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A B S T R A C T

This paper studies the optimization of task assignment and pickup and delivery operations using a heteroge-
neous fleet of unmanned aerial vehicles (UAVs). We specifically address the distribution of emergency medical
supplies, including medications, vaccines, and essential medical aid, as well as the collection of biological
blood samples for testing and analysis. Unique challenges, such as supply shortages, time windows, and
geographical considerations, are explicitly taken into account. The problem is first formulated as a mixed-
integer linear programming model aimed at maximizing the total profit derived from the execution of a set of
emergency healthcare pickup and delivery tasks. An enhanced Q-learning-based adaptive large neighborhood
search (QALNS) is proposed for large-scale benchmark instances. QALNS exhibits a superior performance on
benchmark instances. It also improves the quality of the solutions on average by 5.49% and 6.86% compared to
the Gurobi solver and a state-of-the-art adaptive large neighborhood search algorithm, respectively. Sensitivity
analyses are performed on critical factors contributing to the performance of the QALNS algorithm, such as
the learning rate and the discount indicator. Finally, we provide managerial insights on the use of the fleet of
UAVs and the design of the network.
1. Introduction

The increasing occurrence of natural disasters causes significant
disruptions in global logistics and supply chain networks. Following
major natural disasters, traditional land transport systems may be
disrupted (Jeong et al., 2019). Disaster-stricken areas often have an
urgent need to distribute emergency supplies such as medications,
vaccines, and other essentials, along with the collection of biological
blood samples. These emergency challenges prompt us to reconsider
and explore new delivery methods with the help of promotion of
last-mile innovations (Demir et al., 2022).

With the rapid development of e-commerce and intelligent au-
tonomous technologies in various industries, unmanned aerial vehicles
(UAVs) are gradually finding extensive applications, such as emergency
rescue, communication relay, and disaster detection (see e.g., Saxena
et al., 2019; Liu et al., 2022). UAVs offer distinct advantages such
as mobility and movement flexibility in a limited traffic infrastruc-
ture, and they can already be used for transportation in emergency
healthcare (Dukkanci et al., 2023). For example, UAVLatam is part-
nering with Wingcopter to use UAVs to deliver medicines, vaccines,
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laboratory samples, and specific treatments to remote villages in the
Peruvian Andes (Howe, 2022). Zipline operates on four continents
(Africa, Asia, Europe and North America) and in eight countries: Côte
D’Ivoire, Ghana, Japan, Kenya, Nigeria, Rwanda, the United Kingdom
and the United States. It supports the medical, health, and retail sec-
tors and serves more than 4,000 health centers and over 45 million
people (Zipline, 2024). At the same time, heterogeneous UAVs have
different flight advantages and provide diverse solutions for handling
the ever-changing healthcare logistics tasks in emergency services.
Exploiting the advantages of UAVs in emergency healthcare to flexibly
and quickly achieve maximum use of limited resources is highly im-
portant for enhancing the flexibility and stability of emergency medical
logistics systems.

Compared to last-mile logistics, emergency healthcare delivery and
pickup services typically involve more complicated tasks, tighter time
windows, and limited available supplies (Fragkos et al., 2022). First,
distinct characteristics for pickup and delivery tasks arise from cus-
tomer needs, as indicated by Enayati et al. (2023). This requires the
matching of different tasks and heterogeneous UAVs in the first stage of
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Computers and Operations Research 174 (2025) 106890 
optimization. Second, the unpredictability of emergency events makes
t impossible to maintain a large reserve of resources, resulting in the
ack of emergency resources after a disaster (Gao et al., 2020). Mean-

while, customer tolerance for the timely delivery service of emergency
medical items is lower than that of standard parcel delivery. Existing
studies on emergency logistics have focused mainly on route planning
problem, along with some side constraints, such as time windows,
limited capacity and endurance, and landing platforms (Li et al., 2020;
Ghelichi et al., 2021). However, the heterogeneity of tasks and the
capability of a wide range of UAV types are rarely considered simul-
taneously. The scheduling of a heterogeneous UAV fleet, based on an
ptimal utilization of UAVs, has yet to be thoroughly researched. This
ives rise to the task assignment and pickup and delivery operations

using a heterogeneous fleet of unmanned aerial vehicles (HUTA-PDP).
Taking into account the effectiveness of task assignment, supply

shortages, and tighter service windows, the HUTA-PDP in emergency
healthcare services can be regarded as a variant of the team orienteer-
ing problem (TOP) (Hanafi et al., 2020). However, given that different
urgency priorities of healthcare demand leads to varying profits for task
completion, as well as considering factors such as pickup and delivery
and time windows, the HUTA-PDP shows a correlation with both
the price-collecting vehicle routing problem (PCVRP) (Stavropoulou
et al., 2019) and the pickup and delivery problem with time windows
(PDPTW) (Sartori and Buriol, 2020). Since both TOP and PCVRP are

P-hard, classical exact solution algorithms often struggle to solve
arge-scale instances in a timely and efficient manner (Xu et al., 2022).

In contrast, metaheuristics can effectively solve (Moosavi Heris et al.,
2022). For example, adaptive large neighborhood search algorithm
(ALNS) is particularly effective due to its adaptability and its ability
to explore extensive neighborhoods of a feasible solution (Hammami
et al., 2020). Given the complex and large-scale nature of the HUTA-
DP, we also introduce Q-learning, a reinforcement learning tech-
ique, to enhance the operator selection and performance of on ALNS
lgorithm.

Considering the significance of emergency healthcare logistics, the
main contributions of our research are threefold. (𝑖) An integrated op-
timization model of task assignment and route planning of pickup and
elivery services with a heterogeneous UAV fleet is studied. We note
hat emergency healthcare services are considered, characterized by
ime sensitivity and resource scarcity. (𝑖𝑖) A new metaheuristic variant,

namely Q-learning ALNS (QALNS), is developed. We incorporate Q-
learning into multiple parts of the algorithm (i.e., operator selection
and execution) to improve its performance. Finally (𝑖𝑖𝑖) extensive nu-
merical results demonstrate the strong performance of the proposed
QALNS algorithm. It significantly improves both convergence speed
and the quality of a solution when compared to an exact method and to
a standard ALNS algorithm. This makes it an ideal approach for solving
mergency healthcare logistics problems.

The remainder of this paper is organized as follows. Section 2
reviews related previous works in healthcare logistics, as well as UAV
route planning and Q-learning. Section 3 provides a description of the

UTA-PDP and introduces a mixed-integer linear programming (MILP)
ormulation. The overall framework of QALNS algorithm, along with
etailed explanations of Q-learning method are described in Section 4.

A numerical study is reported in Section 5. Finally, Section 6 concludes
and discusses future research directions.

2. Literature review

This section presents a brief literature review related to three re-
earch areas: (𝑖) healthcare pickup and delivery (PD) operations, (𝑖𝑖)
AV (drone) routing problems, and (𝑖𝑖𝑖) Q-learning.

The literature on healthcare logistics focuses on the management
of post-disaster operations to efficiently and effectively distribute med-
ications, vaccines, and other medical supplies to people in need, and
to collect biological samples as well (Lu et al., 2022). It prioritizes
2 
task completion time and total cost, while being constrained by various
factors such as the relationship of supply and demand, time windows
nd resource types (see e.g., Elluru et al., 2019; Do C. Martins et al.,

2021). In recent years, the focus of healthcare logistics has rapidly
expanded, incorporating objectives such as lifesaving utility, human-
tarian fairness and delay costs (see e.g., Huang et al., 2015; Seraji
t al., 2022). Considering the suddenness of emergency events often

leading to short-term shortages of healthcare supplies, maximizing
task satisfaction rates with limited resources became one of the key
bjectives (Cinar et al., 2021). In this situation, the TOP, which was

introduced by Chao et al. (1996), provides potential solutions for the
pickup and delivery with limited healthcare supplies (Dasdemir et al.,
2022). For example, Martin et al. (2021) provided MILP formulations
for a pickup and delivery TOP for various business cases with compet-
ing operators. Angelelli et al. (2021) considered an online version of
the TOP with pickup and delivery, with the objective of maximizing the
um of expected profits for each acceptance and rejection decision. Al-
hough the literature on the TOP with time windows (TOPTW) is quite
ich (Yu et al., 2019; Wang et al., 2019), there is limited research in

the area of healthcare logistics. Yadav and Tanksale (2022) introduced
a general model for the joint problem of routing and scheduling home
ealth care workers to maximize profits. In another study, Saeedvand
t al. (2020) explored the TOPTW for a disaster rescue scenario with
he aim of optimizing multiple objectives, including task rewards,
ompletion time, energy consumption, and missed deadline penalties.
o the best of our knowledge, the pickup and delivery, time windows,
ask priorities, and limited supplies for diverse healthcare tasks within
he TOP framework, has not yet been examined.

In the context of healthcare logistics, it is challenging to pro-
ide pickup and delivery services due to complex terrain-related fac-
ors (Xiong et al., 2023; Zhen et al., 2024). The efficient and timely

delivery of UAVs can significantly enhance the operations of healthcare
network operations (Gao et al., 2023). However, many studies reveal
that such services also entail new challenges, such as limited flight
range and payload capacity (Wang et al., 2023). Differences in UAV
ypes also result in performance variations, including the number of
rops that they can perform, takeoff and landing methods, flight height,

etc. (see e.g., Gonzalez-R et al., 2020; She and Ouyang, 2021).
Given the diversity of UAV types, there is limited research on

heterogeneous UAV fleets (Zhou et al., 2018; Pasha et al., 2022). In
a recent study, Liu et al. (2022) presented an optimal task assign-
ment and path planning method for multiple disaster relief UAVs,
including delivering medicine, collecting images and relaying commu-
nications. Bartolini et al. (2020) applied multiple fleets of cooperative
UAVs to monitor critical scenarios, detecting anomalies early and inter-
vening as necessary. In another study, Wen and Wu (2022) examined
 logistics delivery issue involving a heterogeneous multi-drone sys-
em, in which a large drone transports multiple small-size drones to
istribution areas. Despite the existence of some research that focuses
n heterogeneous tasks within logistics networks (Kang and Lee, 2021;

Wang et al., 2023), few studies match specific task requirements based
on UAV fleet characteristics, such as utilizing fixed-wing UAVs for high-
altitude delivery tasks, multi-drop UAVs for geographically dense tasks
nd multi-pickup, and high-speed UAVs for urgent demands.

Metaheuristics are computationally intelligent algorithms that are
widely used for solving complex optimization problems, particularly
NP-hard problems (Osman and Laporte, 1996). ALNS, equipped with
selection processes, was proposed by Ropke and Pisinger (2006). It
enables the exploration of multiple neighborhoods within the same
search procedure in an adaptive fashion (Boualamia et al., 2023), and
has proved to be successful in solving a wide range of VRPs (Aksen
et al., 2014; Gu et al., 2019). In the last decade, there has been
 rising interest in combining reinforcement learning methods with

metaheuristics to solve different variations of VRPs (Qin et al., 2021;
Zhang et al., 2023). Some studies argue that since the data stored
in the Q-table should not be excessively large, they opt to utilize
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neural networks to convert Q-learning into deep reinforcement learning
ethods (Chen et al., 2022; Kallestad et al., 2023). However, for
iscrete data processing problems such as the HUTA-PDP, deep learning
ethods can be quite time-consuming, whereas Q-learning enables

aster computations (Zhu and Fang, 2021). By integrating Q-learning
nto a multi-purpose metaheuristic, Chen and Wang (2024) proposed

a new learning-based ruin-and-recreate heuristics framework, which
proved to be one of the most advanced heuristics for solving last-mile
delivery problems. Boualamia et al. (2023) replaced the roulette wheel
election in standard ALNS by Q-learning to obtain a balance between

exploration and exploitation for the capacitated VRP. Additionally, Q-
learning is also used for fitness evaluation, initialization, and parameter
etting (Ji et al., 2021; Xu and Wei, 2023). It is known that the updating
f a solution in most metaheuristic algorithms is random, resulting in a
eavy computational burden at each iteration. However, there is a lack
f research investigating the utilization of Q-learning to overcome this
imitation. Hence, in our approach, we employ Q-learning to determine
he update rate for altering solutions in QALNS, another modification
eing the replacement of the roulette wheel selection mechanism.

On the basis of the above discussion, the research gaps found in the
literature include: (𝑖) a lack of joint optimization of task assignment and
oute planning problem for healthcare pickup and delivery logistics;
(𝑖𝑖) a lack of consideration for matching the functional characteristics
f heterogeneous UAVs with logistical task requirements; and (𝑖𝑖𝑖) the
otential for exploration of the improvement role of Q-learning in
etaheuristics. Therefore, our research defines the HUTA-PDP in the

ontext of healthcare logistics setting and proposes a corresponding
ILP model to address the first point (𝑖). For the second point (𝑖𝑖), we

onsider the ‘‘Tasks-UAVs-Centers’’ combinations by matching charac-
eristics of UAVs, such as payload, fly range, height, and speed with
otential tasks; and we finally design a hybrid metaheuristics to explore
he new role of Q-learning in ALNS for the third point (𝑖𝑖𝑖).

3. Problem description and mathematical formulation

This section defines HUTA-PDP for emergency healthcare scenarios.
e first present a MILP model with the objective of maximizing the

total profits derived from the execution of a set of PD tasks. The
objective of this problem is to optimize both task assignment and PD
routing operations for a fleet of UAVs. The HUTA-PDP framework
includes a pre-operational phase and two optimization stages as shown
n Fig. 1.

In the pre-operational phase, we categorize UAVs by assessing
their performance metrics, including flight range, payload capacity,
height capabilities, and their speed. At the same time, we analyze the
characteristics of emergency logistics missions related to healthcare,
such as demand types, priority levels, geographic locations, and other
pertinent factors. Taking into account these two sets of criteria, we
create a comprehensive framework to match UAVs and locations with
the diverse requirements of PD missions, resulting in the generation of
viable ‘‘Tasks-UAVs-Centers’’ combinations.

In the task assignment stage, we select specific combinations from
the pre-established options for each task. The aggregated set of de-
mands for each group of customers is treated as a single task and is
exclusively assigned to a single healthcare center and an UAV within
a designated time window. This tactical assignment process yields a
streamlined list of available ‘‘Tasks-UAVs-Centers’’ combinations.

Moving to the route planning stage, we formulate an optimal UAV
PD routing plan based on the task assignment results. The goal is
the maximization of the total profit, with consideration of various
constraints, such as time windows, payload restrictions, and the flying
ranges required in emergency situations. This two-stage approach en-
sures systematic orchestration of the entire logistics process, effectively
balancing the challenges of task assignment with the development of
efficient UAV routes for emergency healthcare operations.
3 
It should be noted that considering the limited healthcare resources
in emergency situations, we must account for the possibility of not
being able to meet all demands within the specified time. Hence some
orders may be unserved. Moreover, given the urgency of completing de-
mand in emergency situations, we have defined distinct time windows
or orders of different emergency priority levels. For higher-priority

demands, the time windows are relatively tight, while regular medical
orders may be delivered at any time. The objective of maximizing
total profits can help completing more tasks with higher emergency
priorities. With the remaining inventory, unserved orders with lower
rofits can still be served via different and relatively slower services.

Tasks that cannot be served do not earn profit and can also be left for
next planning cycle with a higher priority.

The HUTA-PDP can be formulated as follows. The emergency health-
are logistics network 𝐺 = (𝑉 , 𝐴) is composed of |𝑀| healthcare centers
nd |𝑁| groups with multiple number of patients, where the vertex
et 𝑉 = 𝑀 ∪ 𝑁 , and 𝐴 is an arc set. Within the network, there are
𝑅| different categories of healthcare resources for delivery and a 𝑅0th
ategory for pickup, i.e., 𝑅 = {1, 2,… , |𝑅|, 𝑅0}. A fleet of |𝑈 | types of

heterogeneous UAVs, indexed by 𝑘, each with 𝑐𝑘 compartments with
a payload capacity of 𝑏𝑘, flight range 𝑤𝑘, flight height ℎ𝑘 and flight
speed as 𝑣𝑘, is located in healthcare centers. The set of UAVs of type 𝑢
in center 𝑚 can be represented as 𝐾𝑢

𝑚, and 𝐾 = 𝐾1
1 ∪𝐾1

2 ∪⋯∪𝐾 |𝑈 |

|𝑀|

. For
each group 𝑗 ∈ 𝑁 , the altitude is denoted as 𝑔𝑗 , the profit of the unit
delivery and pickup task of the 𝑟th type of healthcare item is denoted
as 𝑝𝑗 𝑟, and the service end time as 𝑇𝑗 𝑟. The available stock of the 𝑟th
type of healthcare items in the center 𝑚 is 𝑠𝑚𝑟, and the quantity ordered
of the 𝑟th item by the customer group 𝑗 is 𝑑𝑗 𝑟.

At the task assignment stage, we collect and identify features of
the healthcare center set 𝑀 , UAV set 𝐾 and customer group set 𝑁 ,
specifying the responsible center and UAV for each task. For example,
this can be selecting UAVs with higher speeds for emergency tasks, and
using UAVs capable of flying at high altitudes for customers located in
hilly areas. Next, in the second stage, UAV 𝑘 departs from center 𝑚 and
transports different types of resources. It travels a distance of 𝑙𝑖𝑗 with
a speed of 𝑣𝑘, arrives at the group 𝑗 at time 𝑡𝑘𝑗 , and spends a period of
time 𝑡0 to deliver or pick up packages. If the group 𝑗 has a request for
the pickup task, UAV 𝑘 collects the weighing package 𝑑𝑗 𝑅0

. However,
if there is no pickup request, UAV 𝑘 continues to deliver the remaining
healthcare items until all delivery tasks are completed or returns to the
center 𝑚 before running out of battery energy.

To achieve optimal scheduling of limited resources in emergency
ealthcare, the HUTA-PDA model is formulated to coordinate hetero-
eneous UAVs within a limited emergency time window to deliver
arious medical items and collect blood samples. Table 1 lists the sets,

parameters and decision variables used in the model.
The MILP model of the HUTA-PDP is given as follows.

maximize
∑

𝑘∈𝐾

∑

𝑗∈𝑁

∑

𝑟∈𝑅
𝑝𝑗 𝑟𝑑𝑗 𝑟𝑦𝑘𝑗 𝑟 (1)

∑

𝑖∈𝑉
𝑥𝑘𝑖𝑣 =

∑

𝑗∈𝑉
𝑥𝑘𝑣𝑗 = 1, 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑉 (2)

𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗 𝑖 ≤ 1, 𝑘 ∈ 𝐾 , 𝑖, 𝑗 ∈ 𝑀 or 𝑖, 𝑗 ∈ 𝑁 (3)

∑

𝑘∈𝐾
𝑦𝑘𝑗 𝑟 ≤ 1, 𝑗 ∈ 𝑁 , 𝑟 ∈ 𝑅 (4)

∑

𝑟∈𝑅
𝑦𝑘𝑗 𝑟 ≤ 𝑀

∑

𝑖∈𝑉
𝑥𝑘𝑖𝑗 , 𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑁 (5)

𝑧𝑘𝑖 −
|𝑅|
∑

𝑟=1
𝑦𝑘𝑗 𝑟 + 𝑦𝑘𝑗 𝑅0

−𝑀(1 − 𝑥𝑘𝑖𝑗 ) ≤ 𝑧𝑘𝑗 , 𝑘 ∈ 𝐾 , 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑁 (6)

∑

𝑗∈𝑁

|𝑅|
∑

𝑟=1
𝑦𝑘𝑗 𝑟 ≤

∑

𝑖∈𝑀
𝑧𝑘𝑖 , 𝑘 ∈ 𝐾 (7)

𝑡𝑘𝑖 + 𝑙𝑖𝑗∕𝑣𝑘 + 𝑡0 −𝑀(1 − 𝑥𝑘𝑖𝑗 ) ≤ 𝑡𝑘𝑗 , 𝑘 ∈ 𝐾 , 𝑖, 𝑗 ∈ 𝑉 (8)

𝑘 𝑘
𝑡𝑗 ≤ 𝑇𝑗 𝑟 +𝑀(1 − 𝑥𝑖𝑗 ), 𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑁 , 𝑟 ∈ 𝑅 (9)
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Fig. 1. HUTA-PDP framework in emergency healthcare.
Table 1
Sets, parameters, and decision variables for the HUTA-PDP.
Notations Definitions

Sets
𝐺 Healthcare logistics network, 𝐺 = (𝑉 , 𝐴).
𝑉 Set of all vertices, 𝑉 = 𝑀 ∪𝑁 , 𝑖, 𝑗 ∈ 𝑉 .
𝐴 Set of arcs, indicated by (𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑉 .
𝑀 Set of all healthcare centers, 𝑀 = {1, 2,… , |𝑀|}, 𝑚 ∈ 𝑀 .
𝑁 Set of all customer groups, 𝑁 = {1, 2,… , |𝑁|}, 𝑛 ∈ 𝑁 .
𝑅 Set of categories of resources, 𝑅 = {1, 2,… , |𝑅|, 𝑅0}, where {1, 2,… |𝑅|} for

delivery and 𝑅0 for pickup, 𝑟 ∈ 𝑅.
𝐾 Set of all UAVs, 𝐾 = {1, 2,… , |𝐾|}, 𝑘 ∈ 𝐾.
𝑈 Set of UAV types, 𝑈 = {1, 2,… , |𝑈 |}, 𝑢 ∈ 𝑈 .
𝐾𝑢

𝑚 Set of UAVs of type 𝑢 in center 𝑚, 𝐾𝑢
𝑚 = {1, 2,… , |𝐾𝑢

𝑚|}, 𝑘𝑢𝑚 ∈ 𝐾𝑢
𝑚, and

𝐾 = 𝐾1
1 ∪𝐾1

2 ∪⋯ ∪𝐾 |𝑈 |

|𝑀|

.

Parameters
𝑝𝑗 𝑟 Unit profit of satisfying the 𝑟th type of items in group 𝑗 (𝑗 ∈ 𝑁 , 𝑟 ∈ 𝑅).
𝑠𝑚𝑟 Available stock of the 𝑟th type of items in the center 𝑚 (𝑚 ∈ 𝑀 , 𝑟 ∈ 𝑅).
𝑑𝑗 𝑟 Quantity ordered of the 𝑟th type of items by group 𝑗 (𝑗 ∈ 𝑁 , 𝑟 ∈ 𝑅).
𝑙𝑖𝑗 Travel distance of arc (𝑖, 𝑗) (𝑖, 𝑗 ∈ 𝑉 ).
𝑔𝑗 Altitude of vertices 𝑗 (𝑗 ∈ 𝑉 ).
𝑡0 Service time at each group.
𝑐𝑘 Available compartments of UAV 𝑘 (𝑘 ∈ 𝐾).
𝑏𝑘 Maximum payload capacity of UAV 𝑘 (𝑘 ∈ 𝐾).
𝑤𝑘 Maximum fly range of UAV 𝑘 (𝑘 ∈ 𝐾).
ℎ𝑘 Maximum fly height of UAV 𝑘 (𝑘 ∈ 𝐾).
𝑣𝑘 Maximum fly speed of UAV 𝑘 (𝑘 ∈ 𝐾).
𝑇𝑗 𝑟 Available service end time of the 𝑟th type of items in group 𝑗

(𝑗 ∈ 𝑁 , 𝑟 ∈ 𝑅).

Decision variables
𝑥𝑘𝑖𝑗 1 if arc (𝑖, 𝑗) is traveled by UAV 𝑘, 0 otherwise (𝑘 ∈ 𝐾 , 𝑖, 𝑗 ∈ 𝑉 ).
𝑦𝑘𝑗 𝑟 1 if the 𝑟th type of items in the group 𝑗 is served by the UAV 𝑘, 0

otherwise (𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑁 , 𝑟 ∈ 𝑅).
𝑧𝑘𝑗 The number of loaded parcels of UAV 𝑘 after leaving vertex 𝑗

(𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑉 ).
𝑡𝑘𝑗 The arrival time of UAV 𝑘 at vertex 𝑗 (𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑉 ).
4 
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∑

𝑘∈𝐾𝑚

∑

𝑗∈𝑁
𝑑𝑗 𝑟𝑦𝑘𝑗 𝑟 ≤ 𝑠𝑚𝑟, 𝑚 ∈ 𝑀 , 𝑟 ∈ {1, 2,… , |𝑅|} (10)

∑

𝑘∈𝐾𝑢
𝑚

∑

𝑗∈𝑁
𝑥𝑘𝑖𝑗 ≤ |𝐾𝑢

𝑖 |, 𝑖 ∈ 𝑀 (11)

𝑔𝑗𝑥
𝑘
𝑖𝑗 ≤ ℎ𝑘, 𝑘 ∈ 𝐾 , 𝑖, 𝑗 ∈ 𝑉 (12)

∑

𝑗∈𝑁

∑

𝑟∈𝑅
𝑑𝑗 𝑟𝑦𝑘𝑗 𝑟 ≤ 𝑏𝑘, 𝑘 ∈ 𝐾 (13)

𝑧𝑘𝑗 ≤ 𝑐𝑘, 𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑉 (14)

∑

𝑖,𝑗∈𝑉
𝑙𝑖𝑗𝑥

𝑘
𝑖𝑗 ≤ 𝑤𝑘, 𝑘 ∈ 𝐾 (15)

𝑥𝑘𝑖𝑗 = {0, 1}, 𝑘 ∈ 𝐾 , 𝑖, 𝑗 ∈ 𝑉 (16)

𝑦𝑘𝑗 𝑟 = {0, 1}, 𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑁 , 𝑟 ∈ 𝑅 (17)

𝑧𝑘𝑗 ≥ 0, 𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑉 (18)

𝑡𝑘𝑗 ≥ 0, 𝑘 ∈ 𝐾 , 𝑗 ∈ 𝑉 , 𝑟 ∈ 𝑅. (19)

The objective function (1) maximizes the total profit, where the 𝑝𝑗 𝑟
s the unit profit associated with each task. Constraints (2) ensure the

flow balance of a route. Constraints (3) prevent UAVs from forming
loops between every adjacent vertices. Constraints (4) guarantee that
ach task is performed at most once. Constraints (5) impose restrictions
hat maintain the relation between the number of UAVs attending

customer group 𝑛 and the number of tasks completed by a single UAV
while undertaking multiple tasks for that particular group. Constraints
6) calculate the number of packages loaded onto UAV 𝑘 after com-
leting its pickup or delivery operation for group 𝑛. Constraints (7)
ean that the assigned task for each UAV cannot exceed the total
umber of packages it can carry. Constraints (8) indicate the temporal
elationships of UAVs arriving at adjacent vertices. Constraints (9)
nsure that UAVs are not allowed to provide services after the time

window is closed. Constraints (10) guarantee that the total quantity
of delivered items from each healthcare center does not exceed the
available stock. Constraints (11) ensure that the total available number
of UAVs is not exceeded. Constraints (12) guarantee that UAVs cannot
fly above their maximum height. Constraints (13) ensure that the
weight limit of the payload does not exceed the maximum payload of

AV compartment. Constraints (14) limit the number of packages that
are loaded. Constraints (15) limit the travel range of UAV 𝑘. Constraints
(16)–(19) define the domains of the decision variables.

The HUTA-PDP is an extension of the TOP and is therefore NP-
hard. Gurobi solver has been successfully applied and verified to ob-
tain an optimal solution of the small-scale MILP. To solve large-scale
HUTA-PDP instances, we have designed a metaheuristic.

4. A Q-learning ALNS algorithm

We have developed a hybrid metaheuristic for an ALNS heuristic
n which Q-learning is integrated. We describe the framework of the

metaheuristic and its main components, including the initial solution
generation, destroy and repair operators, improved Q-learning-based
selection mechanism, and acceptance criteria for solutions.

The framework of the proposed QALNS algorithm is presented in
lgorithm 1. The algorithm starts with an initialization stage to gener-
te a feasible solution as the current solution. Then, the destruction and
epair mechanism of the feasible solution is continuously performed to
xplore better solutions within the limit of the number of iterations
nd of the maximum allowed computation time. In this process, the Q-
earning component serves two roles: (𝑖) replacing the roulette method
or choosing the destroy and repair operators, and (𝑖𝑖) adjusting the
estroy–repair rate, as shown in Fig. 2. The following subsections

provide a detailed description of these components.
 p

5 
Algorithm 1 The QALNS procedure
1: Input: Initial solution 𝜍; initial temperature 𝜏0, minimum tem-

perature 𝜏𝑚𝑖𝑛 and cooling rate 𝜌; initial Q-table 1 and Q-table 2;
programming end conditions 𝐼 𝑡𝑒𝑟𝑚𝑎𝑥, 𝑇 𝑖𝑚𝑒𝑚𝑎𝑥

2: Output: Best solution 𝜍∗

3: Let current best-found solution 𝜍∗ ← 𝜍, current temperature 𝜏 ← 𝜏0,
𝐼 𝑡𝑒𝑟 ← 0

4: while 𝐼 𝑡𝑒𝑟 ≤ 𝐼 𝑡𝑒𝑟𝑚𝑎𝑥 and 𝑇 𝑖𝑚𝑒𝑛𝑜𝑤 ≤ 𝑇 𝑖𝑚𝑒𝑚𝑎𝑥 do
5: while 𝜏 ≥ 𝜏𝑚𝑖𝑛 do
6: Select a destroy-repair action based on Q-table 1
7: Determine a destroy-repair rate based on Q-table 2
8: Perform destroy and repair operations to get a new solution

𝜍′

9: if 𝑂 𝑏𝑗(𝜍′) ≥ 𝑂 𝑏𝑗(𝜍) then
10: 𝜍 ← 𝜍′

11: if 𝑂 𝑏𝑗(𝜍′) ≥ 𝑂 𝑏𝑗(𝜍∗) then
12: 𝜍∗ ← 𝜍′

13: end if
14: else
15: if simulated annealing acceptance criteria is met then
16: 𝜍 ← 𝜍′

17: end if
18: end if
19: Update the current state, reward, Q-table 1 and Q-table 2
20: 𝜏 ← 𝜌 ∗ 𝜏0
21: end while
2: 𝐼 𝑡𝑒𝑟 ← 𝐼 𝑡𝑒𝑟 + 1, 𝜏 ← 𝜏0
3: end while

4.1. Initialization

We generate an initial feasible solution by performing several steps.
First, the sequence of tasks is randomly generated, taking into account
constraints such as available ‘‘Tasks-UAVs-Centers’’ combinations, UAV
feature capacity, available number of healthcare resources and UAVs,
etc. Then, the corresponding sequence of vertices is generated, and the
tasks of the same vertex are made adjacent to each other, avoiding
ubloops. Next, we remove the selected ‘‘Tasks-UAVs-Centers’’ com-

binations from the task set and calculate the remaining inventory.
Finally, the arrival time of a solution is obtained based on the generated
vertex sequence, geographic information, and UAV flight parameters.
The complete solution structure for the HUTA-PDP is shown in Fig. 3.

Although the initialization procedure of the proposed QALNS al-
gorithm is random, the construction of the initial solution exhibits
considerable efficacy due to the strict rules. On the other hand, the
ALNS algorithm can easily recover from a poor initial solution and does
not require the initial solution to be of excellent quality (Demir et al.,
2012).

4.2. Destroy–repair operators

The destroy and repair operators are used as an effective tech-
nique to update a solution. The destroy operators disrupt the current
solution by removing several elements, while the repair operators
add elements to generate a new feasible solution. Although many
roblem-specific destruction and repair operators, including sequence-
ased operators, priorities, and historical information, have been pro-
osed (Voigt, 2024), they do not align well with the characteristics of

the HUTA-PDP. In this study, we designed three destroy operators and
three repair operators to solve the HUTA-PDP. Beyond basic random
perators, we introduce a new feature where some pickup and delivery

tasks may occur within the same group. To efficiently optimize UAV
operations, we propose group-based operators. Furthermore, given the

rofit-oriented nature of the HUTA-PDP model, we also introduce
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Fig. 2. Framework of the QALNS algorithm.
Fig. 3. Solution generation.
profit-based operators. All operators are performed in task sequences.
The corresponding vertex sequences and time sequences are generated
similarly to the initialization process.

4.2.1. Destroy operators
We now describe the destroy operators used in the QALNS algo-

rithm.
Random Destroy (RD): This operator randomly selects multiple tasks

for removal from the task list for each UAV distribution. Subsequently,
the serial numbers of these deleted tasks are incorporated into the
residual task list, denoted as 𝑇 𝑎𝑠𝑘𝑟𝑒𝑚𝑎𝑖𝑛, with their associated resource
quantities concurrently appended to the existing inventory, 𝐼 𝑛𝑣𝑟𝑒𝑚𝑎𝑖𝑛.
This process is followed by an update of both the vertex and the time
lists. The RD operator helps improve the diversity of updated solutions.

Group-Based Destroy (GD): This operator focuses on groups for task
removal. It involves the selection of one or more groups accessed by the
UAV 𝑘, followed by the removal of all serial numbers associated with
the selected groups from the task list. For example, if the group vertex
𝑛1 is chosen, all tasks associated with 𝑛1 are consequently deleted,
whilst tasks pertaining to other tasks remain unaffected.

Worst-Profit Destroy (WPD): This operator iteratively removes low-
profit tasks. It randomly generates the number of tasks to be deleted,
and then deletes multiple tasks with the lowest profits in descending
order of each task, from lowest to highest. After deleting the task, the
unsatisfied tasks 𝑇 𝑎𝑠𝑘𝑟𝑒𝑚𝑎𝑖𝑛 and the remaining inventory 𝐼 𝑛𝑣𝑟𝑒𝑚𝑎𝑖𝑛 are
recomputed. The list of groups visited by this UAV and the arrival times
are generated again following the operational steps in the initialization
stage.
6 
4.2.2. Repair operators
We now introduce three repair operators.
Random Repair (RR): This operator initially computes the additional

number of delivery and pickup tasks that can be accommodated, con-
sidering the capacity to transport the UAV task 𝑘 and the already
scheduled tasks. It then randomly selects tasks from the remaining pool
of tasks 𝑇 𝑎𝑠𝑘𝑟𝑒𝑚𝑎𝑖𝑛, ensuring that the total task conform to the UAV
𝑘’s parcel capacity constraint. Additionally, the remaining inventory
𝐼 𝑛𝑣𝑟𝑒𝑚𝑎𝑖𝑛 in each healthcare center is taken into account. Finally, an
updated and extended task list, as well as its corresponding group
vertex list and time list are generated.

Group-Based Repair (GR): This operator inserts tasks based on the
group vertices already matched by the current UAV 𝑘. For a non-empty
task list, the operator randomly selects groups traversed by UAV 𝑘
and picks additional task serial numbers associated with chosen groups
from the remaining task pool 𝑇 𝑎𝑠𝑘𝑟𝑒𝑚𝑎𝑖𝑛 to insert into 𝑘’s task list. For
example, if 𝑛2 is the selected customer group vertex, then the tasks
inserted are all associated with 𝑛2. For an empty task list, the operator
can randomly select several groups and insert tasks related to these
chosen groups, and the time list is subsequently generated afterwards.

Best-Profit Repair (BPR): The operator sorts tasks from the remaining
pool of tasks 𝑇 𝑎𝑠𝑘𝑟𝑒𝑚𝑎𝑖𝑛 in descending order of profits and selects a
random number of top tasks to insert into the list of tasks of this
UAV 𝑘. At the same time, reordering is performed to ensure that tasks
from the same customer group are adjacent to avoid duplicate visits. It
then checks whether the inserted tasks comply with the 𝑘’s capability
constraints and the center’s inventory constraints. Based on this, the
vertex solution and the arrival time solution of 𝑘 are generated.
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4.3. Q-learning mechanism

In the standard ALNS framework, the roulette wheel method selects
the destroy or repair operator based on the weights obtained in the
previous iterations. This may reduce diversity, leading to a fall into
 local optimum (Boualamia et al., 2023). However, particularly for
arger-scale problems, traversing all elements for destroy and repair
perations greatly diminishes convergence speed and solution qual-

ity (Pan et al., 2021). Therefore, we apply Q-learning in two ways:
perator selection and operation rate determination. The steps are
hown in Algorithm 2.
Algorithm 2 The Q-learning mechanism
1: Input: Initial 𝑄( ,), learning rate 𝛼, discount factor 𝛾, initial

exploration rate 𝜖0, minimum exploration rate 𝜖𝑚𝑖𝑛, decay rate 𝜆
2: Output: Policy 𝜋∗() = ar g max 𝑄( ,)
3: for each episode do
4: Initialize 
5: while  is not terminal do
6: if 𝑟𝑎𝑛𝑑 𝑜𝑚_𝑛𝑢𝑚𝑏𝑒𝑟 > 𝜖 or 𝑄( ,) = 0,∀ then
7: Randomly choose an action  from 
8: else
9:  ← ar g max𝑄( ,)
0: end if
1: Take action , observe reward  and new state  ′

2: 𝑄( ,) ← 𝑄( ,) + 𝛼[ + 𝛾 max 𝑄( ′,) −𝑄( ,)]
13:  ←  ′

14: 𝜖 ← max(𝜖𝑚𝑖𝑛, 𝜖0 × 𝜆)
15: end while
16: end for

4.3.1. Operator selection
Q-learning is first deployed to dynamically adjust the weights of the

perators with feedback information and enhance the evolution process
f ALNS. This operator replaces the roulette wheel selection process
n the original ALNS algorithm, where the weights of the destroy and
epair operators were updated using the weight update factor 𝛽.

QL1-State: We define a set of states to guide the algorithm in
electing the most appropriate destroy and repair operators in the

search, as shown in Table 2. The first five are adapted or inspired
by Kallestad et al. (2023), whereas the last two are new. All states
are characterized by three types of indicators: improvement indica-
ors, diversity indicators, and difference indicators. The improvement
ndicators includes Best_improved, Best_equal, Previous_improved, Cur-
ent_accept, which are used to measure the improvement of the objective
alues of the new solution compared to the current best solution
nd the previous solution. Diversity metrics include Be_changed and
irst_generated, used respectively to indicate whether the new solution
as changed compared to the previous generation and whether the
ew solution has never appeared before. The difference indicator,
.e., Difference_best, serves to calculate the distance between the cur-
ent solution and the best-found solution, whose value is a decimal
ithin the range of [0, 1]. Considering that solutions closer to the
est-found solution should be treated with more importance in terms
f their state and action, we discretize its possible values into five
ifferent-sized intervals: [−∞, 0), [0, 0.1), [0.1, 0.3), [0.3, 0.6), [0.6,
]. These three categories of metrics are combined to generate a total
f over 60 states. For example, (𝐵 𝑒𝑠𝑡_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 , 𝐵 𝑒_𝐶 ℎ𝑎𝑛𝑔 𝑒𝑑 , [−∞, 0)),
(𝐶 𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑐 𝑐 𝑒𝑝𝑡, 𝐹 𝑖𝑟𝑠𝑡_𝑔 𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 , [0.6, 1]), etc. Taking into account that

ome of these metrics are mutually exclusive, such as Best_improved and
on-negative intervals, or Current_accept and negative intervals, after
emoving these, the final number of states is reduced to 30.

QL1-Action: The actions in our QALNS are the same as the destroy–
repair operations introduced in Section 4.2. Three destroy operators
and three repair operators are combined with each other, resulting in
7 
a total of nine possible actions. For a single solution, we perform only
ne type of destroy operation and one type of repair operation.

QL1-Reward: The reward function reflects the immediate feedback
eceived by the agent after taking a specific destroy–repair action and

transitioning to a new state. In our study, we propose a reward piece-
wise function, which is mainly determined according to the promotion
index, that is

𝑄𝐿1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

8 if 𝑂 𝑏𝑗(𝜍′) > 𝑂 𝑏𝑗(𝜍∗)
5 if 𝑂 𝑏𝑗(𝜍′) = 𝑂 𝑏𝑗(𝜍∗)
3 if 𝑂 𝑏𝑗(𝜍) < 𝑂 𝑏𝑗(𝜍′) < 𝑂 𝑏𝑓 (𝜍∗)
1 if 𝜍′ is accepted
0 if 𝜍′ is not accepted.

(20)

This reward function encourages the agent to find a better solution, as
it gives a higher reward. However, even if the new solution only meets
the acceptance criteria without improvement, we still provide a small
eward to enhance the diversity of solutions.

4.3.2. Operation rate determination
In the initialization phase, we assume that each solution is com-

osed of multiple UAV lists. It is believed that updating all UAV lists to
be highly time-consuming (Demir et al., 2012). However, for different
environments and solution sizes, we cannot manually specify a best
execution interval. Applying Q-learning to the return optimal interval
policy based on the current environment provides a better solution.

QL2-State: Different operation rates have an impact on the opti-
mality of solutions. It is self-evident that this proportion also affects
the computational duration of generating new solutions, as noted by
𝑃 (𝐼 𝑡𝑒𝑟). Based on this, we define two indicators for setting the states
n the second Q-learning mechanism: objective improvement and com-
utational speed. For improvement, it is labeled as Best if 𝑂 𝑏𝑗(𝜍′) >
 𝑏𝑗(𝜍∗), as Better if 𝑂 𝑏𝑗(𝜍) < 𝑂 𝑏𝑗(𝜍′) ≤ 𝑂 𝑏𝑓 (𝜍∗). Otherwise, it is labeled
s Worse. Similarly, the speed is labeled as Faster if 𝑃 (𝐼 𝑡𝑒𝑟′) < 𝑃 (𝐼 𝑡𝑒𝑟)

and as Slower if 𝑃 (𝐼 𝑡𝑒𝑟′) ≥ 𝑃 (𝐼 𝑡𝑒𝑟).
QL2-Action: We set the operation intervals as [0, 0.1), [0.1, 0.2),

0.2, 0.4), [0.4, 0.6), [0.6, 0.8) and [0.8, 1]. Thus, we obtain a set
f six actions. Before each destroy operation, we randomly generate a
roportion from the selected action interval, and perform the operation
n the UAV lists corresponding to this proportion. Within each iter-
tion, the operation interval remains constant, but after each update
f temperature 𝜏 in simulated annealing, the specific proportion is
andomly generated.

QL2-Reward: The reward function are set according to the states
defined above, that is

𝑄𝐿2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

8 if 𝑂 𝑏𝑗(𝜍′) > 𝑂 𝑏𝑗(𝜍∗) and 𝑃 (𝐼 𝑡𝑒𝑟′) < 𝑃 (𝐼 𝑡𝑒𝑟)
5 if 𝑂 𝑏𝑗(𝜍′) > 𝑂 𝑏𝑗(𝜍∗) and 𝑃 (𝐼 𝑡𝑒𝑟′) ≥ 𝑃 (𝐼 𝑡𝑒𝑟)
3 if 𝑂 𝑏𝑗(𝑠) < 𝑂 𝑏𝑗(𝜍′) ≤ 𝑂 𝑏𝑓 (𝜍∗) and 𝑃 (𝐼 𝑡𝑒𝑟′) < 𝑃 (𝐼 𝑡𝑒𝑟)
1 if 𝑂 𝑏𝑗(𝑠) < 𝑂 𝑏𝑗(𝜍′) ≤ 𝑂 𝑏𝑓 (𝜍∗) and 𝑃 (𝐼 𝑡𝑒𝑟′) ≥ 𝑃 (𝐼 𝑡𝑒𝑟)
0 otherwise.

(21)

4.4. Acceptance criteria

The QALNS algorithm employs acceptance criteria to maximize the
bjective of the HUTA-PDP. This is based on the disparity in objective

values between the new solution, denoted as 𝜍′, and the preceding
olution, denoted as 𝜍. The corresponding formula is determined as

follows.

𝑃 _𝑎𝑐 𝑐 𝑒𝑝𝑡 =
{

1 if 𝑂 𝑏𝑗(𝜍′) > 𝑂 𝑏𝑗(𝜍)
𝑒[𝑂 𝑏𝑗(𝜍′)−𝑂 𝑏𝑗(𝜍)]∕𝜏 if 𝑂 𝑏𝑗(𝜍′) ≤ 𝑂 𝑏𝑗(𝜍) (22)

If the new solution 𝜍′ is better than the previous solution 𝜍, then it will
always be accepted. The worse solution 𝜍′ still has a chance of being
accepted with a probability of 𝑒[𝑂 𝑏𝑗(𝜍′)−𝑂 𝑏𝑗(𝜍)]∕𝜏 , where the 𝜏 is current
temperature.
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Table 2
State description for QL1-table.
Indicator Description

Best_improved 1 if 𝑂 𝑏𝑗(𝜍′) > 𝑂 𝑏𝑗(𝜍∗), 0 otherwise.
Best_equal 1 if 𝑂 𝑏𝑗(𝜍′) = 𝑂 𝑏𝑗(𝜍∗), 0 otherwise.
Previous_improved 1 if 𝑂 𝑏𝑗(𝜍) < 𝑂 𝑏𝑗(𝜍′) < 𝑂 𝑏𝑓 (𝜍∗), 0 otherwise.
Current_accept 1 if 𝜍′ was accepted but 𝑂 𝑏𝑗(𝜍′) ≤ 𝑂 𝑏𝑓 (𝜍), 0 otherwise.
Be_changed 1 if 𝜍′ was changed from the previous solution but has been generated, 0 otherwise.
First_generated 1 if 𝜍′ has never been generated before, 0 otherwise.
Difference_best The difference between the values of 𝜍′ and 𝜍∗.
Table 3
Parameters used in ALNS and QALNS.
Parameters Benchmark experiments HUTA-PDP experiments

ALNS QALNS ALNS QALNS

Termination condition 10,000 iterations 10,000 iterations 1,000 iterations or 900 s 1,000 iterations or 900 s
SA initial temperature 𝜏0 1,000 1,000 100 100
SA minimum temperature 𝜏𝑚𝑖𝑛 0.01 0.01 0.01 0.01
SA cooling rate 𝜌 0.99 0.99 0.99 0.99
Weight update factor 𝛽 0.5 – 0.5 –
Learning rate 𝛼 – 0.3 – 0.3
Discount factor 𝛾 – 0.9 – 0.9
Initial exploration rate 𝜖0 – 0.99 – 0.99
Minimum exploration rate 𝜖𝑚𝑖𝑛 – 0.1 – 0.1
Decay rate 𝜆 – 0.99 – 0.99
Number of states 𝑄𝐿1 – 9 × 3 – 3 × 3
Number of states 𝑄𝐿2 – 6 – 6
Rewards 𝑄𝐿1 – 8/5/3/1/0 – 8/5/3/1/0
Rewards 𝑄𝐿2 – 8/5/3/1/0 – 8/5/3/1/0
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5. Computational experiments

We now present the detailed results of various experiments on the
performance of the QALNS algorithm. In Section 5.1, we set the number
f search iterations to 10,000 for the comparison of the QALNS with the

best known solutions on the benchmark instances of Li and Lim (2008).
In Section 5.2, we solve the MILP model, original ALNS and QALNS
on four sets of different scale HUTA-PDP instances, and we analyze
he performance of the QALNS algorithm and the sensitivity of the
arameters. All computations were carried out on a 3.2 GHz computer

with 16.0 GB of RAM. Where applicable, the MILP was solved using
Gurobi 10.0.3, and the main algorithm and comparison heuristics were
programmed in Python 3.11. The parameter settings of the original

LNS and of our QALNS algorithm are shown in Table 3.

5.1. Experiments on PDPTW benchmark instances

Taking into account the similarity of HUTA-PDP with PDPTW,
our algorithm was run with a fixed configuration on PDPTW bench-
mark instances from Li and Lim (2008) to demonstrate its robustness
across different sets of instances. Since PDPTW aims to minimize the
total distance traveled while satisfying all demands, we modify the
objective function and constraints of the designed QALNS to solve
PDPTW. Table 4 reports the results obtained on the PDPTW bench-
mark dataset of 100, 200, 400, 600 and 800 tasks. For each in-
tance, we provide the total traveled distance (Dis) and the number
f used vehicles (#Veh) for the best-known solutions, average results
f five runs and the best results obtained by QALNS. We also pro-
ide the CPU time and iteration numbers (#Iter) performed. The last
wo columns of the table show the percentage improvement (Imp) of
he QALNS algorithm from those of the best-known solutions, where
𝐷 𝑖𝑠
𝐴𝑣𝑔 = (𝐷 𝑖𝑠𝐴𝑣𝑔 − 𝐷 𝑖𝑠𝐵 𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛)∕𝐷 𝑖𝑠𝐵 𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛 and 𝛥𝐷 𝑖𝑠

𝐵 𝑒𝑠𝑡 = (𝐷 𝑖𝑠𝐵 𝑒𝑠𝑡 −
 𝑖𝑠𝐵 𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛)∕𝐷 𝑖𝑠𝐵 𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛.

As shown in Table 4, QALNS obtains best-known solutions for a
ajority of the benchmark instances, showing a robust average perfor-
ance. For some 200-task, 400-task, 600-task and 800-task instances,

QALNS even found new best-known solutions, which are highlighted

in bold. The average improvement for best-known solutions obtained 8

8 
by QALNS is 1.26% for the 200-task instances, 6.50% for the 400-task
instances, 4.69% for the 600-task instances, and 3.43% for the 800-
ask instances. Regarding the average performance of QALNS among

five runs, the improvement is 0.04% for the 200-task instances, 0.35%
for the 400-task instances, and 0.15% for the 600-task instances. The
ermination condition limits the ability to find the best-known solutions
or all large-scale instances, but the solution values of the 800-task
nstances are on average only 0.28% below the best-know values. In
erms of CPU time, all 100-task instances are solved quickly within
ne minute. The 200-task instances need about two or three minutes
o solve in most cases. The 400-task instances can still be solved within
0 min. For the larger scale instances, the variation in CPU time is
uch larger, which is around 15 min for 600-task instances and 25 min

or 800-task instances. Although we have incorporated two Q-learning
ethod frameworks into the original ALNS structure, the actual compu-

tational efficiency has not been weakened. The search policy based on
Q-learning makes the algorithm more viable for different practical-scale
problems. Given that the problem defined in our paper is a variant of
he PDPTW, we believe that our QALNS algorithm should also exhibit
 good performance on the HUTA-PDP model.

5.2. Experiments on HUTA-PDP instances

We consider a set of randomly generated instances of four sets of
ifferent sizes based on real geographic data from a county in Sichuan

Province, China, as shown in Fig. 4. The geodesic distance matrix based
n the real coordinates between two locations, the altitude of ver-
ices was obtained using a DEM elevation map. Each instance, named
H_𝑀_𝑁_𝐾, involves 𝑀 centers, 𝑁 customer groups, and 𝐾 UAVs of
ach type per center. For instances of the same set, the numbers of
enters and customers are fixed, but the number of UAVs increases.
ach group contains multiple individual customers with their randomly
enerated tasks. This results in five types of PD tasks with different
riorities in each group. Each completion of the four emergency de-
ivery tasks is assigned a unit profit of 5, 3, 2, and 1 based on their
rgency priority, while the profit for every single pick up task is set
t 10. We set all emergency task orders to occur between 6:00 h and
:00 h on one day, with varying service durations ranging from two to
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Table 4
Results of the QALNS on PDPTW benchmark instances.

Instances Best-knowna Average results by QALNS Best solutions by QALNS Imp (%)

Dis #Veh Dis #Veh Time (s) #Iter Dis #Veh Time (s) #Iter 𝛥𝐷 𝑖𝑠
𝐴𝑣𝑔 𝛥𝐷 𝑖𝑠

𝐵 𝑒𝑠𝑡
100 tasks
LR1_0_1 1,650.80 19 1,650.80 19 3.59 235 1,650.80 19 2.84 188 0.00 0.00
LR1_0_2 1,487.57 17 1,487.57 17 14.82 1,307 1,487.57 17 13.62 1,287 0.00 0.00
LR1_0_3 1,292.68 13 1,292.68 13 16.14 1,474 1,292.68 13 15.47 1,326 0.00 0.00
LR1_0_4 1,013.39 9 1,013.39 9 57.97 4,319 1,013.39 9 56.55 3,878 0.00 0.00
LR1_0_5 1,377.11 14 1,377.11 14 18.80 2,146 1,377.11 14 16.94 1,864 0.00 0.00
LR1_0_6 1,252.62 12 1,252.62 12 26.08 2,549 1,252.62 12 5.48 1,141 0.00 0.00
LR1_0_7 1,111.31 10 1,111.31 10 37.33 2,490 1,111.31 10 17.29 2,472 0.00 0.00
LR1_0_8 968.97 9 968.97 9 36.09 2,073 968.97 9 33.97 2,033 0.00 0.00
LR1_0_9 1,208.96 11 1,208.96 11 62.57 5,109 1,208.96 11 54.43 4,711 0.00 0.00
LR1_1_0 1,159.35 10 1,159.35 10 49.32 2,790 1,159.35 10 43.76 2,540 0.00 0.00
Average 1,252.28 12 1,252.28 12 32.27 2,449 1,252.28 12 26.03 2,144 0.00 0.00

200 tasks
LC1_2_1 2,704.57 20 2,704.57 20 52.58 3,075 2,704.57 20 43.11 2,432 0.00 0.00
LC1_2_2 2,764.56 19 2,764.56 19 163.53 4,648 2,764.56 19 123.89 3,491 0.00 0.00
LC1_2_3 2,772.20b – 2,802.05 18 368.00 7,785 2,786.70 18 134.28 3,793 −1.08 −0.52
LC1_2_4 2,693.41 17 2,693.93 18 426.28 6,013 2,678.70d 18 401.65 6,389 −0.02 0.55
LC1_2_5 2,702.05 20 2,702.05 20 184.57 4,264 2,702.05 20 137.09 3,927 0.00 0.00
LC1_2_6 2,701.04 20 2,701.04 20 56.40 1,643 2,701.04 20 50.60 1,547 0.00 0.00
LC1_2_7 2,701.04 20 2,701.04 20 98.15 2,902 2,701.04 20 93.83 2,582 0.00 0.00
LC1_2_8 2,689.83b – 2,689.83 20 542.32 6,997 2,689.83 20 453.67 6,055 0.00 0.00
LC1_2_9 2,724.24 18 2,724.24 18 623.53 7,543 2,724.24 18 301.52 5,585 0.00 0.00
LC1_2_10 2,942.13 17 2,897.76 19 743.45 7,824 2,884.24d 19 729.48 8,109 1.51 1.97
Average 2,739.51 19 2,738.11 19 325.88 5,269 2,733.70 19 246.91 4,391 0.04 0.20

400 tasks
LC1_4_1 7,152.06 40 7,152.06 40 403.54 4,706 7,152.06 40 257.22 3,035 0.00 0.00
LC1_4_2 8,007.79 38 7,851.78 40 754.30 6,075 7,495.13d 41 456.33 3,908 1.95 6.40
LC1_4_3 8,678.23 32 8,476.27 40 1643.04 8,398 8,231.91d 40 1,113.83 6,635 2.33 5.14
LC1_4_4 6,451.68 30 6,451.68 30 593.67 4,327 6,451.68 30 546.94 3,942 0.00 0.00
LC1_4_5 7,150.00 40 7,150.00 40 402.84 3,966 7,150.00 40 295.06 3,587 0.00 0.00
LC1_4_6 7,154.02 40 7,157.35 40 743.32 6,320 7,154.02 40 311.12 3,106 −0.05 0.00
LC1_4_7 7,149.43 40 7,149.43 40 632.79 7,524 7,149.43 40 424.42 5,025 0.00 0.00
LC1_4_8 8,305.42c 38 7,893.06 40 603.56 4,566 7,645.41d 41 691.33 4,201 4.96 7.95
LC1_4_9 7,451.20 36 7,451.20 36 362.80 3,591 7,451.20 36 358.76 3,341 0.00 0.00
LC1_4_10 7,850.22 34 8,294.99 40 501.17 4,021 8,207.76 39 332.68 2,816 −5.67 −4.55
Average 7,535.01 37 7,502.78 39 664.10 5,349 7,408.86 39 478.77 3,960 0.35 1.49

600 tasks
LRC1_6_1 18,288.90 52 18,288.90 52 1,165.09 6,710 18,288.90 52 831.52 5,280 0.00 0.00
LRC1_6_2 16,515.41 43 16,515.41 43 1,292.44 7,426 16,515.41 43 751.48 5,569 0.00 0.00
LRC1_6_3 13,975.98 36 14,011.69 36 841.06 7,087 13,975.98 36 848.55 7,893 −0.26 0.00
LRC1_6_4 10,800.44 25 10,847.32 25 646.98 5,497 10,847.32 25 651.34 5,077 −0.43 −0.43
LRC1_6_5 17,463.94 45 17,624.89 52 1,081.18 7,099 17,604.69 52 838.73 5,420 −0.92 −0.81
LRC1_6_6 19,025.36 41 18,235.28 48 881.17 6,494 18,133.30d 51 685.07 4,645 4.15 4.69
LRC1_6_7 15,914.85 37 15,914.85 37 760.58 5,458 15,914.85 37 584.64 4,351 0.00 0.00
LRC1_6_8 15,317.63 33 15,317.63 33 969.05 7,034 15,317.63 33 1234.33 7,747 0.00 0.00
LRC1_6_9 15,344.64 33 15,344.64 33 713.81 5,168 15,344.64 33 1,050.03 6,622 0.00 0.00
LRC1_6_10 13,963.66 29 14,106.59 29 742.16 6,582 14,040.83 29 564.73 4,675 −1.02 −0.55
Average 15,661.08 37 15,620.72 39 909.35 6,455 15,598.36 39 804.04 5,728 0.15 0.29

800 tasks
LRC1_8_1 32,252.28 66 32,252.28 66 1,505.87 8,193 32,252.28 66 1,252.92 7,397 0.00 0.00
LRC1_8_2 27,878.89 56 27,878.89 56 1,710.79 9,292 27,878.89 56 1,385.04 7,458 0.00 0.00
LRC1_8_3 24,371.95 48 24,371.95 48 968.44 6,123 24,371.95 48 1,025.20 7,038 0.00 0.00
LRC1_8_4 18,208.51 34 18,208.51 34 1,590.71 8,556 18,208.51 34 1,219.48 7,985 0.00 0.00
LRC1_8_5 31,169.16 58 31,439.42 60 1,877.95 9,467 31,270.41 58 1,501.58 7,891 −0.87 −0.32
LRC1_8_6 28,961.66 54 29,215.99 65 1,676.97 8,630 29,103.63 56 1,817.35 9,157 −0.88 −0.49
LRC1_8_7 28,768.40 50 29,435.05 61 1,390.09 7,860 29,010.82 62 1,607.64 9,095 −2.32 −0.84
LRC1_8_8 26,902.93 44 27,364.45 47 1,506.01 8,752 27,134.39 46 1,511.67 8,026 −1.72 −0.86
LRC1_8_9 24,854.96 44 24,854.96 44 1,302.11 7,313 24,854.96 44 1,142.52 6,789 0.00 0.00
LRC1_8_10 24,622.59 39 23,882.62 40 1,498.80 8,134 23,776.90d 40 1,402.19 7,246 3.01 3.43
Average 26,799.13 49 26,890.41 52 1,502.78 8,232 26,786.27 51 1,386.56 7,808 −0.28 0.09

a Provided by Li and Lim (2008).
b Provided by Ropke and Cordeau (2009).
c Provided by Christiaens and Vanden Berghe (2020).
d New best-known solutions.
h

six hours. The service time required for each task execution is 1,200 s.
he inventories of healthcare centers may not always be sufficient,

ranging approximately between 60% and 120% of total demand. There
are five types of UAVs in our instances, and their parameters are shown
n Table 5.
 u

9 
5.2.1. Results of QALNS on HUTA-PDP instances sets
Table 6 reports the results of instances for 10, 20, 50 and 100

customer groups. For Gurobi solver, we limit the solution time to one
our. The CPU time taken for these solutions in seconds and their
pper bound (UB) of LP relaxation solution are also provided. For
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Fig. 4. Four sets of instances from China.
Table 5
UAV types and key parameters.

UAV type Range 𝑤𝑘 Speed 𝑣𝑘 Height ℎ𝑘 Payload 𝑏𝑘 Compartment
𝑐𝑘

Skycart Nimbus 160 km 36 m/s 1,000 m 15 kg 4
Wingcopter 198 110 km 40 m/s 5,000 m 5 kg 3
A2Z RDSX 50 km 24 m/s 4,800 m 3 kg 2
Freely ALTA X 60 km 20 m/s 4,500 m 16 kg 1
DJI Flycart 30 16 km 20 m/s 3,000 m 30 kg 1

two metaheuristic algorithms, we present their objective values, CPU
times, iteration numbers (#Iter) performed, as well as the number of
dispatched UAVs (#UAV) and the total duration (DU) in hours required
to complete tasks. We run the QALNS algorithm five times with a limit
of either 15 min or 1,000 iterations, depending on which criterion
is met first. Other parameters are listed in Table 5. The columns
𝛥𝑂 𝑏𝑗
𝐺 and 𝛥𝑂 𝑏𝑗

𝐴 represent the percentage difference between the best-
found objective values obtained by QALNS and the other comparison
method. In detail, 𝛥𝑂 𝑏𝑗

𝐺 = (𝑂 𝑏𝑗𝑄𝐴𝐿𝑁 𝑆 − 𝑂 𝑏𝑗𝐺 𝑢𝑟𝑜𝑏𝑖)∕𝑂 𝑏𝑗𝐺 𝑢𝑟𝑜𝑏𝑖 and 𝛥𝑂 𝑏𝑗
𝐴 =

(𝑂 𝑏𝑗𝑄𝐴𝐿𝑁 𝑆 − 𝑂 𝑏𝑗𝐴𝐿𝑁 𝑆 )∕𝑂 𝑏𝑗𝐴𝐿𝑁 𝑆 .
The table indicates that our QALNS algorithm produces high-quality

solutions across all instances. Gurobi and QALNS can solve all the
CH_1_10_𝐾 instances to optimality, while ALNS can only identify seven
optimal solutions. However, the average CPU time of QALNS is 0.88 s,
which is less than that of Gurobi (1.94 s) and ALNS (3.38 s), while
also achieving an 70% reduction in the iteration number compared to
the standard ALNS. For the CH_2_20_𝐾 instances, Gurobi experiences
a significant increase in the number of nodes to explore, with 131,105
nodes after presolving in CH_2_20_6, and even more in the following in-
stances. This results in a sharp increase in computational time, making
it challenging to find an optimal solution within the one-hour limit.
The QALNS algorithm consistently achieves superior solutions, with
a 0.52% improvement over Gurobi and a 2.37% improvement over
ALNS, while maintaining an average computation time of just 5.06 s.
With the increase in instance size, the advantage of QALNS becomes
even more pronounced. For CH_5_50_𝐾 instances, QALNS improves
the solution quality by 9.75% compared to Gurobi, and by 6.80% to
ALNS on average. Furthermore, QALNS typically requires only 102.91 s
to achieve the best-found solution, saving 43.44% and 97.14% CPU
time compared with ALNS and Gurobi, respectively. For the largest
CH_10_100_𝐾 instances, Gurobi can solve only two instances within the
given time limit. QALNS can still run quickly with an average CPU time
of 341.19 s, resulting a 8.98% improvement over ALNS best solutions
and saving 24.15% time on average.

It is also observed that within the same instance set, the quantity of
available UAVs influences the algorithm’s solution quality, particularly
10 
when comparing QALNS and ALNS. In scenarios where the number of
UAVs is relatively limited compared to the volume of the task, QALNS
demonstrates the ability to quickly identify higher-quality solutions. In
contrast, although ALNS returns solutions within a modest number of
iterations, they often converge to local optima. However, when there
are a larger number of UAVs, the best-found solution is never unique. In
such cases, the performance gap in solution quality between heuristics
narrows, but QALNS still outperforms the alternative algorithms in
convergence speed. Although some results in the table show that the
number of UAVs used in the QALNS scheme is greater than that of
Gurobi or ALNS, this study argues that as long as it is within the
allowable range, more UAV deployments are worthwhile because they
can generate higher profits in emergency healthcare situations.

5.2.2. Sensitivity analyses for the parameters of the QALNS algorithm
This section presents sensitivity analyses for the key parameters

used in the QALNS algorithm, observing their impact on Q-learning
convergence, the objective value, and CPU time. We give all solu-
tions obtained among 10 runs with a termination condition of 1,000
iterations.

Learning rate 𝛼: Fig. 5 illustrates the convergence of average Q values
at varying learning rates 𝛼 within two Q-learning mechanisms, along
with comparisons of objective values and CPU times. It is observed that
the increase in 𝛼, which prioritizes past experiences, notably speeds up
initial learning and convergence of the average Q values, but at the
cost of reduced stability and pronounced Q-value oscillations. Fig. 5(b)
shows the cases of premature convergence due to excessive initial
rewards, which failed to enhance the objective values and instead led
to entrapment in local optima, as shown in Fig. 5(c). With 𝛼 = 0.3, the
average objective achieves optimality, surpassing the solutions at other
learning rates by 1.75% on average. Moreover, it achieves a 39.01%
reduction in CPU time compared to the average, despite not being the
lowest.

Discount factor 𝛾: The results shown in Fig. 6 indicate performance
variations of QALNS with varying discount factor 𝛾. A lower discount
factor implies that the algorithm prioritizes immediate rewards over
long-term gains, leading to earlier convergence. In contrast, a higher
discount factor facilitates the exploration of future possibilities, also
resulting in greater oscillations. With 𝛾 = 0.1, the mean Q values
stabilize around 100 generations, while at 0.9, it requires over 800
generations. Regarding the quality of the solution, a higher discount
factor yields better objective function values. For every 0.2 increase
in 𝛾, the objective value improves by an average of 0.53%. At 𝛾 = 0.9,
there is an average enhancement of 1.37% compared to smaller values.
Also, there is a clear trend in the CPU time needed to reach a best-found
solution. For every 0.2 increase in 𝛾, the CPU time decreases by 12.52%
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Table 6
Comparison between Gurobi, ALNS and QALNS on newly generated instances.

Instances Gurobi ALNS QALNS Imp (%)

Obj Time (s) UB Obj Time (s) #Iter #UAV DU (h) Obj Time (s) #Iter #UAV DU (h) 𝛥𝑂 𝑏𝑗
𝐺 𝛥𝑂 𝑏𝑗

𝐴

1 center, 10 groups, 50 tasks
CH_1_10_1 419 0.37 419 415 9.10 283 5 2.71 419 0.72 22 5 2.41 0.00 0.96
CH_1_10_2 628 0.88 628 621 3.11 91 10 2.43 628 1.83 64 9 2.41 0.00 1.13
CH_1_10_3 656 0.78 659 644 7.68 178 12 2.41 656 3.05 82 12 2.45 0.00 1.86
CH_1_10_4 723 0.89 727 723 5.17 77 11 2.56 723 1.56 36 13 2.67 0.00 0.00
CH_1_10_5 663 0.53 663 663 2.76 43 11 2.62 663 0.23 2 12 2.50 0.00 0.00
CH_1_10_6 665 1.60 665 665 0.78 10 13 2.71 665 0.15 1 13 2.75 0.00 0.00
CH_1_10_7 766 1.10 766 766 1.17 14 13 2.35 766 0.59 9 12 2.65 0.00 0.00
CH_1_10_8 688 3.65 688 688 3.37 39 12 2.13 688 0.26 3 12 2.60 0.00 0.00
CH_1_10_9 672 1.87 672 672 0.14 1 13 2.40 672 0.12 1 14 2.37 0.00 0.00
CH_1_10_10 543 7.68 543 543 0.49 4 9 2.46 543 0.24 2 10 2.54 0.00 0.00
Average 642 1.94 643 640 3.38 74 11 2.48 642 0.88 22 11 2.53 0.00 0.40

2 centers, 20 groups, 100 tasks
CH_2_20_1 683 6.21 697 645 15.83 257 10 2.65 683 6.37 155 10 2.56 0.00 5.89
CH_2_20_2 1,210 18.79 1,215 1,118 28.43 287 17 2.46 1,210 11.02 151 19 2.66 0.00 8.23
CH_2_20_3 1,359 613.63 1,368 1,285 29.20 245 20 2.73 1,359 5.63 59 23 2.60 0.00 5.76
CH_2_20_4 1,484 1,219.58 1,520 1,451 26.45 180 24 2.74 1,494 6.74 59 25 2.46 0.67 2.96
CH_2_20_5 1,297 691.00 1,300 1,296 17.43 95 20 2.66 1,297 2.94 19 21 2.67 0.00 0.08
CH_2_20_6 1,325 3,600 1,378 1,321 17.49 86 27 2.76 1,330 5.59 34 27 2.55 0.38 0.68
CH_2_20_7 1,302 3,600 1,358 1,330 9.61 32 25 2.65 1,330 0.61 2 26 2.63 2.15 0.00
CH_2_20_8 1,342 3,600 1,414 1,362 4.71 16 25 2.71 1,363 1.94 7 24 2.74 1.56 0.07
CH_2_20_9 1,416 3,600 1,426 1,422 8.40 28 26 2.77 1,422 4.41 19 28 2.68 0.42 0.00
CH_2_20_10 1,313 3,600 1,362 1,314 9.46 30 29 2.71 1,314 5.38 17 29 2.52 0.08 0.00
Average 1,273 2,054.92 1,304 1,254 16.70 126 22 2.68 1,280 5.06 52 23 2.61 0.53 2.37

5 centers, 50 groups, 250 tasks
CH_5_50_1 1,506 3,600 1,584 1,373 99.07 360 20 2.70 1,559 65.61 250 22 2.76 3.52 13.55
CH_5_50_2 2,104 3,600 2,371 2,061 98.11 93 40 2.74 2,307 65.63 61 41 2.76 9.65 11.94
CH_5_50_3 2,903 3,600 3,225 2,867 147.14 77 48 2.76 3,176 118.73 116 56 2.76 9.40 10.78
CH_5_50_4 2,894 3,600 3,366 3,027 128.95 104 56 2.77 3,183 38.01 37 55 2.77 9.99 5.15
CH_5_50_5 3,367 3,600 3,883 3,570 188.12 83 60 2.74 3,665 99.47 82 62 2.62 8.85 2.66
CH_5_50_6 3,243 3,600 3,586 3,306 239.85 138 64 2.72 3,477 124.94 77 66 2.77 7.22 5.17
CH_5_50_7 3,231 3,600 3,583 3,251 130.66 56 67 2.72 3,472 115.59 38 67 2.74 7.46 6.80
CH_5_50_8 2,850 3,600 3,241 2,948 285.19 71 59 2.77 3,182 146.27 41 73 2.72 11.65 7.94
CH_5_50_9 2,854 3,600 3,189 3,285 225.91 78 70 2.73 3,346 174.02 70 77 2.73 17.24 1.86
CH_5_50_10 2,665 3,600 3,060 2,937 276.50 55 75 2.74 3,000 80.86 28 69 2.66 12.57 2.15
Average 2,762 3,600 3,109 2,863 181.95 112 56 2.74 3,037 102.91 80 59 2.73 9.75 6.80

10 centers, 100 groups, 500 tasks
CH_10_100_1 1,637 3,600 2,318 1,972 494.81 208 33 2.66 2,268 418.08 222 40 2.77 38.55 15.01
CH_10_100_2 2,988 3,600 4,465 3,449 611.65 155 59 2.70 4,022 457.24 102 58 2.75 34.61 16.61
CH_10_100_3 -a – – 4,142 471.46 83 69 2.76 4,729 407.09 88 67 2.77 – 14.17
CH_10_100_4 – – – 4,770 335.86 48 62 2.70 5,228 240.50 37 74 2.73 – 9.60
CH_10_100_5 – – – 5,233 365.42 53 70 2.76 5,692 300.52 39 70 2.77 – 8.77
CH_10_100_6 – – – 5,123 366.52 38 70 2.78 5,615 254.46 24 72 2.76 – 9.60
CH_10_100_7 – – – 5,291 629.68 61 87 2.76 5,669 480.98 48 79 2.74 – 7.14
CH_10_100_8 – – – 5,179 435.73 27 84 2.77 5,416 324.04 29 91 2.77 – 4.58
CH_10_100_9 – – – 5,250 379.37 26 87 2.77 5,349 294.48 23 77 2.76 – 1.89
CH_10_100_10 – – – 5,561 407.93 19 101 2.78 5,693 234.56 15 89 2.76 – 2.37
Average 2,313 3,600 3,392 4,597 449.84 72 72 2.74 4,968 341.19 63 72 2.76 36.58 8.98

a No feasible solution is found before memory runs out.
Fig. 5. Performance of QALNS with varying learning rate (𝛾 = 0.9).
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Fig. 6. Performance of QALNS with varying discount factor (𝛼 = 0.3).
Table 7
Solutions for CH_2_20_𝐾 and CH_5_50_𝐾 instances with varying number of UAVs.
#UAV per type
per center

#UAV in use Obj Unmet tasks Remaining
inventory

Total 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5
CH_2_20_𝐾
instances
1 9 2 2 2 2 1 635 40 273
2 19 4 4 3 4 4 1,109 21 134
3 23 6 5 2 6 4 1,317 11 46
4 24 8 5 1 8 2 1,382 9 23
5 22 9 4 2 9 1 1,387 10 22
6 27 9 4 3 9 2 1,383 9 22
7 27 9 6 1 9 2 1,397 9 20
8 26 10 4 1 10 1 1,405 10 21

CH_5_50_𝐾
instances
1 22 5 5 3 5 4 1,486 100 809
2 39 10 9 4 10 6 2,610 53 486
3 53 15 9 6 15 8 3,265 27 283
4 62 20 12 5 17 8 3,634 21 160
5 66 24 11 5 20 6 3,660 19 146
6 68 30 8 3 19 8 3,698 19 124
7 75 30 8 5 23 9 3,755 16 107
8 76 33 8 3 22 10 3,784 15 104
and is optimal at 𝛾 = 0.9 with an improvement of 28.89% over the
average of other values.

We observe that changes in the learning rate 𝛼 and discount in-
dicator 𝛾 indeed affect the performance of QALNS. Specifically, the
impact of 𝛼 on performance is non-monotonic. In our experiments,
setting 𝛼 = 0.3 yielded superior average objective values and CPU
time. At this setting, the standard deviation of the mean Q values
is minimized, facilitating stable solutions across different runs. An
increase in 𝛾 notably enhances computational effectiveness, improving
both solution quality and efficiency. Overall, CPU time is more sensitive
to both parameters than the objective value. Moreover, changes in the
𝛼 values have a more pronounced effect on algorithm performance than
changes in 𝛾.

5.2.3. Sensitivity analyses for the parameters of the HUTA-PDP
This section presents sensitivity analyses on the results for the

available number of UAVs and the distribution of healthcare centers
with CH_2_20_𝐾 and CH_5_50_𝐾 instances.

Number of UAVs: In Section 5.2, we match the available number
of UAVs for randomly generated instances of different sets. Here, we
keep all other data fixed and only change the number of UAVs per
type per center, observing the preferences of heterogeneous UAVs when
performing tasks in Table 7.

From Table 7, it is evident that with increasing initial size of
the UAV fleet, the number of tasks fulfilled increases significantly,
regardless of whether it is for the CH_2_20_𝐾 and CH_5_50_𝐾 instances.
12 
When each center is equipped with no more than five UAVs of each
type, for each additional UAV added, the total revenue increases by
28.19% and 24.68% for the CH_2_20_𝐾 and CH_5_50_𝐾 instances re-
spectively, while the unmet task quantity decreases by 31.95% and
25.55% respectively. A stability in the objective values is observed once
the number of UAVs results in a saturation of the tasks. We notice that,
due to the performance differences among heterogeneous UAVs, there
is a significant contrast in the quantity of UAVs selected to execute
tasks, especially in the scenarios with sufficient UAVs. Skycart (𝑢1),
Wingcopter (𝑢2) and Freely (𝑢4) perform better due to their better flight
distance and payload capacity. Although DJI (𝑢5) can only fly up to 16
km, its exceptional payload capacity makes it superior to that of other
types. Meanwhile, moderately performing UAVs are prone to being left
idle when there is an abundance of alternative types available.

Number of centers: We test the sensitivity of the results for
CH_10_100_𝐾 instances with varying numbers of centers, maintaining
constant total demand and inventory while incrementally increasing
centers, as shown in Table 8.

Initially, increasing the number of centers significantly increase the
objective value, peaking at 4,297 profit with four centers and the fewest
unmet tasks. Subsequently, the objective value slightly decreases, and
there is a slight increase in the number of drones used and unmet
tasks. Our data show that contrary to expectations, having more centers
increases the profit, particularly with ample stocks and idle drones.
This can be explained by the division of tasks among multiple centers.
Given the limited fly range and payload of UAVs when the remaining
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Table 8
Solutions for CH_10_100 instances with varying number of centers.

#Centers Obj #UAV in use Unmet tasks Remaining
inventory

1 3,030 62 130 819
2 3,813 72 91 642
3 3,992 61 96 657
4 4,297 70 88 623
5 4,115 71 98 605
6 3,895 70 97 711
7 4,005 76 101 664
8 4,069 74 103 716
9 3,910 69 101 715
10 4,083 73 107 662

inventory of a single center is not sufficient to perform a task, the
system automatically abandons it rather than collect resources from

ultiple centers. This setup results in a larger number of centers,
ometimes reducing the fulfillment rate of orders.

6. Conclusions

This research have presented a joint optimization problem of task
assignment and PD routing operations with heterogeneous UAVs in
emergency healthcare scenarios. This problem is especially important
for the delivery of medications, vaccines, and other medical items, and
or the collection of biological samples. The objective is to maximize
he total profit generated by performing tasks with different priorities.
n the optimization process, the capacities of heterogeneous UAVs,
ncluding flying range, speed, height, and payload, as well as inventory

constraints, are considered.
We first presented the MILP model for the HUTA-PDP, and then

solved a small-scale instances with Gurobi. Next, we introduced the
QALNS algorithm, a hybrid metaheuristic that incorporates the Q-
learning method. This integration aims to enhance the selection of
the destroy–repair operators and improve their efficiency. To fully
evaluate the effectiveness of the proposed approaches, we designed a
series of computational experiments on the well-known PDPTW bench-
mark instances and newly generated HUTA-PDP instances. The results
showed that the HUTA-PDP can effectively distribute limited healthcare
supplies in emergency scenarios by optimizing the routing of hetero-
geneous UAVs. Furthermore, the QALNS algorithm exhibited a high
performance in solving different sets of both the benchmark instances
and the generated HUTA-PDP instances. The performance gap between
QALNS and other method, including Gurobi and the original ALNS,
is shown to increase for larger-scale HUTA-PDP instances, making
QALNS a suitable option for larger and practical problem instances.
Sensitivity experiments demonstrate the impact of key parameters in
the metaheuristic, including learning rate and discount indicator, on
both the efficiency and effectiveness of the algorithm.

Additionally, management insights were derived from sensitivity
analyses: (𝑖) considering task requirements like terrain, payload, flying
ange, and number of drops when purchasing heterogeneous, UAVs

can enhance utilization rates and prevent idle losses; (𝑖𝑖) matching
the quantity of UAVs to the number of tasks and inventory suffices,
particularly in emergency situations, since an excess of UAVs does not
substantially improve the overall profit; and (𝑖𝑖𝑖) an excessive number
of centers, given a fixed total inventory, may lead to resource over-
dispersion, whereas an appropriate number of centers can enhance
task completion rates, particularly with UAVs characterized by limited
flying ranges and capacities.

Potential avenues for future research could involve addressing un-
certainties within the UAV operations network. For instance, in emer-
ency scenarios marked by challenges like communication disruptions
nd path obstacles, it is crucial to develop dynamic and robust UAV lo-
istics solutions that adapt to limited information. Another prospective
13 
research area can be to explore diverse objective functions, including
he minimization of the overall cost, operations time, and the number

of UAVs in use.
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