomes more eccentric. [27]
find that by including the relative velocities of the DM
particles, dynamical friction tends to circularize the orbit.
We agree with the latter authors, but find that dynamical
friction tends to circularize the orbit for a smaller range of
density profile slopes. Using our more complete formu-
lation, we find that the effect is to circularize the orbit for any
γ ≳ 1.8. Instead, the standard Chandrasekhar’s treatment
predicts orbital circularization for any γ ≳ 1.5 [28].
Reference [27] shows that at first order ða=eÞðde=daÞ ¼

γ=2 when dynamical friction is the dominant form of
energy loss and in the limit of slow-moving particles,
demonstrating that DM effects can be observable not just
from dephasing but also from the circularization rate. Our
results agree with this conclusion, but require a modifica-
tion of the binary orbit circularization rate due to the fast
moving particles.
Figure 2 further quantifies the deviation from Chan-

drasekhar’s treatment as a function of the power law index
of the density profile. We compute the relative error that
one would make by using the standard Chandrasekhar’s
formula compared to our treatment. This is obtained as

Δa ¼ jTC;a−Tdf;aj
Tdf;a

, and Δe ¼ jTC;e−Tdf;ej
Tdf;e

where

Tdf;a ¼
a

jhȧiDFj
; ð22Þ

is the orbital decay timescale, and

Tdf;e ¼
e

jhėiDFj
; ð23Þ

is the timescale of eccentricity evolution. TC;a and TC;e

are the dynamical friction timescales for orbital decay
and eccentricity evolution obtained from the standard
Chandrasekhar’s formula, respectively.
From this analysis, we can see that the contribution from

the fast moving particles on the evolution of a becomes
more important as γ approaches 0.5 from above. For
γ < 0.8, the standard formula predicts an orbital decay
time that is more than twice as long than predicted by the
our treatment. The contribution from the fast moving
particles has also an effect on e. Deviations in this case
remains significant for essentially any value of γ. For γ ¼ 2,
our treatment predicts a circularization timescale that is
about 2 times shorter than the standard formula.

IV. EFFECT ON THE WAVEFORM:
DEPHASING

To quantify the size of the dephasing effect due to
dynamical friction, we estimate the difference between the
number of gravitational wave cycles during the inspiral in
vacuum and in presence of a DM minispike, for various
density profile models. We calculate this for models where
the contribution of fast moving particles is neglected as in
the literature, and in models that include the effect of the
fast particles.
We define the number of GW cycles by integrating the

GW frequency between two times

Nc ¼
Z

t2

t1

fGWðtÞdt: ð24Þ

In the approximation where the binary is circular, the GW
frequency is twice the orbital frequency. Eccentric binaries
emit a GW signal with a broad spectrum of frequencies; the
peak gravitational wave frequency corresponding to the
harmonic which leads to the maximal emission of GW
radiation can be approximated as [29]

fGW;peak ¼
ffiffiffiffiffiffiffiffi
GM

p

π

1þ e

½að1 − e2Þ�3=2 ; ð25Þ

and its time evolution is obtained from the evolution of a
and e calculated from Eqs. (18) and (19).
The difference in the number of GW cycles with and

without DM, is then defined as

ΔNc ¼ Nvacum
c − NDM

c : ð26Þ

FIG. 2. Relative error in the dynamical friction evolution
timescale made when neglecting the contribution from the fast

moving particles. We plot Δa ¼ jTC;a−Tdf;aj
Tdf;a

and Δe ¼ jTC;e−Tdf;ej
Tdf;e

, as

defined in the main text, as a function of the density profile slope.
For γ < 0.8, the standard formula predicts an orbital decay time
that is more than twice as long than predicted by our treatment.
Deviations in e is significant for any value of γ. For γ ¼ 2, our
treatment predicts a circularization timescale that is about 2 times
shorter than the standard formula.
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We assume that the central IMBH is surrounded by a DM
spike, formed as a consequence of the adiabatic growth of
the central IMBH in a DM halo. After its formation, the
central density of the DM spike is likely to be lowered by
several processes, which include the perturbative effect of
inspiraling BHs [13] and/or DM self-annihilation [30–34].
We note that the profile of the DM spike depends on the
formation history of the central IMBH. If the IMBH has
experienced disruptive processes such asmergers in the past,
the minispike would be weakened or even disappear [7,8].
Furthermore, self annihilations cause the DM density to
decay which can result in a weak density plateau, ∝ r−0.5,
near the SMBH [30–34]. For the above reasons the slope of a
power law DM spike profile ρspðrÞ ∝ r−γ can be essentially
treated as a free parameter within the range 0≲ γ ≲ 3 [7,8].
Correspondingly, we model the DM spike using a broken

power law model:

ρðrÞ ¼
(
ρ0ð rr0Þ−γ

�
1þð rr0Þα

�ðγ−γeÞ=α; if r > rin

0; if r≤ rin
ð27Þ

where ρ0 is the density normalization, rin ¼ 4GM•=c2 is
the innermost stable circular orbit radius and α is a
parameter that defines the transition strength between an
inner power law cusp with slope γ and the outer power law
profile with slope γe. The scale r0 is the radius where this
transition occurs.
The normalization of the density profile is chosen such

that the density at infinity matches that of the density model
in [7,8]

ρspðrÞ ¼ ρsp

�
r
rsp

�
−γe ð28Þ

where

rsp ≈
�ð3 − γeÞ0.23−γeM•

2πρsp

�
1=3

: ð29Þ

and ρsp is the density normalization chosen to be ρsp ¼
226M⊙ pc−3 [13]. This model is the fiducial model inves-
tigated in [7,8]. The slope γe ¼ 7=3 is expected to develop
in the center of a halo with an initial profile scaling ρ ∼ r−1,
such as an NFW profile. For this reason, we set γe ¼ 7=3
and explore the dependence of our results on the assumed
value of the inner slope γ, which we take to be 0.55, 0.8 and
1. We set the break radius r0 ¼ 3 × 10−8 pc, so that for the
assumed initial galactocentric radius, a0 ¼ 2 × 10−8 pc,
the inspiral is completely within the core, where the
dynamical friction effect is maximized. We set α ¼ 5 that
corresponds to a sharp transition. For any α≳ 5 our results
remain essentially unchanged. However, as α is lowered the
effect of the fast moving stars is somewhat reduced due to

the models being more similar to the single power-law
γe ¼ 2.3 model over a wider range of radii.
We show the density profile models in Fig. 3. We note

that our choice of normalization is different with what often
used in the literature. For example, [13] use the model of
Eq. (28), and vary γe across a range of values. Given this
choice, shallower profiles mean a much smaller central
density. The result is that the effect of dynamical friction
rapidly becomes unimportant for γe ≤ 3=2. Thus, the
decreasing dynamical friction in this case is not because
of the change in γe, but because of the different normali-
zation that leads to much lower central densities. On the
other hand, our models all have the same normalization
outside r0, which keeps the density high inside this radius
and dynamical friction important for most values of γ.
Generally, the distribution function fðυDMÞ correspond-

ing to the density model in Eq. (27) and the potential
generated by the DM and central IMBH cannot be obtained
analytically. We therefore solve the Eddington equation
numerically to obtain the distribution function and then
compute numerically the integrals that appear in the rhs of
Eq. (1). We note that the first of these integrals can be
simplified using the following expression [22,35]:

Fð<v;rÞ¼
Z

υ

0

dυDM4πfðυDMÞυ2DM¼ 1−
1

ρ

Z
E

0

dϕ0 dρ
dϕ0

×

(
1þ 2

π

"
v=

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffi
ϕ0−E

p − tan−1
 

v=
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffi
ϕ0−E

p
!#)

;

ð30Þ

FIG. 3. Dark matter spike density profile models corresponding
to the density used in this work (Eq. 27), for different values of
inner power law slope γ. Solid line is for γ ¼ 1, dashed line for
γ ¼ 0.8 and dotted line for γ ¼ 0.55. The models are normalized
such to have the same density at infinity.
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where E ¼ 1
2
v2 þ ϕðrÞ; Fð< v; rÞ is simply the fraction of

DM particles at r that move slower than the infalling BH.
Since we are interested to show a proof-of-concept

example in this work, we simply consider a single set of
initial conditions. Moreover, we only consider circular
orbits, and plan to look at eccentric orbits in a future
work. As stated above, the initial semimajor axis of the
orbit is a0 ¼ 2 × 10−8 pc, smaller than r0. Thus, the binary
effectively moves within a density spike of slope γ. As
before, the primary BH mass isM• ¼ 1.4 × 103M⊙ and the
binary mass ratio is q ¼ 10−3. Given these masses and the
orbit, the binary GW frequency is 8.9 × 10−3Hz; i.e., it is
within the LISA frequency band 0.1 mHz–1 Hz. The orbit
evolves completely within this frequency window until it
reaches coalescence.
The results of our calculation are shown in Fig. 4. For

γ ¼ 0.55, we see that the dynamical friction contribution
from the fast moving particles leads to nearly two orders of
magnitude difference in the value of ΔNc with respect to
the standard treatment. The difference is larger at lower
frequencies, but remains almost an order of magnitude
throughout. As γ is increased, the relative contribution of
the fast moving particles to dynamical friction decreases. It
is still important for γ ¼ 0.8 at f ∼ 10−2 Hz, but at higher
frequencies and/or for larger γ the difference is small.

V. CONCLUSIONS

In this work we have considered the evolution of a
massive binary inside a DM density spike. For the first time
we included in the treatment of this problem, the dynamical
friction produced by particles that move faster than the
inspiraling BH, usually referred to as “nondominant” term.
This term is neglected in the standard Chandrasekhar
treatment where all the frictional force is assumed to be
produced by particles moving slower than the binary. We
have studied the effect of this term on the orbital decay, and
on the circularization time of the binary. We then studied
the dephasing of the gravitational waveform produced by

the binary due to dynamical friction. Our main conclusions
are summarized in what follows:
(1) The evolution of the binary eccentricity due to

dynamical friction is shown to be significantly
affected. The parameter space where dynamical
friction causes the orbit to become more eccentric
is enlarged when the contribution from the fast
moving particles is included. In our treatment,
dynamical friction leads the orbit to become more
eccentric for any cusp with slope γ < 1.8, while the
standard treatment would predict γ < 1.5 (Fig. 1).
For γ ≳ 1.8, dynamical friction causes the orbit to
circularize faster than if evolved only due to energy
loss by GW radiation. For shallower slopes, instead,
the orbit is expected to circularize at a slower
rate (Fig. 1).

(2) The timescale over which the binary eccentricity
evolves is also significantly modified by the non-
dominant terms. This statement appears to be true
for most values of γ. For γ ¼ 2, our treatment
predicts a circularization timescale that is about 2
times shorter than the standard formula (Fig. 2).

(3) For γ ≤ 1 the orbital decay time of the binary due to
dynamical friction is much shorter than predicted by
the Chandrasekhar’s formula. For γ ¼ 1 the differ-
ence is a factor of 2. But, as γ approaches 0.5, the
error due to neglecting the fast moving particles
becomes arbitrarily large (Fig. 2).

(4) We calculate the dephasing of the GW signal due to
dynamical friction. We show that the dephasing of
the gravitational waveform induced by DM can be
much larger than previously thought. The difference
between the dephasing computed with the standard
treatment and ours can be as large as two orders of
magnitude for γ ≲ 0.6, while it likely to be negligible
for any γ ≳ 1 (Fig. 4).

In this article we demonstrated that the dynamical
friction from the fast moving particles can have a signifi-
cant effect on the evolution of a massive binary within a
DM spike. The effect is very sensitive to the slope of the

FIG. 4. Change in the number of GW cycles with respect to the vacuum inspiral. Purple lines are obtained from equations (18) and (19)
that include the contribution from the fast moving particles. Green lines were obtained using the standard Chandrasekhar’s formula.
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DM distribution, rapidly becoming important for γ ≲ 1.
Shallow density cusps can be produced, for example, by the
interaction of the inspiraling BH with the surrounding cusp,
or by DM self-annihilation. It is therefore our recommen-
dation, that future similar studies will consider the replace-
ment of the standard Chandrasekhar’s formula with
Eqs. (13) and (14).
Since we were interested in isolating the contribution of

the fast moving DM paerticles to dynamical friction, we
have based our models on a number of simplifying
assumptions. We have assumed that the DM spike is not
affected by the binary motion; we have assumed that the
velocity distribution of the DM particles is isotropic; and

we have ignored the possibility that DM is accreated
directly onto the inspiraling BH. Moreover, our work does
not take into account relativistic terms in the description
of the orbital dynamics and distribution of DM. Although
our assumptions are likely to break down in realistic
situations, we expect that the fast moving particles will
still play an important contribution to the dynamical
friction force.
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