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ABSTRACT 
Existing work on detecting deception has mainly relied on collect-
ing datasets evolving from contrived user interactions. We argue 
that naturally occurring deception behaviours can inform more 
reliable datasets and improve detection rates. Therefore, in this 
paper, we discuss the findings of two experiments which enabled 
participants to freely and naturally engage in deceptive and truthful 
behaviours in a game environment. We collected physiological and 
oculomotor behaviour (PB, & OB) data including electrodermal 
activity, blood volume pulse, heart rate, skin temperature, blinking 
rate, and blinking duration during the deceptive and truthful states. 
We investigate the changes in both PB and OB across repeated inter-
actions and explore the potential of incremental transfer learning 
in detecting deception. We found significant differences in elec-
trodermal activity, and skin temperature between deception and 
non-deception groups in both studies. The incremental transfer 
learning method with a logistic regression classifier detected decep-
tion with 80% accuracy, outperforming previous research. These 
results highlight the importance of collecting data from multiple 
sources and promote the use of incremental transfer learning to 
accurately detect deception in real time. 

CCS CONCEPTS 
• Human-centered computing → Human Robot interaction ; 
User studies; • Computer systems organization → Robotics. 
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1 INTRODUCTION 
Deception can be defined as an agent acting or speaking to induce a 
false belief in a target or victim [28]. Deception detection has been 
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widely studied across many fields such as psychology, social science, 
criminology and neuroscience due to its pervasive nature in human 
interactions and implication in many social contexts [21]. 

The traditional approach to detecting deception has mainly con-
sidered polygraph tests that extract physiological measurements 
such as heart rate, respiration rate, skin conductance, and skin 
temperature [19]. Researchers have raised concern about the use 
of these measures to reliably and non-invasively detect deception. 
Further, findings suggest that trained individuals can trick the sys-
tem resulting in bias and error [27]. However, we argue that due 
to advancements in wearable technology design (see [17, 55]), im-
proved machine learning classification methods for deception detec-
tion [18], and combining multiple psychophysiological indicators 
or using a hybrid approach [6], current devices can reliably and 
non-invasively collect various psychophysiological indicators in 
real-time to support deception detection. For instance, together 
with physiological measurements, studies have shown that blink 
duration and count can be useful for the detection of deception 
[22, 40, 43]. Recent work by George et al. [22] has shown that par-
ticipants’ blink duration and count were significantly higher in the 
deception condition. Similarly, Marchak [40] has found that train-
ing machine learning classifiers on blink rate and response time 
can help identify deceptive and non-deceptive behaviours. Conse-
quently, we consider both oculomotor and physiological behaviours 
(OB, & PB) for detecting deception. 

While current work has considered hybrid approaches, the work 
on the collection of data to detect deception has mostly considered 
rather unnatural or artificially created tasks such as truthfully and 
quickly answering general questions, interview questions of dif-
ferent categories, or analysing video interactions [6, 8, 24, 47, 49]. 
Consequently, the existing dataset resulting from these interactions 
lacks collecting data on deception behaviour in a natural way. Sim-
ilarly, recent findings have highlighted the limitations of relying 
on laboratory-created lies to study human lie detection and have 
called for researching natural means to study human deception 
detection [53]. Alaskar et al. [6] conducted a comprehensive review 
on machine-intelligence techniques for detecting deception and 
concluded that available datasets are not diverse as they are col-
lected in simulated environments which are not realistic to train 
the deceptive and truthful behaviour, have been based on limited 
participants, and, have used static questions as a task. 

Another aspect lies in investigating the changes in deception 
behaviour during repeated interaction and understanding how OBs 
and PBs of deception change over time. Further, how investigat-
ing changes in deception behaviour over time can enrich datasets. 
Existing research on collecting datasets has also used one-off inter-
actions, thus, the change in deception behaviour during repeated 
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interaction has also not been studied [6]. We see evidence from 
deception research on repeated interviews that liars are not less 
consistent than truth tellers [41]. Thus, it becomes an important 
question to understand how deception behaviour naturally evolves. 
Furthermore, most existing datasets have been collected under 
a single context. Recent research has shown that the context in 
which deception occurs can influence the likelihood and type of 
deception [59]. Therefore, applying incremental transfer learning 
to detect deception across multiple contexts is important. However, 
due to most datasets being collected within a single context and to 
the best of our knowledge, the role of incremental transfer learning 
to detect deception has not been explored yet. 

Considering these aspects, this paper uniquely employs the 
GAME (Game As a Method of eliciting Emotions) paradigm pro-
posed by Ahmad et al. [5], Shahid [48] to collect data on naturally 
occurring deception behaviour. We consider collaborative and com-
petitive interaction game contexts and investigate both PBs and OBs 
during naturally occurring deception behaviour. Lastly, as social 
robots have begun to take on different social yet professional roles 
such as an interviewer [4, 30], or a teacher [36], or a therapist [11] 
or a detective [24], we consider the Human-robot game interac-
tion context and foresee a future where robots detect deception in 
real-time. The paper investigates the following research questions 
(RQs): 

• RQ1: How do naturally occuring human OBs and PBs differ be-
tween deception and truthful states during interactions with a 
robotic agent? 
• RQ2: How do naturally occuring human OBs and PBs evolve as 
individuals gain experience during repeated interactions? 
• RQ3: Do collecting data on OBs and PBs during truthful and de-
ceptive states naturally improve the deception detection accuracy? 
• RQ4: Which naturally occuring human OBs and PBs are predic-
tive of deception and truthful behaviours? 

To investigate these RQs, we conducted two experiments that 
tasked participants to play a game involving showing natural in-
stances of both deception and truthful behaviour to and with a 
NAO robot. We recorded both OBs and PBs, including electroder-
mal activity (EDA), blood volume pulse (BVP), heart rate (HR), skin 
temperature (SKT), blinking rate (BR), and blinking duration (BD) 
to detect humans’ deception in real-time. The novel contributions 
of this paper are as follows: 

• Using an incremental transfer learning technique, we have shown 
that data gathered on (OB) and (PB) in natural interactions can ef-
fectively differentiate between deceptive and truthful states with 
an accuracy rate of 80%. This method surpasses most existing tech-
niques and highlights the potential for reliable deception detection 
and development of adaptive robotic systems. 
• We show that repeated exposure to the same deceptive scenarios 
can lead to habituation and emotional desensitisation, resulting in 
fewer physiological changes and consistent behaviours. 
• We share the study materials and evolving datasets with the 
community to advance knowledge on deception which can be found 
here. 

2 BACKGROUND 
Theoretical Knowledge on Deception - Numerous theories 
have been proposed to explain why individuals engage in deceptive 
behaviours [9, 62]. We focus on the four-factor theory of deception 
and the interpersonal theory of deception, both suggesting that 
liars exhibit increased general arousal, emotional load, cognitive 
load, and attempts at control and impression management to appear 
honest. These conditions can lead to changes in verbal and non-
verbal behaviours, such as increased blinking and pupil dilation, 
heightened voice pitch, speech errors, pausing, and other speech 
hesitations, ultimately affecting physiological behaviours like SKT, 
EDA, and HR. Additionally, we consider the truth default [38] and 
interpersonal theory, which justify lying for reasons such as goal 
attainment, where honesty is seen as counterproductive. Thus, 
using games that naturally create situations requiring deception to 
win is considered. 
Methods for Detecting Deception - Broadly, three methods have 
been applied to detect deception: 1) psychological, 2) professional, 
and 3) computational [6]. Psychological approaches examine the 
relationship between nonverbal and verbal behaviours and the act 
of lying, including physiological changes such as increased pupil 
size and higher-pitched voices [14]. Studies have also identified 
unique hand movements and speech-related gestures as indicators 
of deception, using measures of facial expression smoothness and 
asymmetry to connect them to deceptive acts [1]. 

Physiological techniques, including polygraph tests and fMRI, 
are historically considered limited due to their need for complex 
setups and skilled operators [50]. However, recent advancements 
in hardware design and technology may challenge these limita-
tions [17, 55]. Lastly, significant advancements in data mining and 
machine learning algorithms have led to the rise of computational 
methods [6]. These methods analyse micro-expressions, voice stress, 
heart rate, skin activity, and breathing patterns to detect deception. 
Interdisciplinary research continues to refine these methods, aiming 
to develop reliable tools for various settings. Despite advancements, 
existing work is often limited to datasets collected under a single 
context and does not use increment transfer learning to detect de-
ception [6]. This paper addresses this gap by collecting datasets 
from two experiments and applying transfer learning to investigate 
the accuracy of deception detection. 
Datasets on Detecting Deception - Various methods have been 
used to create datasets for detecting deception, encompassing three 
primary categories: verbal, non-verbal, and hybrid approaches. In 
verbal methods, researchers have leveraged features such as text 
sequences [31], linguistic attributes [13], sparse elements [60], and 
acoustic characteristics [57, 61]. Non-verbal methods involve fea-
tures such as EEG signals [7], facial expressions [33, 54], and micro 
eye movements [34]. Hybrid methods, combine different feature 
categories to create comprehensive datasets. These hybrid datasets 
encompass a range of features, including visual and vocal charac-
teristics [32], MFCCs (Mel-Frequency Cepstral Coefficients), and 
statistical measures of speed, pitch, and loudness [23], as well as 
facial expressions and body motions extracted from videos [15], 
and integrated data from videos, audios, EEG, and gaze tracking 
[25, 35]. Some hybrid datasets combine EEG, video, audio, and gaze 
data, while others integrate gaze and speech features [20, 42]. 
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In summary, many studies resulting in datasets to detect decep-
tion demonstrate low accuracy rates, often below 70% [6]. Deception 
detection models are frequently trained on datasets lacking diver-
sity and realism, collected in simulated environments that may not 
accurately reflect real-world deceptive behaviours. These datasets 
typically involve a limited number of subjects, and participants 
are often asked static questions, restricting response authenticity. 
Additionally, there are conflicting findings on whether verbal or vi-
sual cues are more important in detecting deception. Psychological 
studies suggest verbal cues are primary, while professional inves-
tigators and deep learning models emphasize visual cues. These 
inconsistencies highlight the challenges in developing effective de-
ception detection methods. Therefore, we create a dataset based on 
naturally occurring deceptive behaviour and use a hybrid approach 
combining physiological and oculomotor behaviour from a large 
number of participants. We apply an incremental transfer learning 
algorithm to detect deception [12]. 
Game as a Method to Detect Deception - Researchers have 
used various games to study deception behaviour, including Cheap-
Talk Games signalling game [45], iterated prisoner’s dilemma [52], 
and the Mafia party game [13]. Signalling games involve strategic 
communication where one party sends a message, and the other 
decides if it is truthful or deceptive [45]. The iterated prisoner’s 
dilemma allows players to repeatedly choose cooperation or defec-
tion, with opportunities for deception to gain higher payoffs [52]. 
The Mafia party game involves players with secret roles lying to 
conceal their identity and objectives [13]. The Mafia party game 
has been widely used to create video-based datasets for detecting 
deceptive behaviours [13, 29]. Additionally, Bag of Lies is a game-
based approach where participants describe images honestly or 
deceptively [25]. 

However, researchers have identified several shortcomings in the 
Mafia party game, including being context-specific [29], imposing 
a high cognitive load on players that may impact their ability to 
deceive naturally [29, 50], and offering low classification accuracy 
in identifying deceptive players in the real world [25]. In this paper, 
we introduce a simple card game known as the Bluff game [56], 
inspired by Ahmad and Alzahrani [2], to study the truthfulness of 
the robot. The game allows players to depict truthful and decep-
tive behaviours without a high cognitive load, making it ideal for 
studying deception behaviours. The cognitive load in a game can 
vary depending on factors such as the number of players, game 
complexity, and player familiarity [44]. To minimise impact, the 
game is played by two players with minimal complexity. Cards are 
managed and distributed to each player, with multiple sessions con-
ducted to ensure familiarity. In summary, this paper employs the 
Bluff game to create a dataset to detect deception, testing players’ 
abilities to lie naturally and convincingly. 

3 METHODOLOGY 
We conducted two studies that involved participants to naturally 
engage in deceptive and truthful behaviours in a fun and entertain-
ing manner while playing the bluff game. The two studies differed 
in context. In study 1, we enabled participants to play against the 
robot thus presenting a competitive context while in study 2, partic-
ipants played the game where the robot acted as an advisor, hence 
presenting a cooperative context. In both studies, we only focused 

on the instances where participants were engaged in displaying 
deceptive and truthful behaviours. Such interactions were not in-
formed or mediated by the the role of robot in both contexts. We 
investigate the following hypotheses: 

• [H1]: Human PBs and OBs, including EDA, BVP, HR, SKT, BR, 
and BD, will show significant differences when participants are en-
gaging in deceptive versus truthful behaviours during interactions 
with a robotic agent in both competitive (H1a) and cooperative 
(H1b) settings. 
• [H2]: Significant interaction effects between the session num-
ber (1, 2, 3, and 4) and the chosen PBs and OBs will be observed, 
indicating differences in PBs and OBs responses to deceptive and 
truthful behaviours in both competitive (H1a) and cooperative 
(H1b) settings. 
• [H3]: Classification algorithms will be able to classify instances 
of deception with potentially high accuracy, demonstrating the 
feasibility of using PBs and OBs for real-time detection of deception 
in different settings. 

Study 1 investigates H1a, H2a, and H3 while study 2 investigates 
H1b, H2b and H3 respectively. In essence, H1 is based on the exist-
ing findings that both PBs and OBs tend to differ during deceptive 
and truthful acts of humans [50]. H2 is based on the existing re-
search that familiarity with the situation can significantly influence 
humans’ deceptive behaviour [39]. Lastly, H3 is based on the finding 
suggesting that data collected through humans naturally occurring 
deceptive and truthful behaviour can improve the reliability and 
detection rates [6]. 
Ethics - We submitted an application to the university’s ethics 
committee to ensure the ethical integrity of our research involving 
human participants. After review, the application was approved 
[160322/5031]. 

3.1 The Game 
We have created a card game called the "Bluff Game" using the 
Python programming language. The game can be played in two 
ways: a human player can compete against a robot (study 1), or 
a human and a robot can team up against an adversary (study 
2). The game involves a deck of 52 cards with four sets of each 
number from 1 to 10 and the face cards (jack, queen, and king). 
The game interface has play and decision buttons, which make it 
easy for players and the game to interact seamlessly. At the start of 
the game, each player receives 15 cards, and to win the game, the 
goal is to eliminate all the cards before the opponent. The game is 
turn-based, and at each turn, a player must choose a set of 2-4 cards 
to discard. This requires the player to decide whether to deceive or 
be truthful about the cards in their hand. The opponent then has 
to decide whether to believe the player is telling the truth or lying. 
If the opponent believes that the player is truthful, the cards are 
discarded and remain unseen. The opponent then takes the next 
turn, and the game continues. If the opponent does not believe 
that the player is truthful, the discarded cards are revealed. If the 
player is found to be truthful, the opponent loses the round, and 
the opponent receives the player cards. If the player is found to 
be deceptive, the player must take back the cards, and the game 
continues. The game ends when one player has discarded all their 
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cards. The list of each player’s cards is updated dynamically after 
every turn. 

3.2 Study 1 
3.2.1 Interaction Scenario. The Nao robot was designed to interact 
verbally with participants across the game events. We used the 
Wizard of Oz method (WOz) to manage the game’s control with-
out revealing this to the participants, ensuring unbiased responses. 
The interaction had three phases: welcoming and introducing the 
game, playing the game, and concluding the game. At the begin-
ning, the robot greeted the participant warmly and offered a brief 
introduction:“Hello. I am a Nao robot. Today, we will be playing a 
card game against each other. Are you ready?”. Participants played 
the game four times with a 5-minute break between each session. 
In the second, third, and fourth sessions, the robot thanked the 
participants and reintroduced the game by saying: “Hello again. 
Thank you for playing. We are going to play another game. Are 
you ready?” and “Let us start” respectively. At the start of the game, 
the Nao robot informed the participant by saying “the game starts 
now”. The robot initiated the first turn and followed the game rules 
by interacting with the participant during various game events in 
the following manner: 

(1) When the robot selected its set of cards and declared them, e.g., 
“I selected two Kings”.. 
(2) When the participant believed the robot’s claim, it responded 
with: “It is your turn”. 
(3) When the participant did not believe the robot and the robot’s 
card declaration was accurate, the robot stated: “I was telling the 
truth”. 
(4) When the participant did not believe the robot and the robot’s 
card declaration was incorrect, the robot stated: “You got me, and 
it is your turn”. 
(5) When the robot believed the participant, it said: “I trust you, 
and it is my turn”. 
(6) When the robot did not believe the participant, it said: “I think 
you are bluffing”. If the participant told the truth, the robot said: 
“Oh, I was wrong, and it is your turn now”. 
(7) If the robot did not believe the participant and the participant 
was incorrect, the robot stated: “Yes, I got you, and it is my turn 
now”. 

After each game, the robot congratulated or wished the partic-
ipant luck for the next round. Upon a victory, the robot cheered: 
“Congratulations! You’ve won. Thank you, and see you in the next 
round”. In case of defeat, the robot encouraged by saying: “You’ve 
just lost the game. Good luck in the following rounds”. In the final 
session, the robot bid farewell as it concluded the experiment. 

3.2.2 Participants. The study initially aimed to involve 45 people 
aged between 18 and 60 years old. However, data collection issues 
were encountered with two of the participants, and the effective 
number was adjusted to 43, with a mean age of 29.53 and a stan-
dard deviation of 6.71. The group consisted of 16 females, 26 males, 
and one individual who preferred not to specify their gender. We 
recruited participants by sending out invitations through univer-
sity email lists and posting flyers around the campus. Interested 
individuals signed up via the online platform, Calendly. 

Figure 1: Experimental setup of study 1 and study 2 

To determine the participants’ level of familiarity with robotics, 
we categorised them based on their experience as high, medium, 
low, or none. Participants who had controlled or constructed a ro-
bot were categorised as having high experience. Those who had 
repeated use of robots were categorised as having medium expe-
rience, and those with occasional interactions were considered to 
have low experience. The remaining participants, who had never 
interacted with robots, were noted as having no experience. The 
final tally showed that 2 participants had high experience, 2 had 
medium experience, 24 had low experience, and 15 had no prior 
interactions with robots. 
3.2.3 Experimental Setup and Equipment. The experimental setup 
was splitted across two rooms, depicted in Figure 1. The first room 
hosted the interactive game setup, where participants were seated at 
a table facing the Nao robot, with a laptop facilitating the card game. 
To capture physiological responses, participants were equipped 
with Pupil Invisible Eye Tracking Glasses and the Empatica E4 
Wristband. A tablet was also provided to enter demographic details. 
This room was specially arranged to ensure uniform environmental 
conditions, such as controlled lighting and temperature, to prevent 
any external influence on physiological data such as BD, BR, and 
SKT. In the second room, an experimenter oversaw the experiment 
and manipulated the robot’s actions through a laptop, ensuring 
seamless interaction between the participant and the robot. PBs 
and OBs data collection was carried out using two sophisticated de-
vices: the Empatica E4 Wristband and Pupil Invisible Eye Tracking 
Glasses. The E4 Wristband is known for its accuracy in measuring 
heart rate, electrodermal activity, and body temperature, making it 
an invaluable tool for this study. Similarly, the Pupil Invisible Eye 
Tracking Glasses, with their high-resolution cameras and sensors, 
were pivotal in tracking eye movements and providing insights into 
the participants’ focus and cognitive engagement during interac-
tions with the robot. 

3.2.4 Experimental Procedures. The study has the following steps: 

(1) Initially, each participant was briefed about the study through 
an informational sheet and provided with detailed game instruc-
tions, followed by the signing of a consent form. 
(2) Next, they filled out a demographic questionnaire detailing their 
prior experiences with robotics. 
(3) The participants then equipped themselves with eye-tracking 
glasses and a physiological data recording wristband. Upon starting 
the data recording, the experimenter vacated the room. 
(4) The actual game play commenced with participants engaging 
in the card game against the Nao robot, which was manipulated 
remotely by the experimenter from a separate room. 
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(5) Following the completion of each game round, the experimenter 
re-entered the room to pause the data recording and requested the 
participants to fill out a questionnaire assessing their interaction 
with the robot. It’s important to note that the responses to this ques-
tionnaire were not analyzed in this paper due to their irrelevance 
to the study’s primary objectives. 
(6) The steps 3, 4, and 5 were repeated in four different game ses-
sions. 
(7) To conclude, participants were informed of their £10 Amazon 
voucher as appreciation for their contribution to the study. 

3.3 Study 2 
3.3.1 Interaction Scenario. The interaction was consistent during 
the welcoming and introducing and concluding the game phases. 
Due to the different role of robot, the role of robot interaction was 
limited to occurrences where participants need to take advise on 
whether to accept or reject the opponent move during the game 
phase. Following the game rules, the robot interacted with the 
participants during various game events. The game’s flow involved 
the robot interacting with the participants during decisions and 
other situations in the game as follows: 
(1) During the experiment, the robot consistently followed a pre-
defined protocol and strategy when participants asked about the 
decision-making process in the accept condition. The robot pro-
vided feedback as follows: “Given the game has just started, I think 
we could accept the claim for now; what do you think?”, “I think 
we could accept, what do you think?”, “I suggest accept, what do 
you think?”, or “I think it seems reasonable to accept the claim, 
what do you think?”. 
(2) In the reject claims condition, the robot said, “I think they might 
want to discard non-similar cards first, what do you think?”, “I think 
they are bluffing, what do you think?”, “I suggest rejecting the claim; 
what do you think?” 
(3) If the participants agreed with the robot’s suggestion to accept, 
the robot said “Okay, let’s continue”, “Okay, let’s proceed”, or “Okay, 
let’s see how to conclude”. 
(4) If the participants agreed with the robot’s suggestion of reject-
ing the claims, the robot said “Okay, let’s see”. 
(5) If the participants disagreed with the robot’s suggestion, the 
robot said “Okay, it is up to you”. 
(6) If the participants asked the robot to repeat the suggestion, the 
robot repeated the suggestion for them. 
(7) If the robot did not hear the participants, the robot said “Sorry, 
I did not hear that, could you please repeat it”. 
(8) If the participants seem to have been occupied with something 
else, the robot said “You seem occupied with something else, could 
you please focus on the game”. 
(9) If the participants asked the robot for anything else during the 
game, the robot said “I can only advise you when you are deciding 
to accept or reject”. 

3.3.2 Participants. The recruitment process for participants in 
Study 2 was similar to that of Study 1, with the aim of maintain-
ing consistency in the sample population by targeting a similar 
demographic profile. Due to data collection issues, only 41 partici-
pants were included in the study, instead of the intended 45. The 
participants, with an average age of 30.45 years and a standard 

deviation of 4.14, were a balanced mix of genders. This diversity of 
demographics provides varied perspectives on robotic interaction, 
which enriches the research. To classify the participants based on 
their experience with robotics, we analysed their frequency of in-
teraction with robots, ranging from daily usage to no interaction at 
all. We categorised them into four groups: high, medium, low, or 
none. 3 participants were classified as having high experience due 
to their daily engagement with robots, 6 as having medium expe-
rience reflecting weekly interaction, 20 as having low experience, 
and 12 as having no experience with robots. 

3.3.3 Setup and Materials. The setup and materials for Study 2 
closely mirror those outlined in Study 1, with adjustments made 
to accommodate the robot’s position to be next to the participant 
(see Figure 1). Key components include the interactive card game 
environment, physiological sensors for capturing participants’ re-
sponses, and the data collection system. The detailed descriptions 
of these elements are provided in the Setup and Materials section 
of Study 1. 

3.3.4 Experiment Procedure. The experiment procedure for Study 
2 follows the structure established in Study 1. This includes partici-
pant orientation, sensor attachment and calibration, introduction to 
the game’s mechanics and the robot’s function, gameplay sessions, 
and post-experiment questionnaire. For a detailed explanation of 
these procedures, please refer to the experiment Procedure section 
of Study 1. 

3.4 Measurements for Deception Detection 
3.4.1 Physiological Measures. We collected participants’ PBs and 
OBs responses in real-time during deceptive or truthful decisions 
using eye tracking technology for recording BR and BD, and a 
wristband for monitoring EDA, BVP, HR, and SKT. These responses 
were chosen for their relevance to deception detection and non-
intrusive nature of collection. 

3.4.2 Behavioural Measures. The game interactions captured the 
decision-making process of individuals choosing to display a de-
ceptive or truthful behaviour. The outcomes of each participant’s 
decision were documented and coded as binary values, with 0 rep-
resenting truthfulness and 1 representing deception. Additionally, 
the researchers recorded the timestamps for the beginning and 
end of each decision phase to better understand the physiological 
responses associated with specific moments of decision-making 
related to deception or honesty. 

3.5 Data Preparation for Deception Analysis 
3.5.1 Behavioral Data Processing. Behavioural data from the game 
sessions were processed to extract meaningful analytics: 

(1) Outcomes processing: The choices of whether to deceive or 
to be honest were counted and sorted into different categories for 
statistical analysis. 
(2) Timing analysis: We carefully matched the decision-making 
periods with physiological data collection, ensuring precise analysis 
of participants’ responses during critical moments. 
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3.5.2 Physiological Data Preprocessing. To begin with, we per-
formed the following steps prior to analysing the physiological 
data: 

(1) Noise reduction: A low-pass filter was applied to remove noise 
and artifacts, ensuring signal integrity for accurate analysis. 
(2) Data segmentation: The physiological data stream was seg-
mented according to the game rounds, aligning with the decision-
making phases for each participant. 
(3) Feature extraction: For each decision-making interval, we 
calculated average values for EDA, BVP, HR, SKT, BR, and BD. This 
step transformed raw data into a structured format conducive to 
detecting deception-related physiological changes. 
(4) Dataset compilation: The final dataset was compiled by aver-
aging physiological measures across sessions and decisions, creat-
ing a comprehensive profile for each participant’s deceptive and 
honest behaviours. 

By following these steps, we successfully generated two datasets 
suitable for analysing deception and honest behaviours using PBs 
and OBs. The datasets alongside codes can be accessed here. In the 
given link, the files named as “Dataset1_sessions” and “Dataset2_sessions” 
represent the datasets for session 1, 2, 3 and 4 respectively, while, 
the files named as “Dataset1_all” and “Dataset2_all” represent all 
session data. 

4 RESULTS 
In this section, we present the findings of both studies. We inves-
tigate whether there are significant differences in OBs and PBs 
during deceptive or truthful states in both studies. In addition, we 
investigated whether familiarity with the task enabled a significant 
change in OBs and PBs during deceptive or truthful states during 
repeated interactions. Lastly, we investigated how accurately we 
could classify deception in the two datasets and also applied incre-
mental transfer learning to find whether we could detect deception 
with high accuracy. 

To test H1a, & H1b and H2a, & H2b, we conducted a repeated-
measures ANOVA with deception and truthful states as a between-
subject variable and the interactive session (session 1, session 2, 
session 3, and session 4) as a within-subject variable on the physio-
logical measures (EDA, BVP, HR, SKT, BR, and BD) as dependent 
variables (DVs). We found that there was a significant effect of 
deception in study 1 on EDA ((𝐹 (1, 69) = 4.270, 𝑝 = .04, 𝜂 2 

𝑝 = .058)) 
and SKT (𝐹 (1, 69) = 20.124, 𝑝 < .001, 𝜂 2 

𝑝 = .226) scores and 

in study 2 on EDA (𝐹 (1, 76) = 8.730, 𝑝 = .004, 𝜂 2 
𝑝 = .103), HR 

(𝐹 (1, 76) = 4.141, 𝑝 = .045, 𝜂 2 
𝑝 = .052), and SKT (𝐹 (1, 76) = 23.570, 

𝑝 < .001, 𝜂 2 
𝑝 = .237). However, we did not see a significant effect 

of deception on BVP (𝐹 (1, 69) = .591, 𝑝 = .445, 𝜂 2 
𝑝 = .008), HR 

(𝐹 (1, 69) = 2.925, 𝑝 = .092, 𝜂 2 
𝑝 = .041), BR (𝐹 (1, 69) = .00, 𝑝 > .983, 

𝜂 2 
𝑝 = .00) and BD (𝐹 (1, 69) = .066, 𝑝 > .798, 𝜂 2 

𝑝 = .001) respec-
tively in study 1 and BVP (𝐹 (1, 76) = .834, 𝑝 = .364, 𝜂 2 

𝑝 = .011), 
BR (𝐹 (1, 76) = .428, 𝑝 = .515, 𝜂 2 

𝑝 = .006), and BD (𝐹 (1, 76) = .796, 
𝑝 = .375, 𝜂 2 

𝑝 = .010) in study 2. The mean and standard deviation 
for all the DVs in both studies can be seen in Table 4. 

A significant interaction effect of session and deception was 
observed for BVP measures in study 2 (𝐹 (3, 74) = 2.664, 𝑝 = .054, 

𝜂 2 = .097). However, we did not observe a significant interac-
tion effect of session and deception (session * deception) on EDA 
(𝐹 (3, 67) = 1.073, 𝑝 = .366, 𝜂 2 = .046), BVP (𝐹 (3, 67) = .606, 
𝑝 = .613, 𝜂 2 = .026), HR (𝐹 (3, 67) = .727, 𝑝 = .539, 𝜂 2 = .032), SKT 
(𝐹 (3, 67) = .447, 𝑝 = .720, 𝜂 2 = .020), BR [𝐹 (3, 67) = 1.036, 𝑝 > .382, 
𝜂 2 = .044], and BD (𝐹 (3, 67) = .392, 𝑝 > .759, 𝜂 2 = .017) in study 1 
and EDA (𝐹 (3, 74) = .374, 𝑝 = .772, 𝜂 2 = .015), HR (𝐹 (3, 74) = .241, 
𝑝 = .867, 𝜂 2 = .010), SKT (𝐹 (3, 74) = .061, 𝑝 = .980, 𝜂 2 = .002), 
BR (𝐹 (3, 74) = .170, 𝑝 = .916, 𝜂 2 = .007), and BD (𝐹 (3, 74) = .570, 
𝑝 = .637, 𝜂 2 = .023) in study 2. Lastly, we observed that only SKT 
varies across sessions in both study 1 and 2 (𝐹 (3, 67) = 18.957, 
𝑝 >< .001, 𝜂 2 = .020), (𝐹 (3, 74) = 22.834, 𝑝 < .001, 𝜂 2 = .481), 
respectively. 

We conducted post-hoc Bonferroni tests to assess whether SKT 
differed significantly between sessions 1, 2, 3, and 4 in two studies. 
In Study 1, the analysis confirmed that SKT was significantly higher 
in session 1 compared to session 2 (𝑝 < 0.001), session 3 (𝑝 < 0.001), 
and session 4 (𝑝 < 0.001). No significant differences were found 
when comparing session 2 to sessions 3 and 4, nor between session 
3 and session 4, suggesting that SKT levels were more stable across 
these later sessions. In Study 2, similar trends were observed, with 
SKT significantly higher in session 1 compared to session 2 (𝑝 < 
0.001), session 3 (𝑝 < 0.001), and session 4 (𝑝 < 0.001). These 
findings highlight the variability in SKT responses across different 
sessions, underscoring the impact of session-specific factors on skin 
temperature measurement. 

To test H3, which aimed to investigate whether PBs and OBs 
can be utilised to classify truthful and deception behaviour, we fol-
lowed the structured approach proposed by Ahmad et al. [3]. Seven 
classifiers were implemented: Random Forest (RF), Logistic Regres-
sion (LR), Support Vector Machines (SVM), Decision Tree (DT), 
AdaBoost (AB), Neural Network (NN), and Naive Bayes (NB). The 
performance of these classifiers was evaluated using 5-fold cross-
validation. The findings revealed that RF, LR, and SVM achieved 
the highest accuracies at 75%, 71%, and 71%, respectively, while the 
other classifiers also performed well (refer to Table 1). 

To provide a more detailed analysis of the accuracy findings, 
we have presented the results in the form of a classification report 
in Table 1. This report shows the F1 score for each class, which 
evaluates the performance of each classifier. The results indicate 
that for the RF, LR, and SVM classifier, both deception and non-
deception were predicted correctly, with a 71% both, 70% and 71% 
and 71%, 74% accuracy rate on the test data, suggesting that LR 
and SVM have relatively higher accuracy compared to the other 
classifiers. 

4.1 Feature importance for Deception and 
Non-deception 

We examined each PB in the datasets and evaluated their ability 
to determine whether the subject was being truthful or deceptive. 
We calculated the F1 score for each class separately to gauge the 
effectiveness of each feature in accurately classifying the subjects. 
The RF, LR, and SVM classifiers exhibited the best performance 
in predicting deception or non-deception. Thus, we only present 
the feature importance for these classifiers. In Study 1, the feature 
importance for the deception and truthful states were: EDA (0.39, 
0.62), BVP (0.58, 0.39), HR (0.58, 0.58), SKT (0.67, 0.66), BR (0.52, 
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Classifier 
Accuracy (%) F1-Scores 

Study 1 Study 2 Study 1 Study 2 
S1 S2 S3 S4 All S1 S2 S3 S4 All D T D T 

RF 60% 60% 67% 64% 69% 65% 77% 63% 63% 75% 0.70 0.66 0.76 0.74 
LR 67% 70% 62% 67% 71% 71% 69% 66% 64% 69% 0.71 0.71 0.75 0.72 
SVM 65% 66% 59% 69% 71% 64% 69% 70% 62% 69% 0.70 0.71 0.71 0.66 
DT 55% 51% 55% 59% 60% 47% 60% 53% 67% 67% 0.61 0.59 0.68 0.65 
AB 60% 51% 56% 60% 61% 54% 59% 57% 63% 69% 0.63 0.58 0.69 0.66 
NN 72% 59% 56% 62% 70% 64% 77% 67% 67% 68% 0.70 0.69 0.71 0.67 
NB 66% 63% 66% 65% 67% 60% 64% 71% 58% 65% 0.69 0.64 0.71 0.50 

Table 1: Performance Metrics of Classifiers across Different Sessions (S) and Studies for Deception (D) and truthful (T) behaviours. 

Classifier Source (Study 1) Target (Study 2) 
RF 79% 77% 
LR 77% 80% 
SVM 76% 77% 
DT 73% 58% 
AB 76% 75% 
NN 82% 77% 
NB 71% 67% 

Table 2: Performance of various classifiers using incremental 
transfer learning on two datasets. 

0.49), and BD (0.43, 0.57) for LR respectively. For RF in Study 2, 
the values were: EDA (0.56, 0.52), BVP (0.53, 0.53), HR (0.53, 0.52), 
SKT (0.56, 0.56), BR (0.65, 0.66), and BD (0.55, 0.55). SVM in Study 1 
showed: EDA (0.28, 0.63), BVP (0.69, 0.18), HR (0.50, 0.56), SKT (0.66, 
0.65), BR (0.66, 0.06), and BD (0.36, 0.51). The features HR and SKT 
were consistent and effective in predicting deception and truthful 
classes. 
4.2 Incremental Transfer Learning Results 
We conducted two studies that produced two datasets. To handle 
this, we adopted an incremental transfer learning approach utilis-
ing seven classifiers as proposed by Chui et al. [12]. Our process 
involved selecting two datasets, one as the source (Dataset 1) and 
the other as the target (Dataset 2). We divided each dataset into 
equally sized subsets and trained an initial model (Model 1.1) on 
the first subset of Dataset 1. Then, we transferred the knowledge 
from Model 1.1 to train Model 2.1 on the first subset of Dataset 2. 
We continued updating the models with subsequent subsets until 
the last subsets were used. We utilised seven models, including RF, 
LR, SVM, DT, AB, NN and NB, with parameters illustrated in Table 
3. Our method achieved significant accuracies: RF achieved 79% 
(source) and 77% (target), LR scored 77% and 80%, SVM showed 76% 
on both, DT reported 73% and 58%, AB recorded 76% and 75%, NN 
reached 82% and 77%, and NB showed 71% and 67% (see table 2 for 
more information). 

5 DISCUSSION 
This study investigated whether PBs & OBs can be collectively 
used to detect deception. In this section, we discuss whether the 
hypotheses were accepted or rejected in the light of the findings. 

Model Parameters 
RF n_estimators=150, max_depth=10, criterion=’entropy’ 
LR penalty=’l2’, tol=0.0001, C=1.0, fit_intercept=True, solver=’lbfgs’, max_iter=100 
SVM probability=True 
AB base_estimator=DecisionTreeClassifier(max_depth=1), n_estimators=50 
DT max_depth=3 
NN hidden_layer_sizes=(100,), max_iter=500 
NB GaussianNB() 

Table 3: Models Parameters 

Feature 
Non-deception Deception 

Study 1 Study 2 Study 1 Study 2 
M SD M SD M SD M SD 

EDA 0.99 2.59 0.37 0.44 0.38 0.46 0.99 0.84 
BVP 0.02 0.18 0.03 0.30 0.03 0.32 0.01 0.17 
HR 105.1 18.1 101.5 14.7 101.4 18.01 105.9 20.64 
SKT 28.1 1.4 26.87 1.5 26.9 1.5 28.02 1.53 
BR 2.5 2.04 2.4 1.63 2.5 1.9 2.29 2.03 
BD 310.4 125.52 317.02 120.5 319.08 132.6 302.1 144.94 

Table 4: Mean (M) and Standard Deviation (SD) for the physi-
ological features under truthful and deceptive states across 
two sets of data. 

H1 suggested a significant difference in human PBs & OBs re-
sponses, such as EDA, BVP, HR, SKT, BR, and BD, between deceptive 
and truthful states during HRI. We found that both EDA and SKT 
differed significantly during deceptive and truthful states in both 
experiments. EDA and SKT are physiological measures linked with 
galvanic skin responses that can detect deception [51]. EDA mea-
sures skin conductivity, which increases during stress or arousal 
states related to deception. SKT reflects changes in blood flow to 
the skin, which can vary due to the complex interplay between the 
sympathetic and parasympathetic nervous systems. Studies have 
shown that lying often induces nervousness or stress, as well as 
cognitive load, both of which are related to increased (sympathetic 
nervous system activity [51]. 

We observed a significant difference in HR between deceptive 
and truthful states in study 2, which represented a cooperative 
context. However, no such effects were seen in Study 1, which pre-
sented a competitive context. Previous research has shown that the 
variability in HR response to deception can be influenced by sev-
eral situational and individual factors, which can explain why HR 
may differ in one situation and not in another [39]. The emotional 
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response to lying can vary depending on the stakes involved, the 
potential consequences of being caught, and the individual’s moral 
compass. Although cognitive load and stress were consistent in 
both studies, we believe that participants may have felt more pres-
sure in the presence of the robot and attempted to maintain a moral 
compass [58]. This finding can be due to interpersonal dynamics, 
as the relationship between the deceiver and the observer can influ-
ence HR. For instance, lying to a stranger may not elicit the same 
physiological response as lying to a loved one [39]. Furthermore, 
studies have shown inconsistencies in the correlation between HR 
and deception. Some studies have found an increased HR in guilty 
individuals, while others have indicated that lying could decrease 
HR [26]. Lastly, a recent study suggests that the presence of robots 
can have a similar impact on HR as working with other humans, 
potentially due to the development of trust and the integration of 
robots as team members [16]. 

On the other hand, the other PBs and OBs (BVP, BR, and BD) 
did not show significant differences between truthful and deceptive 
states. We understand that BVP and blinking rates can be influenced 
by stress and cognitive load. The regulation of BVP is complex and 
can be maintained across different emotional states, and blinking 
rates are subject to voluntary control and are influenced by various 
contextual factors. Therefore, these measures could not differ sig-
nificantly in truthful and deceptive states. In addition, the context 
of the interaction can influence blinking rates. For example, if an 
individual is in a relaxed and informal setting, they may blink less 
frequently, regardless of whether they are being truthful or decep-
tive [10]. Moreover, changes in BVP and other PBs correlate with 
anxiety, but such conditions may not have been present during the 
game-based context. The absence of pressure elements, such as time 
constraints and individual differences in stress response and cogni-
tive load, may have contributed to the variability in physiological 
responses. 

In summary, the hypothesis H1a and H1b were partially accepted 
as we did not find significant differences for all the PBs. 

H2 hypothesised an interaction effect (session and decision to 
be truthful and deceptive) on PBs. Our results did not confirm this 
hypothesis, as we did not find a significant interaction effect of ses-
sion and decision (session * decision) on all PB features except BVP 
in study 2. We understand that deception can cause consistent phys-
iological behaviours during repeated interactions due to several 
psychological and physiological factors [46]. Individuals can adapt 
to the act of deception over time, leading to a decrease in physio-
logical responses. With repeated exposure to the same deceptive 
scenarios, individuals can become habituated to the stress associ-
ated with lying leading to a reduction in physiological responses. 
Frequent deception can make individuals more skilled at lying, 
resulting in less pronounced physiological changes and more con-
sistent behaviours. Repeatedly engaging in deceptive behaviour can 
lead to emotional desensitisation, where the emotional impact of ly-
ing diminishes over time, resulting in fewer physiological changes 
and consistent behaviours. Increased efficiency at lying reduces 
physiological indicators of deception. Individuals have different 
baseline physiological responses, and familiarity with the situation 
reduces the physiological response to deception. If the context of 
the repeated interactions remains consistent, it makes it harder to 
discern differences between truthful and deceptive behaviours. 

H3 suggested that classification algorithms will classify instances 
of deception with potentially high accuracy. The results of the two 
studies were promising, with LR, SVM, NN, and RF classifiers de-
tecting deception with accuracy rates of over 70% and 75%. In both 
studies, HR, and SKT features were crucial for detecting decep-
tion in the best-performing classifiers. The importance of these 
features is linked to their association with emotional arousal, cog-
nitive effort, and rapid physiological changes that typically occur 
in response to deception in game contexts [37]. 

Our study utilised a new incremental transfer learning algorithm 
and achieved an accuracy rate of 80%, surpassing the current decep-
tion detection rates based on PBs and OBs [6]. This indicates that 
our hypothesis (H3) was accepted. The high accuracy was possible 
due to the negative transfer avoidance algorithm included in in-
cremental transfer learning, which reduces the risk of transferring 
irrelevant information and facilitates the transfer of knowledge 
[12]. Additionally, the use of multiple PBs and OBs is crucial since 
PBs are often dependent on the task or environment [3]. To sum-
marise, our dataset consisted of natural and repeated interactions, 
including both deceptive and truthful states, resulting in a large 
and diverse set of data that helped us achieve good results. 

6 CONCLUSION & FUTURE WORK 
This paper highlights the limitations of current datasets used for 
deception detection, as they lack diversity and realism and have 
a limited number of subjects in simulated environments that do 
not accurately reflect real-world deceptive behaviours. To over-
come this, we used the GaME (game as a method to elicit emotions 
naturally) paradigm and created a dataset based on organically de-
picted deceptive and truthful interactions. The dataset was based on 
repeated interactions, which is a further significant improvement 
from existing work that only offers a dataset on one-off interactions. 
We conducted two experiments involving 83 participants to inves-
tigate whether different physiological and oculomotor behaviours 
(PBs & OBs) collected naturally during deceptive and truthful states 
differ significantly. Additionally, we explored whether combining 
PBs and OBs can accurately predict humans in deceptive and truth-
ful states during HRI. Our findings confirmed that PBs such as EDA 
and SKT differed in deceptive and truthful states. It indicated that 
multiple PBs collectively detect deception in real time during HRI. 
For the first time, we used the novel incremental transfer learning 
to detect deception and achieved an 80% accuracy, surpassing most 
of the existing work. We encourage the research community to 
use the GaME paradigm in different contexts to improve the rate 
of deception detection. We promote incremental transfer learning 
techniques to yield optimal results in the target (new) models. 

While this study shows promise, it is important to note its limi-
tations. Findings are specific to game-based robot interactions and 
may not apply to other contexts or human interactions. The limited 
demographic characteristics, mainly consisting of students, may 
restrict the generalisability of the results. Future research will in-
volve testing in various environments and including participants 
from diverse backgrounds to enhance the findings. We also plan 
to explore how combining facial and speech features along with 
PBs and OBs in different contexts can improve detecting deception 
rates. We aim to use such detection mechanisms to develop adaptive 
robotic systems that can have wider applications. 
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