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Summary

The buildings’ operational phase is considered the longest phase where buildings

contribute the most to their overall environmental impact. In this context, Life Cycle

Assessment (LCA) helps to quantify both the background and foreground of the en-

vironmental impact of the buildings’ components and performances. Different LCA

dimensions were introduced to tackle this issue, aiming to quantify the environmental

impact of the buildings’ components and performances. In this setting, the LCA impact

significantly depends on the life cycle inventory components. However critical issues

evolve around these components identified to affect the overall LCA impact. One

major component is the indoor sensors used to provide input data to the inventory with

the scope of energy optimisation while maintaining optimum indoor conditions. The

relevant research has shown considerable progress along this path, yet with notable

shortcomings. These include a lack of understanding of the significance of the trade-off

between the characteristics of the integrated technologies and their optimisation effi-

ciency. This gap was further highlighted, particularly in the adoption of indoor sensors

considering their environmental impact weightings against their optimisation outputs.

The primary aim of this research is to create and integrate virtual indoor monitoring

sensors into LCA inventory to optimize energy consumption and well-being perform-

ance during buildings’ use phase. Accordingly, this Thesis presents a holistic approach

to virtualise indoor monitoring sensors while providing credible measurements for

energy optimisation purposes. Informed by current research, the methodology was

demonstrated in a step-by-step approach to answer the research questions. Mainly,

different simulation engines were used for different purposes. For instance, the Compu-

tational Fluid Dynamic (CFD) simulation and thermal imaging were used to optimise

the physical sensors’ positions to guarantee high-accuracy measurements at a later stage

of the virtualisation. The methodology also traced and analysed multiple dynamic

and static indoor boundary conditions of influence on the sensors measurements. This

approach has significantly helped in understanding the sensing measurements behavior
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under different conditions, which provided more certainty around the virtual measure-

ments. The virtual sensors resulted in a decrease of CO2 emissions by 11.698.76 ton of

CO2 per each physical sensing unit. Accordingly, the developed solution contributed to

phasing out the physical sensors and therefore, their associated embodied carbon. Thus,

this finding is considered significant in eliminating the associated carbon from a pivotal

LCA inventory component. Furthermore, the resulting high-accuracy measurements of

the developed virtual sensors also factored in maintaining the occupants’ well-being

conditions and the associated energy consumption.

The founded equations in virtualising indoor sensors resulted from the extensive

CFD, and EnergyPlus simulations and data analysis. These simulations were used to

define variables governing the indoor sensors’ measurements were practical representa-

tions of different indoor and outdoor influencing factors that control indoor measurement

behaviours. The achieved virtual sensors’ high-accuracy measurements were validated

by using physical sensors in the case study zone. Furthermore, the comparison to the

widely used Machine Learning (ML) models indicated higher accuracy of this Thesis’

framework.

In summary, the key findings of this Thesis open a new path to virtual indoor sensors

research. The identification of the indoor environment parameters of interest to energy

and well-being performances narrows the scope of the assessment to a building’s case-

specific. As a result, this finding has effectively helped in reducing the number of needed

sensors. Furthermore, the findings emphasised the need to optimise sensors’ locations

for higher accuracy measurements. The software simulations used to identify optimum

sensors’ locations have also contributed to finding a relationship between different

location measurements, which was used to reduce the number of sensors. Additionally,

the total virtualisation equation found to virtualise indoor temperature represents an-

other significant contribution to the indoor virtual sensors’ research field. Overall, the

successfully achieved new level of highly accurate virtual sensors’ measurements of

temperature, pressure, CO2 levels, and humidity can be counted as a significant step in

narrowing the physical components of the LCA inventory.
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Chapter 1 |
Introduction

1.1 Background

Recognizing the growing significance of climate change as a global concern, the

United Nations Environment Programme (UNEP) has emphasised the imperative for

all nations to pursue efforts to drastically reduce Green House Gas (GHG) emissions

(UNEP, 2021). The pre-COP26 measures agreed upon during the 2015 Paris Agreement

on climate change (IPCC, 2018), would have only reduced predicted 2030 emissions by

7.5%. To meet the global targets, reductions of 30% are needed to stay on the least-cost

pathway for 2°C and 55% for 1.5°C (UNEP, 2021; Cohen et al., 2022). Given this

global context, there is a pressing need for every sector in the industries to commit to

these emission reduction targets, particularly, the building and construction sector (circa

40%energy consumption and carbon emissions) (IEA, 2018).

The construction industry, in particular, stands at a crossroads of challenges and

opportunities. The surge in urbanisation, paired with rising energy consumption and

associated Greenhouse Gas Emissions (GHG), poses threats to our natural environment,

endangering biodiversity life on our planet (Leung, 2015; Clémençon, 2016; Waisman

et al., 2019). Yet, It has the potential to reduce energy demand, improve process

efficiency, and cut down carbon emissions (Rezgui and Miles, 2010; Alreshidi et al.,

2018; Li et al., 2019). This scenario paints a grim picture, indicating the necessity of

implementing effective reduction strategies to help decrease carbon footprint throughout

each life cycle phase in this sector (Röck et al., 2020).

Of these cycles, the operational phase of buildings is the most intense phase con-

cerning carbon emissions, presenting challenging issues to energy consumption rate and

associated occupants’ well-being levels. In fact, with 90% of human time typically spent

indoors (Tran et al., 2020), several indoor environments’ conditions, such as thermal

1



1.1 BACKGROUND

comfort, directly impact our mental and physical well-being (IPCC, 2013; Bueno et al.,

2016). The COVID-19 pandemic has further highlighted the criticality of indoor en-

vironments, as buildings can act as transmission hubs for pathogens, highlighting the

need for effective indoor environment monitoring and control (Negishi et al., 2018;

Morawska and Cao, 2020). Consequentially, recent research highlighted that 70% of the

total energy consumption in the construction industry is devoted to maintaining optimal

indoor environments (Ganesh et al., 2021). In this context, monitoring and controlling

the indoor environment is becoming essential for balancing our living conditions, while

reducing our associated carbon footprint (Negishi et al., 2018; Mujan et al., 2019;

Morawska and Cao, 2020; Desogus et al., 2021; García-Sanz-Calcedo et al., 2021).

While carbon emission refers to the greenhouse gases released into the atmosphere,

typically measured as a flow over time, embodied carbon refers to the carbon footprint

associated with the entire lifecycle of a product or a process (Huang and Ling, 2021).

The impact of carbon emissions from energy performance and product manufacturing is

significant and complex (Zhang et al., 2020). In this context, the evolution of energy-

efficient smart buildings emphasises the application of indoor environment monitoring

sensors for demand-responsive energy management (Pang et al., 2020; Li et al., 2021;

Maturo et al., 2022). Indeed, these components can improve energy efficiency and

reduce the environmental impact of a building, however, from a Life Cycle Assessment

(LCA) perspective, a trade-off between their carbon saving and embodied carbon must

be further investigated (Mohebbi et al., 2022). This issue triggers an argument about

whether a virtual machine can replace a physical machine to save more embodied carbon

across buildings’ use phase cycle. Certainly, since embodied carbon and environmental

impact are fundamental to the LCA principles, virtual components in indoor monitoring

and control systems can be a significant breakthrough in the area of LCA impact. In fact,

virtual machines provide the benefits of (a) decreased embodied carbon (Huang et al.,

2021), (b) encryption and secure control (Martin et al., 2021), (c) Backup functions

for existing physical sensors (Cotrufo et al., 2019; Hong et al., 2021), and (d) ability

to learn from historical data, improve accuracy and predict future (Kallio et al., 2021;

Martin et al., 2021).
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1.2 LCA IN OPERATIONAL PHASE

1.2 LCA in Operational Phase

This section clarifies the LCA stance taken in this thesis with a focus on indoor

environments to reduce energy demand and enhance occupants’ well-being while

mitigating environmental impacts. As such, the following sub-sections clarify the

research’s LCA interpretation as well as introducing the concept of LCA

1.2.1 LCA for Indoor Sensors’ Application

LCA is a tool designed to assess the environmental impact of a product or a process

across its entire life cycle (Cabeza et al., 2014). An LCA model typically details the

progression of the life cycle from the extraction of raw materials to their final disposal.

According to ISO 14040, this entails (a) the scope of the assessment, (b) the life cycle

inventory analysis, (d) the life cycle impact assessment, and (e) life cycle interpretation

(ISO, 2006). On a different scale, Dynamic Life Cycle Assessment (DLCA) is defined

as an LCA that incorporates elements of temporally induced changes that affect results

and interpretation of the modelled system (Sohn et al., 2020; Cornago et al., 2022).

With this perspective, two classifications of embodied carbon emerge from the sensors

used for indoor environment monitoring sensors, namely (a) direct carbon accumulation

linked to the existing sensors, and (b) indirect accumulation of additional smart systems

components. The direct accumulation can be sourced to (a) embodied carbon from an

excessive number of sensors and associated batteries’ usage (Hayat et al., 2019), and (b)

carbon emission as a result of poor measurement accuracy (Ruano et al., 2018; Mena

et al., 2022). The indirect accumulation points to (a) operating characteristics, including

the level of representation in addressing different energy demand scenarios (Zhu et al.,

2022), and (b) additional sensing systems requirements (Fokaides et al., 2020; Li et al.,

2021).

1.2.2 Potential of Virtual Indoor Monitoring Sensors in LCA

In pursuit of reducing the embodied carbon associated with indoor monitoring

sensors, this thesis focuses on the transition from physical to virtual sensors. Typically,

a physical sensor is a device that captures specific physical conditions and translates

3



1.2 LCA IN OPERATIONAL PHASE

them into signals that can be analysed by instruments or human observers (Brunello

et al., 2021). According to the same authors, virtual sensors are designed to process

various data and produce values approximating those directly reported by physical

sensors. As introduced in the previous part, the physical sensing device accumulates

embodied carbon from its physical presence and performance process, while a virtual

sensor only accumulates embodied carbon from its performance process. This means

that, while the quantifiable environmental impact of LCA is present considering the

physical entity of the sensing device, the DLCA is also present taking into account the

dynamism within the process performance of those devices. Yet, it is arguable that

the virtual nature of sensors can still imply an environmental impact as the literature

showed a subjective understanding of this topic. For instance, (Mytton, 2020) Argued

the difficulty in evaluating the environmental impact of cloud computing due to limited

access to essential data for a comprehensive environmental impact assessment. However,

a study indicated that the ecological environmental performance of cloud digital systems

is at an acceptable level, suggesting that advancements in cloud technologies align with

environmental sustainability (Cao and Bian, 2021). Another study demonstrated that

eco-aware approaches in cloud applications can significantly reduce the CO2 footprint,

emphasising the potential of cloud technologies to mitigate environmental impact (Wajid

et al., 2015). Furthermore, (Dodge et al., 2022) Argued that the geographic region of

the data centre plays a significant role in the carbon intensity of a given cloud instance.

Given this context, the literature showed more consensus on the possibility of carbon

footprint reduction, given echo-aware approaches, that outperform the carbon footprint

from physical sensors.

1.2.3 Sensors as an LCA Inventory Component

In DLCA involving sensors’ application, the relationship between the assessment

goal and consequential modelling necessitates that sensors are merely Dynamic Life

Cycle Inventory (DLCI) enabling tools (Cornago et al., 2022). According to (Collinge

et al., 2013), the inventory analysis for the DLCA focuses on different dimensions

including, (a) dynamic modelling of unit processes, (b) temporal variations in industrial

systems, and (c) temporal variations in emission resources. The latter is strongly
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connected to the physical sensors considering them as a source of emission from both

their manufacturing and process performance. Following this background, the next

subsection introduces the challenges and limitations associated with indoor sensors’

applications.

1.3 Research Motivation

Current research in the use of sensors for reducing energy demand and enhancing

occupants’ well-being involves several limitations and gaps, including:

• An unclear understanding of the optimal number of sensors required (Dong et al.,

2019; Zhu et al., 2022).

• Lack of clarity and justification on optimal sensor placement for improved accur-

acy (Pei et al., 2019; Abdelrahman et al., 2022).

• Insufficient guidelines on minimising the embodied carbon linked to indoor

environment monitoring and control systems (Mohebbi et al., 2022).

Furthermore, recent research has explored various applications of indoor environ-

ment sensors. Some studies have integrated Artificial Intelligence (AI) and Machine

Learning (ML) techniques to enhance adaptive systems, such as air conditioning (Val-

ladares et al., 2019; Zhu et al., 2022). These AI and ML-driven applications have

demonstrated improvements in environmental parameters and energy consumption com-

pared to traditional methods. Other investigations have focused on optimising sensor

placements to reduce biases in temperature measurements, especially in buildings with

specific ventilation characteristics (Arnesano et al., 2016). Additionally, there have

been efforts to develop open-source platforms for measuring diverse indoor parameters,

however limitation of the complexity due to potential sources of error and debugging is

acknowledged. Some research has also delved into predicting specific indoor conditions,

like humidity, using advanced ML models. However, several limitations have been

reported, including the need for multiple scenario testing.
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1.4 Research Objectives

Overheating and over-cooling of indoor environments result in excessive consump-

tion of fossil fuel-sourced energy with sizeable associated GHG emissions, affecting our

environment. Fundamentally, high-accuracy monitoring and control of indoor environ-

ments are becoming crucial to address energy performance and occupants’ well-being.

However, it comes with its carbon cost. Furthermore, the indoor monitoring system

is not affordable to the vast majority of existing public buildings sector. Therefore, a

persistent need to decrease embodied carbon from smart monitoring systems is evident.

This decrease is crucial to Buildings’ LCA, reducing considerable environmental impact

from our buildings’ use phase.

This research aims to reduce the number of physical sensors by relying on virtual

sensors in non-domestic buildings. The rationale behind the focus on non-domestic

buildings is their endemic high energy consumption patterns. The aim is to ensure

accurate indoor measurements needed for an adaptive indoor environment, and sub-

sequently, energy and well-being optimisation. To achieve this aim, the following

research questions are posited:

1. RQ1: Which criteria should be considered to select and prioritise the indoor

environment parameters necessary to conduct dynamic life cycle assessment,

taking into account a wide range of configurations, including occupancy schedules

and geographical location?

2. RQ2: What is the minimum number of physical sensors and their optimal posi-

tioning to provide accurate dynamic accounts of indoor environments?

3. RQ3: Can virtual sensors replace physical sensors while ensuring data accuracy

and reducing direct and indirect environmental impacts?

1.5 Research Contribution

This thesis offers two primary contributions. The first contribution is to phase out the

embodied carbon of physical indoor sensors. This goal will consider relevant strategies
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for transitioning to virtual sensors. The second contribution is to Optimise energy

performance during the buildings’ operational phase by facilitating high-level accuracy

of indoor parameters measurements. Both goals seeks to eliminate the embodied carbon

associated with a pivotal LCA inventory component for energy optimisation. The

anticipated results are therefore considered significant to the LCA impact within the

scope of energy optimisation during the buildings’ use phase.

Additional contributions include a holistic definition of the indoor environment

parameters of the interest in energy and well-being optimisation. By defining those

parameters, a case-based approach can then inform the minimum selection of the sensors

based on the defined scope. It also pursues accurate sensing data for the needed actuation

through optimal sensors’ positioning.

1.6 Thesis overview

The thesis is formulated into seven chapters to answer the presented research

questions. This introduction chapter provides the relevant background of this research

field. Accordingly, a contextualisation for the thesis approach is therefore established.

The second chapter presents a comprehensive literature review. It starts by reviewing the

current state of the art in the research field with the legislative dimension. This strategy

aimed at setting the scope of the intellectual commitment by considering existing

regulations. It further investigates current practices in indoor parameters’ definitions

and also analyses the current applications in predicting indoor sensors’ measurements.

This is followed by an LCA inventroy analysis reflection in the context of conducted

approaches.

Following the literature review chapter, the third chapter outlines the methodology

approach based on the formulated knowledge. In answering the research questions, it

presents a structured cross-validation approach for high-granularity results. As such, it

introduces multiple prerequisites to reach the final goal of sensors’ virtualisation.

The fourth chapter then presents the results and validation. Accordingly, it compares

the virtual sensors’ results to existing physical sensors’ measurements. It further

analyses and reflects the concluded results in the context of the commonly used ML

modelling.
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Following the results and validation chapter, the fifth chapter provides a discussion

of the findings. It starts by reflecting on the implications of the findings through their

interpretation within the current literature. It then discusses the results concerning each

research question.

The sixth chapter then presents the generalisability of the proposed framework.

Accordingly, it details the main use case for holistic understanding. It further describes

the proposed algorithms for the virtual sensing system. The goal is to provide a universal

application of this thesis’s findings for the wider benefits.

Finally, the conclusion chapter summarises the overall findings. It starts by reflecting

on the impact of this thesis’s findings on the current research field. Subsequently, it

presents the research contribution to the field of indoor virtual sensors. It also reflects

on current limitations associated with the findings.
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Chapter 2 |
Literature Review

This chapter presents a holistic review of current indoor environment monitoring

research, setting the stage for virtualising indoor monitoring sensors. Hence, it aims to

identify gaps in current indoor environment monitoring, including the adoption of indoor

sensors. The approach is to answer the proposed research questions, by highlighting

the underlying factors that hinder the trade-off associated with carbon accumulation

resulting from adopted monitoring solutions. However, given the broad scope of energy

performance and well-being optimisation in indoor settings, this chapter will also

explore additional research areas pertinent to this study’s context. The exploration of

advanced modelling methods is intended to aid in defining the environmental impact

of indoor environment conditions and subsequently, sensors. These include Building

Information Modelling (BIM), energy simulation, and Smart Readiness Indicator (SRI)

assessment. Along this direction, it begins by examining the state-of-the-art methods of

indoor monitoring and the implications of sensors’ deployment on energy efficiency and

occupants’ well-being. Drawing upon evidence, the focus will also be on the current

challenges directly related to the indoor monitoring sensors application as part of the

LCA inventory for energy optimisation.

As stated in the research objective part, the selection of non-domestic buildings as a

case study is justified due to their significant energy consumption, carbon emission, and

complex occupancy schedules. Buildings, such as schools, hospitals, and government

offices, typically have higher energy usage and associated carbon footprints compared

to residential buildings. Studies show that public buildings account for a substantial

portion of total energy consumption in the building sector, essentially, with the HVAC

systems being the major contributors. Therefore, focusing on non-domestic buildings,

this research can address the highest contributors to CO2 emission and accumulation

across buildings’ categories.
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Given this context, the adopted scope of the LCA in this research is to optimise the

LCA impact resulting from energy consumption during the buildings’ use phase. It

further considers optimum indoor environments as a product of energy performance.

Accordingly, This exploration aims to set the stage for an informed methodology to

answer the presented research questions in the previous chapter.

2.1 Literature Review Methodology

A comprehensive systematic review was conducted to pinpoint up-to-date research

studies by utlising research keywords, reflecting the presented research questions. It

also includes relevant work in indoor monitoring and control, and LCA inventory as

illustrated in (Figure 2.1). Accordingly, the adopted approach for this review consists of

four primary phases:

• Planning Phase: In this stage, the scope of the research questions was formed.

It involves applications of indoor monitoring sensors to non-domestic buildings

during their operational use phase. It further seeks to incorporate the defined

scope of the LCA to investigate relevant dimensions of indoor sensors.

• Search Phase: A comprehensive set of different research sourced from Science-

Direct, Springer, and SCOPUS by utilising specific keywords, in relation to the

research questions. The aim is to offer a broad and also in-depth view of indoor

monitoring sensors’ application dimensions. Accordingly, the used keywords

were: (“Indoor monitoring sensors” OR "Virtual sensors" OR “Embodied carbon”

OR “BIM” OR "Machine learning prediction") AND (“LCA inventory”). As can

be also seen in Figure 2.1, the inclusion of the literature starting from the year

2007 is aimed at covering the period following the publication of the Interna-

tional Standardization Organization (ISO) 14040, which defines the principles

and framework for the LCA. This can help in tracking the development timeline

of addressing the trade-off between carbon emission and embodied carbon in

indoor environment monitoring and control which can also be seen in Figure 2.2.

Before further filtering, this keyword set yielded 7,067 documents, of diverse

formats including, book chapters and journal articles.

10



2.1 LITERATURE REVIEW METHODOLOGY

Figure 2.1: Literature Review Methodology

Figure 2.2: Embodied Carbon Trade-off Between Smart Systems and Their Perform-
ance Optimisation
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2.2 STATE-OF-THE-ART RESEARCH LANDSCAPE IN INDOOR
ENVIRONMENTS MONITORING

• Filtering phase: The title screening helped identify full-text publishing and

eliminate off-topic subjects such as irrelevant sensors, LCA applications other

than in buildings, or different building LCA phases. This step was followed by

abstract screening to identify the application of indoor environment monitoring

tools during the buildings’ use phase with the components of monitoring and

automation, virtual sensors, and carbon reduction. Accordingly, 167 publications

were excluded, and 645 publications were concluded for the full evaluation in the

following phase.

• Evaluation phase: In this phase, a qualitative evaluation of the remaining pub-

lications was carried out to assess their quality and impact regarding clarity and

consistency. As mentioned earlier, given the broadness of this research field,

some papers were included in this stage to provide more insight into possible

methodology approaches. Accordingly, the identified gaps can then inform this

research approach and also reflect on the future path for further improvements.

2.2 State-of-the-Art Research Landscape in Indoor En-

vironments Monitoring

The research is gradually, yet slowly advancing on the operational trade-offs concern-

ing embodied carbon in energy efficiency tools, including indoor sensors, as illustrated

in Figure 2.3. Compared to physical sensors, it is observable that there is a consider-

able gap in utilising virtual indoor sensors. As reviewed, this slow progress is further

complicated by the evidence of common inconsistencies in the assessment of embodied

carbon across various LCA dimensions of the building components (Chen et al., 2022;

Xu et al., 2021). The indications showed that these discrepancies stem from unavoidable

assumptions associated with business-as-usual (BaU) applications for the sensors. As a

result, less detailed approaches were given to the upstream and downstream LCA of

these adopted components. Given these inconsistencies, there is a compelling argument

for reducing the physical components in smart systems as a more effective strategy for

embodied carbon reduction. This not only simplifies the assessment process but also

offers a more straightforward path to improved LCA impact.
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Figure 2.3: Research Progress in Indoor Monitoring Sensors Following The Publication
of ISO 14040.

As highlighted, this issue indicated a shortcoming in the overall embodied carbon

resulting from indoor environment monitoring. Building on this understanding, the

following subsection will explore criteria governing the identification of indoor envir-

onment parameters in the context of optimum indoor environment conditions. Given

the existing guidelines concerning optimum indoor environments, the exploration will

first consider these standards for collective analysis. While the goal is to seek answers

to the first research question, it also contextualises best practices concerning sensors’

measurement accuracy that need to satisfy these standards requirements. This strategy

will further help in investigating hypothetical modelling approaches to virtual indoor

monitoring sensors across the research’s landscape.

2.3 Indoor Environment Parameters’ definition

This section investigates the current research, in an attempt to answer the first

research question "Which criteria should be considered to select and prioritise the

indoor environment parameters necessary to conduct dynamic life cycle assessment,

taking into account a wide range of configurations, including occupancy schedules

and geographical location?". Along this direction, the section aims to formulate a

comprehensive understanding of relevant legislation and current practices in scoping the
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criteria for defining indoor environment parameters. The goal is to establish the relevant

knowledge of the adopted tools and corresponding limitations. It also reflects on the

LCA dimension associated with indoor monitoring conditions. Accordingly, it seeks

to analyse complex issues such as occupancy dynamics and identify possible viable

solutions for reducing the carbon footprint of the indoor monitoring process.

2.3.1 Criteria Determining Indoor Environments Parameters

The UK building regulations documents such as Part L2B, and Part F Volume 2,

recommend the safety, health, and welfare of the occupants in indoor environments

while promoting energy efficiency, in non-domestic buildings (UK Government, 2013,

2010). Within these regulations, different indoor environment set-points were aligned

with the World Health Organisation (WHO) guidelines. Accordingly, they define the

indoor environment as “All the physical, chemical, and biological factors external to a

person, and all the related behaviours”. The WHO reported that indoor air pollution

is responsible for a staggering 2.8 million deaths annually. Furthermore, the organisa-

tion reported that “Approximately one-quarter of the global disease burden is due to

modifiable environmental factors“ (Brusseau et al., 2016), which indicates the critical

role that indoor environment quality has in both public health and global well-being.

These recommendations are consequential to further regulatory bodies’ guidelines, such

as the British Standards Institution (BSI), Health Safety and Environment (HSE), and

the Chartered Institution of Building Services Engineers (CIBSE). For instance, the

Control of Substances Hazardous to Health Regulations (COSHH), details workplace

exposure limits for hazardous substances including dust, gas, and fumes (Moon et al.,

2021). The Environmental Protection Agency (EPA) 2013 report also indicated that

exposure concentrations vary depending on several factors including individuals’ be-

haviour and activities, pollutant sources, and geographical location (NRC, 2013). It

is, therefore, the idea behind this maximum exposure time implies a limited tolerance

per category occupants and building type. Concisely, the Literature showed different

criteria for identifying and prioritising indoor environment parameters. This approach

is found dependent on several factors such as occupancy profile, space type, and even

geographical locations (Erlandson et al., 2019; Wei et al., 2023). In more detail, para-
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meters such as thermal, visual, and Indoor Air Quality (IAQ) are often considered the

most important due to their high link to occupancy well-being and energy consump-

tion. Moreover, demographic factors such as gender and age also play a significant

role in indoor environments’ thermal sensations (Andargie and Azar, 2019; Yang and

Moon, 2019). Consequentially, the literature pointed out the necessity of calibrating

thermal comfort taking into account different occupant classes and activities (Rohde

et al., 2020). Accordingly, the research pointed to (a) physiological-based comfort

(Djongyang and Tchinda, 2010), and (b) design-oriented, including productivity and

enhanced well-being (Ganesh et al., 2021).

To further understand the implications of occupancy-focused indoor environment

conditions, and their implications on energy optimisation, further thermal comfort

definitions were examined. Accordingly, the BS EN ISO 7730 defines thermal com-

fort as a condition of mind that expresses satisfaction with the thermal environment

(International Organization for Standardization, 2005). The standard further determines

the thermal comfort using Predicted Mean Vote (PMV) and Predicted Percentage of

Dissatisfied (PPD). In this setting, it is important to acknowledge that the PMV and PPD

may not be always representative, compared to other regulations set points. However, in

consistency with the PMV approach, the research has also attempted to further define

thermal comfort as a consensual well-being (Rohde et al., 2020). The research has

also presented a comparison between the PMV and Actual Mean Vote (AMV) as a

result of demographic variation and their implications on indoor energy performance

(Del Ferraro et al., 2015; Enescu, 2017).

With these different perceptions of indoor environments, understanding the vital

role of multidimensional patterns is crucial to optimum indoor conditions. Along

this direction, the literature analysis indicated different indoor parameters with their

corresponding influences on the indoor conditions, as illustrated in Table 2.1.
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Table 2.1: Reviewed Dimensions of Indoor Environment Parameters in Non-domestic
Buildings.

References Parameters Dimensions

(Al Horr et al., 2017)
(Gwak et al., 2019)

Physical parameters Temperature, Humidity,
and Airflow

(Allen et al., 2016)
(Potrč Obrecht et al., 2019)

Chemical Parameters CO2 levels, VOCs, and
particulate matter

(D’alessandro et al., 2020)
(Awada et al., 2021)

Biological Parameters Bacteria and viruses

(Chen et al., 2020a) Behavioural Parameters Occupancy profiles
user preferences and set
points

(Salimi and Hammad, 2019)
(Dong et al., 2019)

Technological Parameters Sensors’ accuracy, data
frequency, and automation

(Zuhaib et al., 2018) Environmental Parameters Seasonal variations and
time of the day

Building on the understanding of these criteria, recognising the dynamic interrelation

among different indoor environment parameters is substantial to maintaining optimum

indoor conditions. Accordingly, optimum indoor environment conditions can result in

increased energy consumption, and therefore, environmental impact. As a result, the

complex interactions among these factors highlight the challenges in establishing and

upholding the optimum conditions. However, reflecting on the reviewed regulations and

literature definitions, the evidence seems to suggest that a case-based indoor parameters’

definition, is substantive to defining optimal indoor conditions, of less environmental

impact. From an LCA perspective, the building type and occupancy activity, provide

further detailing to the LCA inventory input data, that is specific to each building’s case.

As reviewed, these can include different dynamic entities that factor into energy control

approaches and their environmental impact. accordingly, the following subsection

explores this dynamism from the context of the LCA inventory scope formation.
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2.3.2 Integrating LCA Inventory for Energy Optimisation

This subsection investigates underlying factors in the characterisation of the indoor

environment parameters as an input to the LCA inventory. The goal is to explore

possible tools that can be used in shaping the system boundaries of the inventory input

data. These boundaries can then be used to inform the level of detail needed to optimise

the trade-off between optimisation tools and their environmental impact.

The research has introduced the Attributional LCA (ALCA) as being focused on

the direct environmental impact of a system boundary whereas the Consequential LCA

(CLCA) addresses the indirect effects of the system boundaries (Hansen et al., 2023).

Considering the broader dimensions introduced in the previous section, both LCA

sub-concepts of ALCA, and CLCA, can shape the LCA inventory for indoor parameters’

monitoring. In addition to the direct effects, accompanying indirect effects in the

LCA inventory analysis are important determinants to define the modelling choices in

quantifying the influence of the optimisation on the environmental impact. According to

the scope of this study, a case-specific approach to internal and external dynamic factors

can better define indoor parameters (Chiesa et al., 2019). In more detail, internal factors

can be named as occupancy profile, and HVAC scheduling, while outdoor factors can

mainly be represented in weather conditions.

However, the presence of the physical components within the LCA boundaries can

imply environmental impact. As such, the following investigate the feasibility of those

components. The goal is to form an understanding of the trade-off between the viability

of those components against their environmental impact.

• Hardware-based Energy Optimisation

The research approach on hardware-based energy optimisation was mainly focused

on HVAC control, using indoor monitoring sensors as an IoT source that require sub-

systems characteristics. (Al-Obaidi et al., 2022) suggested that IoT models come into

three main models, including (a) IoT to device, (b) IoT to a cloud system, and (C)

IoT to a base station. With different physical architecture and corresponding energy

consumption, this particular classification can imply different LCA consequential im-

pacts. (Kim et al., 2022) suggested multiple hardware approaches, highlighting physical
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indoor sensors as a data mining source for different software modelling approaches.

Indeed, those approaches can vary in their overall environmental impact, compared to

their system architecture as highlighted earlier by (Al-Obaidi et al., 2022). However, it

is still arguable that data mining and computational approaches come with their envir-

onmental impact. Along this direction, the research has shown different approaches to

optimise energy consumption in data centres where servers accommodate software data.

(Zhou et al., 2015) highlighted the carbon emission in data centres from a geo-location

perspective and proposed a carbon-aware control framework through a triple elements

trade-off that consists of electricity cost, Service Level Agreement (SLA), and emission

reduction budget. The proposal was to make decisions on geographical load balancing,

capacity sizing, and server speed scaling. (Sharma and Saini, 2016) had a similar

approach to the cloud centre at a micro-level methodology by switching off the idle

notes and using live migration of virtual machines. However, this methodology may

restrict continuous access to live sensing data.

Based upon that, an initial understanding can be formulated that multiple approaches

to reduce the environmental impact of computational systems are well-founded in the

literature. This observation can later be used in weighing different modelling choices

against their environmental impacts. For more understanding of current software-based

approaches, the following subsection presents important publications pertinent to this

perspective.

• Software-based Energy Optimisation

The research has also shown interest in developing software energy optimisation

strategies. (Ye et al., 2021) highlighted that despite the effort, current applications are

only capable of providing static models, that lack the occupancy profile dynamism. The

study used sensors’ data and developed an enhanced deep learning model of Sequence-

to-Sequence Long Short-Term Memory (Seq2Seq LSTM). The results showed higher

accuracy compared to different models by capturing the temporal and spatial patterns of

time series data. Concisely, (Ye et al., 2021) developed adaptive ML-based building

models and Model Predictive Control (MPC) systems. The study achieved high accuracy,

yet acknowledged a limitation of further dynamic consideration, within a large building

context. A review by (Michailidis et al., 2023) analysed the research from 2015 to 2023,
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and identified the most highly cited model-free HVAC control applications. The review

highlighted the use of Reinforcement Learning (RL), Deep Reinforcement Learning

(DRL), and Artificial neural networks (ANNs) in different HVAC types. The review

indicated the significance of learning from surroundings and highlighted the Markov

Decision Processes (MDPs) mathematical framework to decrease uncertainties. The

presented equations aimed to describe the interaction of the agent with the surrounding

environment to enhance RL. Accordingly, the review concluded that DRL has significant

potential since it learns from dynamic surroundings, including occupancy dynamics and

external weather conditions.

In summary, both optimisation approaches acknowledged the significance of the

dynamic factors to achieve better results. They further highlighted the role of indoor

sensors in capturing different spatial and temporal factors, including time series. These

facts can further help in modelling the indoor environment parameters’ weightings on

energy consumption under different conditions. However, it was observed that less

information was given concerning the environmental impact of those systems. As

highlighted, the definition of the environmental impact of those systems are substantial

determinant of the LCA inventory towards higher LCA impact. In light of this analysis,

the following subsection narrows the scope by further analysing the current sensors’

applications. The goal is to investigate factors that may affect the accountancy of current

approaches in relation to their overall optimisation efficiency.

2.3.3 Modelling Approaches to Sensor Deployment in Buildings for

Energy Efficiency

This section investigates the underlying factors influencing indoor environment

monitoring as critical to both energy optimisation and human well-being. The explor-

ation will also touch on the trade-off between carbon emission and embodied carbon

of the monitoring sensors. Along this path, a review of associated modelling tools that

help evaluate these factors will be included. The goal is to offer a detailed exploration

background of the current research to assist the methodology in answering the first

research question outlined in the previous chapter.

As established in the previous chapter, several studies have pointed to the role of
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various factors of air quality, dampness, infestations, and lighting, as well as housing

tenure and design, on our mental and physical health (Monier et al., 2011; Bueno et al.,

2016) It was also noted that maintaining the health and well-being of occupants needs to

be balanced with the associated carbon emissions and embodied carbon. As presented,

different legislation published by both national and international bodies were found to

govern this balance. In this context, the deployment of sensors in buildings, particularly

for energy performance optimisation, has been a topic of significant interest in recent

years. In pursuit of seeking to know how current methods approach this purpose, diverse

modelling approaches were identified. However, the choice of approach depends on the

specific objectives of the deployment, the characteristics of the building, and the desired

outcomes in terms of energy efficiency and occupant well-being. As such, the following

subsections will review the current modelling approaches for indoor monitoring sensors’

deployment.

2.3.3.1 Sensor-Based Inverse Modeling for Indoor Energy Optimisation

One of the prominent modelling approaches is the inverse modelling technique which

uses statistical learning and time series analysis to improve knowledge from data (Simon

et al., 2019; Gunay et al., 2021). The review showed that this approach can accurately

assess buildings’ thermal properties with a small number of cost-effective sensors.

Arguably, this approach consents to the Seq2Seq LSTM from the previous section,

indicating the significance of adopting the time dimension in predictive modelling.

Along this direction, (Ramallo-González et al., 2018) Applied inverse modelling to

6 monitored real and 1000 simulated buildings of 16 representative variables used

to characterise the building’s geometry, fabric and occupants’ dynamics. The results

showed that Inverse modelling can accurately assess buildings’ thermal properties with

a small number of low-cost sensors. (Hong and Lee, 2019) Argued that physics-based

building energy models such as EnergyPlus rely on some unknown input parameters

such as internal thermal mass and air infiltration leading to uncertainty in simulation

results. The study proposed physics-based models with sensor data used to calculate

the zone air infiltration rate and internal thermal mass for optimised energy simulation.

Although this approach was constrained by the free-floating HVAC mode, further

development could lead to a more refined assessment of proposed retrofits, potentially
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enhancing the LCA impact. It is also important to acknowledge their idea behind

overcoming the simulation shortcomings by using the sensors to capture the influences

of the uncertainty factors found in the simulation.

Additional inverse modelling approaches with different objectives, such as cost-

effectiveness and aesthetic considerations, were also highlighted. For instance, a study

proposed a research question “What types of sensors are useful for building energy

management and where do we deploy them in a building?” (Agarwal et al., 2016). The

study argued the similarities in energy consumption profiles across different zones of

a building and proposed inference logic to decrease the number of physical sensors

arguing their cost and aesthetic impact. The study found a high energy consumption

baseline for the case study building and indicated a 48% energy consumption reduction

by relying on the proposed minimum indoor monitoring sensors. Furthermore, a study

applied ANN, Genetic Algorithms (GA), and Multiple Regression Models (MLR) to

model the supply air temperature of the Air Handling Units (AHU) in three different case

study buildings in Canada (Torabi et al., 2021). The authors suggested that the generated

inverse models can function as virtual temperature sensors that help in performance

control, however acknowledged that physical sensors are essential in fault detection in

AHU performance. Furthermore, the study highlighted further limitations on generating

predictive models that assist in characterising the performance of the AHUs. Further

inverse modelling approaches relied on different strategies utilising ML modelling and

indoor sensors as can be seen in Table 2.2.
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Table 2.2: Summary of Inverse Modelling Approaches and Findings

Reference Methodology Inverse Modelling Ap-
proach

Findings

(Hong and Lee,
2019)

Integrating physics-
based models with
sensors data

Enhanced accuracy of
simulation results

Informed decision-
making on energy
retrofits and efficiency
improvements

(Ramallo-
González et al.,
2018)

Reliability of inverse
modelling in character-
ising thermal properties

Assessment of build-
ings’ thermal properties

Accurate evaluation of
retrofit impacts

(Han and Zhang,
2020)

Energy-saving building
system integration with
a smart and low-cost
sensing/control network

Integration of smart
sensing/control network

Satisfactory thermal
comfort and indoor air
quality with energy
savings

(Lee and Hong,
2019)

Validation of an inverse
model of zone air heat
balance

Validated inverse model
in EnergyPlus

Enhanced energy mod-
elling of existing build-
ings

(Asadi et al., 2019) Calibrating energy
model using automated
optimisation-based
algorithm

Optimisation-based
framework utilising
a Harmony Search
algorithm

Reliable calibration of
building energy models

(Boodi et al., 2022) Comparative analysis
of thermal-network
models including white,
black, and grey-box

Comparison of various
inverse modellings for
building thermal net-
works

Lack of standardisation
in model configuration.

(Gunay et al.,
2020)

G A to estimate model
parameters based on
sensor data

Inverse grey box mod-
elling for diagnosing
sensors and actuator an-
omalies.

Identification of HVAC
faults using sensor data,
based on the model
parameters’ interpreta-
tion

(Rusek et al., 2022) Controlled variables, us-
ing crowd-sensing to
model user activity in
different conditions.

Understanding energy
consumption concern-
ing occupancy.

Correlation between
occupancy and energy
consumption.

22



2.3 INDOOR ENVIRONMENT PARAMETERS’ DEFINITION

The table indicated different goals by integrating sensors and various ML model-

lings, which will be covered in the following subsection. Nevertheless, it is observable

that the integration of sensors comes as a method to capture different dynamic condi-

tions, particularly occupancy, to later correlate with energy consumption. However,

while inverse modelling has been acclaimed for its potential in energy performance

optimisation, recent research highlighted some of its limitations. (Purnomo et al., 2020)

emphasised the criticality of addressing dynamic factors and suggested that the choice

of methods can significantly influence the accuracy and efficiency of the model. As also

indicated by (Rezaee et al., 2019), inverse modelling can provide feasible solutions, but

there is an inherent challenge in identifying the most optimal and practical solutions for

real and dynamic world applications. In contrast, ML modelling has shown interesting

capabilities to learn the behaviour of these dynamics. The reviewed methodologies

indicated that ML models can learn from sensors’ data to predict indoor energy con-

sumption. From this perspective, the following subsection will review the adoption of

indoor monitoring sensors in ML models for energy performance optimisation. The

goal is to formulate a further context of the indoor sensors within the LCA inventory.

2.3.3.2 Machine Learning Modelling to Predict Indoor Sensing Measurements

Despite the complexity involved, ML models are largely adopted by the research

to predict indoor sensors’ measurements. They mainly come as supervised and unsu-

pervised learning models (Elmezughi et al., 2022). The supervised models are used

where the model learns a function between the input and output data. On the other hand,

unsupervised models are used to extract hidden rules from unlabeled data. However,

the non-linear behaviour in the dynamics behind energy consumption in buildings

necessitates precise modelling approaches to decrease potential bias in their results

(Zhang et al., 2021). In this context, the literature defined ML as “a computer program

is said to learn from experience E concerning some class of tasks T and performance

measure P if its performance at tasks in T, as measured by P, improves with experi-

ence” (Zhou, 2021). Based on this definition, ML has been increasingly explored to

predict indoor sensors’ measurements, using their historical data to predict sensing

measurements for energy control optimisation. However, few approaches argued that

this methodology can improve by using a sufficient amount of historical sensing data,
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which is time-consuming. In overcoming this issue, (Ghahramani et al., 2017) proposed

an adaptive hybrid metaheuristic approach to optimal HVAC control settings without

any historical data. The study relied on one dynamic factor of the outdoor temperature

and produced promising results however acknowledged the role of dynamic occupancy

profile on energy consumption fluctuations. In contrast, (Abade et al., 2018) Aimed to

improve occupants’ experience in the context of smart environments with ML support.

The solution monitored environmental factors such as temperature, light intensity, noise,

and CO2 to estimate the presence of occupants and subsequently used ML to infer

the number of individuals in the room. While the study offered promising results, the

experiment was limited to a specific room characterised by limited occupancy changes.

This highlights the recommendations from the previous study which emphasised the

importance of comprehensive occupancy profile data. Indeed, limited indoor environ-

ment boundary conditions can lead to poor LCA inventory formation, however, it is

observable that the occupancy profile can be estimated by inferring different parameters.

for further analysis of the influence of limited boundary conditions, it is important to

investigate different ML modelling settings, namely Black Box, White Box, and Grey

Box models.

• Black Box Models: The Black Box models are data-driven, establishing mathem-

atical relationships between variables based on system performance data (Li and

Wen, 2014). They are more dependent on ML algorithms and do not require prior

knowledge of system physics. Their efficacy is closely tied to the availability and

quality of data. Given sufficient data, the interoperability of Black Box models

indicates their potential integration with existing building management systems to

enable energy optimisation goals (Zhang et al., 2021). However, while they can

be highly accurate, they lack the inclusion of the occupancy dynamic profile as

reviewed by (Gassar and Cha, 2020). As a result, both Whit Box and Black Box

use mathematical domains such as MATLAB and EnergyPlus to predict energy

savings, particularly on retrofit. This fact was previously highlighted within the

software-based energy optimisation subsection, highlighting more focus on static

modelling for the overall energy performance.

• White Box Models: These models are grounded in the physical properties of
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building materials, and utilise thermal dynamic equations to capture the inherent

physics of the system (Rätz et al., 2019). Therefore, they are based on explicit

knowledge of the system’s underlying physics. However, their practicality is

sometimes limited due to the need for detailed building information, which can

be challenging considering the indoor dynamic conditions. One example is the

EnergyPlus modelling which requires extensive detailing for the building physical

models and different indoor boundary conditions to achieve high-accuracy results

(Gassar and Cha, 2020). However, based on the reviewed methods from the

previous Table 2.2, EnergyPlus still needed to be validated by different inverse

modelling for higher accuracy. Nevertheless, there’s still a notable preference

for White Box models over Black Box models in certain applications, due to

their closer alignment with physics-based models particularly of time dependency

factors (Fung et al., 2021).

• Grey Box Models: These models come in a combination of features from

both white and Black Box models (Li and Wen, 2014; Rätz et al., 2019). They

are usually adopted when there are limited measured data, offering a balanced

approach that integrates both physical and data-driven approaches from both

models. As a result, they combine the transparency of White Box models with the

flexibility of black-box models, making them particularly suitable for complex

modelling tasks. This strategy is similar to the reviewed inverse modelling. In

essence, it can refer to integrating historical sensing data with the EnergyPlus

simulation model for higher accuracy optimisation results. Given this context,

this strategy requires the continuous presence of physical sensors to periodically

run the optimisation.

Despite the advancements in these modelling approaches, the gap remains con-

cerning real-world applicability. This includes their scalability and performance under

diverse building types and climates. For instance, several outdoor dynamic factors define

the environmental context of a building. In detail, Urban Canyons are narrow passages

of trapped air formed by tall buildings in urban areas, and therefore, may unpredictably

decrease IAQ levels in the event of natural ventilation (Buccolieri et al., 2022). Also,

the Urban Heat Island effect is a phenomenon where temperature increases in a specific
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urban area due to human activities or architectural characteristics (López-Guerrero et al.,

2022). Both phenomena are, therefore, polar to the other as high temperatures may

require natural ventilation that decreases the IAQ levels. This fact emphasises the need

for a high-accuracy modelling approach that is inclusive of both external and internal

factors affecting indoor environments. In this context, (Zekar and El Khatib, 2018)

Evaluated the trade-off between accuracy loss and increased computational efficiency by

comparing various modelling types. The study developed and assessed an ANN Black

Box model, A Grey Box model of AutoRegressive Moving Average with eXogenous

inputs (ARMAX), and a White Box model Reinforcement Learning with Classification

(RC), against a physically detailed model of EnergyPlus. The outputs demonstrated

that simplified building representations in urban environments result in a limited loss

of accuracy compared to a detailed model. The study recognised certain assumptions

as limitations, however, it emphasised the significance of Urban Canyon analysis and

the Urban Heat Island Effect in understanding the impact of various building layouts

and conditions. Aiming to address these uncertainties, Grey Box models have been

highlighted by (Harb et al., 2016) for their potential to forecast the thermal response

of buildings for energy demand management, with a focus on different building types.

Furthermore, a hybrid approach of both Grey Box and Black Box models was proposed

for predicting indoor air temperatures in typical two-story houses (Cui et al., 2019). The

study observed reliability in predicting average temperatures on both floors. However,

in the absence of indoor sensors, relying on Black Box modelling only can overlook

those dynamic factors usually picked by the indoor sensors. Furthermore, the use of

sensors in the White Box and Grey Box models did not factor in the trade-off between

their embodied carbon and the overall optimisation impact.

In contrast, A study adopted Multi-layered Perception (MLP) to predict a building’s

energy consumption (Chammas et al., 2019). The study used 10 wireless indoor sensors

and weather data to gain insight into the energy performance of the case study building.

To compare the outputs to different types of models, the study also developed additional

classification algorithms models. These include Linear Regression (LR), Support Vector

Machine (SVM), Gradient Boosting Machine (GBM) and Random Forest (RF). The

study demonstrated better outcomes and acknowledged negligible differences across

all adopted models. The study also highlighted the importance of adopting weather
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data to improve overall accuracy. This highlight implies the continuous use of sensors,

which necessitates a considerable amount of their embodied carbon across the buildings’

operational phase.

Given the reviewed modelling strategies, the choice of a specific model is mainly

dependent on the characteristics of the data (Chen et al., 2020b). Further considerations

include sensors’ accuracy and embodied carbon which was overlooked by the reviewed

research. Therefore, since the sensors are considered a main source of capturing the

dynamism in the indoor environment, their application requires a religiously defined

scope. This scope can then consist of (a) level of representation and measurement

accuracy, and (b) associated embodied carbon to establish optimisation trade-off. For

more detail, the following section explores sensors’ applications. The goal is to establish

further understanding centring around their application boundaries and identify gaps

that can inform high-level representation of the indoor environment conditions.

2.4 Selecting Indoor Environment Factors for Robust

Energy Optimisation

After thoroughly examining different modelling approaches to energy performance

prediction, it was identified that sensors’ measurements’ accuracy and associated embod-

ied carbon were overlooked. Accordingly, it is essential to explore the possible indoor

factors under which the sensors operate. By gaining more certainty, this exploration is

therefore significant to the quality of the LCA inventory input data resolution. As such,

it also attempts to answer the first research question, concerning the configuration’s

range.

Despite the identified shortcomings, different research showed more focus on the

sensors’ application. (Yoganathan et al., 2018) proposed a data-driven approach using

partition-based clustering algorithms, an information loss approach, and the Pareto prin-

ciple. The study deployed a large number of sensors in an open office space and used the

Pareto principle to identify each cluster. Accordingly, it considered 20% of the deployed

sensors as more representative of the indoor conditions. The incorporation of methods

like the Pareto principle in sensors’ positioning strategies highlights the importance of
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capturing the most influential factors in indoor environments. Furthermore, the study

also recognised the significance of addressing boundary conditions, such as ambient

temperature, humidity, building location, and orientation. This case-based approach can

provide guidance when applying the methodology to different buildings. Accordingly,

indoor parameters of interest to sensors can vary with their regulatory set-points respect-

ively. In this context, (Khovalyg et al., 2020b) reviewed and compared the requirements

for indoor thermal environment and ventilation for acceptable air quality across different

international standards. The review identified the role of different factors in shaping

the standards. These include climate, building typology and demographic factors. This

finding further sets the boundary of indoor environment conditions under legislative

criteria.

As understood, the definition of the indoor parameters of interest to sensing has

different dimensions depending on the building case. As a result, this definition comes

as a crucial step in approaching sensors’ identification. For more context, the following

subsection addresses the indoor environment parameters’ definitions.

2.4.1 Indoor Environment parameters definition

As highlighted in the previous subsection, the LCA for energy performance during

the operational phase is significantly influenced by the input data, facilitated by the

sensors as part of the inventory. Accordingly, the accurate measurements of the indoor

environment parameters provide effective input data. This certainty further ensures that

the LCA outputs reflect the actual environmental impact of the buildings’ performances

(Morales-Velazquez et al., 2017). Hence, accurate definition of the indoor parameters is

vital prior to sensors’ identification. On that account, the literature showed different cri-

teria to identify the influence of indoor environment parameters on energy consumption

and occupants’ well-being. As mentioned in the previous section, the SRI assessment

can be used to highlight features of the highest influence on environmental impact and

occupants’ well-being (Ożadowicz, 2022). While the assessment comes as an evaluative

method, combining it with computational energy simulation engines can provide more

certainty about the indoor parameters.

Another approach highlighted the potential of using the buildings’ energy consump-
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tion data to identify the parameters of interest for sensing and control. A study by

(Khovalyg and Ravussin, 2022) demonstrated that electricity consumption in buildings

can be reliably predicted using data from a subset of buildings. This approach is particu-

larly beneficial as it can provide insights into the energy use characteristics and demand

load features of buildings (Guan et al., 2016). Furthermore, integrating user information

with the physical characteristics of buildings can derive influential elements that impact

energy consumption. Such data-driven methods can be instrumental in estimating en-

ergy consumption attributes (Tian et al., 2021). Moreover, the consideration of specific

energy consumption patterns of buildings has been emphasised, suggesting that each

building should be investigated as a unique unit (Safa et al., 2017). It is therefore becom-

ing evident that a custom-based approach to identify indoor parameters of interest is

crucial to achieve the anticipated LCA goals. While the case-based approach can result

in different criteria in defining indoor parameters, the occupancy interaction indicated

universal dynamic criteria that influence indoor conditions.

In addition to the identified criteria, another dimension in choosing the reliable

types of sensors. For instance, the sensor’s attributes, such as high sensitivity, low

power consumption, and multiple operation modes, are essential features for both

effective monitoring and reduced environmental impact (Shahzad and O’Nils, 2018).

Furthermore, the environmental footprint of the sensor, particularly when considering

the materials used in its manufacturing, is another significant consideration. For the

full picture of the sensors’ environmental impact, further review will be analysed in a

dedicated section.

In summary, the comprehensive approach to assessing a building’s smart readiness

can identify possible gaps in it is current indoor environment parameters performance

(Li et al., 2019). Accordingly, this strategy supports the selection of indoor monitoring

sensors as both effective and aligned with the overall LCA inventory goals. However, to

achieve certainty of the intended monitoring parameters, the following subsections will

review the characterisation of indoor environment parameters. The goal is to provide a

detailed exploration of how these parameters are identified, measured, and prioritised

according to a building’s context.
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2.4.2 Indoor Environment Parameters Characterisation

The dynamism in indoor environment parameters is a complex interplay of various

dimensions that significantly influence both human well-being and the building’s en-

ergy performance (Mishra et al., 2016; Ma et al., 2021). In this setting, Ill-informed

HVAC systems, especially with poor knowledge of changing occupancy scenarios or a

building’s change of use, have a significant energy load due to unnecessary heating or

cooling (Leung, 2015; Maddalena et al., 2020). Furthermore, with the cold and moisture

affecting human health and causing sick building syndrome, the increasing heating

costs have pushed for less natural ventilation in return for decreased heating load but

poor IAQ (Stabile et al., 2017). In this case, a responsive action from the mechanical

ventilation to improve the IAQ can cause pressure differentials between buildings’

zones, which may lead to infiltration and air pollutants from the deterioration of the

building’s material (Shi et al., 2020). Moreover, the simultaneous increase in heating

and airflow rate from mechanical ventilation to improve the IAQ can also increase the

carbon footprint compared to its expected levels. As highlighted in Section 1, enclosed

microclimates with a high airflow rate can also create infectious environments, i.e.,

COVID-19 virus resettling behaviour due to different air shear forces (Morawska and

Cao, 2020; Noorimotlagh et al., 2021). Furthermore, relying on natural ventilation to

improve the IAQ can also increase the heating load in winter, and decrease the buildings’

efficiency as a barrier to the infiltration of outdoor pollutants as a result of excessive

natural ventilation (Stabile et al., 2017).

With this established pattern of different indoor environment parameters interac-

tions, Monitoring is becoming essential to maintain the desired equilibrium in indoor

environment conditions. However, as highlighted, occupants’ thermal sensations differ

based on their demographic characterisation. Therefore, aligning indoor parameters’

setpoints with this demographic classification, while considering buildings’ typology

is crucial to energy performance optimisation (Rupp et al., 2019; Zhang and de Dear,

2019). As such, The research showed different characterisations for the dynamic inputs

of time variances to address a wide range of thermal comfort scenarios in non-domestic

and mixed-use buildings (Fouquet et al., 2015; Vilches et al., 2017; Feng et al., 2022).

Despite the literature showing a case-based approach in LCA, informed by the
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weightings of pre-defined domains, concepts related to future prediction and time-

dependency inventory analysis for carbon reduction dominated this research landscape

with the main drive for impact (Ross and Cheah, 2017; Lueddeckens et al., 2020).

The variation in these approaches comes from the fact that, according to ISO 14040,

the goals of the LCA impact assessment are strongly linked to their input data. For

instance, the accuracy of the output results in reducing energy consumption is highly

dependent on the level of resolution in the indoor sensor measurement inputs, as part

of the DLCI (Feng et al., 2022). However, compelling evidence from the literature has

also highlighted that the calculated impacts from the LCA are prone to deviation from

their actual impact due to the lack of foresight in characterising the LCA input data

(Chau et al., 2015; Vuarnoz et al., 2020). As defined in Section 1, the level of indoor

parameters’ representation using sensors needs a more detailed assessment to achieve

the anticipated environmental impact. However, on one hand, a lower level of accuracy

in measuring indoor environment parameters can decrease the level of data resolution

within the LCA inventory and therefore affect the expected impact (Kumar et al., 2016;

Pantazaras et al., 2018). On the other hand, high accuracy in sensing data obtained

from multiple sensors can reduce carbon by effective energy performance optimisation,

but increase embodied carbon from the excessive number of sensors (Pantazaras et al.,

2018). Thus it is important to characterise indoor environment parameters of the highest

influence on occupants’ well-being and energy consumption, as a first step in defining

the minimum number of sensors to reduce their environmental impact. Along this

path, the following subsection will review the research on case-specific parameters’

definitions. The goal is to formulate a critical understanding of indoor parameters’

definition strategies.

2.4.3 Defining Key Parameters in Indoor Monitoring

As the characterisation of indoor environment parameters is an evolving field of

research, a growing focus on the need for custom assessments of specific buildings’

contexts is evident. Early on, the literature adopted questionnaire-based methods to

assess bench-marking for indoor environmental quality (Dykes and Baird, 2013). The

research has also presented a comparison between the PMV and AMV as a result of
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demographic variation and their implications on indoor energy performance (Del Ferraro

et al., 2015; Enescu, 2017). The findings were that those methods are subjective and

may not necessarily adhere to best practices. However, there’s a growing realization that

many national and international standards do not adequately address regional differences

and diversity factors in indoor environments. This necessitates the integration of various

indoor environmental factors into a combined indicator (Khovalyg et al., 2020a). In this

direction, a study by (Li et al., 2021) assigned different weighting to each parameter,

to create a model that more accurately reflects the preferences and priorities of the

majority of occupants. Hence, this can be typically used to prioritise or give importance

to specific parameters or factors over others considering the occupants’ well-being and

the associated energy consumption.

Recently, (Ganesh et al., 2021) conducted a literature review covering the last

5 decades to investigate factors affecting indoor environment quality. The review

highlighted that the studies lacked the depth of assessing pivotal factors, including

thermal and visual comforts. The study emphasised the need for more custom methods

in approaching indoor environment quality conditions. However, the significance of

shaping indoor environmental conditions has also attracted considerable attention in

recent research. (Gupta and Kapsali, 2016) found that indoor environments’ conditions

and air quality are significantly influenced by the interaction between the performance

of building fabric and systems, with the occupants’ dynamic profile. This has led

to more exploration of holistic approaches that integrate building design, systems,

and occupants’ behaviour. Along this line, (Wei et al., 2022) reviewed various green

building certification schemes and identified different parameters used to assess Indoor

Environments Quality (IEQ) in offices and hotels. Their findings highlighted the

predominant focus on thermal, acoustic, visual, and IAQ, with the IAQ parameter

contributing the most to the overall optimum conditions. (Wang and Zheng, 2020) also

emphasised the growing attention towards green buildings, particularly in the areas of

design, energy simulation, and post-occupancy evaluation, highlighting the need for

integrated analysis of energy consumption, indoor environmental quality, and occupant

satisfaction during the operational stage. However (Janjua et al., 2019) pointed out that

the environmental performance of buildings is significantly affected by the service life

of a building and the replacement intervals of its components. This calls for a more
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in-depth understanding and consideration of the entire life cycle of building components

and systems when assessing their impact on indoor environmental conditions.

For more picture of the the indoor environment dynamics, the following subsection

focuses on both external and internal dynamic factors shaping the indoor environment

parameters. As such, the exploration will be focused on two main elements, including

the internal occupancy dynamics and the external weather-changing influence. The

goal is to explore possible dynamic relationships between dynamic factors and indoor

environment parameters’ behaviour.

2.4.4 Indoor Environment Parameters’ Dynamics

Based on the reviewed literature, each building has a distinguished energy and

well-being performance. Thus, understanding the complex relationship between the

HVAC system performance, the building’s layout, structure and occupancy dynamics

plays a pivotal role in determining indoor environment conditions. Along this path,

a study by (Mavrogianni et al., 2014) highlighted the impact of occupancy patterns

and it is influence on buildings’ operations, suggesting that this factor can significantly

influence indoor overheating levels. This suggests that relating different occupancy

profiles to heating performance can help in adjusting the heating setpoint. Based on

this understanding, the heating capacity is to relate proportionally to heat gain from

occupants as they present. Similarly, (Zhang and Ardakanian, 2019) emphasised that

understanding and incorporating occupancy patterns can lead to substantial reductions

in energy consumption while maintaining indoor thermal comfort. However, additional

factors of structure specifications strongly combined with the indoor heating capacity,

can significantly influence the indoor temperature. For instance (Zahiri and Elsharkawy,

2018) found that many buildings face challenging indoor environments’ conditions.

The study attributed these challenges to thermally inefficient building envelopes, and

also to the habits of occupants in managing buildings, resulting in increased heating

consumption. (van den Brom et al., 2019) further indicated that the influence of

occupants on heating consumption varies depending on the building characteristics.

This can include buildings’ operational schedules or the type of service that the building

provides to the occupants. This finding can also correlate to the regulatory setpoints

33



2.4 SELECTING INDOOR ENVIRONMENT FACTORS FOR ROBUST ENERGY
OPTIMISATION

considering the occupants’ activity and the buildings’ types.

Another study presented a methodology for predicting indoor air temperatures based

on weather information and basic building characteristics (Aguilera et al., 2019). The

methodology achieved a 92% accuracy rate (F1-score) and an error margin of ±1°C when

tested in pre-known conditions. However, the model’s accuracy significantly declined

to 30% when applied to entirely new settings within the same climatic conditions, and

it further deteriorated when tested in different climatic zones. It was observed that the

number of occupants significantly influenced the accuracy of the indoor air temperature

predictions, whereas building-related parameters such as construction year and floor

area had a minor impact on the model’s performance. This finding further highlights

the occupancy profile as the dominant dynamic factor. Another study predicted indoor

temperature based on Newton’s cooling law specifies that the rate of heat loss of

an object is proportional to the temperature differential between the object and its

surroundings (Hietaharju et al., 2018). The study used different building types where

sensors were deployed. While the study concluded high accuracy in predicting the

indoor temperature, multiple factors could point to further investigation. These include

a restricted data set of 100 hours, the inclusion of automatic heating controls, and the

lack of separation between energy used for heating and hot water. Additionally, the

sensor placement and the use of tabular values for key parameters introduced potential

errors. These factors collectively raise questions about the level of dynamism in the

model’s approach.

From a different perspective, in cold climates, indoor temperature has been observed

to have a stronger association with outdoor temperature (Saeki et al., 2014; Zhai and

Helman, 2019). Hence, the role of heating is to increase the building’s indoor base

temperature, to reach a pre-defined setpoint of a thermal comfort sensation. In this

context, to quantify the energy needed for heating, the concept of Heating Degree Days

(HDD) is commonly employed (Lindelöf, 2017; Kohansal et al., 2022). HDDs are

calculated based on the difference between the indoor base temperature and the average

outdoor temperature. When the outdoor temperature falls below the heating setpoint,

it indicates a need for heating. Therefore, the HDD calculated from an estimated

base temperature is almost perfectly proportional to the heating demand, until the
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temperature settles at the pre-defined setpoint (Kohansal et al., 2022). Conversely,

since the outdoor temperature fluctuates across the day, the HDD value also changes

accordingly, therefore, multiple HDD readings are important to trace dynamic indoor

heating demand.

Although the HDD can provide an understanding of the outdoor temperature that

influences indoor temperature, internal information on buildings’ thermal characteristics

is as important to determine the heating load needed to reach associated setpoints. The

Degree Day Factor (DDF) represents the difference between the outdoor temperature

and the indoor base temperature, which is typically the temperature at which a building

neither gains nor loses heat (Ashrae, 2009). Thus, DDF essentially translates the HDD

into actual heating demand, by considering how the building responds to external

temperature changes (Sha et al., 2019).

HDD can be expressed as:

HDD =
n∑

i=1

max(0, Tbase − Toutdoor)

Where Tbase is the indoor base temperature, and Toutdoor is the average outdoor temperat-

ure.

Also, DDF can be expressed as:

DDF =
Heating Load

HDD

Where the heating load is specific to the building’s thermal characteristics, obtained

through energy simulations or empirical data (CIBSE, 2006).

This suggests that reaching an indoor setpoint temperature can be determined by

multiplying the HDD by the DDF to calculate the energy needed for heating and adding

that to the indoor base temperature, where:

Tindoor = Tbase + (HDD × DDF) (2.1)

As mentioned, the derivation of this equation is based on the principle that heating

demand in a building is directly proportional to the difference between indoor and
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outdoor temperatures. HDD measures the cumulative need for heating over time based

on external conditions, while DDF scales this need according to the specific building’s

characteristics, such as insulation and ventilation characteristics. However, additional

dynamic factors including the occupancy presence also contribute to the overall indoor

temperature through heat gain. Accordingly, this equation is a simplified model that

assumes the heating system is the only factor affecting indoor temperature which is

inaccurate (Lundgren Kownacki et al., 2019; Laskari et al., 2022). In addition, the

(HDD x DDF) metric is in °C-days and does not directly report Celsius units similar to

other variables within the equation. While this equation does not account for the heat

losses and gains resulting from occupancy dynamics and ventilation change, it is still

arguable that those changes can be captured by temperature sensors.

In a mathematical context, the relationship between an unknown variable and other

given values in an equation is often complex and highly dependent on the specific

context. For instance, regression models can be used to predict one parameter based on

the known value of another, providing a structured way to deal with unknowns (Agarwal

and Saxena, 2011). In more complex scenarios involving boundary conditions, unknown

values can be defined in terms of initial and boundary data, provided that certain global

relations are satisfied by specific functions (Tian, 2016). Furthermore, the equation

and its variables can be subject to empirical calibration based on the observation of

actual sensing measurements for both indoor and outdoor temperature measurements to

validate its output accuracy.

Since the DDF is specific to each building’s case, it reflects multiple boundary con-

ditions of a building. It is therefore essential to conduct buildings’ energy simulations to

get a more precise value for the DDF. Overall, the reviewed strategies and the presented

equation provide a useful road map for establishing a mathematical relationship that

addresses the dynamic factors, particularly temperature. This becomes more useful as

it was reviewed that the temperature parameter is strongly connected to heating and

IAQ. Along this direction, the following section will review additional simulation tools

commonly used in the literature.
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2.5 The Role of BIM in Indoor Environment Monitoring

and Control

Building upon the previous introduction of the SRI in defining indoor environment

parameters, this section aims to explore further aspects associated with BIM in defining

indoor parameters. The goal is to build a comprehensive understanding of its potential in

the current applications and constraints associated with the subject. Given this context,

the research showed diverse interests in employing BIM to simulate indoor parameters

as well as retrieving live sensing data. As such, the following subsections review the

adoption of energy simulation and digital twin buildings.

2.5.1 BIM Energy Simulation for Indoor Environment Character-

isation

The integration of BIM energy simulation during the design stage helps to reduce

the gap between the design and actual energy performance, as well as improve existing

buildings’ energy performance (Shan et al., 2020). Accordingly, the dynamic data

sourcing provided by BIM energy simulation is significant in characterising indoor

environment parameters, which also allows accurate sensors’ identifications (Chang

et al., 2018). In this direction, the use of EnergyPlus software can provide the actual

energy load for the indoor environment parameters under different occupancy profiles

and weather conditions (Brandi et al., 2020). However, given the sensitive nature

of characterising indoor parameters in highly dynamic conditions, it is important to

highlight that the EnergyPlus simulation may not be sufficient as a stand-alone tool

(Kim et al., 2019). Along this path, the SRI assessment helps to quantify case-specific

weightings that enhance the energy simulation input data for optimised results (Fokaides

et al., 2020). In more detail, while the SRI assessment investigates the buildings’ smart

readiness, identifying key performance indicators for the buildings directly contributes

to the parameters’ definitions and weightings. As such, diverse weighting for indoor

parameters is a substantive performance indicator that defines the simulation model

boundary conditions, Figure 2.4.
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Figure 2.4: Illustration of Case-specific Boundary Conditions Using the SRI Assess-
ment

The application of EnergyPlus software is commonly used for its ability to calculate

different indoor environment parameters’ loads, which is essential for managing indoor

heating and cooling demands effectively. However, the literature also points out the

limitations of relying solely on EnergyPlus, given it is permeable to errors resulting

from poor input definitions. To address this, the following subsection will explore the

evolution of BIM in the context of digital twins. The aim is to investigate the current

approaches in utilising live-streaming data models that continuously update and evolve

in response to real-world dynamic changes.

2.5.2 Giving context to sensed Data through BIM

As presented in section 1, the studies discussed BIM as a part of calculative method-

ologies that combine different simulating tools for data sourcing. This has motivated

the research to explore web-based BIM methodologies to collect, process, and automate

buildings’ information for different use cases (Sobhkhiz et al., 2021). One common

use case is combining BIM models, indoor sensing devices, and ML applications to

characterise, predict and control energy performance in indoor environments (Collinge

et al., 2011; Hollberg et al., 2016; Soust-Verdaguer et al., 2017; Meex et al., 2018;

Ghoroghi et al., 2022). In more detail, the contribution of the BIM models in this

problem-solving has different dimensions, of which the energy analysis is crucial in de-
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fining the buildings’ energy performance. The research has also acknowledged various

limitations in using this combination. For instance, Table 2.3 describes various uses

of this combination during the buildings’ design and use phases, and summarises the

limitations. While there was a lack of actuation in some cases, the whole combination of

BIM, sensors, and actuation, acknowledged the influence of the occupancy parameter on

indoor energy consumption. Furthermore, the research also pointed to the significance

of sensors’ accuracy which can be attributed to different factors, including the lack of

optimum positioning.

Further studies suggested BIM Digital Twin models as sustainability performance

indicators, including the dimension of estimating embodied carbon within the build-

ings (Nizam et al., 2018). Also, (Boje et al., 2020) described BIM Digital Twins as

“information-intensive” models that are crucial to supporting the optimisation of LCA

impacts. Along this direction, a study showed an interest in building materials embodied

carbon using a digital representation of BIM-based -LCA (Basbagill et al., 2013). They

developed a decision support method that assists designers in predicting which decisions

most critically determine a building’s embodied impact. However, (Crippa et al., 2020)

Pointed out that numerous LCA tools rely on databases of industry-average values,

which may not account for the actual embodied energy across suppliers’ materials.

This finding further supports the argument of phasing out physical components to

decrease the overall embodied carbon with integrated systems. Along this direction,

a study proposed an MLP model to predict indoor parameters without the need for

indoor sensors (Martínez-Comesaña et al., 2021). The results showed relative errors

of 6% for temperature, 5% for relative humidity, and 12% for CO2 levels. The study

acknowledged a limitation of the amount of data that did not cover different seasons. It

also emphasised the importance of defining the number of sensors and their optimum

positioning.

Other studies emphasised the need to integrate sensors for optimum results. (Lu

et al., 2020) proposed a system architecture to develop a digital twin containing different

characteristics including the Industry Foundation Classes (IFC) model and real-time

sensing data. The study suggested that AI-supported decision-making would highly

improve energy management, space utilisation, and failure prediction. In a similar dir-

ection, different studies proposed dynamic PMV optimisation using sensors. However,
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a study highlighted different limitations of these approaches, including the overlooking

of thermal exchange across buildings’ zones (Zahid et al., 2021). The study proposed a

combined parametric BIM and real-time sensors to generate real-time 3D visualisation

of indoor thermal conditions. To address the highlighted issue, the study used thermal

interpolation to account for indoor partitions’ thermal resistance. It is important to

highlight that the study did not approach possible accumulated carbon from either the

computational system or the physical sensors.
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Table 2.3: The Use of BIM in Optimising Energy Performance and Comfort

Authors Parameters and Meth-
ods

Used Technology Phase Limitations

(Shahinmoghadam
et al., 2021)

Thermal comfort based
on PMV-PDD

BIM, Sensors Use phase - Inconsistencies in outputs
due to assumptions - Low
sensing accuracy

(Chang et al.,
2018)

Thermal and visual com-
forts based on (1) Com-
fort (2) Energy saving (3)
Well-being standards

BIM, Sensors Use phase Low sensing accuracy

(Valinejadshoubi
et al., 2021)

Thermal comfort monit-
oring, Sensors based alert
system

BIM, Sensors Use phase Limitations on space tested
and number of sensors

(Utkucu and
Sözer, 2020)

Energy performance eval-
uation for thermal com-
fort

BIM Design phase Restricted boundary condi-
tions

(Hollberg et al.,
2020)

Embodied carbon assess-
ment

BIM All phases Exclusion of the design pro-
cess

(Valladares et al.,
2019)

AI agent to control and
balance thermal comfort
within acceptable PMV
values

Sensors, Actu-
ation

Use phase Controlling accessibility is-
sue

With this established, the literature pointed out that indoor monitoring sensors have

two sides of LCA impact during the building use phase. The first is by adapting en-

ergy performance according to the dynamic changing needs. The second is to provide

measures for optimum indoor environment conditions. However, as a consequence,

inaccurate sensors’ measurements can mislead decisions on energy optimisation actions.

Furthermore, the presence of physical indoor sensors over the entire buildings’ oper-

ational phase can accumulate a significant carbon footprint as previously highlighted.

Accordingly, the following section investigates current approaches to tackling these

issues. The goal is to further support the argument of needing to transition to virtual

indoor monitoring sensors.
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2.6 Summary

The reviewed literature concerning indoor environment parameters definitions

showed multiple approaches of different scopes and tools. These definitions were

primarily sourced from existing regulations and code guidance. In answering the first

research question, the criteria for selecting and prioritising the indoor environment

parameters are mainly defined by a case-based approach of boundary conditions that aid

an energy simulation process. Along this line, the consensus on gaining high-accuracy

indoor parameters’ definitions was centered around tracing the impact of dynamic

factors on indoor parameters’ behaviour. This focus was notable across the research

centered around the utilisation of indoor sensors to capture the influence of weather

and occupants’ presence on parameters’ behaviour such as heating and cooling energy

consumption. accordingly, a high-level energy model, simulating different dynamic

conditions can provide a breakdown of energy consumption among different indoor

parameters. While this is vital for the LCA subject of this research, it also helps in

defining and prioritising indoor parameters of the highest interest to sensing. This

strategy can then come as a pre-step in defining the indoor monitoring sensors. It can

further help in defining the minimum number of sensors to address the parameters

of the highest interest. As indicated, the SRI assessment can define the applicability

of smart devices’ installation according to it is evaluation results (Ożadowicz, 2022).

Thus, the SRI assessment can be counted as a prerequisite to the sensors’ definition

and installation that is highly linked to LCA inventory formation. In more detail, since

there is a strong correlation between the indoor parameters, LCA inventory, and the

LCA impact goals, an LCA goals-oriented can highly support the definition and the

prioritisation of the indoor environments parameters.

After investigating the answer to the first research question, the following section

will address both the second and third research questions. While those research questions

are consequential to the first research question, the examination of the literature shows

high relevance to the previous sections, and therefore, it is built upon the knowledge

gained so far, in this chapter.
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2.7 Reducing the Environmental Impact of Indoor Mon-

itoring Sensors

Building upon the knowledge gained from the previous sections, this section aims

to answer both the second and third research questions. This dual strategy is mainly

because of that the second research question of defining the minimum number of needed

sensors can be a first step towards virtualising sensors, which is the main focus of the

third research question.

The incorporation of smart systems, particularly sensors, has been recognised

as a crucial approach for achieving optimal indoor environment conditions. Yet, as

highlighted in the previous sections, it’s essential to investigate the trade-offs of their

efficiency against the implications of their embodied carbon. In general, the identified

research of embodied carbon in LCA for the buildings’ use phase showed a focus

ranging from the products manufacturing stage to the up-cycling buildings’ products

stage (Rasmussen et al., 2019). Despite the slow progression, the literature showed

limited interest in embodied carbon as a product of systems integration, including

sensors, or inefficient energy management during the operational phase as highlighted in

Table 2.4. However, it is still arguable that recent research has begun to shed light on this

matter. For instance, a study by (Zhu et al., 2022) emphasised the need to consider the

embodied carbon of building components, including advanced technological systems,

in the broader context of building sustainability. Consequently, while the integration

of smart systems can lead to operational energy savings, the embodied carbon of these

systems can offset some of these savings. (Pomponi and Moncaster, 2016) further

emphasised the importance of a holistic approach to embodied carbon assessment

in the built environment. They argued that while smart systems can offer energy

optimisation benefits, it’s crucial to account for their embodied carbon to ensure a

positive environmental impact.
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Table 2.4: Overview of Studies on Indoor Monitoring Sensors and Their Environmental
Impact

Reference Approach/Study Key Findings Limitations/Considerations

(Han and Zhang,
2020)

Integration of a smart
sensing/control net-
work with embedded
PIR/CO2 sensors.

Energy savings while
maintaining satisfactory
thermal comfort and
IAQ.

Limitation of semantic
scalability.

(Afroz et al., 2020) Integration of CO2
mass balance equation
with CO2 sensor into
the BMS.

Reducing energy con-
sumption while promot-
ing a healthier indoor
environment.

Potential increase in em-
bodied carbon due to in-
tegration of additional
sensors.

(Rosselló-Batle
et al., 2015)

Analysis of embodied
energy from building
components.

Significant embodied
energy resulting from
building components.

Emphasises the consid-
eration of embodied car-
bon in building compon-
ents.

(Guerra-Santin
et al., 2014)Guerra-
Santin et al., 2013

Monitoring activities in
low energy buildings.

Importance of monitor-
ing activities in low en-
ergy buildings.

Increase in embodied
carbon due to systems’
additions.

(Röck et al., 2020) Analysis of embodied
GHG emissions of
buildings.

Emphasised reducing
GHG emissions by
optimising embodied
impacts.

Highlights the chal-
lenge of embodied
carbon in monitoring
sensors.

(Oti and Abanda,
2019)

Integration of embod-
ied energy/CO2 compu-
tation

Automating the compu-
tation of embodied en-
ergy/CO2 of buildings.

Emphasises the need for
a unified methodology
for embodied carbon as-
sessment.

(Chen and Ng,
2016)

Operational phase and
its effect on embodied
energy.

Inclusion of recurrent
embodied energy in
building life.

complexity of consider-
ing the entire LCA of
building components.

(Dixit et al., 2015) Embodied energy of
construction materials

Buildings contribute to
40% of global energy
consumption.

Emphasises the need for
a whole life cycle ap-
proach to reduce em-
bodied carbon.

(De Wolf et al.,
2017)

Measuring embodied
carbon dioxide equival-
ent of buildings.

A need to improve data
quality for embodied
CO2e assessment.

Challenges and incon-
sistencies in measuring
embodied carbon.
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As presented in Table 2.4, different publications pointed to the need to assess

embodied carbon from systems’ integration, indicating existing inconsistencies in

assessing their embodied carbon. As previously highlighted, this assessment can help to

track the trade-off between smart systems functionality and their carbon footprint. The

studies also highlighted the limitations of semantic scalability, calling for a consensus

approach to decrease embodied carbon from smart systems’ additions.

In addressing this issue, the European Commission launched a guideline for Product

Environmental Footprint (PEF), where a specific environmental product footprint against

15 impact categories was required on products, including sensors and batteries (Verbeke

et al., 2020). Along this direction, the literature focused on the environmental impact

of sensors’ batteries. (Boyden et al., 2016) discussed the increasing environmental

impact of lithium-ion batteries, which are still widely used across several types of

Indoor wireless sensors due to their long lifespan. (Hayat et al., 2019) compared several

types of sensors’ batteries and suggested the Nickel-Metal Hydride (NiMH) batteries as

having the lowest environmental impact, however, it has less power density, higher cost,

and a higher discharge rate, which shortens the life span and subsequently accumulates

carbon. Another factor that can contribute to the accumulated carbon from sensors is

the high sampling rate (Wang et al., 2020). On the one hand, this can provide higher

resolution data readings that help in timely actions by automated HVAC systems. On

the other hand, the continuing active status of the sensors consumes the batteries in

shorter times. Table 2.4 shows different approaches to sampling frequency with some

studies using ML as an alternative to live sensing data.
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Table 2.5: Approaches to sampling rates of implications on battery consumption

Authors Dynamic Parameters Methodology Time Horizon

(Abade et al.,

2018)

Thermal comfort, occu-

pancy

Sensors 1 Minute

(Collinge et al.,

2011)

Thermal comfort Sensors 1 Second, 5 Seconds

(Valinejadshoubi

et al., 2021)

Thermal comfort, occu-

pancy

Sensors 5 Minutes

(Rebai et al.,

2015)

Sensors’ data Sensors 30 Minutes

(Valladares et al.,

2019)

Thermal comfort Sensors algorithm, ML 10 years

(Wall et al.,

2021)

Indoor air quality Sensors 1 Minute

(Ali et al., 2016) Thermal comfort, occu-

pancy, light intensity, CO2

Data logger and

OSBSS sensors’

platform

1 Minute

(Xiong et al.,

2019)

Visual comfort Personalised

visual satisfac-

tion

Every step-change

(Pino-Mejías

et al., 2017)

Heating and cooling Linear regression

and ANN models

-

(Nelson and

Culp, 2022)

Thermal comfort ML -

(Pedersen et al.,

2022)

Air quality, thermal com-

fort

BACS as-

sessment and

smartness evalu-

ation

-

(Lu et al., 2019) Thermal comfort Sensors 5 Minutes

Building on the insights provided in Table 2.5, it’s evident that while the integration
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of indoor sensors can be seen as an enhancement to energy optimisation, they introduce

new dimensions of embodied carbon. One of these dimensions is the high sampling

rate in wireless sensors which consumes more batteries. Also, as highlighted, an

ill-informed HVAC system can accumulate embodied carbon due to low-accuracy

sensors’ measurements. Therefore, there are two ways in which embodied carbon

accumulates from sensors’ applications. The first is the accumulation from the physical

characteristics of the sensors, and the second is the accumulation from the operational

characteristics of the sensors. Along this line, the research showed different approaches

to assessing embodied carbon from smart systems. (García-Sanz-Calcedo et al., 2021)

calculated the embodied carbon and energy of HVAC systems installed in 6 healthcare

centers for a lifetime period of 15 years using the equation:

E =
n∑

i=1

(Ci ·Ki) + Cf + Ct + Cc (2.2)

Where C is the total amount of embodied carbon in the HVAC healthcare facility,

expressed in kg, ci is the embodied carbon emissions of each material, ki is the amount

of material used, cf the emissions incorporated into the building during the construction

process, ct is the emissions from transport of materials and mobility of workers, and cc

indicates the emissions incorporated from the building construction. The results showed

that the calculated embodied carbon is equivalent to the CO2 emitted for 2.3 years of

the entire building’s operation phase.

While this methodology can be adopted for quantifying embodied carbon from

physical sensors and batteries, another dimension of embodied carbon needs to be

addressed. As highlighted, the accumulation of embodied carbon can also result from

low-accuracy sensors’ measurements. In this context, the research pointed to optimum

sensors’ positioning using different techniques. For more investigation on best practices,

the following section reviews current approaches in optimum sensors’ positioning.

2.8 Optimising Indoor Monitoring Sensors Positions

The optimised positioning of indoor sensors is crucial to obtaining high-accuracy

measurements, particularly to enhance the LCA inventory for optimised energy per-
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formance. Accordingly, this section explores the optimal positioning of indoor sensors

by investigating the capabilities of Computational Fluid Dynamics (CFD) simulation.

By simulating airflow, temperature distribution, and other relevant environmental para-

meters, CFD models can provide a detailed understanding of the indoor micro-climate.

However, given that indoor environments can include different services and appli-

ances, the CFD simulation may not be sufficient to track the thermal influence of these

elements. Therefore, further exploration of the usefulness of thermal imaging was

conducted. The resulting thermal mapping for indoor environments can then help

in understanding sensors’ measurements’ behaviour at different locations. Hence an

established correlation between the measurements can then be used in the virtualisation

process.

2.8.1 CFD for Optimised Indoor Monitoring Sensors’ Positioning

Sensors’ manufacturers often provide guidelines for optimal installation and po-

sitioning. However, given the unique design and characteristics of each building,

additional factors should be considered. Recent literature pointed to two primary con-

siderations including (a) the distribution of indoor temperature and air velocity (Luo

et al., 2023) and (b) the presence of heat and high air velocity sources close to sensors

(Pei et al., 2019). Driven by these factors, the research explored multiple approaches for

sensors’ positioning, including algorithm, error-based, and CFD modelling (Rebai et al.,

2015; Arnesano et al., 2016; Papadopoulou et al., 2016; Uyeh et al., 2021). Among

these approaches, the CFD showed reliable results on temperature, air velocity, and

pressure mapping, with notable limitations when capturing localised anomalies. For

instance, abnormal temperature fluctuations near heat sources such as lighting fixtures,

or increased air velocity near ventilation in and outlets, can affect sensors’ accuracy.

(Zhang et al., 2013) suggested that the temperature distribution in a room can be seen as

the temporal and spatial synthesis of the influence of all these heat sources, as expressed

in the equation:

∂θ

∂t
+

∂θuj

∂xj

=
∂

∂xj

(
vt
Prt

∂θ

∂xj

)
+

q

Cpp
(2.3)

where θ represents air temperature, uj is the air velocity, vt is the turbulent viscosity,
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q is the heat source, t is the time, xj is the coordinate, Prt is the turbulent Prandtl

number, Cp is the specific heat of air, and p is the air density. Accordingly, the paper

discussed the interplay of convection, diffusion, and external heat sources to describe

the temperature distribution in a room. Particularly, the expression of:

∂

∂xj

(
vt
Prt

∂θ

∂xj

)
(2.4)

Represent the movement of heat due to molecular motion, as heat diffuses from

warmer areas to cooler areas. The paper also discussed the concept of the Contribution

Ratio of Indoor Climate (CRI) on how far the heat generated by a source diffuses in

space. The CRI for a heat factor at a location xi is defined by the equation:

uCRIm(xi) =
uθm(xi)− θn

Qm

(2.5)

Where uCRIm(xi) °C is the temperature at position xi calculated by CFD when the

heat source Qm and the heat sink are both set. In more detail, this equation aims to

quantify the influence of a specific heat factor on the indoor temperature distribution at

a given location xi when a heat sink uniform of high to low temperature applies. This

difference provides insight into the temperature rise or fall caused by the heat source Qm

at that specific location. By dividing this temperature difference by the total heat transfer

Qm, the equation offers a normalized measure of the contribution of the heat factor

to the temperature at different locations in the indoor environment where a gradient

pattern can be established. Based on this approach, observation of multiple sensors’

measurements from different locations can help in analysing possible relationships

between those measurements. Subject to empirical validation, this developing theory

can offer insight into reducing the number of sensors using the identified relationship,

given one reference sensor.

However, (Mustakallio et al., 2017) Observed that the temperature gradient in

occupied hours with ventilation is much higher compared to unoccupied spaces, with no

ventilation. This observation suggests that dynamic occupancy and ventilation patterns

play a crucial role in determining temperature gradients and air shear forces in indoor

spaces due to constantly changing air velocity and heat gains. Along this path, (Borro

et al., 2021) highlighted the potential of CFD-based simulations in predicting contagion
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risk in indoor environments, especially in the context of the Sars-CoV-2 pandemic. The

study emphasised the significant role of HVAC systems in governing the movement

of airborne contaminants within indoor environments, such as droplets containing the

virus. Moreover, CFD simulations offer gradient mapping of temperature, pressure,

and air velocity that can support the prediction capabilities of indoor sensors (Zhao

et al., 2021). In particular, this approach provides foundational boundary conditions that

govern factors directly affecting sensors’ measurements. For instance, considering the

current value of a physical sensor, boundary conditions, and a historical measurement

of a secondary sensor, ML can be used to find relationships between those variables to

predict a current value for the virtual sensor. Along this direction, (James et al., 2013)

presented that:

Y =

∫
(X) + ε (2.6)

Where
∫

is a fixed unknown function of X1, . . . , Xp, and ε is a random error term

that is independent of X and has a mean zero.

This outlined relationship can be promising in predicting secondary sensor meas-

urements given the reference sensor’s current values, simulated boundary conditions,

occupancy profile, and historical data. It is, therefore, indoor sensors can capture the

behavior of an interplay under different boundary conditions, and as a result, equation

2.6 can be more relevant.

While the factors influencing temperature gradients are dynamic, more static, nor-

mally localised, can influence temperature gradients and also alter sensor measurements’

accuracy. In tracing those localised sources of possible influences, studies showed

interest in thermal imaging sensors to detect and estimate occupants (Savazzi et al.,

2019; Mikkilineni et al., 2019; Chidurala and Li, 2021). Building on this argument,

thermal imaging can be utilised to identify thermal anomalies such as temperature and

air velocity emitted from lighting fixtures and ventilation inlets and outlets. This aids in

creating more clear guidance on optimising sensors’ positioning for higher measurement

accuracy. Furthermore, according to notable limitations within the literature, occupancy

profiles can also be augmented in calculating the sensors’ predictions for optimised

accuracy.
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2.8.2 Thermal Imaging for Enhanced Sensors’ Positioning Optim-

isation

While the CFD provides accountancy for the indoor environment thermal conditions,

localized heat emitted from lighting fixtures and increased hot air velocity closer to vents

can also influence the accuracy of the sensors (Shinoda et al., 2021). As mentioned, the

literature highlighted various benefits of thermal imaging to detect localised sources of

heat emittance. Based on this, static thermal imaging can add a layer of granularity to

the CFD simulation. In more detail, the CFD simulation provides a clear understanding

of the distribution of indoor temperature and air velocity, while thermal imaging aids in

identifying localised sources of heat and high air velocity. This multilayered modelling

approach can, therefore, inform the selection and optimised positioning of the indoor

monitoring sensors of high-accuracy measurements.

Given these simulations consider different boundary conditions, the impact of the

occupancy parameter, especially the dynamics of human presence, can significantly

affect sensor measurements within the indoor environment. There is a strong correlation

between different indoor environment parameters and the occupancy parameter that

can be reflected in indoor sensing measurements. In light of this, the following section

will examine the correlation between dynamic occupancy patterns and key indoor

environmental factors.

2.9 Impact of Occupancy on Indoor Environment Con-

ditions

As mentioned in this review, the influence of occupancy on indoor environmental

parameters such as temperature, CO2 levels, and humidity is a subject of ongoing

research. Studies have found that occupancy significantly impacts indoor temperature,

with a higher number of occupants leading to increased temperature levels (Yang et al.,

2016; Zhang et al., 2022; Wang et al., 2020). However, the evidence suggests that

there is still disagreement in the literature in relating occupancy presence to a particular

indoor parameter. For instance, several studies suggested a strong correlation between
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occupancy number and CO2 concentration (Nitter et al., 2020). In contrast, other

studies observed an overestimation of CO2 when the actual number of occupants is

low (Yang et al., 2018). Given that occupancy patterns can influence additional indoor

environment parameters such as temperature, and air quality, a collective approach

using those parameters can further enhance the quantification of occupancy influence

on these parameters. Along this path, different approaches to estimating the influence

of occupancy include CO2-based statistical models, Camera-based face recognition,

and ML algorithms (Yang et al., 2018; Anand et al., 2021). As established, the literat-

ure indicated that relying on a single parameter may not comprehensively understand

occupancy’s influence on indoor conditions. Therefore, a multi-faceted approach that

considers various indoor environmental parameters could offer more insights into the

role of occupancy. This, in turn, could improve the accuracy of predictive sensing meas-

urements. Considering the outlined literature foundational to the modelling approach,

validation comes as substantive evidence to the claims made in this study. Since the

collected data is observatory data, empirical validation is adopted and a comparison

of virtual sensing measurement to the actual live sensors’ readings is intended for

validation. Therefore, to further explore factors affecting these dynamic interrelations,

particularly to characterise indoor environment parameters, the next section will review

the role of BIM, particularly energy and CFD simulations in characterizing these dynam-

ics. The aim is to establish a comprehensive view of optimizing building performance

while considering environmental implications.

2.10 Limitations in Current Indoor Environment Char-

acterisation Prior to Sensors Installations

Despite only a few publications having explicitly addressed the energy and well-

being performance during the buildings’ use phase from a LCA perspective, there has

been increasing interest in different areas that can be accounted for supporting the

subject. It was also notable that, although the literature presented different method-

ologies for the application of IoT and ML systems, shortcomings were noticeable in

the correlation between what-if scenarios and embodied carbon and the impact results.
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Moreover, the reviewed research addressing the optimisation of sensors’ positioning

has neglected key factors of other influences that can have an impact on the quantity

and accuracy of the sensing data. However, the collaborated review highlighted the

use of energy and CFD simulations for multi-scenario awareness and enhanced data

resolution. The validation methodologies relied on the algorithm and trained ML with

limited scenario focus and less employ-ability for the BIM models. Therefore, despite

different approaches to validate the presented methodologies, there was a clear lack of

any structured and integral LCA framework for buildings’ energy performance. These

facts highlighted a considerable gap in the current state of the art of the LCA of energy

and well-being performance during the building’s operational phase. Based on reviewed

papers, the limitations in the LCA framework are as follows:

• Lack of any consideration of embodied carbon from systems interactions and

performance.

• Lack of any consideration of multi-scenario analysis, including dynamic factors.

• Lack of consideration of pre-assessment analysis, that contribute to more accurate

results.

As established from the literature, the smart readiness assessment will determine the

available and upgradeable AI infrastructure to help in forming the entities that could be

responsible for the corresponding activities within the LCA inventory. As reviewed, a

building is to be assessed against three main domain weightings:

• Minimum energy performance with optimum adaptability to occupants’ needs.

• Ability to provide adequate infrastructure to AI and automation systems with the

minimum amount of embodied carbon.

• Existing communication network.

In line with the LCA goals, these domain weightings can be addressed by a set of

domain services of (a) thermal comfort, visual comfort, and well-being parameters; (b)

automated systems in place; and (c) decision-making support. However, the smart sys-

tems’ integration for the above-mentioned domain services can be expensive, especially
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in large-scale buildings. Moreover, major integration for existing HVAC and lighting

systems can also come with embodied carbon. Therefore, the interrelation between the

LCA domain weightings and domains’ services can also consider the energy and CFD

simulations for a more precise definition of temporal scope and uncertainty expectations.

These accurate definitions can then reduce both the carbon footprint and the costs of

any system upgrade by prioritizing areas of high demand. With that capacity, historical

energy consumption data for each zone, occupancy profile, and energy simulation can

assist in identifying areas of high demand. Further investigations showed more consider-

ation for multi-scenario analysis and energy simulation than embodied carbon and smart

readiness assessment. This highlights a key reason behind the deviation of Business as

Usual (BaU) LCA impact due to neglect of the embodied carbon. Table 3 highlights

further limitations of the inclusiveness issue of interrelations between pre-assessment

requirements among different approaches from the reviewed literature.

54



2.10 LIMITATIONS IN CURRENT INDOOR ENVIRONMENT
CHARACTERISATION PRIOR TO SENSORS INSTALLATIONS

Table 2.6: Summary of Studies on SRI Assessment and Thermal Interactivity

Ref-ID SRI Embodied car-
bon

Thermal interactiv-
ity

(Arnesano et al., 2016) x

(Nagy et al., 2014) x

(Collinge et al., 2011)

(Wall et al., 2021)

(Ingrao et al., 2021) x

(Omar, 2018) x

(Sözer and Aldin, 2019)

(Märzinger and Österreicher, 2019) x x

(Magruk, 2015) x

(Mamani et al., 2022)

(Yoganathan et al., 2018)

(Eliades et al., 2013) x

(Panteli et al., 2020) x x

(Asdrubali et al., 2020) x

(Valladares et al., 2019) x

(Corry et al., 2015)

(Aste et al., 2017)

(Su et al., 2021)

(Moayedi et al., 2019)

(Ben-David and Waring, 2016)

(Cuerdo-Vilches et al., 2021) x

(Fouquet et al., 2015) x

(Batov, 2015) x

(Junker et al., 2018) x
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2.11 Current Limitations in LCA Inventory Analysis

for Indoor Environment Monitoring

LCA particularly evolves the environmental pressures, the trade-offs, and the areas

for achieving improvements considering the entire life cycle of built assets from design

to recycling (Bueno et al., 2016; Bischof and Duffy, 2022). However, current approaches

to LCA inventory formation do not consistently factor in life cycle variations in (a)

tracing dynamically changing indoor environments, (b) Embodied carbon from poor

energy systems performance, and (c) embodied carbon from integrated smart systems. In

fact, key limitations and challenges faced by current LCA methods and tools have been

reported in the literature, including boundary conditions of site-specific considerations

(Bueno et al., 2016).

Several local impacts need to be considered when analysing LCA inventory, such as

(a) microclimate, (b) model complexity (Anand and Amor, 2017) (buildings involve a

wide range of materials/products, interacting as part of a complex assembly or system),

(c) scenario uncertainty (Bueno et al., 2016; Anand and Amor, 2017) (the long-use

phase of buildings, including the potential for future renovation, poses uncertainty

problems in the practicality of employing indoor monitoring sensors across the entire

operational phase. Also, traditional LCA inventory methodologies do not address indoor

and outdoor environmental impacts on health and well-being, (e) recycled material data,

including embodied carbon in physical sensors and associated battery consumption

(Hayat et al., 2019). Therefore, carrying out LCA inventory assessment for indoor

monitoring sensors application over the operational phase, as stated in the ISO 14040

standard, requires multidimensional methodologies and can be complex to carry out.

In this case, contextualisation for the LCA to a specific phase can be driven by goals

and scope definitions which factors in the inventory analysis. This contextualisation

can then underpin different assessments and tools that are useful for the LCA. In more

detail, a case-based approach is substantial to determine indoor parameters that need to

be addressed by indoor monitoring sensors. Moreover, the literature showed notable

limitations in optimising indoor sensors’ positioning. Despite the utilisation of the CFD

models, further investigation showed negligence to localised thermal influences that
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may affect the sensors’ accuracy and subsequently LCA inventory input data.

In reducing the environmental impact of indoor sensors, the literature showed more

focus on ML algorithms of complex structures that may not be affordable on a wider

scale. It is therefore, there is a persistent need for clear guidance in understanding the

environmental impact across the process of deploying indoor monitoring sensors.

2.12 Summary

This literature review chapter has provided a comprehensive survey of the existing

research and developments in the field of indoor environment monitoring. A particular

focus was adopted for the indoor environment parameters characterisation specific to

a building case. This approach was considered foundational to building knowledge

on how to answer the first research question “Which criteria should be considered to

select and prioritize the indoor environment parameters necessary to conduct dynamic

life cycle assessment, taking into account a wide range of configurations, including

occupancy schedules and geographical location?”.

Furthermore, the investigated techniques concerning the optimal positioning of

sensors explored different thermal mapping tools including the CFD simulation and

thermal imaging. Given the identification of the most representative positions to provide

reliable parameters’ measurements, this approach was specifically tailored to answer the

second research question “What is the minimum number of physical sensors and their

optimal positioning to provide accurate dynamic accounts of indoor environments?”.

Assessing both broader and relevant science, key theoretical frameworks and empir-

ical studies were also examined to establish the context within which this research is

situated. In this direction, comparative analyses of various indoor environment condi-

tions were explored using numerical modelling to find patterns and relationships for

virtualising indoor sensors. This is considered particularly useful in answering the third

research question “Can virtual sensors replace physical sensors while ensuring data

accuracy and reducing direct and indirect environmental impacts?”.

In conclusion, the literature review has set a solid foundation for this research path,
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identifying the critical parameters that influence indoor environment characterisation

and mapping prior to virtualising indoor sensors. Contributing to the main objectives

of this thesis, , phasing out the associated carbon of indoor monitoring sensors as an

LCA inventory is considered a significant step in achieving LCA goals. As such, the

following chapters will build upon this foundation, presenting a path towards reliable

indoor environment monitoring sensors.
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Chapter 3 |
Research Design and Methodology

3.1 Overview of research approach

This chapter outlines the research methodology employed for this study. It begins

by exploring the philosophical foundations of scientific research, positioning the present

study within the pertinent scientific context. Subsequently, the research approach is

detailed, expanding on the research questions introduced in Chapter 1 and the methods

used in answering them. This chapter aims to offer a comprehensive understanding of

the thesis, seamlessly connecting the different chapters, research questions, and adopted

approaches.

3.1.1 Theoretical Background

The theoretical foundation of any research is pivotal, as it offers an angle from which

the study can be perceived and interpreted (Melnikovas, 2018). Thus, in navigating the

complexities of the investigation, it’s important to acknowledge the broader academic

context and the scholarly works that could inform the adopted approach. According to

(Cai et al., 2019), the choice of a suitable theoretical framework is critical to establishing

the significance of a research question leading to a convincing argument. In contrast,

(Lynch et al., 2020) emphasised that a well-defined set of research questions and

theoretical framework determines the boundaries for selecting and developing effective

methods. Furthermore, (Newman and Hitchcock, 2011) stress that the research questions

dictate the selection of research methods. In this setting, this research design and

methodology chapter serves as a bridge connecting this study to the wider academic

context by detailing the philosophical underpinnings, and research questions to address

them.
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Figure 3.1: The Research Onion (Melnikovas, 2018).

The physical science research is fundamentally empirical, often characterized by

its reliance on laboratory experiments where research involves manipulating one or

more variables to observe the effect on other variables (Bolinger et al., 2022). This

empirical nature is evident where case studies offer in-depth investigations of specific

instances or entities, providing rich, contextual analyses grounded in real-life situations

(Cavaye, 1996). However, chosen strategies are pivotal in ensuring that the research

objectives align with the data collection and analysis methods. Given this context, a

mixed-methods approach, combining both qualitative and quantitative methods, will

be employed. This approach is supported by (Hitchcock and Newman, 2013), who

advocate for an interactive quantitative-qualitative framework, highlighting their shared

foundations and objectives. This comes as a response to (Reio Jr, 2016) call for a deeper

exploration of theory-building in research methods, particularly addressing the concept

of generalisation across both research types. This specific point can significantly amplify

the applicability of proposed frameworks to extend their relevance and contribute to

scientific progress.
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3.1.2 Research Design

The layers of the research onion model provide a systematic approach to understand-

ing and designing a research methodology. Starting from the core philosophical theories

and extending outwards to possible strategies, this comprehensive research guide helps

in following logical and informed choices that align with the research questions and

objectives.

Given the empirical nature of the sensing measurement data, the philosophical theory

of this thesis leans towards positivism. This approach is therefore, largely deductive, as

it aims to test the efficacy of the statistical approach and machine learning algorithms in

extracting and validating virtual measurements from real-world sensor data. As such,

this research strategy involves an experimental case study of real-world settings, where

data collection would be both quantitative considering the sensors’ measurement data,

and qualitative as per their influence on energy systems performance. As such, the

overall research design stages are illustrated in Figure 3.2, and a breakdown for each

stage follows.

Figure 3.2: Summary of The Research Design

Stage 1: Philosophical Foundations

The significance of the philosophical stance of a research project is that it forms the

bedrock upon which the entire research is built. (Denzin and Lincoln, 2011) suggested

that each interpretive paradigm makes specific demands on the researcher, influencing

the questions they pose and the interpretations they derive. In contrast, the research

explored the employment of multiple theories within a single research study, suggesting

that there isn’t a one-size-fits-all approach to research (Shan, 2022). It is therefore,

this philosophical foundation influences not only the choice of research methods but

also the interpretation of the subsequent research stages including the results In the
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context of this research, particularly when addressing complex issues like building

energy optimization and sensor deployment, the underlying philosophical beliefs play

a substantial role in shaping the research design, methodology, and interpretation of

results. These beliefs provide a lens through which the researcher views the world,

influencing every aspect of the research process.

In particular, this stage explores the areas that can effectively reduce environmental

impact from the indoor sensing application as an LCA inventory tool. Aiming for

energy and well-being performance optimisation, the transition to virtual sensors theory

accompanies a multifaceted approach of simulation engines, existing theories, and

hybrid numerical and ML modelling.

Stage 2: Deductive Approach and Hypothesis Formulation

Given the positivist stance, this research adopts a deductive approach, starting with

a general hypothesis and then seeking specific data to test this hypothesis. This fits with

the aim is to testing a previously established theory in a different situation or comparing

categories at different time periods (Elo and Kyngäs, 2008) This approach is particularly

useful in the context of virtual sensors’ measurements depending on different variables

at different times. However, since this thesis aims to develop a new theory concerning

virtual sensors, an inductive approach will also be involved. Given the qualitative data

used such as SRI assessment and the quantitative numerical modelling, a combination

of deductive and inductive approaches is aimed to facilitate the process of the research

theory development (Young et al., 2020). Following this path, this stage involves the

formulation of specific theories based on the existing literature and the identified gaps

pertaining to LCA with the scope of reducing the environmental impact of indoor energy

and well-being performances.

Stage 3: Selection of Modelling Techniques

With the aim to validate virtual measurements from real-world sensor data, this

stage involves the selection and justification of specific modelling approaches including

statistical modelling and machine learning algorithms. The criteria involved are formed

based on their potential efficacy in handling the type and complexity of the data at hand.

Along this path, The selection between a machine-learning algorithm and regression

depends on the measurement quality, irrespective of the sample size as the evidence
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shows that sample size on prediction performance has been found to be robust and

Scalable (Cui and Gong, 2018). Furthermore, results from different models show

good agreement, reinforcing confidence in the fundamental physical and numerical

implementation of the governing equations across disciplines (Kollet et al., 2017). In this

context, the use of CFD simulation along with numerical modelling will be combined

to formulate and validate virtual sensors’ measurements.

Stage 4: Experimental Case Study Design

Case study research designs inherently possess varied scientific objectives and thus,

differ in data collection and analysis methods. Continuing from the previous stage, a

combination of different methods can better evaluate the theoretical contributions of this

thesis in terms of understanding, building, developing, and testing (Ridder, 2017). As

such, this stage involves designing the experimental case study, detailing the real-world

settings to be studied, the data collection methods, and the criteria for selecting these

settings. The aim is that the study remains grounded in practical, real-world scenarios

for generalised application.

Stage 5: Data Collection

Data collection is a pivotal stage in research, serving as the foundation upon which

subsequent analysis and interpretations are built. In the context of this study, data

collection is twofold: quantitative and qualitative. Quantitative data is derived from the

sensors’ measurements, capturing empirical evidence of building energy performance.

Qualitative data, on the other hand, evolves around the influence of these measurements

on energy systems performance, capturing the underlying and contextual factors, that

might not be immediately evident or quantifiable in the numerical data. This form of

data collection is often emphasized in research for its ability to provide objective results

(Bradley et al., 2007). In this context, the CFD simulation being a quantitative method

of data collection, solves the governing equations of heat and air velocity transfer and

other related phenomena. The results from CFD simulations are typically presented

in numerical form, speculating the dynamism in air velocity profiles, temperature

distributions, and pressure drops. Similarly, the energy simulation predicts the energy

consumption of a building based on various parameters like building envelope properties,

HVAC system performance, and occupancy patterns. However, the SRI assessment can
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be both quantitative and qualitative data collection methods. The quantitative aspect

involves collecting data on the energy performance, efficiency, and usage patterns of

smart devices and systems of a building. The qualitative aspect can involve assessing

occupants’ comfort, and their interactions with smart systems. It is, therefore, the

qualitative data that can provide insights into the reasons behind certain quantitative

findings offering a context that numerical data alone might not capture.

According to the literature, the selection of wireless indoor monitoring sensors

was based on their flexible deployment, compatibility with web-based systems, and

database-linking capabilities (Figure 3.3). However, the selection of the sensors was

fundamentally based on the characterised indoor environment parameters at a pre-stage

of SRI assessment and energy simulation. Additional criteria focused on accuracy,

coverage and that the sensors provide accurate, reliable, and comprehensive data for

various indoor monitoring applications.

Stage 6: Data Analysis and Interpretation

Given the nature of the collected data, a dual approach analysis that employs both

ML algorithm and numerical modelling was adopted. For instance, ML algorithms

have emerged as powerful tools for data analysis, especially given the complex and

multifaceted nature of the data-driven energy simulation models (Fan et al., 2019).

This method is particularly beneficial to this research in uncovering patterns, and

relationships that might not be immediately apparent within the collected sensing data.

However, while ML algorithms will be applied to uncover patterns and relationships

in the data, CFD-based and historical sensors’ measurements will be integrated into

numerical modelling. A study by (?) used numerical modelling and suggested that

there is a similar relationship for diffusion of different parameters through porous media.

This approach underscores the importance of utilising numerical modelling to identify

potential relationships and patterns among various parameter measurements. As such, it

aids in comprehending the patterns and distributions that establish the characterisation

of the data obtained from certain sensors’ positions. The results derived from both

these analytical methods will then be interpreted in light of the research hypotheses

in transitioning to indoor virtual sensors with the implications for building energy and

well-being performance optimisation.
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Stage 7: Validation and Testing

Validating the reliability of research findings is a critical aspect of any scientific

study. Given the nature of this research, the validation and testing stage was based on

the nature of both qualitative and quantitative approaches. In this context, (Hayashi

et al., 2019) argued that qualitative research “Should adopt a processual view approach

of validity since it should not be the product of a single test or just one step in the

research”. The study further indicated that “Validity is better evidenced in quantitative

studies than in qualitative research studies”, highlighting fundamental, conceptual, and

knowledge-based distinctions between quantitative and qualitative research or combined

methods. As such, the paper suggests that validity should be continuously assessed

throughout the research process rather than just at the end.

In this context, the continuous validation was planned through a processual process

starting from supporting the energy simulation with the SRI assessment, to further

validate sensors’ optimum positioning using the CFD simulation and thermal imagining.

Furthermore, this stage involves validating the results against established benchmarks

and cross-validation techniques. However, at the final stage, virtual sensing measure-

ments from predefined sensors’ positions, are to be compared against real-time sensing

measurements from the exact sensing locations. The results will then be analysed and

compared with established dynamic boundary conditions for semantic scalability in

other buildings.

Stage 8: Conclusion and Recommendations

Drawing from the analysis and validation, this stage involves concluding the re-

search, highlighting the key findings, and their implications, and providing actionable

recommendations for practitioners, policymakers, and future researchers. As such, the

conclusion of this thesis serves as a synthesis of the entire investigation, based on the

research questions and analysis conducted. Furthermore, recommendations, are derived

from the conclusions and are aimed at suggesting future actions and directions.
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3.2 Case Study Site

This section describes the case study zone, elaborating on the criteria and implica-

tions of choosing this category of indoor spaces. This multi-activity space is subject to

different regulations concerning indoor environment parameters, hence, the sub-space

segmentation strategy applies accordingly. This multi-activity space with constantly

changing occupancy patterns with combined ventilation reflects the majority of existing

public buildings’ conditions. Accordingly, eliciting a generalised framework for devel-

oping high-accuracy virtual sensors’ measurements in this environment is considered a

significant contribution to this field of science.

Influenced by the reviewed literature, the information provided in the remainder of

this chapter represents the first layout in answering the RQ1 “Which criteria should be

considered to select and prioritize the indoor environment parameters necessary to con-

duct dynamic life cycle assessment, taking into account a wide range of configurations,

including occupancy schedules and geographical location?”. Thus, contributing to the

wider knowledge necessitates using universal specifications as aimed in this case study

space selection.

The location selected for the study is a zone within the Cardiff School of Engineering,

Queen’s Building, in Wales UK, designed to accommodate up to 200 individuals. The

space is multi-activity where students socialise and study, with a small microwave area

designated for light catering needs. It has a mixed mechanical and natural ventilation

system, with 15 manually open-able windows on the north side and one on the east

side. The case study room is located on the first floor and is 350 m2 with 24 square

meters of north-facing double-glazing windows and 4 square meters of east-facing

same type of manually opened windows, Figure 3.3. With 70% adiabatic walls around

the space, the room has masonry external walls connecting a concrete frame. The

occupancy schedule is defined according to the educational institution’s scheduling

that influences the combined ventilation operating hours. Accordingly, the space is

mechanically ventilated by a terminal unit regulating the volume of conditioned primary

air provided by a central VRF Fan coil air handler that serves additional rooms.
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Figure 3.3: Case Study Zone

It is important to point out that this case-specific approach is essential due to the

unique characteristics of the building, including its thermal properties, occupancy

patterns, and energy usage profiles. Since each building has unique characteristics and

complexities that require a customized approach, a generic strategy would not effectively

address the specific challenges present. Therefore, a case-specific approach allows us

to identify and account for possible variables that influence sensors’ measurement

behaviors. Along this direction, the integration of the SRI is considered foundational

to identifying indoor environment parameters of interest to sensing. It also helps

in identifying those parameters’ weightings on energy performance and well-being

conditions. Those two factors are substantive to determining the types of indoor sensors

suitable for a specific building type. Furthermore, the SRI assessment results help in

defining the existing boundary conditions for more granular Energy simulation results.

3.3 Description of Data Collection Instruments

This section outlines the data collection instruments used in this study. The adopted

approach is underpinned by a strategic choice of network technology that is both reliable

and scalable. Based on the definition of the parameters from the energy model results,

the chosen wireless sensors were tailored to measure the parameters of the highest

influence on energy and well-being performances. To enable this, a Low Power Wide

Area Network (LP-WAN) was set-up to send the collected data to a central server for

the subsequent analysis. However, since the level of accuracy in measuring indoor

67



3.3 DESCRIPTION OF DATA COLLECTION INSTRUMENTS

parameters is substantive to LCA inventory input data, additional simulation tools were

employed to enable optimal positioning for the indoor sensors. On this account, these

instruments serve as an empirical foundation for the subsequent modelling techniques,

enabling the extraction of patterns and the formulation of the methodology, testing, and

validation evidence (Büchter et al., 2020). Hence, the enhanced approach to collecting

the data is also focusing on limiting constraints on the analysis and the research outputs.

Furthermore, it is anticipated that the comprehensive data collection will also influence

the recommendations and directions for future research. In this context, the following

subsections will outline the data collection methods adopted in this research.

3.3.1 Identifying Indoor Monitoring Sensors

The literature established a case of the significance of indoor environment monitor-

ing necessitating rigorous instrumental monitoring. It also highlighted the importance of

a case-based approach depending on the indoor environment parameters of the highest

interest. It is, therefore, running energy simulation for the case study zone is considered

a strategic approach to understanding the specific conditions of the indoor parameters

prior to identifying relevant sensors. These requirements necessitate a strategic approach

to identifying indoor features of interest to the sensing system. Along this path, a dual

approach combining SRI assessment and energy simulation was adopted. The SRI

assesses 9 technical domains against 7 impact criteria as illustrated in Table 3.1.

Table 3.1: Overall SRI Scores for Different Domains

Domain

Overall SRI score (%) +SRI class
% % %

Optimise energy
efficiency and
overall in-use
performance

Adapt its operation
to the needs of the
occupants

Adapt to signals from
the grid (energy flexibility)

Heating % % % % % % %
Cooling % % % % % % %
Domestic hot water % % % % % % %
Ventilation % % % % % % %
Lighting % % % % % % %
Dynamic building
envelope % % % % % % %

Electricity % % % %
Electric vehicle
charging % % % %

Monitoring and control % % % % % % %

Consequently, the information used in formulating the boundary conditions was

extracted from an SRI assessment to enhance the energy model inputs, as shown in
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Figure 3.4. The resulting outputs of emission associated with thermal load and energy

consumption are therefore crucial to understanding which parameters to be measured.

This identification directly contributes to the definition of indoor monitoring sensors

about space conditions and performance. Furthermore, since the SRI assessment inputs

contain energy consumption data, including energy systems characteristics, the result of

this assessment can cross-validate the energy model for more granularity. In particular,

the assessment will investigate a possible correlation between the SRI score and the

level of energy consumption among the indoor parameters.

Figure 3.4: Inputs and Outputs of the Energy Model

Accordingly, the defined indoor sensors’ criteria of flexible mobility, accuracy, and

practical applicability contributed toselectingf the BME680, SCD41, and PMS5003

indoor sensors. The BME60 measures temperature, humidity, gas, and pressure, while

the SCD41 measures the CO2 levels and the PMS5003 measures the particulate matter

levels as illustrated in Table 3.2.

A combination of those 3 types of sensors forms a Low Power Remote Device

(LoRD) unit, based on the sensors’ performance specifications to operate for an extended

period of time without permanent power infrastructure. Accordingly, each LoRD is

operated by Saft LSH20 Lithium Battery 3.6V D Size Li-SOCl2 LSH-20, in line with
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Table 3.2: Indoor Monitoring Sensors Used in The Case Study

Instrument Measured
Parameter

Sampling
Rate

Accuracy Supply
Voltage

BME680 Temperature,
Humidity, Gas,
Pressure

5 Minutes ±1.0°C, ±3%, ±15%,
±0.25%

1.71 V to
3.6 V

SCD41 CO2 15 Minutes ±40 ppm 3.3 to 5V
PMS5003 Particulate level 30 Minutes 50%@0.3µ,

98%@>=0.5µ
2.4 V to 5.5
V

all sensors’ supply voltage specifications as illustrated in Figure 3.5.

Figure 3.5: LoRD Unit

As the literature also highlighted the importance of the outdoor temperature in

predicting the indoor temperature, a weather station (Davis Vantage Pro2) was deployed

on the rooftop of the building. The objective is to collect external weather data including

constant HDD values specific to the building location for higher accuracy calculations.

Moreover, as indicated, facilitating hourly measurement for the HDD value is crucial in

predicting indoor environment temperature.

Given that wireless sensors were considered in line with the identified criteria

identified in the literature including flexible installation, additional benefits of this

strategy were also considered. Primarily, while the theory of virtualising indoor sensors

is influenced by accurate measures from optimal positioning, the potential lack of

permanent power infrastructure specific to sensors’ optimised locations can limit wired
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sensors’ installation. Thus, wireless sensors’ selection is particularly significant for

the generalization of the virtualised sensing systems, resulting in a wider range of

applicability.

3.3.2 Wireless Network System

The collection of indoor environment parameters measurements was set to use a

Long Range Wide Area Network (LoRaWAN) technology to transmit acquired data to

a central server for later analysis. Accordingly, the sensing units transmit data from the

network to a gateway and subsequently to a traditional IP as shown in Figure 3.6.

Figure 3.6: System Diagram of The LoRD Network

Given the dynamic nature of the case study space, the system adopted higher

frequency readings across the sensing units. Accordingly, the BM60 was set to measure

every 5 minutes, while the SCD41 was set to take measures every 15 minutes for the

CO2. The PMS5003 was also set to take measures every 30 minutes. Based on the

literature, these sampling rates were assumed adequate for optimum energy performance

concerning occupancy-changing demands.

Building upon the established necessity to provide high-accuracy measurements

by optimising sensors’ locations, additional tools are employed. These tools enable

the precise measurement of variables to support the comparison and extrapolation

of findings across diverse study populations and contexts. The goal is to identify

patterns, test hypotheses, and establish cause-and-effect relationships, to support the
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sensors’ positioning. In this direction, the optimised positioning facilitated by the

CFD simulation and thermal imaging is considered foundational to understanding and

formulating those patterns. As such, the following sections outline the CFD simulation

and thermal imaging used to establish these patterns.

3.3.3 CFD Simulation

A BIM model was created to include the case study zone to be simulated in the

Autodesk CFD software as illustrated in Figure 3.7. The model also included the

surrounding areas to detect possible air circulation and thermal interchange influences

with a pressure differential of 5 Pa assumed between those spaces. Also, air density

is assumed at 1.2047 × 10−5 g/mm3, and the CO2 density as 1.773 × 10−5 g/mm3.

The material setup specified glass wool for the building’s envelope, representing wall

insulation, and additional materials such as concrete, steel, and wood were used to

model the remaining structure. Aiming for high accuracy, the convergence criteria

were set to 1× 10−5 after which, further iterations are considered unlikely to change

the solution significantly. These boundary conditions were tested by simulating two

scenarios of occupancy including 70 and 200 individuals in relation to the space capacity.

The granularity of the results allows the identification of thermal hot spots and cold

spots, as well as areas of high and low air velocity and pressure, which are critical for

sensor placement. Moreover, the detailed setup helps in identifying resistant elements

to both heat and air velocity, resulting in a better understanding of the room’s thermal

distribution.
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Figure 3.7: Case Study Zone in The Autodesk CFD Environment

While the goal is to identify positions within the space where temperature and air

velocity have the least influence on sensors’ measurements, an augmented approach

of thermal imaging is also adopted. This approach directly helps in answering the

second research question “What is the minimum number of physical sensors and their

optimal positioning to provide accurate dynamic accounts of indoor environments?”.

By detecting localized heat emitted from lighting fixtures and increased hot air velocity

closer to vents, more certainty about the definition of sensors’ optimised location can be

formulated. For this reason, a Thermal Camera is to be used to detect those anomalies

for more enhanced resolution of thermal anomalies. As such, a FLIR ONE Pro thermal

camera, of specifications in Table 3.3. was adopted.

Table 3.3: Thermal Camera Specifications

Specification Details
Thermal Resolution 160 × 120
Battery Life Approximately 1 hr
Object Temperature Range -20°C — 120°C (–4°F — 248°F) and 0°C —

400°C (32°F — 752°F)
Accuracy ±3°C or ±5%, typical percent of the difference

between ambient and scene temperature. Applic-
able 60 sec after start-up when the unit is within
15°C — 35°C and the scene is within 5°C —
120°C.

Operating Temperature 0°C — 35°C (32°F — 95°F), battery charging
0°C — 30°C (32°F — 86°F)

Spot Meter Hottest, coldest and 3 spot measurements

73



3.4 INDOOR MONITORING SENSORS’ POSITIONING

As established, this dual CFD simulation and thermal imaging is aimed at guarantee-

ing maximum accuracy measurements provided by the indoor sensors. This approach

comes consistent with high LCA inventory input data resolution. Based on this, the next

section addresses indoor sensors’ positioning strategy.

3.4 Indoor Monitoring Sensors’ Positioning

As established, sensors placed near HVAC vents or windows may report temper-

atures that may not be representative of the room’s actual temperature conditions.

Similarly, variations in air velocity closer to vents could affect the sensors’ ability to

accurately measure parameters such as humidity or indoor air quality. As such, cri-

teria for optimum sensors’ positioning were defined as (a) temperature characteristics,

including thermal distribution, and heat gains, (b) air velocity, including vector plots,

velocity magnitudes, and draft regions (c) pressure distribution, including HVAC effects.

Accordingly, multiple optimal positions were identified as illustrated in Figure 3.8. Also,

additional ad-hoc positions were nominated for accuracy validation.

Figure 3.8: Sensor Positions Guided by The Autodesk CFD Simulation Coupled with
Thermal Imaging, At Different Coordinates

In meeting these criteria, the combination of CFD simulation and thermal imaging

is considered crucial to enhance the LCA inventory input sensing data as outlined in

Figure 3.9.
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Figure 3.9: Sensors’ Optimal Positioning Strategy to High Accuracy LCA Inventory
Input Data

Following the sensors’ deployment, the measurement data is to be transmitted to

the server where acquirable from an Influx database interface as illustrated in Figure

3.10. Furthermore, the data gathering was tested to ensure that the buffering scheme and

Real-Time Clocks (RTC) synchronization of the sensors are reasonable for long-term

indoor environment monitoring. While this strategy helps in retrieving timely actions

over a long time, it is knowledgeable that the selected sensors are battery-operated, and

thus, RTC calibration will be needed constantly. This is considered a typical real-case

scenario for indoor monitoring sensors monitoring, by which, adding more value to

virtual sensors.
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Figure 3.10: Influx Database Interface

It is important to acknowledge that, at this stage, the initial sensors’ reading showed

proportional behaviour given the optimised positioning. While this indicates the poten-

tial for reducing the number of sensors, dynamic boundary conditions are considered

substantive governors for the dynamic behaviour of these measurements. Along this

path, the next subsection presents the numerical modelling followed for this particular

matter.

3.5 Minimising the Number of Indoor Monitoring Sensors

According to RQ2 “ What is the minimum number of physical sensors and their

optimal positioning to provide accurate dynamic accounts of indoor environments?”,

this section presents the numerical modelling to reduce the number of sensors. The

approach utilizes equation 2.6 presented in the literature. Upon defining the main

reference sensor, historical data of one year, are to be assessed to find a relationship

between established CFD gradients using the equation:

Y =

∫
(X) + ε (3.1)

Where Y is the virtual sensor measurement,
∫

is a fixed unknown function of the

reference sensor capturing building thermal performance under various occupancy

profiles, X is the current value of the reference sensor, and ε is a random error term
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representing a historical relationship in measurements between the reference sensor

point and the secondary sensor.

One year of data will be fed to an ML regression model to find the relationship

between the given values of the reference sensor, historical data for the secondary sensor,

and simulated boundary conditions, including the occupancy profile.

3.6 Virtualising Indoor Monitoring Sensors

As the literature established, the indoor temperature is measured by the HDD, DDF,

building-specific base temperature, and heating capacity. Accordingly, the current

temperature measurement can be formed using a current (HDD*DDF) value in equation

3 as:

i = (Y − (HDD ×DDF )) + Z (3.2)

The equation models the current value of an indoor sensor i as a function of Y, Heat-

ing degree day days, degree day factor, and temperature difference Z. The analysis

successfully identified building-specific values for Y and Z, which, when combined

with real-time HDD obtained from the weather station, and DDF values, yield live

sensor readings for the indoor temperature. However, it is anticipated that given the

dynamic boundary conditions introduced in the literature chapter, it is anticipated that

this equation may need a calibrating variable respectively.

Given the observed linear interpolation among historical data, this argument was

further developed by adopting a linear interpolation equation. The goal was to simplify

the methodology for the wider application. Accordingly, the developed equation was:

Y = Xt + (Yt −Xt)×
(
Yt

Xt

)
(3.3)

Where Xt is a reference sensor and Yt is a secondary sensor at a specific time.

Establishing a correlation relationship between the reference sensor X and secondary

sensor Y under different conditions of X has practically reduced the number of sensors.

This finding is considered significant in decreasing the number of sensors, particularly

in open-plan spaces that require multiple sensors. The simplified equation provided
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a high level of accuracy that contributed to the wider-scale application of this theory.

Accordingly, secondary sensors can be phased out from the LCA inventory while still

providing real-time high-accuracy measurements depending on one reference sensor

and their historical measurements.

3.7 Implications of Phasing Out Indoor Monitoring Sensors

on LCA

The phasing out of indoor monitoring sensors while providing higher accuracy

measurement can have dual implications on the LCA of buildings. On one hand, this

shift contributes to a reduction in the embodied carbon associated with the sensors as part

of the LCA inventory. On the other hand, high-accuracy sensing measurements assist

in optimised energy performance and subsequently maintaining well-being standards.

Accordingly, assuming the operational phase of the case study zone spans 60 years,

calculating embodied carbon associated with the sensors and their battery followed the

equation presented in the literature:

E =
n∑

i=1

(Ci ·Ki) + Cf + Ct + Cc (3.4)

Where E is the total amount of embodied energy in the sensor, expressed in KgCo2, ei is

the embodied energy of each material, ji is the amount of material used, ef is the energy

incorporated into the additional sensing system, et the energy needed for the transport

of materials and mobility of workers, and ec correspond to the energy incorporated from

the Batteries replacements.

As acknowledged in the literature chapter, a virtual sensing system comes in cloud

computational form of its carbon footprint. Comparatively, given the advanced science

in reducing carbon footprints from data centers, it is assumed that moving to virtual

sensors has less environmental impact. In addition, the applicability of clear guidance

on virtual sensors has more environmental benefits, including practical and feasible

adoption.
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3.8 Summary

This chapter has outlined the adopted methodological approach to address the

research objectives through the posited research questions introduced in the introduction

chapter. The methodology was carefully designed to ensure a robust and systematic

approach to phasing out carbon emissions and embodied carbon in indoor sensor

applications. Initially, the chapter introduced the rationale for adopting a multiple mixed-

methods approach, combining quantitative LCA with qualitative case studies to provide

a comprehensive understanding of the environmental impacts associated with indoor

sensors’ applications. The methodology was detailed, explaining the data collection

process and also the modelling approaches followed. Moreover, this chapter describes

the data collection, process, analysis, and interpretation. As such, statistical tools and

software used in the analysis were identified, emphasising transparency and universality

of the research findings. In conclusion, the methodology chapter has established a solid

foundation for the theoretical background of this thesis before empirical validation.

The subsequent chapters will present the results of the analysed data, discussing the

implications of the findings in the context of environmentally responsible buildings.
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Chapter 4 |
Results and Validation

This chapter addresses the various points presented earlier and provides the research

findings and their implications on the case study zone. Following that, a discussion

on how these results answer the research questions in the context of a generalised

framework will be presented in the following chapter. As such, the results presented

here are case-specific, to provide answers to the main research questions:

• Which criteria should be considered to select and prioritize the indoor envir-

onment parameters necessary to conduct dynamic life cycle assessment, taking

into account a wide range of configurations, including occupancy schedules and

geographical location?

• What is the minimum number of physical sensors and their optimal positioning to

provide accurate dynamic accounts of indoor environments?

• Can virtual sensors replace physical sensors while ensuring data accuracy and

reducing direct and indirect environmental impacts?

In response to these questions, the chapter demonstrates the resulting analysis for

the simulations and numerical modelling followed. Accordingly, it provides insight

into indoor environment parameters’ characterisation, optimal sensors positioning, and

virtualised sensors in the context of performance and reliability.

4.1 Indoor Environment Parameters’ Characterisation

To characterise indoor environment parameters of the highest influence on energy

consumption and well-being, the methodology followed the multifaceted approach
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outlined in the previous chapter. Following the SRI results, The boundary conditions of

the EnergyPlus model were augmented by SRI assessment results for optimised outputs.

The SRI containing energy consumption data has also been used for cross-validation for

the energy model for more granularity.

4.1.1 Smart Readiness Assessment

As established in the literature section, the SRI assessment can guide the deployment

of indoor monitoring sensors by highlighting the level of performance in current building

services in relation to energy efficiency and occupant well-being. As such, By providing

initial this customised approach aims at gathering the data that is most relevant for

energy efficiency and occupants’ well-being. It further aids in granulating energy model

input data while providing cross-validation for the models’ output. The SRI assessment

for the case study zone was conducted through a tailored approach. The evaluation was

specific to the room’s total floor area and its activity type, however, additional elements

included were not taken into consideration. The assessment focused on three key

functionalities—namely, heating, cooling, and additional HVAC system and services

components with breakdown results in Table 4.1. In more details, a comprehensive

review of the building’s existing systems was undertaken, focusing on key areas such

as HVAC, lighting, and shading controls. This involved gathering data on the existing

technologies, their automation capabilities, and how they interact with the building’s

occupants. Subsequently, the building was evaluated using the SRI criteria, which

categorize smart functionalities into key domains such as energy efficiency, flexibility,

and occupants’ comfort. Following that, specific weighting indicators related to the

indoor environment parameters such as heating, cooling, and illuminance were identified.

This step was crucial in defining indoor environment parameters of interest to sensing.
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Table 4.1: Detailed SRI Scores for Building Systems

System Energy Efficiency Flexibility and Comfort Convenience Health, Well-being Maintenance and Information to

Energy Storage and Accessibility Fault Prediction Occupants

Heating 13% 0% 20% 20% 0% 0% 0%

Domestic Hot Water 80% 75% 0% 60% 0% 50% 67%

Cooling 0% 0% 0% 0% 0% 0% 0%

Ventilation 33% 0% 33% 33% 67% 100% 100%

Lighting 33% 0% 50% 50% 0% 0% 0%

Dynamic Building Envelope 0% 0% 0% 0% 0% 0% 0%

Electricity 80% 67% 0% 40% 0% 50% 78%

Electric Vehicle Charging 0% 0% 0% 0% 0% 0% 0%

Monitoring and Control 0% 0% 0% 0% 0% 0% 0%

These scores were then aligned with SRI impact criteria which resulted in 28% of the

overall smart readiness level. The assessment revealed a decreased level of smartness in

the heating domain, despite showing an increased level in the cooling domain Figure 4.1.

This highlights the need for targeted interventions in the heating domain, particularly

by deploying indoor monitoring sensors.

Figure 4.1: SRI Domains’ Scores of Indoor Parameters

Further investigation into how these scores impact on indoor environment’s energy

efficiency and occupants’ well-being showed variable levels of reflections Figure 4.2.

The decreased energy efficiency level is understood to be caused by the low heating

score being 16%, which subsequently affected the comfort score. Moreover, the high

cooling score can be attributed to the combined mechanical and natural ventilation

system. However, this can be another indicator to consider AIQ sensors to address

possible poor IAQ as a result of natural ventilation.
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Figure 4.2: SRI Impact Scores

According to these results, multiple indoor environment parameters were identified.

However, as mentioned, this is a preliminary result to enhance the energy model. Along

this path, the next subsection will demonstrate the results from the energy simulation

model.
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4.1.2 Energy Simulation

The energy simulation was conducted using EnergyPlus for the 350 m² total area

of the zone BIM model. Different indoor parameters were simulated with a focus on

multiple boundary conditions also enhanced by the SRI assessment results, as can be

seen in Table 4.2. This strategy aimed for a higher resolution picture of the indoor

environment parameters of the highest influence on energy consumption and well-

being impact. The simulation was run to show hourly energy consumption of different

boundary conditions and monthly simulation.

Table 4.2: Input Parameters for EnergyPlus Model

Category Parameter Description Unit/Format
Zone Zone area Total floor area 350 m²

Zone height Total height of the zone 6 m

Thermal properties Wall U-value
Overall heat transfer coefficient
of the external walls

0.26 W/m²K

Roof U-value
Overall heat transfer coefficient
of the roof

0.25 W/m²K

Window U-value
Overall heat transfer coefficient
of the windows

0.55 W/m²K

Infiltration Rate
Rate of air leakage through the
building envelope

1.0 ACH (Air
Changes per Hour)

Schedules Occupancy Schedule
Time-dependent schedule for
building occupancy

Fractional value (0 -
1)

Lighting Schedule Occupancy-based sensors
Fractional value (0 -
1)

Equipment Schedule
Time-dependent schedule for
equipment use

Fractional value (0 -
1)

HVAC Operation
Schedule

Terminal AHU VRF

Heating Setpoint
Desired indoor temperature
during heating

19 °C

Cooling Setpoint
Desired indoor temperature
during cooling

22 °C

Ventilation Rate Rate of fresh air supply 8 L/s/person

Lighting Power Density
Power used for lighting per unit
area

3.5 W/m²

Equipment Power Density
Power used by equipment per
unit area

2.0 W/m²

The energy simulation results revealed high dynamic interplay within the indoor

environment, particularly during typical winter daytime hours. The analysis of the heat

balance of the internal partitions showed a notable decrease, indicating a reduction
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in heat transfer between internal spaces. This is understood because the adjacent

spaces are rarely occupied and thus unheated. The relative humidity showed a decrease

with increased heat loss from the glazing indicating closed windows. Consistently,

the decrease in fresh air influx during this period suggested limited ventilation, due

to the closed windows. The results also showed increased solar gain through the

glazing, highlighting the contribution to space heating. Additionally, external infiltration

experiences an uptick during daytime hours, which possibly, can be weighted by the

observed increase in solar gain as illustrated in Figure 4.3.

Figure 4.3: Typical Winter Day Heat Balance

Despite the natural ventilation and infiltration during the Autumn season, a notable

difference between inside air temperature and outside dry bulb temperature was shown.

This is understood due to the increased occupancy and heat gain during daytime hours.

However, the inverse proportion observed between relative humidity and external

ventilation under peak occupancy hours can indicate poor IAQ as can be seen in Figure

4.4. While this conclusion can be contradicted by the increased mechanical ventilation,

high air velocity can increase air shear forces carrying particulate matter. Therefore,

both cases indicate poor IAQ.

The summertime showed a similar result in inverse proportion between relative

humidity and ventilation, mainly due to natural ventilation. In addition, the cooling

showed slight efficiency in response to outside dry bulb temperature as illustrated in

Figure 4.5. Consistently, both sensible cooling and total cooling consist of humidity

decrease emphasising the role of natural ventilation. Opposite to winter time, the

highlighted role of natural ventilation may indicate improved IAQ, however, the case
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Figure 4.4: Inside temperature implications on IAQ

study is located in a densely crowded urban location can still suggest otherwise. It is

also notable that the indoor environment showed notable adaptation for the indoor air

temperature in response to the increased outdoor dry bulb temperature during daytime

hours.

Figure 4.5: Typical Summer Day Temperature, Humidity, and Heat Gain

Despite the observable heat loss from the external walls in winter, the inside surface

temperature showed 14 °C against subzero degrees for the external surface as can

be seen in Figure 4.6. The thermal resistance for the external walls was observed in

the increased external convection coefficient. The decreased internal coefficient is

logical considering the partitions that separate the case study space from adjacent heated

spaces. These results reinforce the previous results in terms of indoor temperature

consistency. However, further investigation into the difference between indoor and

outdoor temperatures during winter time is needed.
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Figure 4.6: Behaviour of Indoor Temperature Under Cold Outside Temperature

To investigate the difference between inside and outside temperature, the results

showed a notable difference between the outside dry bulb temperature and inside air

temperature despite the outside temperature being at subzero degrees. In particular, to

achieve 20 °C inside air temperature, the sensible heating indicated 15.5 °C as can be

seen in Figure 4.7.

Figure 4.7: Sensible Heating Temperature

In contrast, the summer season during July, showed a proportional relationship

between indoor temperature and relative humidity as can be observed from Figure

4.8. In addition, despite the total fresh air supplied partly with natural ventilation, it is

notable that indoor temperature records are higher than outside dry bulb temperature.

While the simulation showed an indication of windows shut down during daytime, it is

observable that there is an increase in occupancy heat gain, mainly indicating the role
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of individual control in windows opening. This particular result is another emphasis on

the importance of monitoring the IAQ.

Figure 4.8: Temperature and Heat Gain Versus Cooling Load

Overall, the energy simulation results can be interpreted sequentially to address key

factors influencing energy efficiency and occupants’ well-being. Based on the influence

of significance, the indoor environment parameters are humidity, temperature, IAQ, and

pressure, as seen in Figure 4.9.

Figure 4.9: Parameters of Highest Influence on Energy Efficiency and Well-being

The high thermally resistant space envelope, with large glazing windows, allowing
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solar gain has positively reflected on the heating load as can be seen in Table 4.3.

Moreover, given the applied boundary conditions of 20, 100, and 150 occupants, the

heat gain from occupants contributed to a notable decrease in the heating load compared

to the cooling load. In comparison, the indoor base temperature extracted from the

simulation indicated 12.7 °C, which is slightly below the standard UK 15.5 °C. With

the highlighted heat gains, changes in occupancy profile can cause indoor temperature

fluctuation with variable heating demand across a typical winter day. In contrast, the

increased cooling load, compared to the heating load, is also notable for the increased

occupancy number and equipment heat gains. despite the natural ventilation, the

individually controlled windows are understood to be responsible for temperature

increase during a typical July summer day. This individual control issue can also

introduce more dynamism within indoor air velocity, ppm, and CO2.

Table 4.3: EnergyPlus Model Results Showing Electricity Consumption of Indoor
Parameters

Parameter Electricity (kWh/m2)

Lighting 39.02

Heating 10.22

Cooling 13.34

Other 15.41

Total 77.9

As can be seen from the table, the heating energy is less than the cooling energy.

This is justifiable because the occupancy and equipment heat gains are also significant

contributors to the heat gain. similarly, the lighting contributes to increased temperature

through heat gain. These factors are therefore essential contributors to the indoor

temperature. For instance, high occupancy density and lighting heat gains during

winter can save more energy on heating. Conversely, these heat gains contribute to

increased cooling load during summertime. This explicitly means that the dynamics of

occupancy presence is an important element to consider when determining the indoor

base temperature.

In summary, it is important to highlight that the fresh air showed a notable increase

during summertime as a result of natural ventilation. This observation signals that
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indoor air quality and air shear forces may change due to the introduced natural air in

the indoor space. As such, outdoor air temperature, speed, and particulate matter levels

can all contribute to the sensing measurements of behavioral change during the natural

ventilation season.

The energy simulation results were then cross-referenced with the energy simulation

model as illustrated in Figure 4.10. Hence, the assessment revealed a decreased level

of smartness in the heating domain, despite showing an increased level in the cooling

domain. This highlights the need for targeted interventions in the heating domain,

particularly through the deployment of indoor monitoring sensors. As a result, the

low heating score with high cooling nominated indoor monitoring sensors to measure

temperature, humidity, IAQ, particulate level, and gas levels.

Figure 4.10: SRI Assessment Results Versus Energy Model Results

The SRI assessment results strongly correlated to the EnergyPlus model results,

emphasising the characterised domains. It’s therefore, lighting, heating, and cooling are

the main indoor parameters domains that influence energy performance. However, to

fully answer RQ1, it is important to acknowledge the multiple dimensions of heating and

cooling domains. As established in the literature, heating and cooling interrelate with

IAQ, CO2, and particulate matter. Building upon this, the next section will demonstrate

the resulting indoor environment parameters.
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4.1.3 Indoor Environment Parameters’ Definition

This subsection concludes the results in answering RQ1 “Which criteria should be

considered to select and prioritize the indoor environment parameters necessary to con-

duct dynamic life cycle assessment, taking into account a wide range of configurations,

including occupancy schedules and geographical location?”.

Given that the SRI results showed various impacts on energy consumption and

occupants’ well-being, the energy simulation has further confirmed these findings in

the previous sub-section. Even though the health and well-being domain achieved 67%,

both comfort and convenience achieved under 45% score. Reflecting these values on

the energy simulation results, the heating domain showed increased energy efficiency of

10% of the overall consumption despite the low SRI score. This has also been understood

that the space heating is based on LPHW radiator system. However, the cooling domain

was slightly increased in energy consumption but its SRI score is disproportionately

consistent when compared to heating. These particular results highlight the significant

role of natural ventilation in the space. As established previously, the indoor parameters

concerning the IAQ, humidity, and particulate matter are vital to the well-being impact.

This indication is further evident by the low comfort and convenience SRI scores. As

such, main three factors were identified to influence indoor environment conditions,

namely (external conditions, (b) daytime, and (c) Occupancy, as illustrated in Figure

4.12.

Figure 4.11: Implications on Indoor Environment Conditions

Based on these results, the indoor identified parameters are, (a) temperature, (b)

IAQ, (c) humidity, (d) pressure, (e) particulate matter, and (f) CO2. Hence, this indoor

environment parameters identification to guide indoor sensors’ audit in the next section.

92



4.2 QUANTIFYING EMBODIED CARBON OF INDOOR MONITORING
SENSORS

4.2 Quantifying Embodied Carbon of Indoor Monitor-

ing Sensors

As outlined in the methodology, the BME680 wireless indoor sensor was adopted

for it is high accuracy and multi-functionality as it measures temperature, humidity,

gas, and pressure. This multi-functional specification comes in line with the need to

decrease unnecessary embodied carbon from multiple sensors. However, additional

sensors are needed to measure the CO2 level and particulate matter levels. Following

the same criteria, the SCD41 wireless sensor was added to measure the CO2 level, and

the PMS5003 was also added to measure the particulate matter. Furthermore, selecting

the three sensors considered a matching range of the supply voltage, resulting in one

sensing unit, operated with one battery of Saft LSH20 Lithium Battery 3.6V D Size

Li-SOCl2 LSH-20. With this perspective. According to this selection, embodied carbon

assessment was carried out to cover the environmental impact of one sensing unit and

associated battery consumption. The calculation aimed to forecast embodied carbon

from sensors and battery consumption for an average of the building’s operational phase

of 60 years Table 4.4.

Table 4.4: Quantification for Embodied Carbon from One Sensing Unit Over a 60 Years
Use Phase

Item
Upstream in kgCO2 Direct Operation Downstream
Materials
acquisition

Carbon emission
factor

Materials processing
and assembly

Additional materials
including packing Transportation Use Phase 60 Years End of life of initial multiplied

by replacement frequencyUnit Replacements
BME680 1.6 2.2 0.546 0.17 4.516 X 6 = 27.1 0.9
SCD41 1.9 1.23 0.17 3.3 X 6 = 19.8 0.6
PMS5003 0.7 0.95 0.17 1.8 X 6 = 10.8 0.36

Saft LSH20 Lithium
Battery 3.6V D Size
Li-SOCl2 LSH-20

Lithium cobalt
oxide -27.5% 12.9

0.5 0.17 47.47

X 240 = 11.392.8 2.246.4

Steel - 20.2% 9.45
Graphite - 16% 7.5
Polymer - 14% 6.5
Copper - 9% 4.2
Aluminium - 5.5% 2.8
Nickel - 4.3% 2
Electrolyte - 3.5% 1.6

Total 60 years 46.8 kgCO2
Annual emission from one sensor unit including 4 batteries (Batteries consumption rate based on one year) 11.698.76 tCO2

Based on the performance observation during the experiment period, the corres-

ponding battery consumption was defined from the batteries’ performance across the

experiment time.

Total unit and batteries over 60 years, including end-of-life phase:
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E =
n∑

i=1

(ei · ji) + ef + et + ec (4.1)

Where E is the total amount of embodied energy in the sensor including batteries,

expressed in tCo2, ei is the embodied energy of each material, ji is the amount of

energy used in manufacturing, ef is the energy incorporated into the additional materials

including packing, et the energy needed for the transport of materials and mobility of

workers, ec correspond to the energy incorporated from the Batteries replacements, ed

is the embodied carbon of end of life during the downstream stage the result showed

that the projected carbon accumulation over 60 years = 11.698.76 tCO2.

The sensors’ identification was derived from the characterised parameters. In ad-

dition, the quantified embodied carbon was based on the manufacturer’s information,

furthermore, the embodied carbon for both units and batteries, essentially the frequent

replacements was based on the consumption rate across the experiment period. Accord-

ing to these results, significant embodied carbon accumulates from one unit measuring

the identified indoor parameters. consequently, this amount increases with the number

of needed sensors which negatively affects the carbon trade-off of the energy and well-

being optimisation process. As a result, moving to virtualised sensors is significant to

achieving LCA goals of the reduced environmental impact from this inventory tool.

4.3 Optimised Indoor Sensors Positions

Building upon the literature review and the outlined methodology, this section

presents the two-step outcomes of the CFD simulation and the thermal imaging. The

aim is to define the optimum positioning of indoor environment monitoring sensors for

accurate measurements. The results obtained from the CFD simulation and thermal

imaging helped to nominate optimum locations of least influence by the surrounding

environment. The subsequent subsection details the observed impacts on sensors’

strategic placement and the consequential implications of specific deployment.
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4.3.1 CFD Model

A BIM model of the building was developed and simplified before being imported

into the CFD environment. The model included key structural and environmental

details, such as the addition of extrusions to inlets and outlets, which were crucial for

avoiding airflow divergence and improving accuracy. Glass wool was used to simulate

the walls, floors, and ceilings, approximating insulated walls, while other materials like

steel, concrete, and wood were employed to represent radiators, columns, and furniture,

respectively.

The boundary conditions for the CFD model were carefully defined to simulate

realistic environmental factors. Each occupant was assigned a heat generation rate of

50W to represent body heat and external airflow was simulated with an x-direction

velocity of -1.884 m/s to mimic an easterly wind. The internal gauge pressure was set

at 0 Pa for all interior doors and at least one outlet, while adjacent zone doors were

assigned a gauge pressure of -6 Pa. The radiators were modelled with a reference

temperature of 20°C and an emissivity of 0.8 to reflect their white-painted surfaces.

Also, the CO2 levels were modelled by assigning scalars, with air set at 0 and CO2 at 1,

allowing for detailed tracking of air quality and occupant exhalation effects.

A mesh sensitivity analysis was performed to ensure the accuracy of the simulation,

with mesh densities ranging from an initial coarse mesh to a highly refined one. The

final mesh, consisting of around 1.5 million cells, was selected based on achieving a

balance between computational efficiency and result accuracy. This refinement process

was critical for accurately capturing the flow dynamics within the space. Residuals

were monitored throughout the simulation, with convergence criteria set to ensure

that continuity, momentum, and energy equations dropped by at least three orders of

magnitude, confirming the reliability of the results.

Concerning the CFD simulation results, the detailed setup was successful to help

to answer RQ2 regarding optimal sensor placement. The setup included definitions

of material properties and thermal boundary conditions such as heat, pressure, and

air-driving forces within the environment. According to the energy simulation results,

there was a notable influence from the surrounding spaces, and therefore, the CFD
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simulation considered adjacent rooms.

The effect of air velocity from surroundings highlighted increased influence of

natural ventilation as can be seen in Figure 4.12.

Figure 4.12: Effect of Surrounding Spaces on Air Velocity

Further investigation for the air velocity and its influence on the occupancy zone

aimed at 1.8 meters high, as can be seen in Figures 4.13, and 4.14. The aim is to

understand the implications of air velocity movement that may affect temperature and

IAQ.

Figure 4.13: Temperature and Air Velocity At 1.8 m High-Occupancy Zone
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Figure 4.14: Vertical Temperature Plane

Further investigation into the effect of adjacent zones on pressure under mixed

mode ventilation, a horizontal plane coupled with a vertical plane showed the increased

pressure sourcing from stairwells at both sides, as well as surrounding rooms, Figure

4.15. The vertical slice showed a notable increase in CO2 in the higher atmosphere of

the case study zone, indicating an unrepresentative location for the CO2 sensor. The

planes also come consistent with Figure 4.12, showing the increased air shear forces at

the indicated velocity.

Figure 4.15: Horizontal and Vertical Pressure

Under these results, marginal changes in thermal comfort under the mixed mode

ventilation can be seen on a horizontal plane of PMV in Figure 4.16.
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Figure 4.16: Predicted Mean Vote

In Summary, the CFD model provided a comprehensive understanding of indoor

parameters fluctuation. The temperature showed notable variation by the windows’ area

across summer and winter seasons. Also, the air velocity showed notable shear forces

closer to both entrances with highlighted pressure sourcing from the stairwells. Initially,

these results suggest that areas closer to both entrances must be avoided for sensors’

positioning. furthermore, the high pressure at the top atmosphere of the space indicated

more CO2 concentration, particularly under mechanical ventilation while less pressure

when mixed mode ventilation is used. In contrast, natural ventilation has introduced

irregular air turbulence, which affects the particulate matter movement across the space.

As such, there is a need to deploy more than one sensor to trace all these movements,

however, for the temperature, further results of thermal imaging investigation will be

demonstrated in the next subsection.

4.3.2 Thermal Imaging

While this CFD simulation result gives an understanding of the thermal and pressure

distribution within the case study space, further thermal imaging was conducted. The

results showed increased temperature around lighting fixtures on the ceiling, and also

within the occupancy zone as can be seen in Figure 4.17.
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Figure 4.17: Thermal Images During May Showing Variation In Temperature Closer
To Lighting Fixtures

The multi-layered approach integrating CFD simulation with thermal imaging has

led to a more robust and accurate sensor positioning approach for optimal measurement

accuracy. Given these results, the next section will present the optimised sensors’

positioning.

4.3.3 Optimal Sensors’ Positions

Based on the results obtained from the CFD simulation and thermal imaging, cri-

teria for optimum sensors’ positioning were defined as (a) temperature characteristics,

including distribution, gradient, and heat gains, (b) air velocity, including vector plots,

velocity magnitudes, and draft regions, and (c) pressure distribution, including HVAC

effects. Accordingly, temporary sensors’ positioning has resulted in the average correl-

ation among the parameters’ measurements as V, V+ 0.5, and V+1. This correlation

relationship using one-year data of LORD 9 and 1, can be observed in Figure 4.18.
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Figure 4.18: Temperature Correlation Between The Reference LORD 9 and Secondary
LORD1

As such, the results nominated different optimum sensors’ locations as can be seen

in Figure 4.19.

Figure 4.19: Nominated Sensors’ Optimal Positioning

In determining the minimum number of sensors, six sensors were deployed, where

one sensor was assigned as a reference sensor and the rest were deemed secondaries. The

deployment lasted for one year to cover all the year’s seasons. During this time, different

data samples were taken from the sensors and compared to the outdoor parameters

measured by the weather station. Daily variations in indoor temperature were closely

monitored, revealing significant fluctuations that corresponds to changes in outdoor

temperature levels. For instance, as outdoor temperatures dropped during the night,

indoor temperatures showed a gradual decline, reflecting the building’s thermal response

to external conditions. To further understand the impact of outdoor conditions on
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building energy consumption, we analyzed the relationship between energy consumption

(inferred from temperature control systems) and the mean outdoor temperature. The

data revealed that lower outdoor temperatures led to increased energy usage for heating,

as the building’s HVAC systems worked harder to maintain the desired indoor climate,

as can be seen in Table 4.5. This correlation highlights the energy required to raise the

indoor temperature to a specific setpoint during a winter week. As such, this energy is a

substantive element that contributes to the indoor temperature captured by the sensors.

Table 4.5: Outdoor and Indoor Mean Temperatures with Inferred Energy Consumption

Date Outdoor Mean Temp (°C) Indoor Mean Temp (°C) Energy Consumption (Inferred)
2023-01-17 11.0 20.0 High
2023-01-18 12.0 20.5 Medium-High
2023-01-19 13.0 21.5 Medium
2023-01-20 10.0 19.5 High
2023-01-21 11.75 21.0 Medium

It is important to point out that the reference sensor assignment was to implement

the presented equation 2.6, which will be demonstrated in the next section.

4.4 Minimum Number of Indoor Monitoring Sensors

In answering RQ2, the value of secondary sensors depends on their linear relation-

ship with both boundary conditions and a reference sensor. Using the historical data

of the deployed sensors, a linear regression ML model was approached, particularly to

identify the linearity between the variables, to formulate the equation;

Y =

∫
(X) + ε (4.2)

Where
∫

is a fixed unknown function of X1, . . . , Xp, and ε is a random error term

that is independent of X and has a mean zero.

The equation yielded promising results across various indoor environment paramet-

ers between the reference sensor and secondary sensors. Particularly, within the domains

of temperature and pressure, the equation also showed a high degree of prediction ac-

curacy when compared to actual measurements. However, the equation’s performance

was comparatively less accurate but still acceptable for the CO2 and IAQ parameters as
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illustrated in Figure 4.20. This could be attributed to the inherently challenging nature

of these parameters, as they are influenced by additional factors beyond temperature

and pressure.

Figure 4.20: Scatter Plots for Different Indoor Parameters with Residual Error
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These results represent significant findings in decreasing the embodied carbon from

indoor monitoring sensors by decreasing the number of total needed units. Given a real-

time reading of the reference sensor and historical data of the eliminated sensors, it is

proven that high accuracy from virtual sensors is obtainable as proven by the decreased

errors. Yet, for total embodied carbon elimination, the next section will demonstrate the

results of transitioning to complete virtual sensors.

4.5 Transitioning to Indoor Monitoring Sensors

After decreasing the number of sensors to one sensor, this section demonstrates

the findings concerning transitioning to virtual indoor sensors, for the provision of

real-time measurements. The use of equation 3.2. extracted from the literature has

shown significant accuracy in predicting the temperature.

i = (Y − (HDD ×DDF )) + Z (4.3)

This equation models the current value of an indoor sensor i as a function of several

key factors. These include the historical temperature value Y, Heating Degree Days

(HDD), Degree Day Factor (DDF), and the temperature difference Z. In practice, this

equation was applied by first determining the specific values of Y and Z at a given

time for the building in question. These values were obtained through an analysis of

historical temperature measurements that capturing the zone’s thermal characteristics.

Subsequently, integrating real-time HDD values from the weather station and applying

the zone-specific DDF, the equation was used to predict the live indoor temperature.

The results demonstrated that the equation could effectively model the temperature

dynamics within the building, providing a reliable estimate of indoor conditions with a

single sensor. However, given the context of the dynamism introduced in the literature

chapter, the equation was further developed to include the occupancy parameter as a

calibration factor. As such the equation was developed as;

i = (Y − (HDD ×DDF )) + Z +O (4.4)

Where O, is the Occupancy variable.
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This developed equation expands on the previous one by incorporating the occupancy

factor O, which accounts for the additional heat gain from occupants within the space.

This modification was necessary to enhance the accuracy of temperature predictions,

especially under varying occupancy conditions. After close observation during periods

of high and low occupancy profiles, this strategy resulted in more precise temperature

estimates. The integration of the occupancy variable proved to be particularly effective

when the predicted values from the model were compared against actual live readings

from the LORD1 secondary sensor. As illustrated in Figure 4.21, the enhanced model

with occupancy adjustments (Equation 4.4) yielded higher accuracy, particularly at

higher temperature levels.

While this accuracy level is generally acceptable, it was observed that the model’s

predictions were more accurate at higher temperatures than at lower ones. This dis-

crepancy can be attributed to the influence of changing pressure and air velocity, as

demonstrated by the CFD simulation results. The CFD analysis provided insights into

how these factors interact with temperature, suggesting that further refinement of the

model might involve incorporating pressure and air velocity adjustments for even greater

accuracy in temperature prediction.
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Figure 4.21: Temperature Prediction with Residual Error Using The Equation

The residual error histogram confirmed decreased accuracy on lower measurements

as frequency indicates. This can further support the argument of defining a calibration

value for higher accuracy. However, based on occupancy boundary conditions within

the energy simulation model and observation, an occupancy profile was established and

compared with the CO2, and temperature measurements. A RandomForrestClassifer

model using temperature and CO2 was used. The results showed good prediction on

higher and medium values of measurements, with a less accurate prediction on lower

measurements, as can be seen in Figure 4.22. This is a further confirmation of the

dynamic influence of the pressure and air velocity movements.
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Figure 4.22: Occupancy Prediction Based on CO2 and Temperature

This initial occupancy prediction can then assist in more virtualizing for additional

parameters given the identification of relevant boundary conditions. It is important to

acknowledge that, due to the uncontrolled windows’ opening, the methodology focused

only on temperature sensing concerning total virtualisation.

To compare these results with the majority of the current literature applications,

an MLP model was created. The goal is to measure the level of accuracy between

these research findings to establish a solid research contribution argument. As such, the

following section will demonstrate an enhanced multi-layered ML model.

4.6 MLP Model

A successful implementation of a machine learning model to predict sensors’ meas-

urements involves several key steps. This includes the data preparation containing the

required inputs and also the corresponding target value. Accordingly, an MLP model

was trained to predict the temperature measurement within the case study space. The

historical sensors’ measurements database is to be used. In addition, the HDD values

were also used along with heat loss values. Also, considering that MLP models allow

weighted connections between neurons, 3 occupancy profiles were adopted. These

include 20 humans for low occupancy, 70 humans for medium occupancy, and 120

humans for a densely occupied space scenario. Following that, the data splitting process
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adopted the commonly used approach of a split ratio is 80% for training and 20% for

testing. This involves training and testing the model on different subsets of the data to

cover various scenarios from the data, as can be seen in Figure 4.23.

Figure 4.23: MLP Model Architecture

The model has achieved performance of MSE loss settling around 1, suggesting that

on average, the model is predicting temperature values of approximately 1 unit from

the true values, Figure 4.24. In general, this MSE value can be acceptable, however,

considering a temperature measurement this error may not be considered as of highest

accuracy. For instance, if the temperature was wrongly predicted at 1 Celcius above

the maximum setpoint tolerance, automated HVAC may activated causing unnecessary

energy consumption. In contrast to this research findings, the equation model showed

MSE values of near zero, particularly concerning the temperature parameter. Therefore,

this comparison is foundational for the premise of the adopted solution in this research.
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Figure 4.24: MLP Model for Temperature Prediction

It is acknowledged that more sophisticated ML models may provide more accurate

predictions. However, given the complexity of the ML models, their methodology may

not be affordable on a wider scale. This particular point will be further analysed in the

following chapter.

4.7 Summary

By answering the research questions, the results have successfully bridged empirical

data with theoretical insights to virtualise indoor monitoring sensors. In addressing

RQ1, the SRI assessment emerged as integral to energy simulation for identifying

and prioritising indoor environment parameters, under different boundary conditions.

Similarly, RQ2 was addressed through a coupled modelling approach combining CFD

simulations and thermal imaging, which provided an enhanced thermal mapping that

was useful for the optimal number and placement of sensors. Using equation 2.6, the

results proved high accuracy to further decrease the number of sensors to one reference

sensor. Finally, answering RQ3 introduced a groundbreaking equation for transitioning

to virtual temperature sensors. The predicted measurements were validated with actual

measurements showing high accuracy levels. Moreover, the enhanced multi-layer ML

model showed acceptable MSE values however less than the equation MSE value. As a

result, the eliminated embodied carbon for the indoor monitoring sensors is a significant
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step in virtualising a pivotal LCA inventory component while enhancing its input data

resolution.
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Chapter 5 |
Discussion

This chapter details the interpretation of the results in light of the proposed research

questions. It also discusses their implications and reflects on the significance of this

research by comparing the research findings to the existing literature. This contextual-

isation is also aimed at supporting the generalisability of this methodology which will

be presented in the next chapter.

5.1 Implication of The Adopted Approaches

As highlighted in the methodology chapter, the adoption of a deductive approach

starts with a general hypothesis and then seeks data for testing (Young et al., 2020).

However, considering the need to develop a new theory concerning virtual sensors, an

inductive approach is also integrated. This combination is particularly relevant given

the qualitative and quantitative data used, to facilitate indoor virtual sensors. Following

this path, specific theories based on the existing literature concerning existing gaps in

LCA were developed. As such, the scope was defined as reducing the environmental

impact of indoor energy and well-being performances.

5.1.1 Implication of The Qualitative Approach

The qualitative SRI assessment has shown useful results in defining indoor en-

vironment parameters. The indoor domain weighting definition has helped capture

underlying factors affecting energy consumption. Furthermore, these weightings were

particularly beneficial for cross-validation with the quantitative energy simulation results

as illustrated in Figure 5.1. Although the assessment is more used for the buildings,

its flexibility allowed a case-specific evaluation of the indoor parameters of the indoor

space zone.
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Figure 5.1: Contribution of The SRI Assessment to the Quantitative Approach

Compared to the current literature, the assessment has further enhanced the un-

derstanding of which parameters need monitoring and control. The adopted strategy

of reducing embodied carbon from possible smart components can conclude a more

optimised approach. As a result, the assessment implemented in this research also gives

insight into unnecessary embodied carbon that may arise from new systems integration.

Thus the adopted strategy can further define the energy efficiency achieved by new

system additions remains conditional. The embodied carbon trade-off is, therefore, the

main governor for these additions, which was mostly neglected by the majority of the

current research.

Also, given the temperature variations across the space, including the ceiling surface,

thermal imaging showed useful results for sensors’ positioning. The combination of this

qualitative method and the quantitative CFD simulation is, therefore, the base of further

quantitative methods of data retrieving and analysing. This mixed-mode approach,

therefore, showed useful results in defining the indoor parameters. It has also enhanced

the positioning of the indoor sensors for higher accuracy measurements. Overall, while

this approach was highly shaped by the research question, the combination of qualitative

and quantitative approaches aimed at higher granularity results. This granularity was

particularly useful, given the context of the LCA impact stated in the research questions.

5.1.2 Implication of The Quantitative Approach

Supported by the qualitative approach, the quantitative approach showed high-

accuracy results. As acknowledged in the Research Design and Methodology chapter,

this combination was due to the complexity of the overall approach. As a result, the

qualitative-quantitative combination was also derived from the nature of the research

questions. In particular, the broadness of the first research question concerning the iden-
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tification of indoor parameters in the context of wide range configurations. The selection

of the quantitative modeling techniques was aligned with the validation strategies. In

this context, the BIM model of rich data was the foundation of the adopted approaches.

This has facilitated rich data inputs concerning different scenarios for the energy simu-

lation and later the CFD model. The energy simulation has concluded the parameters

identification while the CFD model coupled with thermal imaging helped to define

optimum sensors’ positioning. Furthermore, the identified sensors’ locations have also

helped in establishing a correlation relationship among the deployed sensors which was

useful for numerical modeling. As such these coupling methods highlight both static

and dynamic elements to reach the final sensors’ installation before the transition to

virtualisation as illustrated in Figure 5.2.

Figure 5.2: Characterisation of Coupling Strategies

Overall, given the complexity of the research questions, the combined approach has

provided high-accuracy results. This accuracy was then crucial for the LCA inventory

input data, aiming for optimised LCA impact. For more detailing on these results, the

next section discusses the interpretation of the findings of this research.

5.2 Interpretation of The Findings

From an LCA perspective, the methodology quantified embodied carbon from the

physical sensors to justify the transition to virtual sensors. Furthermore, the method-

ology also considered high-resolution LCA inventory input data by adopting multi-

layered simulations for optimum sensors’ positioning to guarantee high-accuracy meas-

urements. The presented hypothesis showed high accuracy in predicting the indoor

environment measurements on different parameters, given one reference sensor in the
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case study zone. As such, it saves more embodied carbon in open-plan indoor envir-

onments by decreasing the sensors to one sensor. This is particularly useful as indoor

environment conditions can vary within large spaces of different characteristics such as

windows, velocity magnitudes, and draft regions. In addition, the second theory concern-

ing virtualising all temperature sensors is a significant finding, considering the validated

results of high accuracy. Overall, in comparing the accuracy of the measurements from

the hypothesis with the commonly used ML prediction methods from the literature, the

methodology showed a notable difference in the accuracy of the measurements.

In discussing the findings of this thesis concerning the presented research questions,

it is important to acknowledge that the nature of these questions dictates the selected

approaches. Also, the sequential manner followed in forming the research questions

was aimed at guiding the phasing out of the embodied carbon from the indoor sensor

through a sequential and multi-step approach. Accordingly, the following subsections

will discuss the findings of each research question.

5.2.1 Defining Indoor Environments Parameters

The first research question; " Which criteria should be considered to select and

prioritise the indoor environment parameters necessary to conduct dynamic life cycle

assessment, considering a wide range of configurations, including occupancy schedules

and geographical location?"

The question has introduced the indoor environment parameters as being neces-

sary to conduct a dynamic life cycle assessment. It further implied that the indoor

environment parameters are part of the dynamic LCA process, which takes an input

data form. As reviewed, the dynamic properties in buildings LCA are classified by

their weightings, hence, the utilization of the SRI is aimed at defining the parameters

of the highest influence on energy and well-being performances. However, since this

weighting factor is also dynamic, the energy simulation was then conducted to invest-

igate different performance scenarios. This investigation has helped in defining and

prioritising the indoor environment parameters of the sensing interest. As such this

stage is specific to the selected indoor space, therefore the parameters’ weightings were

constrained to the type of building, activity, and adopted setpoints. This can also infer
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that the SRI assessment can be more useful if it has been carried out within the scope of

the intended study. Hence, as introduced in this stage, the scope is to identify indoor

parameters for energy and well-being optimisation. Since the purpose of this stage is

to allow suitable choices for indoor sensors, the answer to this first research question

remains a prerequisite to sensors’ identification. As such, according to the activity

nature of the space, this step also helps to eliminate unnecessary applications for the

sensors. The adopted SRI assessment sets the strategy of this case-specific approach

since the assessment is flexible. However, it is important to highlight that the energy

simulation cannot capture the dynamic influence of the occupants and can only simulate

a fixed number of occupants, hence the simulation was conducted repeatedly for more

granularity.

The occupied spaces identified from the BIM model have also contributed to the

indoor parameters of interest to energy optimisation and occupants’ well-being. Ac-

cordingly, the parameters’ set points were prioritised. While this part of the results can

represent a first layer to later identify the sensors’ positioning, further simulations were

carried out at a later stage to enhance this positioning.

While energy simulation is widely used across the literature, for energy optimisation

purposes, the SRI assessment showed limited use. It can be understood that the SRI

assessment is relevantly new and still under development. However, the defined weight-

ings were useful in cross-validation with the energy simulation as demonstrated in the

results. Therefore, a case-based SRI assessment based on indoor activity is important in

defining parameters of the highest influence.

In summary, the identified parameters showed a focus on the temperature domain

that reflects on heating and cooling loads. They also identified humidity, pressure, CO2,

and IAQ, as linked to ventilation which may imply more energy consumption to reach

optimum levels. Within this scope, the use of natural ventilation to improve IAQ, or

reduce CO2 levels can result in more heating load in winter. In contrast, savings on

heating load by relying on mechanical ventilation only can increase the heating load and

further cause delays in restoring IAQ and CO2 levels. This interactivity among indoor

parameters was the main justification behind combined monitoring for those parameters.

This combination is also considered a major scenario of our existing non-domestic
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buildings which adds more value to this research. It is also important to highlight the

notable increase in the lighting domain. This was basically because the space is also used

to commute between two buildings within the campus and therefore, passers-by triggers

an occupancy detection lighting system. Therefore, the study assumed unnecessary

lighting monitoring and rather focused on the other parameters.

5.2.2 Identifying Indoor Monitoring Sensors

The identified indoor parameters were the main derive behind choosing the Indoor

sensors. Further factors are considered in the assessment of integrating a new sensing

infrastructure, including a wired or wireless sensing network. While the study decided

on wireless sensors for their installation flexibility, additional criteria concerning sensors

were defined. Those criteria include their coverage specifications including accuracy

and multi-sensing capabilities. Compared to the literature, the majority of the studies

did not consider embodied carbon accumulation as a result of a high sampling rate. As

reviewed, the high sampling rate provides rich measurement data however negatively

reflects on battery consumption for the wireless sensors. The selection of the sensors

also followed mostly used sensors for monitoring. Also, the resulting sensing unit of

different three types of sensors considered shared battery specification.

Upon sensors’ selection and installation for the period of the study, the calculated

embodied carbon from each sensor was projected over 60 years of an operational phase.

The results showed 11.698.76 tCO2 per one sensor including battery consumption. This

result highlights a significant embodied carbon considering multiple sensor installations

over that period. As such, the accumulated carbon from sensors sets back the trade-

off between their integration and energy optimisation purposes. Since this issue was

highlighted as a main cause of LCA impact deviation, moving to virtual sensors, while

providing high-accuracy measurements is a significant step toward improved LCA

impact. It is important to acknowledge that virtual sensors can still accumulate carbon

as the literature indicates carbon accumulation from cloud systems. However, given the

reviewed research on cloud shifting, it is reasonable to assume virtual sensors have less

carbon accumulation than physical sensors.
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5.2.3 Defining The Optimum Positioning and Minimum Number of

Sensors

The second research question "What is the minimum number of physical sensors

and their optimal positioning to provide accurate dynamic accounts of indoor environ-

ments?", has two dimensions. The first dimension is the optimal sensors’ positioning

and the second is minimising the number of sensors. The methodology followed a

multi-layer approach for optimum sensors’ positioning facilitating CFD simulation and

thermal imaging. Given the majority of the sensors’ specifications, the CFD simulation

indicated a possible influence on the sensors’ accuracy. The air velocity, including

air sourcing from adjacent zones and natural ventilation, can be a constant cause of

pressure, CO2, and IAQ changes. Accordingly, sensors deployed in those locations may

provide a false representation of the actual parameters’ measurements. Furthermore,

the temperature distribution showed a clear variation, particularly closer to windows in

summer and also at the ceiling in winter, closer to extract ventilation openings.

While the overall CFD simulation results presented a reasonable mapping for the

parameters’ distribution, thermal imaging was successful in further enhancing this

model. The generated images highlighted higher temperatures closer to the ceiling level.

Therefore, in addition to the CFD model indicating higher CO2 concentration closer to

the ceiling, thermal imaging comes as further evidence to avoid the ceiling as a possible

sensor location. Different than the majority of the research, this finding is considered

crucial in generating sensing measurements of higher accuracy.

According to this mapping, the six deployed sensors showed a notable correlation

in their measurements. As presented, the average correlation was observed at V, V+0.5,

and V+1, particularly for the temperature parameter. This correlation has further helped

to establish the value of a secondary sensor as a function of a reference sensor using

the presented equation. As a result, the established theory showed high accuracy in

predicting a secondary sensor’s measurement in an open plan large space, depending on

one existing sensor. As such, a decrease of 11.698.76 tCO2 per sensor was achieved.

However, it was also acknowledged that low parameters’ measurements showed less

accuracy, but still within minimum frequency across the sample data. In detail, the tem-

perature showed higher accuracy indicating a stable correlation between the reference
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sensor and the secondary sensor. This can be understood from the fact that the space is

opened to two entrances and also mechanically ventilated through a terminal AHU. This

fact has also been reflected in the high accuracy of the pressure measurements across the

virtual sensors. Slightly decreased accuracy was observed on the CO2 and IAQ virtual

measurements. As explained in the previous chapter, the irregular natural ventilation

due to individually controlled windows is the main cause behind the irregular correlation

between the sensors. This fact points out that optimum results can be achieved with a

higher level of ventilation control.

While this accuracy was also reliant on the CFD model and thermal imaging, the

complexity of the simulation may not be universally available. Hence this issue can

arguably question the methodology’s generalisability. However, the simulation and

thermal imaging have still concluded guidance on sensors’ positioning, which will be

further explained in the next chapter.

5.2.4 Defining Indoor Virtual Sensors

This subsection discusses the findings concerning the third research question "Can

virtual sensors replace physical sensors while ensuring data accuracy and reducing

direct and indirect environmental impacts?"

As extracted from the literature, several factors affect indoor temperature, including

both external and internal factors. The external factors were highlighted as outdoor

temperature, while the internal factors included thermal resistance, occupancy profile,

and energy simulation boundary conditions. The approach was to first define the indoor

base temperature specific to the space. Following that, the captured temperature by

the sensors was used to estimate the heating capacity that maintains the temperature

setpoint. This temperature value was then connected to the HDD live measurement

retrieved from the weather station, formulating the equation;

i = (Y − (HDD ×DDF )) + Z +O (5.1)

Where O, is the Occupancy variable.

Since the HDD and DDF are of different metrics, empirical validation was followed.

The results therefore showed a notable correlation between the HDD and historical
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temperature sensor regardless of the time factor. This finding was understood that the

HDD is a variable and therefore plays a calibration element. However, an additional

variable of occupancy was added for further calibration. Along this path, different

occupancy profiles were established under different temperature measurements. This

strategy aimed to understand the behavior of the temperature under different occupants’

numbers to enable establishing the calibration element.

The proposed equation resulted in a significant finding in virtualising indoor temper-

ature sensors. While it only addresses the temperature parameter, this parameter affects

both the heating and cooling domains. As highlighted, those domains are commonly

of the highest weighting against energy and well-being. Therefore, the temperature

parameter was prioritised for this investigation.

In comparison to the existing literature, the majority of the research approached ML

models to predict indoor sensors’ measurements. While ML can provide some level of

accuracy, the applicability on a wider scale may not be obtainable for the majority of

the building environment community. This fact was discussed within the literature, as

the complexity of the method was highlighted as a main burden. However, to practically

compare the level of accuracy from the proposed equation with ML modeling, the

MLP of a regression element was investigated. The results showed acceptable accuracy

however less than the results obtained by the equation.
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5.3 LCA Reflection

Considering the objective of this research, the multi-layered methodology focused

on phasing out the embodied carbon associated with a pivotal LCA inventory component.

According to the LCA, quantifying the embodied carbon is subject to the LCA scope.

However, eliminating a system component has wider benefit to the LCA impact. By

virtualising wireless indoor sensors, their embodied carbon was then avoided. Moreover,

the comprehensive simulation approach provided a thorough exploration of the optimum

positioning of the sensors which has positively reflected on the virtual sensors’ accuracy.

This particular result adds more granularity to the LCA inventory sensing input data for

a higher level of energy and well-being optimisation.

The optimised positions necessitated a flexibility feature of the sensors which is

more achievable through wireless sensors despite their increased embodied carbon

from their battery consumption, Figure 5.3. Therefore, the choice of wireless sensors

was driven by their flexibility feature. In contrast, while wired sensors can show less

carbon accumulation, their accuracy can be altered due to inappropriate positioning.

Furthermore, the majority of existing buildings may not accommodate additional sensing

components, including wiring which can also accumulate embodied carbon over the

years. Hence, it is arguable that virtual sensors of high accuracy outweigh both physical

wired and wireless sensors. Thus, this finding addresses a further methodology gap

within the existing research.

Figure 5.3: Breakdown of Embodied Carbon Among LORD Unit Components
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The comprehensive simulation has helped find a correlation relationship among

the deployed sensors which supported further numerical modelling. Upon defining the

indoor base temperature, the integration of live HDD value has helped generate live

sensing measurements across different parameters. This integration has facilitated a

dynamic and responsive adaptation, resulting in more reliable sensing measurements of

the indoor changing conditions. However, more dynamic factors of high influence on

indoor temperature were also identified. Along this path, the use of CO2 was particularly

beneficial to reflect indoor dynamic conditions upon parameters’ measurements. It

is also important to highlight that given the characteristics of the case study space,

predicted virtual measurements were slightly increased than in reality concerning

IAQ and CO2 parameters. The investigation showed that this was primarily caused by

uncontrolled natural ventilation which irregularly fluctuates IAQ and CO2 levels across a

typical day. While this minor error may affect sensing accuracy, it was less frequent than

the data sample used. Furthermore, compared to the MLP model, the generated virtual

measurements showed higher accuracy, indicating new levels of accuracy compared to

existing methodologies.

5.4 Summary of Findings

The existing research notably ignored the trade-off between the embodied carbon

from the indoor monitoring sensors application. As concluded from the literature, this

fact can imply a significant setback to the LCA impact concerning energy optimisation.

Furthermore, despite the efforts, the presented level of accuracy in sensors’ measurement

did not widely consider optimum positioning that provides higher accuracy results. In

contrast, this research provided a breakthrough in virtualising those components phasing

out embodied carbon from sensors over the entire operational phase of a building. The

multi-layered and sequential approach as illustrated in Figure 5.4 has resulted in reliable

indoor virtual sensors. The extensive simulations have identified indoor parameters,

highlighting existing correlation relationships within a large space open plan case study

zone. This correlation was evident from temporary sensors’ deployment which was also

used as a validation strategy from physical sensors at the final virtualisation stage.
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Figure 5.4: Virtual Sensors’ Model

Overall, uncontrolled natural ventilation dominated the dynamic factors influencing

indoor parameters’ measurements. This has resulted in less accuracy among virtual CO2

and IAQ measurements, however they still maintained higher accuracy than existing

ML models used in current research. While this ventilation characteristic is specific

to the case study space, it gives a further understanding of the performance of this

research proposal across the wider category of our existing buildings. Based on this

discussion, the following section will present a generalised framework and algorithmic

description of the virtual system. The aim is to guide a universal application of this

research findings.

5.5 Reflection on Outcomes

Elicited from the successful results, this reflection section offers a coherent approach

to the creation of virtual sensors serving as a connection between theory and practice.

The overall structure is illustrated in three main phases (a) General framework, (b)

System description, and (c) Overview of system algorithm. These can be broken down

into detailed steps in the following sections. It also elaborates on challenges and

limitations identified through the system development. The overall objective is to phase

out embodied carbon from this LCA inventory component while optimising indoor

energy and well-being performances.

5.5.1 Structural Layout of Virtual Sensors’ System

The nature of the methodology being multi-layered necessitates a prerequisites

stage. This adopted strategy aims to achieve maximum granularity in the final outputs
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by considering relevant data dimensions. Thus, those prerequisites elaborate on the

enablers’ definitions, including qualitative and quantitative data sources. They also

define the system boundaries including the level of detail required by the sensors in

line with the LCA scope. Furthermore, they guide the sensors’ positioning and their

performance characterisation for optimum sensing data resolution. Accordingly, those

prerequisites can be defined as follows;

Enablers’ definitions: In this stage, the energy data including BIM model is to be

obtained. Subsequently, the SRI assessment is to be conducted for the targeted indoor

space. While this assessment should aim at indoor parameters performance definition,

it can also be used to understand embodied carbon trade-off between different levels of

possible smart systems additions. The results are then further analysed using energy

simulation for the BIM model to define indoor parameters of the highest influence on

energy and well-being performances.

Given the building case, this weighting definition is the first layer in defining the

needed indoor monitoring sensors. Accordingly, initial identification for the indoor

sensors is to be carried out. Furthermore, HDD data is to be facilitated from the nearest

weather station. Identifying these variables is crucial to establishing a relationship

between the outdoor and indoor temperatures at a later stage. In particular, the HDD

values, and heating and cooling loads from the energy simulation can both be used to

define indoor base temperature. Further calibration for the indoor base temperature can

also be achieved using sensors’ measurements to capture additional internal influences

on the indoor conditions at a later stage. As such, these influences include the effect of

occupancy and internal service characteristics. Introducing the Autodesk CFD model at

this stage is important to understand temperature distribution and air velocity patterns.

This understanding further supports the indoor sensors definition. Coupled with thermal

imaging, the resulting draft regions and temperature anomalies also help to identify

suitable types of sensors and optimal positioning.

The concluded results shape the indoor environment parameters of the highest

interest. They also guide sensors’ definitions and optimal locations in the next steps.

Given those results, the next step guides the definition of virtual system boundaries,

including sensors’ identification.
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System boundaries: At this point, the focus shifts to specifying the sensors based

on the identified parameters from the previous step. This includes the level of detail

represented in the information required in the historical measurements and also the

required parameters for LCA. Based on the EnergyPlus and Autodesk CFD models cre-

ated from the previous step, the definition of the number of sensors follows as explained

in the previous chapter. The results should then provide an optimum representation

of the building energy and well-being parameters using minimum sensors in the LCA

model. Additionally, embodied carbon from the sensors including battery usage across

the entire operational phase of the building is to be calculated to quantify the eliminated

environmental impact of the physical sensing application.

Sensors’ positioning: This stage defines the optimal locations for the sensors based

on the building’s CFD simulation results and thermal imaging. This positioning optim-

isation is significant to account for the quality of the virtual sensors’ measurements. It

is also important that the installation period covers various occupancy profiles under

different ventilation performances for higher data resolution. Therefore, it is advisable

that diversity of the weather is crucial to establish a solid conclusion of the differences

between the indoor and outdoor temperatures.

Subsequently, a data collection process is to be conducted. This involves creating a

database of historical sensors’ measurements covering different weather and occupancy

profiles. Additionally, live HDD measurements are to be facilitated from a local weather

station to support real-time sensors’ predictions at a later stage.

System Description: After establishing data sources from the previous step, a

reference sensor and secondary sensors are specified. The HDD value obtained from the

weather station is then collected along with the heat loss factor for the targeted indoor

space. Subsequently, a correlation between the occupancy profile and indoor parameters

measurement values is to be defined. This correlation will then help to formulate the

equation 2.6 function that virtualises the secondary sensors’ measurements given the

live reference sensor’s measurements. It is also important to identify the relationship

between the occupancy profile, HVAC performance, and sensing measurements for the

calibration factor. Given this context, the correlation between the sensors’ measurements
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should then be established using the presented equation 4.4.

Based on the founded function, secondary sensors can then be virtualised, providing

different parameters’ measurements based on one reference sensor. Following this step,

virtual measurements are to be validated using live measurements from physical second-

ary sensors before their removal. This particular step should aim to further enhance the

calibration value introduced in the equation. Similarly, the different occupancy profiles’

influence on parameter measurements can also contribute to this calibration value.

Following the calibration verification, relying on virtual sensing data accomplishes

a dual objective of optimising both energy performance and occupants’ well-being,

while phasing out sensors’ embodied carbon as illustrated in Figure 6.1. Accordingly,

an environmental impact assessment can be carried out using the eliminated embodied

carbon associated with the sensors and the achieved results from the virtual sensors. As

such, this framework offers a structured and efficient incorporation of virtual sensors,

setting the stage for greener and more environmentally responsible buildings.

Figure 5.5: Framework for Virtual Sensors Integration

The presented framework acts as a general system architecture for virtualising

indoor sensors. However, for more detail on the system’s specification, the next section
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describes the algorithmic description of the proposed system. The aim is to provide an

intelligent and predictive system for facility managers to make decisions based on the

virtual sensors’ measurements.
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5.5.2 Computational System Description

This subsection presents a detailed description of the computational system, facilitat-

ing a user interface for facility managers. It explains the procedures involved, including

the execution of the energy simulation, fetching HDD values, and utilising historical

sensors’ measurements stored in a database. The goal is to gather the required inputs to

the equations used in the virtualisation process. In line with the defined LCA scope, this

inventory input data is supported by the prerequisites stage from the previous step. The

process of the prerequisites should therefore be fundamental to calibrate and improve

the LCA inventory impact. Accordingly, multiple dimensions of these prerequisites

were identified and can be centered around;

Scope Definition and System Boundaries: Clear outlining for the scope helps to

better understand the LCA inventory input data. In more detail, this process represents

the first layer in defining the system boundaries. This includes the level of detail required

from the BIM model including the SRI results and the energy model. By defining these

characteristics this step can then exclude unnecessary parameters to further narrow the

number of sensors. Also, additional components of the prerequisites are represented in

the sensors’ identification including their compatible performance with the identified

SRI results. The final dimension in this element is the use of the Autodesk CFD model

and thermal imaging for optimum sensors’ positioning.

Data Precision and Credibility: A substantive prerequisite dimension is to ensure

data credibility considering the overall objective is to provide virtual sensors’ measure-

ments. This prerequisite dimension is to consider the granularity of the energy model

including various boundary conditions. It should also consider the nearest weather

station for high-resolution real-time HDD values. As such, this dimension is accounted

fundamental to high-resolution LCA inventory input data for more accurate virtual

sensors’ measurements.

Functional Units Specification: To enable informative impact assessment for the

proposed system, adopting consistent measurement units is substantive. Along this

direction, this stage focuses on identifying relevant parameters that can later be used in

sensitivity analysis. This strategy helps in assessing variations or uncertainties in certain
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factors that may affect the overall outcomes of the LCA. As such, this prerequisite

dimension is centered around identifying the function used in equation 2.6. to calculate

the value of (Y), given an (X) value. This entails;

• Clock Synchronisation: This factor guarantees uniform timing across the sensing

network by synchronising the internal clocks of all sensors with the parent unit.

This element is therefore crucial to support establishing a consistent correlation

between the reference sensor and secondary sensors.

• Sensor Sampling Frequency: In addition to the clock synchronisation, sensors’

sampling frequency should be unified across all sensors. This strategy helps to

further establish a concise correlation across the physical deployment period.

• Time Stamping: Implementing a common timestamp format for all sensors is

crucial for a useful database. As such, this strategy helps to create a cohesive

database of historical sensors’ measurements, allowing relevant correlation among

different sensors’ measurements. It is worth noting that this dimension was also

useful in preparing the MLP model data that was used for accuracy comparison.

• Overall Energy Performance Metrics: While normalised measures are a necessity

for accurate conclusions, the use of HDD of a different metric to predict Celsius

values is acknowledged. However, since the empirical validation has shown a new

level of accuracy, this metric is assumed valid for the context of this research.

Allocation Procedures: This prerequisite dimension involves assigning indoor set

points according to the targeted parameters’ categories. Following legislative guidance

on these set points can present an opportunity for energy optimisation while maintaining

the required level of occupants’ well-being. As such, a consideration of the indoor

parameters’ set points can be defined per a building or zone category. moreover, in open-

plan indoor zones, further segmentation can suggest different set points within the space.

This particular element can then provide further energy optimisation opportunities.

Temporal and Geographical Considerations: The consideration of temporal

aspects in this stage focuses on their relevancy to the defined scope. As such, the

influence of the occupancy profiles and seasonal changes on the indoor environment
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conditions is to be established. This particular stage is fundamental to the calibration

factor that will later be employed in the presented equations.

As presented, the system uses different dimensions of input data to facilitate op-

timum energy consumption while accommodating occupants’ well-being. As illustrated

in Figure 6.2, these dimensions provide multiple layers of granularity to the LCA

inventory, contributing to the overall LCA impact.

Figure 5.6: System’s Use Case Diagram

For more understanding of the system architecture, the following subsection demon-

strates the development of the user interface algorithm. The goal is to provide a clear,

structured approach for live-streaming virtual sensor measurements. Given this struc-

ture, facility managers can then get live-streaming virtual sensors’ measurements to be

able to make decisions on energy and well-being performances. This facilitates timely

actions given the changing scenarios of the indoor environment conditions.
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5.5.3 Overview of the System Algorithm

This subsection elaborates on the algorithm system architecture. It aims to provide a

detailed approach to illustrate the overall function of the system. Accordingly, it follows

detailed steps in tackling the presented research problem from a practical perspective.

The overarching objectives are then achieved through the combination of qualitative and

quantitative considerations, as highlighted in the methodology. Along this direction, the

next subsections demonstrate the adopted approach in creating the computational system.

They further illustrate the system’s algorithm architecture for optimum guidance.

5.5.3.1 Reflection on Research Problem

As established, the system was designed to facilitate real-time virtual indoor sensors’

measurements for facility managers. Accordingly, a user interface was created for

practical support in making decisions concerning energy and well-being optimisation.

As such, the system’s algorithm uses different input data created within the prerequisites

stage as presented in Figure 6.2. These include defining the building characteristics

using SRI and energy simulation and coupling the CFD model with thermal imaging

for optimum positioning. Additionally, the outdoor influence was represented in the

variable HDD value, which supports the real-time dimension.

Historical sensors’ measurements are also part of the algorithm input data. As

presented, querying a database of historical sensors’ measurements is crucial to cal-

ibrating the resulting virtual measurements. This calibration factor is accounted for

capturing different parameters’ measurements under various indoor conditions. This

includes different occupancy profiles, and seasonal changes are therefore stored in

measurements’ values.

Given these data, the following subsection will guide the development of a user-

friendly platform to generate live virtual sensors’ measurements. It provides a detailed

software structure underpinning the user interface. The goal is to provide facility

managers with practical applications for the proposed system, supporting their ability to

make decisions on energy and well-being optimisation.
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5.5.3.2 Predictive Modeling

A development of a Python script was adopted to link diverse data sources and

a user-friendly interface, to enable gaining valuable insights into the live-streaming

indoor environment conditions. Being an open-source programming language, including

associated libraries, this approach comes in line with the applicability of the proposed

framework on a wider scale.

Following data sourcing from the previous section, a Python script is to be developed

leveraging the API of the EnergyPlus and the weather station. The script should also

connect to the historical sensors’ data to query for measurements used in the correlation

process. The code should then implement the predictive equations using the data from

simulation results, the weather station, and the historical sensors’ database. Upon

generating the virtual sensors’ measurements’ the values are then to appear within a

Graphical user interface. For visual guidance, a detailed algorithm of this system can be

seen in Figure 6.3.
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Figure 5.7: Algorithm System Architecture

While the presented algorithm architecture achieves the goal of generating virtual

sensors’ measurements, more elements should be considered. Accordingly, monitoring

and updating the input data is crucial to maintain a continuous level of high accuracy.

This issue can be centered around the usefulness of the historical sensing data given a

building change of use or a service update. As such, there can be a missing element of

the occupancy profile or energy system update that is not captured within the historical

sensing data. Therefore, monitoring and updating data sources is crucial for a continuous

level of high accuracy. This can be achieved by deploying sensors to calibrate the data.

Drawing upon the introduced framework proposal, the following section provides

a recapitulation of the Key Points presented. The goal is to reiterate the practical

dimension of the hypothesis, reflecting on the expected impact of the adopted solution.
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5.6 Summary

In summary, the system yielded promising results for virtualising indoor monitoring

sensors. Given the empirical validation, the proposed framework and algorithm archi-

tecture provide a solid solution for phasing out the embodied carbon associated with the

physical sensors. Furthermore, the high accuracy of the virtual sensors also facilitates

carbon emission reduction by optimising energy performance while maintaining occu-

pants’ well-being. Accordingly, the resulting approach has a dual benefit to the LCA

for energy optimisation during the buildings’ operational phase. The first is eliminating

the embodied carbon from the LCA inventory components represented in sensors. The

second objective is to reduce carbon emissions resulting from energy use by providing

high-accuracy sensing measurements.
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Chapter 6 |
Conclusion

This chapter provides a thorough reflection on the findings of this research, con-

cluding on the adopted hypothesis in addressing the identified problem. Accordingly,

it reflects on each of the presented research questions and the corresponding findings.

Furthermore, it reflects on the research contribution to the field of virtual sensors

research field as part of the LCA inventory tools. The chapter also summarises pos-

sible limitations and future directions, guiding potential improvements to the presented

proposal.

6.1 Research Findings

The resulting solution for the research problem presents a new shift in indoor

management applications. According to the research questions presented in Chapter 1,

the core contribution was to phase out embodied carbon associated with physical indoor

sensors as an LCA inventory component. The approach also focused on facilitating high-

accuracy real-time virtual sensors’ measurements for optimum energy performance

and well-being control. Following sequential steps, the hypothesis emphasised the

importance of adopting prerequisites of different dimensions to tackle the research

problem. This includes a wide range of configurations covering both static and dynamic

factors influencing sensors’ measurements. As outlined in the methodology chapter,

the solution approach navigated through qualitative and quantitative data to formulate

the virtual sensors system. The overall results were developed through step-by-step

guidance in a generalised framework for wider application.

As outlined in the methodology, the hypothesis was developed by answering struc-

tured and sequential research questions to guide the formulation of the overall solution.

Along this path, the following subsections will conclude the results concerning the

presented research questions.
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6.1.1 Indoor Environment Parameters’ definition

The first research question was centered around setting the criteria for defining indoor

environment parameters of interest to the LCA with the scope of energy optimisation

during the buildings’ use phase. It was structured as:

Which criteria should be considered to select and prioritise the indoor environment

parameters necessary to conduct dynamic life cycle assessment, taking into account

a wide range of configurations, including occupancy schedules and geographical

location?

By determining the criteria for defining and prioritising the indoor environment

parameters, this first research question helps to set the scope of the LCA in this research.

It also implies inventory formation by considering different dynamic factors. Accord-

ingly, a comprehensive literature review was conducted to facilitate a holistic analysis of

the relevant information. The outcomes of the review pointed to several shortcomings.

These include the lack of consideration of the trade-off between the embodied carbon

of energy optimisation tools and the needed level of performance efficiency. As a result,

the majority of the current approaches did not factor in the background and foregrounds

of their proposals in defining indoor parameters.

Further literature findings concluded the case-specific approach to characterise

indoor parameters of highest interest. The investigation identified a range of external

weather factors influencing the indoor parameters conditions, including poor air quality

and heat islands. Internally, the review identified different dynamic factors including

occupancy profile, ventilation characteristics, and also the influence of the outdoor

factors of weather changes. These findings were further examined in chapters 3, and 4

against different qualitative and quantitative analysis approaches to define and prioritise

parameters of highest interest. Accordingly, the SRI assessment was used to identify

indoor domain weightings against energy and well-being performances. This approach

also helped to avoid unnecessary system upgrades that may come with extra embodied

carbon. Additionally, the energy simulation further refined the understanding of indoor

parameters’ domain performances. The concluded results from both assessments defined

the indoor environment parameters of highest interest under different performance

scenarios, including weather seasons and occupancy profiles.
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Given the highlighted significance of indoor monitoring and control, these findings

were then used to identify the types of the needed indoor sensors. Accordingly, the

following subsection will reflect on the findings in answering the second research

question.

6.1.2 Defining the Minimum Number of Sensors With Optimal

Positioning

The second research question asked:

What is the minimum number of physical sensors and their optimal positioning to

provide accurate dynamic accounts of indoor environments?

This research question seeks solutions for highly accurate indoor environment

monitoring through a minimal sensors configuration. It further considers the optimum

positioning as an approach to higher accurate measurements. Moreover, the inclusion

of the term “Physical sensors” implies embodied carbon dimension to the sensors’

characteristics.

Informed by the current limitations identified in the literature review from Chapter

2, a multi-layered approach was adopted to define the minimum number of sensors

with their optimum positioning. In line with the identified indoor parameters from the

previous step, the indoor sensors were defined. However, to provide an accountable

representation of the measurements of the indoor parameters, an extensive analysis

of the indoor environment was conducted. While the adopted CFD simulation exists

within current literature approaches, an additional layer of granularity using thermal

imaging was added. The resulting sensors’ positions were, therefore, avoided draft

regions, temperature hot spots, and additional localised heat sources identified by the

thermal imaging. This strategy has notably increased the accuracy of indoor sensors

which was proved by temporary ad-hoc installation to check the temperature and IAQ

anomalies.

Further decrease in the number of indoor sensors extended to total virtualisation

concerning the temperature sensor. To reflect on the adopted approach and the results,

the following subsection will address the third research question.

137



6.2 IMPACTS ON EXISTING THEORIES

6.1.3 Virtualising Indoor Environment Monitoring Sensors

The third research question asked:

Can virtual sensors replace physical sensors while ensuring data accuracy and

reducing direct and indirect environmental impacts?

As indicated, the comprehensive literature review has identified the influence of

both external and internal factors on indoor temperature measurements. The concluded

external factors recommended the use of a local weather station to track the influence

of external temperature fluctuation on indoor parameters’ behaviour. Accordingly, the

adopted approach considered both outdoor and indoor factors in the temperature sensor

virtualisation equation of:

i = (Yt − (HDD ×DDF )) + Zt +O (6.1)

The results showed a high level of accuracy for real-time temperature measurements.

According to the difference between historic sensor measurements and the occupancy

profile, the real-time measurement was then generated. These variables acted as adjust-

ing factors to provide the time dimension element, interpreting historical measurements

into real-time measurements. As identified, the heating and cooling parameters are sub-

stantial domains behind energy consumption and well-being requirements. Therefore,

this finding represents a breakthrough in aiding energy and well-being optimisation by

providing a real-time virtual temperature sensor’s measurements. For more context of

these findings in the current research, the following subsections compare these results

to the current research approaches.

6.2 Impacts on Existing Theories

This section contrasts this thesis’s findings with the existing research. The goal is

to reflect on the adopted approach within the context of current research. Accordingly,

the comparison approach is centred around two main elements. This includes the

methodological variances and the flexibility and adaptability of the presented theories.

A conclusion of those variances can then enhance the overall understanding of the

applied improvements and also Thesis development.

138



6.2 IMPACTS ON EXISTING THEORIES

6.2.1 Methodological Variances

Compared to the existing methodologies, the majority of current research showed a

notable focus on adopting ML approaches, including black box and grey box modelling.

As highlighted, ML models imply complexity, and therefore, are not affordable for the

wider scale application. Furthermore, the absence of addressing unpredictable scenarios

including weather changes and real-world occupancy profile dynamics was evident.

This particular element showed notable improvements to the results when considered in

this Thesis development. However, part of the research indicated high-accuracy results

of different ML models, but with less clarity on facilitating high-accuracy historical

sensing data. This was mainly centred around optimum sensors’ positioning, which

is significant for providing more representative measurements of the overall indoor

conditions. Moreover, the reviewed research also showed less consideration for the age

of historical data. This shortcoming lacks the weather dimension, essentially seasonal

influences on the indoor conditions.

It is important to reflect on the various sensors’ sampling rates adopted by the current

research. on one hand, this approach facilitated highly accurate sensors’ measurements.

On the other hand, the approaches did not address the accumulation of battery con-

sumption concerning wireless sensors. This issue was further highlighted in this Thesis,

indicating high battery consumption associated with the high sampling rate. As a result,

the accumulation over an entire building’s operational phase can further deviate from

the anticipated LCA impact. Accordingly, avoiding the accumulation of carbon from

battery consumption by virtualising indoor sensors was fundamental to optimised LCA

impact.

Overall, following the data collection, an MLP model was approached to cross-

validate the presented hypothesis. Despite the both applications adopted multiple

real-life scenarios, including occupancy profiles and weather data, the results showed

observable differences in accuracy. The MSE of the MLP settled around 1 Celsius

which is considered significant for a temperature measurement. In contrast, the result of

the adopted hypothesis showed near-zero error. Further analysis of the virtualised IAQ

and CO2 results indicated the role of individual-controlled windows on their accuracy

level. While the ML models can further be improved by integrating more enhanced
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calibration of the occupancy dynamics, their complexity remains a practical challenge.

Along this direction, the following subsection further reflects on the applicability of this

Thesis in the context of current research.

6.2.2 Flexibility and Adaptability

The sequential development of this Thesis presented a comprehensive yet applicable

methodology for virtualising the indoor sensors. The adopted tools are therefore

considered alternatives to complex ML modelling approaches. These tools provided

an enhanced foundation of indoor parameters’ definitions and subsequently sensors’

selection and positioning. In contrast to the existing research, this approach introduced

a new dimension to the sensors’ virtualisation represented in adopting a prerequisites

stage. In summary, compared to the existing research, the flexibility and adaptability of

this Thesis can be classified as:

Relevance of Adopted Approaches: Building on the existing knowledge was

foundational to establish the relevance of this Thesis. With this background, this

research has explored new boundaries of the indoor environment for high-accuracy

sensors’ measurements. The adopted contextualisation of the quantitative modelling

by the qualitative assessments’ results ascertained the overall relevancy to the research

impact. The effectiveness of this strategy was evident through the cross-validation of the

SRI assessment and the energy simulation in defining and prioritising indoor parameters.

Further CFD simulation and thermal imaging informed optimum sensors’ positioning.

Furthermore, using a real-world case study over a year helped to formulate a better

understanding of how to solve unexpected scenarios. As a result, this approach provided

a universal infrastructure from where different types of buildings can be assessed.

Overall, the formulation of the hypothesis was guided by multiple prerequisites,

drawing insights from diverse resources, to reach optimum solutions. In this context,

the following subsection reflects on the relationship between the adopted theories and

expected practice.

Bridging Theory and Practice: The theoretical stance behind the presented equa-

tion was one of the main findings in this Thesis. In this context, the adopted real-world

case study space demonstrated how the presented theories can be applied in practical set-
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tings. This approach was mainly aimed at testing the presented theories under different

challenges. As highlighted in the previous subsection, the selection of the adopted tools

aided the input data formation of high resolution. Compared to the existing research

landscape of ML modelling, these tools presented notable simplicity in approaching the

results.

Overall, the presented prerequisites provided comprehensive guidance in under-

standing and analysing the dynamic interplay among the LCA inventory input data.

According to the LCA scope in this Thesis, the identified dynamism within the in-

door changing conditions was sourced from real-world scenarios, over a year of data

collection. This particular consideration has provided enhanced relevancy in tackling

what-if scenarios. For more reflection on the research contribution, the following section

addresses this Thesis’s contribution to the field of research.

6.3 Research Contribution

The proposed hypothesis successfully eliminated unnecessary embodied carbon

associated with indoor sensors. This benefit was achieved by phasing out physical

sensors while providing credible real-time measurements’ accuracy. As a result, this

approach was significant in formulating a high-resolution LCA inventory within the

relevant LCA scope. Along this direction, the contribution of this Thesis can be

addressed in three main categories, including theoretical, methodological, and practical

contributions. These contributions can be summarised in the following subsections.

6.3.1 Methodological Contribution

The development of this thesis provided a structured and sequential approach leading

to sensors’ virtualisation. The introduced prerequisites and cross-validation using

the SRI assessment results and energy simulation have factored in enhanced indoor

parameter identification. Further CFD simulation and thermal imaging also contributed

to optimum sensor positioning for high-accuracy measurements. The resulting sensors’

measurements were then used to establish a correlation between secondary sensors and

one reference sensor which showed a high level of virtual measurements.
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6.3.2 Theoretical Contribution

The theoretical contribution evolves around developing an integrated framework

for virtualising indoor sensors. This contribution can be summarised into two main

contributions

Integrated Methodology: As presented in Chapter 2, the conventional methods

were the main reason for the LCA impact deviations. Building on this knowledge, the

combination of qualitative and quantitative approaches resulted in a holistic approach

that goes beyond conventional methods. As a result, the adoption of two data analysis

dimensions resulted in a step-by-step cross-validation framework. Accordingly, the

contribution was therefore useful in formulating the LCA input data of high resolution.

These include the first two contributions of:

• A holistic definition of the indoor environment parameters of interest.

• The definition of optimum indoor sensors’ positioning.

Innovative Sensor Virtualization Model: The observed dynamic interplay between

outdoor and indoor conditions was substantive to formulate the founded equations. As

a result, the first equation contributed to the decrease in the number of needed sensors,

while the second equation contributed to the total virtualisation for the temperature

sensor. Accordingly, the third and fourth contributions are:

• Finding the equation for defining the minimum number of indoor sensors:

Y = Xt + (Yt −Xt)×
(
Yt

Xt

)
(6.2)

• Finding the equation to virtualise all indoor temperature sensors:

i = (Yt − (HDD ×DDF )) + Zt +O (6.3)

The developed equations represent a ground base for virtualising indoor sensors. The

defined dynamic elements, which are interpreted to the adopted variables can therefore

be replaced to adapt this framework to different buildings. As a result, a significant
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benefit of reducing embodied carbon associated with physical sensors’ performance can

further enhance the LCA impact.

6.3.3 Practical Contribution

The structured methodology also offered a new concept of virtual indoor sensors as

part of the LCA inventory. This inventory feature was found significant in eliminating

embodied from two elements. The first is associated with the physical sensors’ and

their corresponding battery consumption across the entire buildings’ use-phase. The

second category of the decreased embodied carbon is the high accuracy of virtual

measurements. Compared to current research, the achieved level of accuracy was a

product of the optimum positioning and the integration of the proposed equations at a

later stage. Accordingly, the fifth and sixth contributions were:

• Phasing out embodied carbon associated with physical sensors.

• Optimising energy performance during buildings’ operational phase by facilitating

high-level accuracy of indoor parameters measurements.

The simplified framework presents a practical methodology as an alternative to the

complex ML models. The compared results of the MLP model to this Thesis findings

proved the reliability and applicability of the presented framework. However, these

results were also faced with challenges of limitations. Accordingly, the next section will

reflect on the identified limitations of this Thesis’ findings. It further reflects on future

work based on the concluded results.

6.4 Limitations and Future Work

While the proposed framework yielded promising results, two limitations affecting

virtual sensors’ accuracy were observed. Those limitations were understood to result

from both short-term and long-term changing conditions. It is important to acknowledge

that those limitations are also a present challenge in the existing research. However, this

Thesis has still provided higher accuracy levels compared to the current research field.
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• First Limitation: The first was mainly associated with fast dynamic changing

conditions. This includes the fast-changing occupancy profile dynamic. The

reason is that this Theis adopted 3 main occupancy profiles, namely, low, medium,

and high occupancy profiles depending on the scheduling activity. As a result,

the computational time shifting between medium and high occupancy profiles

showed a decreased accuracy on the presented RandomForrest diagram as can be

observed in Chapter 4. However, it is still arguable that the developed theory can

present significant benefits to buildings with fixed occupancy numbers.

• Second Limitation: The second limitation is that the established virtual sensors’

accuracy can be altered by a building change in use across the operational phase.

This issue may not be present with the physical sensors application as they

instantly capture the new indoor boundary conditions. As a result, the changing

occupancy profile can increase the overall heat gain altering temperature values.

Furthermore, a high occupancy profile can also increase the CO2 levels and

also affect the IAQ parameter. This issue was observable when correlating the

occupancy profile to the temperature, CO2 and IAQ levels.

Based on the observed results and the identified limitations, future work is recom-

mended. The goal is to guide further enhancement of the effectiveness of the framework

under short and long-term changing conditions. Accordingly, these recommendations

include:

• Enhancing the Occupancy Calibration Factor: To enhance the virtual meas-

urement accuracy, additional optimisation to the occupancy calibration factor

is needed to address the fast-changing occupancy profiles. This recommenda-

tion can then improve the prediction, particularly on higher values of parameter

measurements as presented in Chapter 4.

• Introducing New Boundary Conditions: This limitation can be addressed

by updating the historical sensors database to include the newly introduced

conditions. It is assumed that deploying sensors to capture these new conditions

is arguably less in embodied carbon reduction given the comparison of services

update to the deployment of the sensors covering the entire operational period.
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• Testing the Theory Across Wide Range of Different Buildings: Testing and

developing this Thesis theory in different types of buildings is highly recommen-

ded. The examination of how different occupancy activities interact with the

building structure and indoor parameters’ characteristics can help to classify the

buildings according to specific characteristics. This classification can then provide

pre-defined datasets from which a generalised framework for the presented theory

can be developed.

6.5 Closing Remarks

The existing research knowledge was of a significant benefit to develop this Thesis

approach. The research showed different methodologies dimensions in the adopted

approaches which was useful to develop the prerequisites of the presented framework.

As a result, this Thesis has presented a more simplified and applicable framework for

the wider benefits. The structured cross-validation approach provided higher virtual

sensors’ measurement accuracy compared to complex ML approaches. This strategy

proved effective, particularly in answering the presented research questions. Given the

high-accuracy results, the established equations are another breakthrough in the virtual

sensors field. Accordingly, the overall contribution resulting in phasing out physical

sensors is a practical elimination of a pivotal LCA inventory component that implies

embodied carbon. As such, the trade-off between indoor sensors and their impact

on LCA is compared to a decreased embodied carbon, mainly, associated with the

computational system. However, given those significant results, more work is needed

to be done. This work is mainly centered around enhanced occupancy profile dynamic

calibration factor. Therefore, this thesis is considered a proof of methodology within

the field of generating virtual indoor sensors’ measurements.
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