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Abstract: 111 words 

 

Malformations of the brain are common and vary in severity, from negligible to potentially 

fatal. Their causes have not been fully elucidated. Here, we report pathogenic variants in the 

core protein folding machinery TRiC/CCT in individuals with brain malformations, intellectual 

disability, and seizures. The chaperonin TRiC is an obligate hetero-oligomer and we identify 

variants in seven of its eight subunits, all of which impair function or assembly through different 

mechanisms. Transcriptome and proteome analyses of patient-derived fibroblasts demonstrate 

the various consequences of TRiC impairment. The results reveal an unexpected and potentially 

widespread role for protein-folding in the development of the central nervous system and define 

a unique disease spectrum of "TRiCopathies".

mailto:jfrydman@stanford.edu
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Main Text:  

 
Anatomical alterations in the brain structure are present in approximately 20% of healthy 

individuals, with 4% of these incidental findings having clinical consequences (1). Genetic 

factors substantially contribute to brain malformations and impact different steps of cortical 

development. Abnormal cell proliferation and apoptosis affect the size of brain structures 

(hypoplasia), impaired neuronal migration results in abnormally positioned cells (heterotopia), 

and postmigration cortical organization can result in excessive folding of the cortex and laminar 

alterations (polymicrogyria) (2, 3). Together, these widely overlapping disorders represent a 

major cause of intellectual disability, autism, epilepsy, and cerebral palsy (4). Although the 

determinants of brain malformations are not yet fully understood, defects in microtubules, 

collagens, ion channels and transporters, as well as mTOR signaling proteins have been 

implicated in disease (5). Regardless of which protein is involved in the development of the 

disorder, they all have one thing in common: they must be folded correctly in order to function. 

Chaperones are key factors supporting the necessary protein folding processes and contributing 

to proteostasis (6). The eukaryotic chaperonin TRiC is a large barrel-shaped one megadalton 

16-mer oligomeric complex that plays an essential role in protein-folding. TRiC forms two 

rings, each consisting of eight different but related proteins encoded by CCT1-CCT8 (7). These 

form a central chamber in which unfolded polypeptide substrates bind and fold in an ATP-

driven reaction, shielded from the external environment (Fig. 1, A and fig. S1) (8). TRiC 

facilitates the co- and post-translational folding of approx. 5-10% of the entire cellular proteome 

(8-10). Its substrates are characterized by aggregation-prone and topologically complex 

domains, including many essential proteins such as actins, tubulins, F-box proteins, DNA and 

RNA replication factors, cell cycle proteins as well as key regulators including p53, subunits of 

mTORC, and protein kinases (11-14). Here we investigated the mechanisms mediating brain 

malformations and demonstrated a role for the protein folding machinery and TRiC.  
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Results: 

 

De novo variants in CCT3 cause human disease 

We analyzed brain magnetic resonance imaging (MRI), muscle biopsy, and transcriptomic data 

from an individual (CCT3 #9) with severe global developmental disorder, muscle hypotonia, 

ataxia, microcephaly, and intellectual disability (Fig. 1). Muscle biopsy revealed moderate 

widening of the muscle fiber caliber spectrum and peculiar accumulations of globular and 

granular material in intermyofibrillar membrane-bound vacuoles, suggestive of aggregation and 

altered proteostasis (Fig. 1, C-J, fig. S2). Similarly, several axons showed signs of altered 

proteostasis. Trio genome sequencing revealed a de novo frameshift deletion in the chaperonin 

containing TCP1 subunit 3 (CCT3) which has not yet been shown to cause human disease and 

which is highly intolerant to loss-of-function variants (gnomAD pLI=1) (table S3,5). 

Subsequent investigation of individuals with similar phenotypes identified additional cases with 

de novo variants in different domains of CCT3, including two loss-of-function variants (CCT3 

#10, #12) and an individual with a de novo missense variant (CCT3 #11) (Fig. 1, B). Phenotypic 

overlap included developmental delay, microcephaly, and visual impairment. MRI data showed 

hypomyelination of the white matter and atrophy of the optic tracts (table 1). These findings 

establish CCT3 as a disease-relevant chaperonin subunit. 

 

 

 

CCT3 disruption is deleterious in different taxa 

Consistent with its essential function in mediating folding of newly translated proteins, TRiC 

is highly conserved in sequence and structure among different taxa (Fig. 2, A, table S2) (7, 15). 
We next performed functional studies in yeast, worm and fish to determine if the identified 

CCT3 variants affected actin and tubulin folding, and brain development. First, we used a 

plasmid-shuffling approach in yeast to examine whether the cct3 variants impair TRiC function 

(fig. S8). Briefly, yeast strains in which the essential cct3 gene was deleted but which contained 

a modified wild-type plasmid for survival were transformed with either cct3-WT or the 

respective orthologous variants cct3-Q12R, cct3-A401Lfs*27 or cct3-R522* (Fig. 2, B, fig. 

S11-18). When co-expressed with cct3-WT, the variants did not show typical TRiC/CCT-

impairment phenotypes, such as sensitivity to a microtubule destabilizing drug (benomyl) or to 

actin-stressing hypertonic media (600mM NaCl). However, when the WT survival plasmid was 

removed by 5-fluoroorotic acid (5-FOA) treatment, the cct3 variants were lethal under all 

conditions tested, except for wildtype cct3 and cct3-Q12R. These experiments indicate that the 

disease-linked variants leading to protein truncations in CCT3 cause loss-of-function in yeast 

TRiC (16). 

For C. elegans studies, we generated the orthologous cct-3 missense variant Q14R (individual 

#11) by CRISPR/Cas9 editing in three lines together with two control lines containing the 

corresponding synonymous changes (Q14Q). We also generated a deletion of the entire coding 

region of cct-3 (cct-3(del)) as a model of CCT3 loss-of-function variants (fig. S3). Homozygous 

cct-3(del) mutant worms (cct-3 -/-) arrest at the second to third larval (L2-L3) stages, whereas 

heterozygous mutants were viable, but showed a reduced crawling speed suggesting 

haploinsufficiency for this phenotype (Fig. 2, C, fig. S4). Homozygous Q14R lines were less 

severely affected: although viable and fertile, the animals showed reduced motility and a 

reduced number of progeny consistent with the missense variant being deleterious in worms 

(Fig. 2, C, fig. S5). Heterozygous Q14R animals had a substantial crawling speed defect 

indicating that the variant is a weak loss of function allele (fig. S5). The function in folding of 

actin, an obligatory TRiC substrate, was investigated using fluorescently labelled intestinal 

actin-5 (mCherry::ACT-5) (17, 18). In wildtype cct-3 worms, labelled actin localized to the 

apical surface of the intestine, as expected, and showed no aggregates (Fig. 2, D). In contrast, 
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cct-3 -/- mutants showed numerous bright aggregate-like mCherry::ACT-5 punctate structures 

throughout the intestinal cell cytoplasm, consistent with a general requirement of cct-3 for actin 

folding and localization (Fig. 2, D). Homozygous Q14R worms also contained aggregate-like 

actin puncta, albeit smaller than the cct-3 -/- mutants, indicating a hypomorphic, but 

nevertheless deleterious allele (Fig. 2, E, fig. S6). To test for a role of cct-3 in the function of 

beta tubulin, also an obligate TRiC substrate, we tested for a genetic interaction between 

gfp::tbb-2 and cct-3 Q14R following heat shock. We found that a knock-in gfp::tbb-2 strain 

(19) was hypersensitive to heat shock. In the gfp::tbb-2 background, Q14R was more sensitive 

than the Q14Q control to heat shock, suggesting that cct-3 promotes beta-tubulin function in C. 

elegans, consistent with its role in tubulin folding (Fig. 2, F, fig. S7). These observations 

corroborate that the disease-associated cct-3 alleles are deleterious and impair TRiC function, 

including the ability to properly fold obligate substrates.  

To address the impact of TRiC impairment on altered brain development in vertebrates, we used 

a CRISPR/Cas9 approach to generate loss-of-function alleles of cct3 in zebrafish. At four days 

post fertilization (dpf), WT zebrafish were larger in size compared to cct3 mutants and showed 

a normally developing cerebellum with regular granule and Purkinje cell layers. In contrast, the 

cerebellar granule cell layer in aged-matched homozygous cct3 mutants was almost entirely 

absent and Purkinje cells were strongly reduced in number compared to WT and unevenly 

distributed in few small cell groups (Fig. 2, G and H). Moreover, developing hindbrains of 

zebrafish at 3 dpf showed focal irregularities when labeled with tetramethylrhodamine 

(TRITC)-conjugated phalloidin, suggesting F-actin disorganization and focal accumulations in 

neural cells (Fig. 2, I). These observations are in agreement with the cerebellar hypoplasia 

observed in humans. Overall, the results confirm a conserved developmental role for CCT3 

among different taxa. 
 

 

 

TRiC variants in other CCT subunits are associated with brain pathologies 

Given that TRiC is an obligate hetero-oligomer of the eight ATP-binding subunits CCT1-CCT8, 

we hypothesized that variants in other TRiC subunits may lead to similar clinical phenotypes. 

Analysis of over 5,000 in-house exomes and genomes with a focus on intellectual disability 

(ID) revealed a nonsense variant in TCP1 (CCT1) in an individual with intellectual disability, 

multifocal epilepsy, and heterotopia (CCT1 #1). Additionally, another individual with 

intellectual disability, epilepsy and polymicrogyria harbored a de novo frameshift variant in 

CCT8 (CCT8 #21). Subsequently, international collaborations, matchmaking platforms and 

RD-Connect GPAP (20-22) identified additional TRiC variants in individuals from different 

ethnicities. A total of 22 individuals with an overlapping disease spectrum were identified 

(table1, table S1). Brain MRIs showed early differentiation and proliferation disorders and/or 

white matter disorders as well as early and late neuronal migration disorders (Fig. 3, A-J). 

Mapping the variants on the structure of the TRiC/CCT complex showed that disease-linked 

alleles were widely dispersed along the three domains of every TRiC subunit and distributed 

across seven out of the eight subunits, as follows: TCP1 (CCT1) (n=8), CCT3 (n=4), CCT4 

(n=1), CCT5 (n=1), CCT6A (CCT6) (n=5), CCT7 (n=1), CCT8 (n=2) (Fig. 3, K, L and M, fig. 

S26,27, table S4). The spectrum of variants included missense- (n=6), frameshift- (n=8), 

nonsense- (n=6) and splice-site-variants (n=1), as well as a two-exon deletion (n=1). De novo 

occurrence was confirmed in all cases for which parental samples were available (17/22). 
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TRiC missense variants differently impact yeast viability and actin folding and 

localization in C. elegans 

The identification of a wide range of CCT variants with similar clinical manifestations strongly 

suggests these alleles lead to impaired TRiC function. It was reasonable to assume that alleles 

that will result in truncated or grossly altered CCT protein subunits such as frameshift, nonsense 

and splice site variants as well as the two-exon deletion, should lead to a loss-of-function of the 

affected subunits and thus reduced TRiC levels or activity. Testing these variants in yeast using 

the plasmid shuffling approach supported this idea. Additionally, the yeast experiments revealed 

these variants caused haploinsufficiency in several conditions (fig. S11-18), consistent with 

previous observations that CCT deletions are haploinsuficient in diploid yeast (23). We next 

examined if the patient-derived missense variants also impair TRiC function (fig. S28). Since 

all missense variants affect highly conserved amino acids, we investigated the pathogenicity of 

the orthologous missense variants in yeast using the plasmid-shuffling approach described 

above (Fig. 3, O). The cct1-K167R, cct5-K191R and cct6-R318C variants induced yeast 

lethality in 5-FOA media at all temperatures, indicating they lead to a severe loss-of-function. 

Two disease-linked variants, cct1-K167R (K159R in humans), and cct5-K191R (K176R in 

humans) affect the same amino acid in the highly conserved nucleotide-sensing loop (NSL) of 

these subunits. (Fig. 3, L, N, P, fig. S29). The NSL is a conserved element in all CCT subunits 

that senses the hydrolysis status of the bound nucleotide, ATP or ADP, and participates in the 

allosteric regulation controlling the timing of ATP-driven cycling between the open and closed 

states (24). We carried out structural modelling analysis of these seemingly conservative NSL 

variants, using mutagenesis in Chimera, and Alphafold2 (see Methods). Both approaches 

showed that the K to R variant in both CCT1 and CCT5 induces the formation of a pseudo-

bond with a nearby aspartate in Helix 12, likely inducing the formation of an electrostatic bond 

that is not present in wildtype. Therefore, the sensing capability of these NSLs may be impaired 

to properly detect the nucleotide state of the corresponding subunit because it interacts more 

with the negatively charged aspartate rather than with the gamma phosphate of ATP. Upon co-

expression with a corresponding wildtype subunit, both loss-of-function NSL variants showed 

dominant negative effects on TRiC function, including microtubule and actin defects. In 

addition, cct1-K167R, but not cct5-K191R, leads to restricted growth with glycerol as the 

carbon source, indicative of defective mitochondrial function (fig. S14-16,18). Since each 

TRiC/CCT complex contains two copies of each subunit, the dominant negative effect of these 

variants can be rationalized by the formation of allosterically dysfunctional TRiC complexes 

containing a wildtype and a mutant allele. For cct1-P46L and cct7-E383K no detectable 

phenotypes in yeast were observed (Fig. 3, O). However, when tested in worms, the orthologous 

cct-1-P42L and cct-7-E377K exhibited actin aggregates, similar to cct-3-Q14R, and in line with 

a suspected pathogenicity (Fig. 3, Q and R). In addition, cct-1 and cct-7 null heterozygous 

worms displayed crawling defects providing additional support for haploinsufficiency of cct 

genes (fig. S3, fig. S8). The distinct effect of some missense mutants in yeast and worms likely 

arises from an increased burden or demand on TRiC function in more complex multicellular 

organisms. These experiments combined show that all cct variants tested were deleterious in 

vivo and that missense variants in different subunits can affect the function of TRiC in distinct 

ways and to varying degrees, likely reflecting the complex interplay between TRiC’s hetero-

oligomeric nature and its cellular functions.  

 

 
 

TRiC dysfunction impairs different pathways in patient-derived cells 

To better understand shared molecular pathways affected in TRiCopathies we investigated 

patient-derived fibroblasts carrying variants in four different TRiC subunits. Fibroblasts from 



 CCT subunits and brain malformations 

 8 

CCT3 #9, CCT6 #15, and CCT8 #21 all harbor frameshift variants, and CCT5 #14 contains a 

missense variant of the highly conserved NSL (Fig. 4, A). As expected, the three frameshift 

variants resulted in reduced mRNA and protein amounts of the affected subunit (RNA vs 

protein: CCT3 #9: 0.48 vs 0.68, CCT6A #15: 0.24 vs 0.46, CCT8 #21: 0.44 vs 0.59) (Fig. 4, 

D). Consistent with the obligate hetero-oligomeric nature of TRiC, the frameshift variants of 

these different subunits reduced the protein expression for all TRiC subunits in patient-derived 

cells. In contrast, the missense variant in the NSL loop in CCT5 did not impact expression of 

any TRiC subunit at the RNA or protein level, indicating this variant directly impairs TRiC 

function rather than TRiC expression (Fig. 4, D). In each patient-derived cell line a reduction 

in actin and tubulin isoforms was observed, in line with an impact on these major obligate TRiC 

substrates (Fig. 4, E). The results from the proteomics analyses were confirmed by direct 

biochemical analyses of assembled TRiC complexes by native PAGE (fig. S24) and native 

assembled TRiC was reduced relative to healthy controls (HC) in the patient-derived cells 

carrying frameshift mutations, but not in those with the NSL variant. Additionally, immunoblot 

confirmed reduced -tubulin amounts in patient-derived cells, particularly observed for CCT6 

(fig. S24). An ATP-AlFx closure assay (25, 26) revealed all mutant TRiC complexes could reach 

the ATP-induced closed state, even those with an NSL mutation (fig. S25). As these are lysate-

based endpoint assays, these experiments cannot capture potential kinetic defects in ATP 

cycling by the NSL variant.   

We also examined shared RNA and protein changes affecting all four CCT genotypes. We 

observed an interesting common link to focal adhesion (Fig. 4, B and C, fig. S19,20). Three of 

the four proteins consistently upregulated (FC ≥ 1.5) in all four genotypes, FMN2, NTM, and 

ITGBL1, affected focal adhesions (Fig. 4, C).  

Network analyses of proteome alterations in the CCT-deficient patient-derived cells also 

identified shared changes upregulating or downregulating key cellular pathways (Fig. 4, F and 

G). We observed downregulation of lysosomal, ubiquitination and metabolism pathways, all of 

which are linked to TRiC substrates (9, 27). Another major downregulated pathway 

corresponded to mitochondrial proteins, suggesting a role for TRiC in mitochondrial biogenesis 

and function (Fig. 4, F and G). Immunofluorescence analyses in patient-derived fibroblasts, 

however, did not reveal gross alteration in tubulin or actin staining (fig. S21) nor in 

mitochondrial morphology (fig. S22,23). By contrast, we observed higher expression of 

proteasome and stress-induced chaperones in patient-derived cells, which likely compensate for 

the increased misfolded-protein load due to TRiC impairment and thus alleviate some of the 

cellular deficits caused by lower TRiC expression or function.   
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Discussion: 

We show here that de novo genetic variants in virtually every subunit of the TRiC chaperonin 

cause a broad spectrum of brain malformations. Heterozygous variants in 22 independent 

individuals are linked to impaired brain development with clinical phenotypes ranging from 

mild to severe epilepsy, intellectual disability, ataxia, and other features of cerebral 

malfunction. For variants in CCT1 and CCT8, polymicrogyria so far emerges as a leading 

pattern of malformation, whereas variants in CCT3, CCT5 and CCT6A are rather associated 

with volume reduction of various cortical structures. Since this huge multi-subunit complex has 

numerous points of vulnerability, we suspect a broader clinical spectrum will emerge with the 

description of further cases. The variants suggest impaired TRiC function as a major disease 

mechanism, which is consistent with population data where seven of the eight TRiC subunits 

are strongly loss-of-function intolerant (pLI=1, gnomAD, v4). Multiple lines of experimental 

evidence suggest that the defect of one copy of a CCT gene is sufficient to cause disease, in line 

with previous observations that TRiC forms an obligate hetero-oligomer (7, 16). Consistent 

with this, we found that TRiC frameshift variants in one subunit, which lead to production of 

non-functional subunits, not only affect the expression of the variant-containing subunit but 

also reduce the levels of the entire oligomeric TRiC, which may explain overlapping clinical 

phenotypes regardless of which subunit is primarily affected.  

The different TRiC subunits as well as different domains within a single subunit play distinct 

roles in TRiC mechanism and function (8). The variants are widely distributed along the 

structure of each subunit. Therefore, it is likely that these variants induce TRiC’s impairment 

through different mechanisms and with variable clinical outcomes. Possible mechanisms 

include impairment of ATPase activity, inhibiting substrate binding or release, or hindering the 

assembly of functional complexes. The C-terminally located frameshift variants may escape 

nonsense-mediated mRNA decay and could possibly have a dominant-negative effect by 

becoming incorporated into TRiC complexes.  

Protein encapsulation and folding via TRiC is ATP-driven and binding and subsequent 

hydrolysis of ATP promotes lid closure in both octameric rings. Of central importance is an 

ultra-conserved nucleotide sensing loop (NSL) adjacent to the ATP binding site which directly 

impacts the rate of nucleotide hydrolysis and thus the timing of the protein folding reaction 

(24). Our data show that the same NSL core residue is affected in two individuals, CCT1-

K167R (#7) and CCT5-K191R (#14). In contrast to the frameshift variants, patient-derived cells 

with the NSL variant did not lead to reduced levels in TRiC subunits, indicating different 

avenues of TRiC impairment leading to disease. Structural modeling of the NSL variants 

suggest they will affect nucleotide status sensing. Given the role of the NSL loop in controlling 

the kinetics of ATP hydrolysis (24), it is likely that incorporation of a subunit carrying an NSL 

variant will change the TRiC “folding timer” even in complexes containing a wildtype and a 

mutated copy of the affected subunit. This may explain the dominant negative phenotype of 

these loss-of-function missense variants in yeast. The phenotype of the individual with the 

CCT5-NSL variant is particularly severe, likely reflecting the central role of ATP binding and 

hydrolysis of CCT5 in the hierarchical allosteric regulation of TRiC ATP-driven cycling (28). 

The CCT3-Q12R (#11) variant observed in a mildly affected individual had a less severe actin 

disorganization/aggregate formation phenotype in worms. This variant affects the structurally 

disordered N-terminus of CCT3, which projects towards the central folding chamber and has 

been suggested to mediate substrate specific roles in TRiC function (15, 25). Another missense 

variant, CCT6-R314C (#16) changes the charge properties of the closed central chamber (25), 

and our yeast data indicate that this variant mainly affects folding of TRiC substrates other than 

tubulin or actin. The MRI of the latter individual was structurally normal, with an otherwise 

severe clinical phenotype. Both the CCT1-P38L (#4) and CCT7-E379K (#20) missense-
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variants had no pathogenic effect in yeast, but showed actin aggregates in C. elegans. Together 

with their respective de novo occurrence, evolutionary conservation, and clinical phenotype this 

indicates disease causality. In summary, the data suggest that heterozygous missense variants 

are associated with TRiC impairment and support a model in which different TRiC-linked 

disease mechanisms operate depending on the location of the variant and subunit affected.  

Variants in CCT2 and CCT5 have previously been reported as the only subunits involved in 

monogenic disorders, but in contrast to the pathology described here, with recessive inheritance. 

A single family with retinal dystrophy and compound heterozygous missense variants in CCT2 

has been identified (29) and homozygous missense-variants in CCT5 have been reported in two 

families with different types of complicated neuropathies (30, 31). The recessive inheritance 

indicates that the individual heterozygous missense variants have a comparatively minor effect 

on TRiC function and that one affected allele is not sufficient for disease expression in contrast 

to the individuals reported here. Conversely, it is to be expected that mutation-specific 

inheritance patterns and phenotypes with variable penetrance can occur for TRiC/CCT 

disorders. It is also plausible that certain changes in CCT2 will lead to brain malformations. 

A central question is why heterozygous variants in this ubiquitously expressed and constantly 

active folding complex predominantly lead to a neurodevelopmental phenotype. A likely 

explanation is the uniqueness of early brain development: division of neuronal precursor cells 

during embryogenesis places highest demands on the pace of generating new cells, remodeling 

the cytoskeleton, and folding proteins. This may create a spatio-temporal bottleneck in de novo 

protein folding to which the developing brain is particularly sensitive. According to estimates, 

several million neurons are generated per hour during the neurogenic period of human central 

nervous system development (32). It is conceivable that an optimal TRiC operation is most 

critically required at this stage of cell formation and proliferation, but also in the phase of 

neuronal migration, and is therefore particularly susceptible to haploinsufficiency (33). Indeed, 

TRiC is highly expressed in neuronal stem cells, and is required for their resistance to 

proteostatic stress (34). The developmental steps described here critically depend on the 

efficient folding of actin and tubulin, which are controlled largely by TRiC (2, 35). Our 

proteomics data indeed show that actin and tubulin isoforms are less abundant in the TRiC-

deficient patient-derived cells. Since TRiC is essential for neuronal tubulin folding, this might 

additionally explain the primary neuronal phenotypes of the individuals (36-38). In line with 

this, the disruption of many tubulin (39-44) and actin genes (45) is known to lead to similar 

malformations of the brain. Furthermore, cct3 knockout in zebrafish supports a model in which 

F-actin disorganization and focal accumulations are associated with impaired brain 

development. Consistent with the extensive contribution of TRiC to cellular folding, the 

consequences of CCT variants will extend beyond cytoskeletal defects (46-49).  

 

Altered folding capacities with impaired neuronal proteostasis is typically associated with 

neurodegenerative rather than neurodevelopmental phenotypes (50). Our study establishes a 

direct and unanticipated link between a central proteostasis factor, TRiC/CCT, and brain 

development. The analysis of the muscle biopsy of individual #9 (CCT3 #9) also revealed 

aggregates in the cell bodies, which supports further defects in protein folding and degradation. 

One major downregulated protein group are mitochondrial proteins. TRiC does interact co-

translationally with many nuclear-encoded mitochondrial precursors in yeast (11) and is 

strongly upregulated during mitochondrial stress (51). This suggests that TRiC may play an 

unanticipated role in mitochondrial function, in line with mitochondrial alterations observed in 

the muscle biopsy. The association of abnormal autophagosomes with mitochondria in 

intramuscular axons likewise suggests abnormal mitophagy.  

 

Our observations support a scenario where TRiC variants may yield a wide spectrum of clinical 

manifestations, leading us to propose that mild variants in TRiC should contribute to less 
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recognizable, but more common and clinically relevant brain developmental disorders, 

consistent with some of our individuals being mildly affected and managing their daily lives 

without help. Based on publicly available genomic databases we anticipate there will be more 

individuals with TRiC-related disorders. Besides clear loss-of-function variants, more frequent 

TRiC variants could have mild effects on the function of the complex and thus on the balance 

of protein folding and proteostasis. It is quite possible that such factors play a substantial role 

in neurodevelopmental disorders currently being classified as “idiopathic”. Such correlations 

need to be investigated in larger studies. 

In summary, the data show the role of the individual subunits of the TRiC chaperonin folding 

machinery for corticogenesis and demonstrate how an essential protein folding machinery is 

required for proper brain development. We propose that the TRiC-related brain disorders are 

designated as "TRiCopathies". 
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Figure and Table legends: 

 
Fig. 1. CCT3 variants in human developmental disorder. (A) MRI of individual #9 at age four 
years and five months showing hypoplastic cerebellar vermis (arrowhead) and 
hypomyelination of the white matter. (B) The heterozygous variants of the individuals (#9-#12) 
in CCT3 are indicated and locate across the different operational domains of the subunit. The 
apical domain of CCT3 (green) at the tip of the ring has a substrate recognition site and the lid-
forming loop, the intermediate domain (red) controls ATP hydrolysis and thus the movement 
of the apical domain, and the equatorial domain (blue) includes the ATP-binding site (light 
green). Protein substrates of the complex are encapsulated in a folding chamber formed by 
TRiC to assist ATP-dependent folding of proteins. CCT3 is highlighted in the upper octameric 
ring of TRiC. The entire 16-meric complex is formed by two octameric rings. (C-J) Muscle biopsy 
findings. (C) Light microscopy of toluidine-blue stained semithin section showing the spectrum 
of muscle fiber calibers. Arrowhead: intramuscular nerve fascicle containing myelinated nerve 
fibers. Scale bar = 40 μm. (D) intramuscular nerve fiber showing intraaxonal accumulation of 
abnormal autophagic material (arrowhead). EM; scale bar = 2 μm. (E) In the intramuscular 
nerve fiber, the abnormal intraaxonal autophagic material (arrowheads) is associated with 
mitochondria. EM; scale bar = 1 μm. (F) Motor end plate displaying a paucity of synaptic folds 
and swelling of mitochondria in axon endings (arrowheads). EM; scale bar = 1 μm. (G and H) 
Two membrane-bound intermyofibrillar vacuoles containing globular and granular material of 
variable osmophilia. EM; scale bars = 600 nm. (I) intermyofibrillar accumulation of 
degenerating mitochondria and of vesicular material (dashed circle). EM; scale bar = 500 nm. 
(J) Representation of Z-band material. EM; scale bar = 1 μm.  
 
 
Fig. 2. Functional consequences of CCT3 alterations in different species. (A) Conservation of 
the missense variant (individual #11) and position of the C-terminal loss-of-function variants 
(individual #9, #10 and #12) in different species. (B) Functional studies of the cct3 variants by 
yeast plasmid-shuffling assays. (C) Representative brightfield images of C. elegans phenotype 
48-hour post egg-lay. Scale bar, 100 µm. (D) Actin staining in the intestine of cct-3 -/- and cct-
3 Q14R/Q14R animals. Maximum intensity images of mCherry::ACT-5 in the intestine of 
wildtype (cct-3 +/+), heterozygous (cct-3 +/-) and homozygous (cct-3 -/-) L2 stage animals. Scale 
bar, 50 µm. (E) Quantification of cytoplasmic mCherry::ACT-5 puncta in adult worms. (F) 
Lethality in the presence of a GFP-β-tubulin fusion protein following heat shock. Shown are 
relative survival rates following heat shock at 37 ºC for 2 hours. Five independent biological 
replicates were combined for each genotype. Differences between groups were determined 
using ordinary 1-way ANOVA followed by a Tukey multiple-comparisons test. ns, not 
significant; * p< 0.05; ** p< 0.01. (G) Danio rerio cct3 knockout animals. Overview images of 
cct3 wildtype (cct3+/+) and homozygous knockout (cct3-/-) zebrafish at 4 days post fertilization 
(4 dpf) are shown. (H) Cerebellum of cct3+/+ and cct3-/- animals at 4 days dpf. Whole mount 
immunohistochemistry of vglut1 as a marker of cerebellar granule cells (magenta) and pvalb7 
as a marker of Purkinje cells (green). Scale bars are 40 µm. (I) F-actin was labeled using TRITC-
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conjugated phalloidin. Images of the hindbrains of WT zebrafish at 3 dpf (n=5) 
and cct3 mutants (n=4). Representative single planes are shown. Scale bar is 10 µm. The 
examined hindbrain area is marked with a red box in the diagram of the zebrafish larva (right). 
 
Fig. 3. Brain phenotype and cellular consequences of TRiC dysfunction. (A-J) Magnetic 
resonance images from affected individuals with CCT gene variants. (A) Individual age 29 years 
with heterotopia at the posterior horn of right lateral ventricle (arrowheads). (B) Child age 12 
years with bilateral perisylvian polymicrogyria with frontal and parietal extension. (C) Child age 
9 years with asymmetrical bilateral polymicrogyria, most severe over the right frontoparietal 
hemisphere (arrowheads left, right panels). Mild findings perisylvian in the left hemisphere 
(arrowheads, middle). (D) Child age 14 years with bilateral symmetrical polymicrogyria, 
frontoparietal and temporal.  (E) Child age 4 years with cerebellar atrophy and hypoplastic 
cerebellar vermis (arrowheads, right), hypomyelination of white matter, especially 
periventricular and temporal (middle).  (F) Child age 2 years with reduced supratentorial white 
matter volume with abnormal signal, and thinning of the corpus callosum (middle). Reduced 
volume of the thalami bilaterally, with mild associated abnormal signal. Mildly small optic 
chiasm and optic nerves (left). (G) Individual with bilateral temporoparietal polymicrogyria 
(middle) and suspected dysplasia of posterior insular cortex (left) as well as hypogenesis of the 
corpus callosum (right), hypoplasia of both cerebellar hemispheres and pons (middle). (H) 
Child age 2 years with cerebellar atrophy (arrows). (I) Child age 3 years with bilateral 
polymicrogyria. Extensive findings over the left hemisphere frontoparietal and temporal 
(arrows left and right panels) and over the posterior end of sylvian fissure in the right 
hemisphere (arrow, middle panel). (J) Individual with extensive right hemispheric 
polymicrogyria, frontoparietal and temporal. (K) 16-mer TRiC complex with position of the CCT 
variants indicated in pink. (L) ATP-dependent protein folding via two octameric double rings 
which build the folding-chamber.  (M) Pathogenic variants of all subunits projected onto a 
single prototype CCT primary structure (“panCCT”) with the three protein domains 
highlighted. (N) Structural modelling of the NSL variants. (O) Functional studies of missense 
mutations in CCT subunits in yeast. (P) High conservation of the nucleotide sensing-loop (NSL). 
(Q) Maximum intensity projection of actin aggregates in C. elegans harboring the orthologous 
CCT1-P38L human variant (cct-1 P42L) and CCT7-E379K human variant (cct-7 E377K), 
respectively. Scale bar, 50 µm (R) Quantification of actin aggregates. 
 
 
Fig. 4. Downstream effects of human TRiC dysfunction. (A-C) Transcriptome and proteome 
analysis in patient-derived fibroblast cell lines. Differences between groups were determined 
using t-test and a p-value ≤ 0.05. Volcano plots show the differentially expressed genes (B) and 
proteins (C) in the patient-derived cell lines (CCT3 #9, CCT5 #14, CCT6 #15, CCT8 #21) 
compared to healthy controls. Dashed lines indicate the thresholds for log2 fold change (≥ 
0.585) and significance level (p-value ≤0.05). Upregulated genes are shown in yellow, whereas 
downregulated genes are colored in blue. Genes with expression changes common to all four 
genotypes (≥1.5-fold and with a p-value ≤0.05) are labeled by gene/protein name. (D and E) 
Expression changes of all TRiC subunits as well as the genes/proteins of the actin and tubulin 
family are shown per genotype. (F and G) Pathway analysis of combined differentially 
regulated proteins from the patient-derived cells reveals upregulated (F) and downregulated 
(G) pathways. 
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Table 1. Clinical and genetic spectrum of TRiCopathies. Abbreviations: y = year; n.k. = not 
known; n.s. = not specified; ID = intellectual disability; CC = corpus callosum; DD = 
developmental delay; § = age at last follow up. Head circumference: * = at last appointment; 
P = percentile; z = z-score. 
 
 
  

 


