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Abstract

For 0 < ρ ≤ 1, a ρ-happy vertex v in a coloured graph G has at least ρ ·deg(v) same-colour neighbour
and a ρ-happy colouring (aka soft happy colouring) of G is a vertex colouring that makes all the ve
tices ρ-happy. A community is a subgraph whose vertices are more adjacent to themselves than t
rest of the vertices. Graphs with community structures can be modelled by random graph models su
as the stochastic block model (SBM). In this paper, we present several theorems showing that bo
of these notions are related, with numerous real-world applications. We show that, with high prob
bility, communities of graphs in the stochastic block model induce ρ-happy colouring on all vertic
if certain conditions on the model parameters are satisfied. Moreover, a probabilistic threshold on
is derived so that communities of a graph in the SBM induce a ρ-happy colouring. Furthermore, t
asymptotic behaviour of ρ-happy colouring induced by the graph’s communities is discussed when
is less than a threshold. We develop heuristic polynomial-time algorithms for soft happy colourin
that often correlate with the graphs’ community structure. Finally, we present an experimental eva
uation to compare the performance of the proposed algorithms thereby demonstrating the validity
the theoretical results.

Keywords: Soft happy colouring, community detection, stochastic block model

1. Introduction

Graph colouring is a powerful technique for solving complex network-related problems, with a
plications varying from engineering to quantum physics and social science to cybersecurity. Depen
ing on the problem’s nature, various types of graph colouring have already been introduced. From t
conventional proper vertex colouring [21] to the recently defined happy colouring [35] (which is t
subject of this paper), each of these versions appeared to be seminal in both theoretical and practic
research.

Happy colouring in graphs is proposed for detecting homophily [24] in social networks. F
a k-coloured graph, Zhang and Li [35] defined a vertex to be happy if all its neighbours have t
same colour as its colour, and an edge is happy if both of its ends have the same colour. It is we
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known that homophily in social networks can be expressed by their community structures (see f
example [15, 29, 33]), a structure that real-world networks often possess. In other words, homophi
can be translated to grouping vertices into some sets in which they are connected with many edges
themselves and substantially fewer edges to the rest of the vertices. Each group is called a communit
aka a cluster [10]. A community is then a subgraph whose vertices have most of their neighbou
inside the community, and the problem has some similarities with finding the minimum cut in t
network [27]. Hence, by a community, we mean a group of vertices having an ample number
vertices that are adjacent together more than they are adjacent to the vertices of other communitie
This way, singletons are not considered as a community, while they are valid vertex cuts.

Zhang and Li in [35] devised algorithms for maximising the number of happy vertices (MHV
k-MHV) or maximising the number of happy edges (MHE or k-MHE) in a graph with some vertic
already precoloured with k colours. Additionally, they proved that MHV and MHE problems a
solvable in polynomial time if k ≤ 2, and they are NP-hard otherwise. Moreover, for 0 < ρ ≤ 1, th
introduced ρ-happy colouring as follows: a vertex v is ρ-happy if its colour is the same as the colo
of at least ρ · deg(v) of its neighbours. The problem of maximising the number of ρ-happy vertic
is called soft happy colouring. Furthermore, they devised two algorithms for this problem, name
Greedy-SoftMHV and Growth-SoftMHV.

To the best of our knowledge, the problem of soft happy colourings has remained dormant. W
focus on this problem and our motivation to revisit this problem is its relation to the analysis
community structure in networks. However, conventional happy colouring (which is a special case
soft happy colouring when ρ = 1) and its two related problems, MHV and MHE, have already be
the subject of several studies. For example, Aravind, Kalyanasundaram, and Kare [5] proposed line
time algorithms for MHV and MHE for trees. Meanwhile, Agrawal et al. [4] studied the complexi
of (weighted) MHV and MHE based on the density measures of a graph.

A few studies have proposed exact, heuristic, metaheuristic and matheuristic approaches to tack
the (conventional) MHV probem [22, 31, 30]. Lewis et al. [22] proved bounds on the number
happy vertices and introduced a construct, merge, solve, and adapt algorithm — CMSA for sho
— for the MHV problem. Another study [31], devised a tabu search metaheuristic which prov
superior to other available algorithms, especially on very large networks. The later study by Lewis
al. [23] explores a variant of the MHV problem, specifically the maximum induced happy subgrap
in a network. They proposed some heuristic and metaheuristic algorithms and proved bounds on t
maximum number of happy vertices. Thiruvady and Lewis [30] continued this direction of study b
developing approaches based on tabu search and evolutionary algorithms hybrid CMSA-tabu sear
— CMSA-TS for short — and showed that CMSA-TS is almost always the most effective approa
for solving the MHV problem among the methods they tried. More recently, Ghirardi and Salassa [1
presented an algorithm to improve the quality of a solution given by any another algorithm. Zhao, Y
and Zhang [36] considered the relation of k-MHV and k-MHE with the maximum k-uncut proble
and proposed an algorithm with the time complexity of O(kn2).

Finding a connection between community structure and soft happy colouring is straightforward.
the communities are non-overlapping (i.e., communities partition the vertex set), we can express the
by colour classes, which is the colouring induced by the graph’s communities. Consequently, th
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Figure 1: A graph with 3 communities, represented by three colour classes. Dashed lines represent inter-commun
edges. Here the colouring is 0.5-happy.

paper is about how communities of a graph can be considered as the ρ-happy colour classes. Whi
the conventional happy colouring (i.e. ρ = 1) with more than one colour can never be achieved for
connected graph [22], we show that communities can make the entire graph ρ-happy when 0 < ρ <
Figure 1 illustrates this for a graph having 3 communities. As we see, here the communities in t
illustrated graph entirely match the 0.5-happy colour classes. On the other hand, if a complete
happy colouring is known for a graph G, then one may take its colour classes as an indication of t
graph’s communities.

Section 2 presents the required background and terminology for the theoretical contribution
this paper. Specifically, we review the stochastic block model, one of the simplest random grap
models for graphs with community structure. It should also be emphasised that although we build o
theorems and experimental tests based on this model, the relation between community structure an
soft happy colouring can be applied to any other community structure model.

The theoretical contribution of this paper is presented in Section 3. Theorem 3.1 gives a sufficie
condition on the model parameters of a graph G in the SBM so that the probability of its communiti
inducing a ρ-happy colouring is greater than a function. This enables us to find a threshold 0 ≤ ξ ≤
such that, with high probability, communities of G induce a ρ-happy colouring for ρ ≤ ξ. Moreove
the asymptotic property of the induced colouring is detected in Theorem 3.3 as the probability
ρ-happines of this colouring approaches 1 when the number of vertices tends to infinity. The validi
of these results is also discussed by experimental analysis in Section 3 as well as in Section 5.

In Section 4, four heuristic algorithms are discussed for finding ρ-happy colouring. One of them
Local Maximal Colouring, is new and has shown a high correlation with the graphs’ community stru
ture. We report experimental results considering communities inducing colour classes in Section
and carry out experiments on four algorithms for several randomly generated graphs.

3
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2. Nomenclature

In this paper we use “graphs” and “networks” interchangeably, meaning simple unweighted fini
graphs. Usually, a graph is denoted by its vertex set and its edge set, i.e. G = (V(G), E(G)). Wh
two vertices u and v are adjacent, we write u ∼ v or uv ∈ E(G). For k ∈ N, a k-colouring of a grap
G is a function c : V(G) −→ {1, . . . , k}. It is well known that a k-colouring partitions the vert
set into k parts V1, . . . ,Vk while conversely, every k-partition of the vertex set induces a k-colourin
which is unique up to permutation of colours. So, when colour orderings are unimportant for us, w
write c = {V1, . . . ,Vk}. A partial k-colouring is a function c : S −→ {1, . . . , k} where S ⊂ V(G). B
assigning another colour, say k + 1, to the uncoloured vertices, every partial k-colouring becomes
(k + 1)-colouring.

For a vertex v, the set of its neighbours is denoted by N(v). The degree of a vertex v, denot
by deg(v), is the number of edges incident on it, i.e. deg(v) = |N(v)|. The minimum and maximu
degrees are respectively denoted by δ and ∆. When we speak about a vertex v in a set, a colour clas
or a community of vertices, we define the degree of v inside that set, which we denote here by degin(v
Further, standard graph theoretical notations and definitions can be found in [13] by Diestel.

2.1. Happy colouring
We now formally define a ρ-happy colouring of a graph. It should be said that these definitio

have their origins in the very first paper on the subject of happy colourings [35].

Definition 2.1. Let G be a graph, 0 ≤ ρ ≤ 1 and c : V(G) −→ {1, . . . , k} for k ∈ N be a vert
colouring. A vertex v ∈ V(G) is called ρ-happy if at least ρ · deg(v) of its neighbours have the sam
colour as c(v). The colouring c is called ρ-happy if every vertex of G is ρ-happy.

Immediately, we can see that 1-happy colouring is the conventional happy colouring, while eve
vertex colouring is a 0-happy colouring. For practical purposes, we may assume ρ , 0. Moreove
because the number of vertices having the same colour in any neighbourhood is integral, a vertex
being ρ-happy is equivalent to having at least ⌈ρ · deg(v)⌉ same-colour neighbours, see Figure 2.

2.2. Stochastic block model
For modelling general networks on n nodes, random graphs are often used. They are probabili

spaces consisting of n-vertex graphs. See [7] by Bollobás for further details on random graph
There are several random graph models such as the Erdős-Rényi model [14], the hierarchical netwo
model [28], the Watts–Strogatz model [32], and the stochastic block model (SBM) [18]. It should
noted that graphs with high probability in the Erdős-Rény model seldom have community structur
One reason is that in this model, the expected number of edges between any pair of vertices are equa
Consequently, this model is not suitable for studying graphs with community structure. In contra
other mentioned models are designed so that their graphs, whose probabilities in their spaces are t
highest, possess community structures.

One of the most popular random graph models for generating and modelling networks with com
munity structure is the Stochastic block model which is introduced by Holland, Laskey, and Lei
hardt [17]. The model is also known as the planted partition model [10, 11], and is considered

4
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(a) (b)

Figure 2: An example of a ρ-happy colouring problem using ρ = 0.5. (a) The vertex u is 0.5-happy because its degree
8 and at least ⌈0.5 × 8⌉ = 4 of its neighbours have the same colour as its colour (black). (b) The vertex v is not 0.5-hap
because its degree is 9 and ⌈0.5 × 9⌉ = 5, but only 4 of its neighbours have the same colour as its colour (black).

numerous research papers [1, 2, 3, 18, 20, 26, 34]. The model itself has also been subject to furth
generalisation such as the degree-corrected stochastic block model [19] and the Ball et al. model [6
In this paper, we limit ourselves to the conventional form of the stochastic block model for our th
oretical results (see Section 3) and experimental tests (see Section 5). We now summarise the ma
concepts and terminology.

In the simplest form of the SBM, denoted by G(n, k, p, q), a graph has n vertices and k com
munities. Each vertex belongs to exactly one of the k communities, hence the communities are n
overlapping. Moreover, communities are also assumed to be of nearly the same size ≈ n

k , where if
is not divisible by k, some communities have only one additional vertex compared to the others.

In the general case of the SBM, the probability of the existence of an edge uv depends on com
munity membership of u and v. If C1, . . . ,Ck are the communities and u ∈ Ci while v ∈ C j f
i, j ∈ {1, . . . , k}, then the probability of uv ∈ E(G) is Pi j. In the simplest form of G(n, k, p, q), how
ever, each Pi j is considered to be either p or q for 0 < q < p < 1. In other words, we assume

Pi j =


p if i = j

q otherwise.
(

As a result, the expected degree of every vertex v ∈ Ci is

d = E[DEG(v)] =
(n
k
− 1

)
p +

k − 1
k

nq, (

where DEG(v) represents the random variable giving deg(v) for each v ∈ V(G). When n is sufficient
large, we can assume d ≃ n

k p + k−1
k nq.

It is evident that when p and q are very close to each other, the SBM becomes indistinguishab
from the Erdős-Rény model and we might be unable to identify any community structure in the grap
For k = 2, Decelle et al. [12] have also conjectured that detecting communities in large networks
the SBM is possible if and only if (a−b)2 > 2(a+b) for a = np and b = nq. It is shown afterwards th

5



Journal Pre-proof

y
se
th
e.
re
y

n.
ey
ht
a

he
se
m

ly
ty

3)

ty
to

4)

v.
Jo
ur

na
l P

re
-p

ro
of

when (a − b)2 > C(a + b) for a large enough positive integer C, the communities can be revealed b
the spectral clustering algorithm [9]. The conjecture was finally proven in [25]. For the general ca
(when k ≥ 2), there is a — distinguishability of community structure — phase transition result wor
noting [3]. In any case, the larger the value for p

q , the more distinguishable the community structur
Therefore, we assume, especially in our tests, that p

q is large enough so that the communities a
distinguishable. Further information about recent developments on the SBM can be found in [1] b
Abbe.

3. Soft happy colouring of graphs in the SBM

For any pair of vertices u and v of a graph G in the SBM, the adjacency probability is know
If u and v belong to the same community, the probability of u being adjacent to v is p while if th
belong to different communities, they are adjacent with the probability q. Using this fact, one mig
like to know that in the induced colouring by communities, what the probability ρ-happiness of
vertex is. In other words, given an 0 < ε < 1, we are interested in finding a condition that t
probability of ρ-happiness of a vertex is at least 1 − ε. Knowing this condition enables us to increa
the probability of ρ-happiness of the induced colouring by the communities. The following theore
gives this condition.

Theorem 3.1. Suppose that G is a graph modelled by the SBM, i.e., G ∈ G(n, k, p, q), n is a sufficient
large integer, 2 ≤ k, 0 < q < p < 1, and 0 < ρ ≤ 1. Then, for 0 < ε < 1, at least with the probabili
of (1 − ε)n the communities of G induce a ρ-happy colouring on G if

q(k − 1)(eρ − 1) + p(eρ − e) <
k
n

ln(ε). (

Proof. Let the communities of G be C1, . . . ,Ck and let v be an arbitrary vertex of the jth communi
of G. For i ∈ {1, . . . , k}, let Xi be the random variable which gives the number of adjacent vertices
v in Ci. In other words,

Xi =
∑

u∈Ci

Auv, (

where Auv ∈ {0, 1} are independent random variables denoting the number of edges between u and
Then Xi have a binomial distribution and

E[Xi] =


pn

k if i = j

qn
k otherwise.

For an arbitrary t > 0, we can now easily find the moment generating function

E
[
et·Xi

]
=



(
1 − p + p · et) n

k if i = j
(
1 − q + q · et) n

k otherwise.

6
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Note that

DEG(v) =
k∑

i=1

Xi

while
DEGin(v) = X j

are random variables giving deg(v) and degin(v), respectively.
Now, by the Chernoff bound, for t > 0 we have

Pr(ρDEG(v) − DEGin(v) > 0) ≤ E
[
et(ρDEG(v)−DEGin(v))

]
.

Therefore,

Pr(ρDEG(v) − DEGin(v) > 0) ≤ (
1 − p + p · etρ) n

k · (1 − p + p · et)− n
k ·

k−1∏

i=1

(
1 − q + q · etρ) n

k ,

which means that

Pr(ρDEG(v) − DEGin(v) > 0) ≤ (
1 − p + p · etρ) n

k · (1 − p + p · et)− n
k · (1 − q + q · etρ) k−1

k n

≤ e
ln

(
(1−p+p·etρ)

n
k ·(1−p+p·et)−

n
k ·(1−q+q·etρ)

k−1
k n

)

≤ e
n
k ·(ln(1−p+p·etρ)−ln(1−p+p·et)+(k−1)·ln(1−q+q·etρ)).

Since ex ≥ 1 + x for x ∈ R, we can deduce that

1 − p + p · etρ = 1 + p · (etρ − 1
) ≤ ep·(etρ−1).

Consequently, using similar inequalities, we have

Pr(ρDEG(v) − DEGin(v) > 0) ≤ e
n
k ·(p·(etρ−1)−p·(et−1)+(k−1)q·(etρ−1))

≤ e
n
k ·(p·(etρ−et)+(k−1)q·(etρ−1)).

Hence, for Pr(ρDEG(v) − DEGin(v) > 0) < ε, it is sufficient to have

e
n
k ·(p·(etρ−et)+(k−1)q·(etρ−1)) < ε, (

or
p · (etρ − et) + (k − 1)q · (etρ − 1

)
<

k
n

ln(ε).

The inequality also holds when t = 1, resulting in the inequality we wanted to prove.
On the other hand, when Inequality (3) holds, the probability of v being ρ-unhappy is less than

and therefore, with the probability 1 − ε, the communities of graph G induce a colouring on vertic
of G in which v is ρ-happy. Since the values of Auv are independent for all pairs u, v ∈ V(G),

7
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can be inferred that DEG(v) and DEGin(v) are independent from DEG(u) and DEGin(u), respective
Consequently, ρDEG(v)−DEGin(v) and ρDEG(u)−DEGin(u) are independent too, which means th
when Inequality (3) holds, with the probability of at least (1 − ε)n, the communities of G induce
ρ-happy colouring on G.

We now need additional notation to consider the implications of Theorem 3.1. Suppose that G
a graph modelled by the SBM, v is a vertex, 0 ≤ ρ ≤ 1, and c is the vertex colouring induced by t
communities of G. If c makes v ρ-happy, we write v ∈ Hρ and, if it makes the entire graph ρ-happ
we write G ∈ Hρ. By Theorem 3.1, we know that Pr(v ∈ Hρ) ≥ 1 − ε, while Pr(G ∈ Hρ) ≥ (1 − ε
Since this is dependent on the choice of ε, using Equation (5) we define

ε̃ = e
n
k ·(p·(eρ−e)+q(k−1)·(eρ−1)). (

Therefore, it can be seen that Pr(v ∈ Hρ) ≥ 1− ε̃ and Pr(G ∈ Hρ) ≥ (1− ε̃)n, where ε̃ can be determin
by ρ and the model’s parameters, as per Equation (6).

For a graph G in the SBM, i.e. G ∈ G(n, k, p, q), we can expect to find a ρ such that the comm
nities of G present ρ-happy colour-classes for G. This is not always possible in the general case. F
instance, the star graph K1,m admits no ρ-happy colouring for 0 < ρ ≤ 1 with more than one colou
However, for a graph in the SBM, we can find a ξ such that for 0 < ρ ≤ ξ, the graph’s communiti
induce a colouring that makes almost all vertices ρ-happy. Of course, to have a high probability f
happiness of an arbitrary vertex v in the colouring induced by communities of G, we must have

E
[
ρDEG(v) − DEGin(v)

]
=

n
k

(ρ(p + (k − 1)q) − p) < 0,

because otherwise, more than half of all vertices are ρ-unhappy. Therefore,

ρ (p + (k − 1)q) < p.

Consequently, we have
ξ ≤ p

p + (k − 1)q
. (

The following proposition gives another upper bound for ξ.

Theorem 3.2. Given n, k, p, and q, there exist a 0 ≤ ξ ≤ 1 such that, for ρ ≤ ξ, with high probabili
the communities of G ∈ G(n, k, p, q) induce a ρ-happy colouring.

Proof. We need a 0 < ρ ≤ 1 so that Equation 3 holds. Then, by Theorem 3.1, the probability of t
existence of a ρ-happy colouring of G is at least 1 − nε ≤ (1 − ε)n, which will be close to 1 if ε
small enough. Hence, we choose a small ε > 0 for example ε ≤ 1

n2 .
We can find a bound on ρ based on Equation 3 as follows. Since we want

p · (eρ − e) + (k − 1)q · (eρ − 1) <
k
n

ln(ε),

8
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we can separate terms that contain eρ from the left-hand side of the above inequality to have

eρ · (p + (k − 1)q) <
k
n

ln(ε) + pe + (k − 1)q.

Therefore,

eρ <
k
n ln(ε) + pe + (k − 1)q

p + (k − 1)q
,

which means that

ρ < ln


k
n ln(ε) + pe + (k − 1)q

p + (k − 1)q

 . (

Using Equations (7) and (8), we now get

ξ = max

min

ln


k
n ln(ε) + pe + (k − 1)q

p + (k − 1)q

 ,
p

p + (k − 1)q

 , 0

 , (

which has the desired property.

Therefore, ξ is a threshold so that communities of the graph induce a ρ-happy colouring for 0
ρ ≤ ξ. Note that we did not exclude the 0-happy colouring in Definition 2.1 since ξ can sometimes
0 and therefore 0-happy colouring must be defined. To increase the probability that communities
the graph induce a ρ-happy colouring, we may consider ρ ≤ ξ2 .

The threshold ξ (Equation (9)) has shown to be useful in our experiments. We investigated wheth
ξ is a meaningful threshold for communities to induce ρ-happy colour classes, and for this purpose, w
examined 100,000 graphs in the SBM with 500, 1,000, 2,000, 3,000 and 5,000 vertices with random
chosen k ∈ {2, 3, . . . , 20}, 0 < p ≤ 1, 0 < q ≤ p

2 and 0 < ρ ≤ 1, When ρ ≤ ξ2 , the number of ρ-happ
vertices — in the colouring induced by the graph’s communities — is always high, evidence of th
is provided in Figure 3. Moreover, as it can be seen in Figure 4, the minimum number of ρ-happ
vertices in the same set of graphs are almost always very high when ξ > ρ (yellow dots) while lo
numbers of ρ-happy vertices appear only when ξ < ρ (purple dots). This tells us that ξ presents
useful threshold so that we can expect to have a complete ρ-happy colouring when ρ < ξ.

Moreover, when we know that the probability of a vertex being ρ-happy by the communit
induced colouring is at least 1 − ε, then the minimum probability of such colouring being ρ-happ
depends not only on n but also on ε. If n → ∞, then this probability goes to zero when ϵ remai
constant. If ε decreases harmonically, the probability goes to a positive number between 0 and 1. F
example, if ε = 1

n , then (1− 1
n )n → e−1 ≃ 0.36787. . .. Meanwhile, since n→ ∞ results in (1− 1

nt )n →
for t > 1, the probability approaches 1 when n becomes sufficiently large when ε drops sharply, f
example when ε = n−2.

To simplify the notations in Equation (5), define

φ = φ(k, p, q, ρ) =
1
k
· (p · (eρ − e) + q(k − 1) (eρ − 1)) . (1

9
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Figure 3: This graph shows the minimum ratio of ρ-happy vertices when ρ ≤ ξ
2 in the induced colouring by grap

communities. Test were performed over 20,000 randomly generated graphs with n ∈ {500, 1,000, 2,000, 3,000, 5,00
(100,000 graphs in total) and parameters randomly selected from 2 ≤ k ≤ 20, 0 < p ≤ 1, and 0 < q ≤ p

2 .

Figure 4: The minimum ratio of ρ-happy vertices of the induced colouring by communities of 100,000 randomly generat
precoloured graphs with n ∈ {500, 1, 000, 2, 000, 3, 000, 5, 000} (20,000 graphs for each of these numbers) while oth
parameters are randomly chosen from 2 ≤ k ≤ 20, 0 < p ≤ 1, and 0 < q ≤ p

2 . It can be seen when ρ < ξ, the probabil
of having a large number of ρ-happy vertices is high (yellow areas).
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Hence,
ε̃ = enφ.

It is evident that the lower the value of n · φ, the higher the following probability

Pr(G ∈ Hρ) ≥ (1 − ε̃)n. (1

This probability has a direct relationship with p and inverse relationships with k, q and ρ. Its relatio
with n is not as straightforward because sometimes increasing the fraction n

k results in a higher pro
ability of a vertex being ρ-happy, but reduces the probability that all the vertices remain ρ-happy. O
intention here is to consider the asymptotic interpretation of the relation of the number of vertices wi
ρ-happiness of the induced colouring of a graph in the SBM when other parameters remain constan
This is expressed in the following theorem.

Theorem 3.3. Let 0 < q < p < 1, k ∈ N \ {1} be constants, and

ξ̃ = min
{

ln
(

pe + (k − 1)q
p + (k − 1)q

)
,

p
p + (k − 1)q

}
.

Then, for 0 ≤ ρ < ξ̃ and G ∈ G(n, k, p, q), we have Pr(G ∈ Hρ) → 1 when n → ∞. In other word
the probability that the communities of G induce a ρ-happy colouring on its vertex set approaches
when n becomes large enough.

Proof. For any 0 < ε < 1 we have

lim
n→∞

ln


k
n ln(ε) + pe + (k − 1)q

p + (k − 1)q

 = ln
(

pe + (k − 1)q
p + (k − 1)q

)
.

As a result, limn→∞ ξ = ξ̃. And for ρ < ξ̃, we not only have E
[
ρDEG(v) − DEGin(v)

]
< 0, but also

eρ <
pe + (k − 1)q
p + (k − 1)q

=⇒ eρ(p + (k − 1)q) − pe − (k − 1)q < 0

=⇒ φ(k, p, q, ρ) < 0.

Therefore, as n grows, 1 − ε̃ also increases (see Equation (6)). In particular, since

lim
n→∞

n · φ(k, p, q, ρ) = −∞,

11



Journal Pre-proof

□

es
d

ee

he
lts

a

he
re
y

of
Jo
ur

na
l P

re
-p

ro
of

by Equation 11, we have

lim
n→∞

Pr(G ∈ Hρ) ≥ lim
n→∞

(1 − ε̃)n

= lim
n→∞

(1 − enφ)n

= lim
n→∞

e−nenφ

= EXP
(
lim
n→∞
−nenφ

)

= EXP
(
− lim

n→∞
n

e−nφ

)
.

Therefore, by l’Hospital’s rule, we have

lim
n→∞

Pr(G ∈ Hρ) ≥ EXP
(
− lim

n→∞
1

−φe−nφ

)
= e0 = 1.

Consequently, when 0 ≤ ρ < ξ̃, we have limn→∞ Pr(G ∈ Hρ) = 1.

Figure 5 illustrates how increasing the number of vertices n affects the number of ρ-happy vertic
of the colouring induced by the communities of graphs in G(n, 20, 0.7, 0.06) (i.e, k = 20, p = 0.7 an
q = 0.06). For ρ < ξ̃, where

ξ̃ = min
{

ln
(

pe + (k − 1)q
p + (k − 1)q

)
,

p
p + (k − 1)q

}

= min{ln(1.6547), 0.3804} = 0.3804,

we must have limn→∞ Pr(G ∈ Hρ) = 1. The phase transition of trends is obvious when ρ ≈ 0.38 (s
the almost flat trend in Figure 5a).

4. Algorithms

In this section, we propose four heuristic algorithms to tackle the problem of maximising t
number of ρ-happy vertices and examining the correlation of this problem and theoretical resu
from the previous section. In the proposed algorithms, we denote the number of ρ-happy vertices in
colouring c of a graph G by H(G, c, ρ).

4.1. Greedy-SoftMHV

Algorithm 1 is a straightforward update of GreedyMHV from [35], the only difference being t
change from “happiness” to “ρ-happiness.” It turns a partial colouring into a k-colouring, whe
only one colour is assigned to all the uncoloured vertices, ensuring the chosen colour makes as man
vertices ρ-happy as possible. The algorithm is polynomial, i.e., O(km) [8] where m is the number
edges and k is the number of permissible colours.

12
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(a)

(b)

Figure 5: The charts show the effects of increasing the number of vertices on the average number of ρ-happy vertices
the colouring induced by communities for graphs in the SBM. Here, k = 20, p = 0.7 and q = 0.06. The chart (a) shows
image of these effects when 200 ≤ n ≤ 20,000 and 0.31 ≤ ρ ≤ 0.4. Part (b) shows these effects when 0.1 ≤ ρ ≤ 1. Wh
ρ ≤ 0.37 and n grows, the average number of ρ-happy vertices in the colouring induced by communities also grows, wh
the graphs are entire ρ-happily coloured by their communities when ρ ≤ 0.35 and n ≥ 10,000. Interestingly, this numb
decreases when ρ > 0.38. When ρ = 0.38, the chart is still increasing, but at a very slow rate.
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The algorithm works as follows. As input, it takes a graph G, the parameter that determin
the proportion of happiness ρ and a partial colouring c. The initialisation takes place in Lines 1–
including assigning precolours to vertices in V , the set of uncoloured vertices U and Max← 0 whi
records the maximum number of happy vertices. Between Lines 3–11, each colour is selected an
assigned to the uncoloured vertices, and the total number of happy vertices is computed (Line 6).
an improvement is found, it is recorded via the variables Max and iMax. The output of the algorithm
a complete colouring c̃.

Algorithm 1 (Greedy-SoftMHV) Approximating the optimal solution of ρ-happy colouring [35]

Input: G, ρ, c : V ′ −→ {1, . . . , k} ▷ V ′ ⊊ V(G
Output: c̃ : V(G) −→ {1, . . . , k} ▷ a complete colouring of

1: ∀i ∈ {1, . . . , k},Vi ← {v : c(v) = i}
2: U ← V(G) − V ′, Max← 0 and iMax ← 0 ▷ U = uncoloured vertic

3: for i = 1, . . . , k do ▷ try all colou
4: Append members of U to Vi

5: c̃← {V1, . . . ,Vk}
6: Calculate H(G, c̃, ρ) ▷ the number of ρ-happy vertices in
7: if Max < H(G, c̃, ρ) then
8: Max← H(G, c̃, ρ) and iMax ← i
9: end if

10: Remove members of U from Vi

11: end for
12: Append members of U to ViMax

13: Return c̃ = {V1, . . . ,Vk}

4.2. Neighbour Greedy Colouring (NGC)

At the cost of increased computational time, we propose NGC, in which, unlike the previo
approach, all uncoloured vertices do not always receive the same colour. Its initialization and colo
assignment are exactly like Greedy-SoftMHV. The only difference is that at each step, it only colou
neighbours of already coloured vertices.

Like the Greedy-SoftMHV, the NGC takes a graph G, 0 ≤ ρ ≤ 1, and a partial colouring
Then, it initialises variables U as the set of uncoloured vertices, Max as the maximum number
ρ-happy vertices until now, and iMax as the colour that makes this maximum. In Lines 3–12, it colou
all the uncoloured vertices to see for which colour, say iMax, the number of ρ-happy vertices is t
largest. Afterwards in Lines 13–14, only the uncoloured neighbours of already coloured vertices b
iMax receive the colour iMax. The procedure runs until all uncoloured vertices receive a colour, an
then reports the complete colouring c̃.

14
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Algorithm 2 (Neighbour Greedy Colouring) Approximating the optimal solution of ρ-happy colou
ing

Input: G, ρ, c : V ′ −→ {1, . . . , k} ▷ V ′ ⊊ V(G
Output: c̃ : V(G) −→ {1, . . . , k} ▷ a complete colouring of

1: ∀i ∈ {1, . . . , k},Vi ← {v : c(v) = i}
2: U ← V(G) − V ′, Temp← ∅, Max← 0 and iMax ← 0 ▷ U = uncoloured vertic

3: while U , ∅ do
4: for i = 1, . . . , k do ▷ try all colou
5: Append members of U to Vi

6: c̃← {V1, . . . ,Vk}
7: Calculate H(G, c̃, ρ) ▷ the number of ρ-happy vertices in
8: if Max < H(G, c̃, ρ) then
9: Max← H(G, c̃, ρ) and iMax ← i

10: end if
11: Remove members of U from Vi

12: end for
13: Temp← U ∩ N(ViMax)
14: Remove members of Temp from U and Append members of Temp to ViMax

15: end while
16: Return c̃ = {V1, . . . ,Vk}

15
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The time complexity of the NGC is d = diam(G) times the time complexity of Greedy-SoftMH
or O(dkm). This is because in the worst case, it has to repeat d times the processes of Greed
SoftMHV in Lines 4–12 to colour all the vertices.

Moreover, the solution quality of the NGC is at least as good as that of Greedy-SoftMHV. Th
is because if the NGC ends with assigning only one colour to all non-precoloured vertices, then
gives the exact output as Greedy-SoftMHV. If NGC ends with assigning more than two colours
non-precoloured vertices, the number of ρ-happy vertices is higher than that of the output of t
Greedy-SoftMHV.

4.3. Local Maximal Colouring
Our third proposed heuristic algorithm, Local Maximal Colouring (LMC), finds ρ-happy colo

classes by examining local neighbourhoods of the uncoloured vertices, identifying the most frequent
appearing colour, and assigning this colour to all uncoloured vertices in this neighbourhood.

The LMC’s inputs are a graph G and a partial colouring c. Then, it employs two variables in Lin
2–3, namely U and C, as the set of uncoloured vertices and the set of coloured ones, respective
Afterwards, an uncoloured vertex v, adjacent to at least one coloured vertex, is chosen. Then in Lin
6–7, q is the most frequent colour in N(v), and v receives the colour q. The vertex v is now coloure
which is added to the set of coloured vertices C and removed from the uncoloured vertices. Th
procedure continues until no uncoloured vertex remains.

Algorithm 3 (Local Maximal Colouring) Approximating the optimal solution of ρ-happy colouring

Input: G, c : V ′ −→ {1, . . . , k} ▷ V ′ ⊊ V(G
Output: c̃ : V(G) −→ {1, . . . , k} ▷ a complete colouring of

1: ∀i ∈ {1, . . . , k},Vi ← {v : c(v) = i}
2: U ← V(G) − V ′ ▷ U = uncoloured vertic
3: C ← V1 ∪ . . . ∪ Vk ▷ C = coloured vertic

4: while U , ∅ do
5: Choose v ∈ U ∩ N(C)
6: q← the colour which appears the most in N(v)
7: Append v to Vq, Append v to C and Remove v from U
8: end while
9: Return c̃ = {V1, . . . ,Vk}

The LMC has a time complexity of O(m), owing to the main loop (Lines 4–10), where the colou
of neighbours of v are examined. This happens at most 2m times, i.e., twice for each edge. Expe
iments (Section 5) show that LMC can detect community structures close to the graphs’ true com
munity structures. Moreover, its time complexity, near-linear, is the lowest among the algorithm
investigated. However, since it does not rely on ρ, its output can occasionally have fewer ρ-happ
vertices than other algorithms.

16
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4.4. Growth-SoftMHV

Algorithm 4 has been adapted from the Growth-SoftMHV algorithm of [35] to solve Soft happ
colouring. The main process of this algorithm is determining the vertex classifications introduced
the following definition.

Definition 4.1. [35, altered from Definitions 8 and 9] Let G be a graph whose vertices are partial
coloured by c : V ′ −→ {1, . . . , k}, V ′ ⊊ V(G), V1, . . . ,Vk are colour classes, U is the set of uncolour
vertices, v ∈ V(G) and 0 < ρ ≤ 1.

1. v is an H-vertex if it is coloured and ρ-happy.

2. v is a U-vertex if

2.a. v is coloured, and

2.b. v is destined to be ρ-unhappy, (i.e., |N(v) ∩ Vc(v)| + |N(v) ∩ U | < ρ · deg(v))

3. v is a P-vertex if

3.a. v is coloured,

3.b. v has not been ρ-happy (i.e., |N(v) ∩ Vc(v)| < ρ · deg(v)), and

3.c. v can become an H-vertex (i.e., |N(v) ∩ Vc(v)| + |N(v) ∩ U | ≥ ρ · deg(v))

4. v is an L-vertex if it has not been coloured.

4.1. v is an Lp-vertex if it is adjacent to a P-vertex,

4.2. v is an Lh-vertex if

4.2.a. v is not adjacent to any P-vertex,
4.2.b. v is adjacent to an H-vertex or a U-vertex, and
4.2.c. v can become ρ-happy, that is,

|N(v) ∩ U | +max{|N(v) ∩ Vi| : 1 ≤ i ≤ k} ≥ ρ · deg(v).

4.3. v is an Lu-vertex if

4.3.a. v is not adjacent to any P-vertex,
4.3.b. v is adjacent to an H-vertex or a U-vertex, and
4.3.c. v is destined to be ρ-unhappy, that is,

|N(v) ∩ U | +max{|N(v) ∩ Vi| : 1 ≤ i ≤ k} < ρ · deg(v).

4.4. v is an Lf-vertex if it is not adjacent to a coloured vertex.

17
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The inputs of the Growth-SoftMHV algorithm are a graph G, ρ, and a partial k-colouring c.
first generates the colour classes (Line 1) and identifies all P, Lh, and Lu-vertices in Line 2, where
assigns them to sets L = P ∪ Lh ∪ Lu. Following this in Lines 4–8, it checks if there is a P-vertex
it then chooses just enough neighbours of v and colours them by the colour of v so that v becom
ρ-happy. Then it recalculates the vertex classes P, Lh, Lu, and L. The above steps may generate oth
P-vertices, hence, the procedure repeats until no P-vertex remains.

After running out of P-vertices, the algorithm checks in Lines 9–15 if there is an Lh vertex v an
chooses a colour i that appears the most among the neighbours of v. Then it colours v and som
of its neighbours by the colour i so that v becomes a ρ-happy vertex. Next, because these colo
assignments might generate new P or Lh-vertices, the vertex classification of P, Lh, Lu and L
updated. The algorithm repeats Lines 4–8 and 9–15 until no P or Lh-vertex is left.

Algorithm 4 (Growth-SoftMHV) Approximating the optimal solution of soft happy colouring

Input: G, ρ, c : V ′ −→ {1, . . . , k} ▷ V ′ ⊊ V(G
Output: c̃ : V(G) −→ {1, . . . , k} ▷ a complete colouring of

1: ∀i ∈ {1, . . . , k},Vi ← {v : c(v) = i}
2: Calculate P, Lh, Lu and L ▷ Definition 4

3: while L , ∅ do
4: while P , ∅ do
5: Choose v ∈ P
6: Choose

⌈
ρ · deg(v)

⌉ − |N(v) ∩ Vc(v)| from N(v) ∩ L and Append them to Vc(v)

7: ReCalculate P, Lh, Lu and L ▷ Definition 4
8: end while
9: while (P = ∅ and Lh , ∅) do

10: Choose v ∈ Lh

11: Choose i ∈ {1, . . . , k} such that ∀t, |Vi ∩ N(v)| ≥ |Vt ∩ N(v)|
12: Append v to Vi

13: Choose
⌈
ρ · deg(v)

⌉ − |N(v) ∩ Vi| from N(v) ∩ L and Append them to Vi

14: ReCalculate P, Lh, Lu and L ▷ Definition 4
15: end while
16: while (P = ∅ and Lh = ∅ and Lu , ∅) do
17: Choose v ∈ Lu

18: Choose i ∈ {1, . . . , k} such that ∀t, |Vi ∩ N(v)| ≥ |Vt ∩ N(v)|
19: Append v to Vi

20: Choose
⌈
ρ · deg(v)

⌉ − |N(v) ∩ Vi| from N(v) ∩ L and Append them to Vi

21: ReCalculate P, Lh, Lu and L ▷ Definition 4
22: end while
23: end while
24: Return c̃ = {V1, . . . ,Vk}

18
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If a complete colouring has not yet been obtained, at least one Lu-vertex must exist because t
graph is assumed to be connected and L f -vertices have no coloured neighbours. The algorithm
Lines 16–22 chooses an Lu-vertex v and a colour i that appears the most among neighbours of v, th
the colour of v and some of its uncoloured vertices turns into the colour i. After recalculating t
vertex classifications P, Lh, Lu, and L, the algorithm repeats Lines 4–22 until no P, Lh, or Lu vert
is left. Now, Every vertex must have a colour, so the algorithm reports the complete colouring. T
time complexity of Growth-SoftMHV has been calculated by Carpentier et al. [8] as O(mn).

5. Experimental evaluation

We conducted experiments on various graphs based on the SBM to investigate the performance
the proposed algorithms and validate our theoretical results. We developed a problem generator, fro
which we generated our sample graphs.1 The problem generator, the source code for the algorithm
and the graphs tested (stored in DIMACS format) are available online.2 Here, we used a comput
running 12 × 3.60 GHz Intel™Xeon™CPUs, 32 GB of RAM, and 512 GB memory to generate t
problem instances and run all algorithms.

To test the algorithms, we generated partially coloured sample graphs considering the followin
parameters: number of vertices n, number of partitions (communities or colour classes) k, the ed
probability inside communities p, the probability of inter-community edges q, the number of pr
coloured vertices per community pcc, a random seed for generating the graphs and the proportio
of happiness ρ. Because increasing n impacts the running time of the algorithms, we split the te
into two parts. First, we check the algorithms on 19,000 partially coloured graphs with 1,000 vertic
on several combinations of other parameters. This enables us to see the effects of changing oth
parameters more clearly. Afterwards, 28,000 partially coloured graphs on 200 ≤ n < 3,000 vertic
are tested (10 graphs for each n), while other parameters are chosen at random. In both tests, we ma
sure that no two vertices in a community are precoloured with different colours. This is to preve
the induced precolouring from contradicting the community structure of the graphs. Otherwise, w
cannot expect that the induced colouring by communities makes the entire vertex set ρ-happy. T
settings for the two tests are as follows.

est 1. Graphs for this test were generated with the settings n = 1,000, k = 2, 3, . . . , 20, p = 0.1, 0.2, .
q = 0.01, 0.11, 0.21, . . . ,≤ p

2 . For each combination of these values, four instances were ge
erated. The number of precoloured vertices in each community varied from 1 to 10. Each
the 19,000 graphs is then tested for ρ = 0.1, 0.2, . . . , 1. The time limit is set to 40 seconds. T
results of running each of the algorithms 190,000 times in total are summarised in Section 5.

est 2. For this test graphs are randomly generated with 200 ≤ n < 3,000 vertices. For each n, 1
instances are generated, which makes it a set of 28,000 randomly generated graphs. For ea
graph, other parameters are randomly chosen over the same interval of the previous test i

1The graphs are generated using Python under the stochastic block model from the package NetworkX
2at https://github.com/mhshekarriz/HappyColouring SBM
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Figure 6: The average number of ρ-happy vertices of the induced colouring by communities with respect to ρ and t
number of colours.

k ∈ {2, 3, . . . , 20}, p ∈ (0, 1], q ∈ (0, p
2 ] and ρ ∈ (0, 1]. The time limit for this test is 120 second

The results from this test are summarised in Section 5.2.

5.1. Test 1: graphs on 1,000 vertices
Perhaps one of the most important test results for us, as anticipated by Theorem 3.1, is verif

ing that if k and ρ are small enough, then communities of networks in the SBM induce a ρ-happ
colouring. The results of the first test fully supports this, see Figure 6. On the other hand, when
or ρ increases, the induced colouring by graph communities cannot make all the vertices ρ-happ
Especially when ρ = 1, the induced colouring makes almost no vertex happy.

Figure 7 illustrates how the average number of ρ-happy vertices in the colouring induced by t
tested graphs’ communities can be affected by the fraction p

q . As expected, when p
q is large enoug

the communities of the graphs are more straightforward to detect. Consequently, the average numb
of ρ-happy vertices in the colouring induced by the communities is directly related to p

q .
Figure 8 demonstrates how changes in parameters affect the average number of ρ-happy vertic

in the colouring induced by the graphs’ communities. Figure 8a indicates that this number increas
when p increases. Figure 8b emphasises how increasing q makes the average number of ρ-happ
vertices drop. These two figures, and Figures 6 and 8f as well, demonstrate the negative effect
increasing the number of communities, k, on the average number of ρ-happy vertices induced b
these communities. Figures 8c and 8d, and Figures 6 and 8e as well, illustrate a similar trend for
The insignificant relation of the average number of ρ-happy vertices induced by graphs’ communiti
and the number of precoloured vertices per community can be seen in Figures 8e and 8f. All the
trends agree with the theoretical results in Section 3.

Figures 9, 10 and 11, respectively, show the average CPU runtime, the average quality of pe
formance and the average quality of community detection of Algorithms 1 to 4. The measure
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Figure 7: The average number of ρ-happy vertices of colourings induced by communities with respect to p
q . Here, t

average is taken for all tested ρs, including the case ρ = 1 for which we almost always have a lot of unhappy vertices.

performance is the number of ρ-happy vertices in their outputs, and their measure of community d
tection is the fraction of vertices whose colours in the output graph agree with their communiti
in the generated graph. Detecting communities is not explicitly an objective of these algorithm
nonetheless, all algorithms (especially LMC) can effectively detect communities.

Increasing the number of precoloured vertices per community does not significantly affect the ru
times, see Figure 9e. It negatively impacts the number of ρ-happy vertices detected by the algorithm
(see Figure 10e), while detecting communities improves (see Figure 11e).

Interestingly, both algorithms Greedy-SoftMHV and NGC detect a similar number of ρ-happ
vertices (see Figure 10, especially Figure 10a). However, they do not detect communities effective
(see Figure 11, especially Figure 11a). This is unsurprising since they assign only the one colour
all uncoloured vertices. The run times for Greedy-SoftMHV is substantially lower than NGC, an
hence, using NGC cannot be justified for real-world applications.

Growth-SoftMHV requires large run times, but to make fair comparisons, we limit its CPU ru
time to 40 seconds (see Figure 9). In this setting, all other algorithms find a higher number of ρ-happ
colourings and typcially detect communities more accurately (see Figures 10 and 11, especially su
figures 10d and 11c).

LMC has the lowest run times. It does not detect ρ-happy vertices as effectively as Greed
SoftMHV and NGC, but detects communities more accurately than the other algorithms (Figures 1
and 11). For nearly 10% of the tests, it found a colouring where all the vertices are ρ-happy, f
greater than 1.41% of the Growth-SoftMHV algorithm (see Figure 12a and Table 1)3. For Greed
SoftMHV and NGC, the percentage of complete ρ-happy colouring of their outputs are inconsiderabl

3It should be noted that Growth-SoftMHV occasionally reached its time limit of 40 seconds, and only reports its part
solutions. Hence, we may observe improved performance if the time limit is not restricted.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: These 3-dimensional charts show the average number of ρ-happy vertices when communities indu
colour classes compared for (a) the parameters k and p, (b) for k and q, (c) for ρ and p, (d) for ρ and q, (e) f
ρ and the number of precoloured vertices per community and (f) for k and the number of precoloured vertic
per community.
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Figure 9: Comparing the average running time of the four algorithms concerning the parameters (a) k, (b) ρ, (
q, (d) p and (e) the number of precoloured vertices per community.
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Figure 10: Comparing the average number of ρ-happy vertices in the output of the four algorithms to t
parameters (a) k, (b) ρ, (c) q, (d) p and (e) the number of precoloured vertices per community.
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(c) (d)

(e)

Figure 11: Comparing the average quality of community detection of the four algorithms to changes of t
parameters (a) k, (b) ρ, (c) q, (d) p and (e) the number of precoloured vertices per community. The quality
community detection is the ratio of vertices whose colours in the output graph agree with their communities
the generated graph.
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Figure 12: (a) The number of times each algorithm generated a colouring that is ρ-happy out of 190,000 run
It can be seen that LMC outperforms other algorithms in this regard.
(b) The number of times that each algorithm detects communities accurately.

although NGC outperforms Greedy-SoftMHV. For certain instances, only LMC detects communiti
accurately (Figure 12b and Table 1), despite not being an explicit objective.

Table 2 shows that LMC finds the highest number of ρ-happy vertices, 987 out of 1,000, wh
communities induce ρ-happy colouring, i.e. when ρ < ξ. The best average number of ρ-happ
vertices across all the 190,000 runs belong to the NGC with 845 ρ-happy vertices. The LMC has t
best accuracy of community detection whether communities induce ρ-happy colouring or not.

5.2. Test 2: graphs on different numbers of vertices

The four algorithms in Section 4, especially Growth-SoftMHV, are not designed to be run for lar
graphs. Therefore, if we are interested to see their scalability, we need to limit the number of tot
runs. For this, another test was necessary. We remind the reader again that we ran the algorithm
over randomly generated graphs on 200 ≤ n < 3,000 vertices for this test. Other parameters a
randomly chosen over the same interval of the previous test (with an insist on q ≤ p

2 to make t
communities distinguishable). For each n we have generated 10 instances. The results of 28,000 ru
of the algorithms are summarised in the following paragraphs and figures.

First, we note that the data for this test agrees with the former test. For example, the avera
ratio of ρ-happy vertices in the induced colouring by the communities is given in Figure 13, whi
is consistent with Figure 6, especially when ρ and k are small enough, the induced colouring by t
communities can make the entire vertex set ρ-happy.

The time limit for this part is 120 seconds. The only algorithm that occasionally reports incom
plete solutions due to this time limit is the Growth-SoftMHV, which experiences the sharpest increa
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Algorithm # CH∗ % CH§ # ACD† % ACD‡

Greedy-SoftMHV 6 0.00 0 0.00
Neighbour Greedy Colouring 921 0.48 0 0.00

Local Maximal Colouring 19,475 10.25 18,562 9.77
Growth-SoftMHV 2,688 1.41 3 0.00

Communities induced colouring 27,510 14.48 190,000 100.00

Table 1: The number of times and their percentage that the algorithms find colourings that make all the vertices ρ-hap
versus the number of times and their percentage that they accurately detect communities, out of 190,000 runs.

∗. # CH = “the number of times it finds a complete ρ-happy colouring”

§. % CH = ”the percentage of # CH across 190,000 runs”

†. # ACD = “the number of times it accurately detects communities”

‡. % ACD = “the percentage of # ACD across 190,000 runs”

Algorithm H∗ AC§ NAC† C♡ ACD♢ NACDp

Greedy-SoftMHV 844 973 822 0.192 0.289 0.175
Neighbour Greedy Colouring 845 975 823 0.199 0.313 0.179

Local Maximal Colouring 671 987 617 0.594 0.840 0.553
Growth-SoftMHV 636 794 610 0.257 0.370 0.238

Table 2: Average number of ρ-happy vertices and average accuracy of community detection for each algorithm are
ported, in the entire test, when communities induce a ρ-happy colouring and when they do not.

∗. H = “Average number of ρ-happy vertices across 190,000 runs”

§. AC = “Average number of ρ-happy vertices when communities induce a complete ρ-happy colouring (ρ < ξ)”

†. NAC = “Average number of ρ-happy vertices when communities do not induce a complete ρ-happy colouri
(ρ ≥ ξ)”

♡. C = “Average accuracy of community detection across 190,000 runs”

♢. ACD = “Average accuracy of community detection when communities induce a complete ρ-happy colouring (ρ
ξ)”

p. NACD = “Average accuracy of community detection when communities do not induce a complete ρ-happy colo
ing (ρ ≥ ξ)”
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Figure 13: The 3D chart of the average ratio of ρ-happy vertices in the induced colouring by communities, with ρ and
as variables. The data is from the second test, where the number of vertices is between 200 and 3,000.

in its running time. As expected, increasing the number of vertices directly relates to the running tim
of the algorithms, which is obvious from Figure 14a. At the same time, LMC shows a small increa
in its running time in comparison to the other algorithms.

Like the former test for graphs on 1,000 vertices, Greedy-SoftMHV and NGC perform almo
similarly in finding ρ-happy vertices, see Figure 14b. The average number of ρ-happy vertices foun
by the Growth-SoftMHV divided by the total number of vertices drops as the number of vertices i
creases. This trend for LMC, which has the highest correlation with communities, remains increasin
as Figure 14b affirms. This complies with Theorem 3.3 that communities can find more ρ-happ
vertices when n becomes larger.

Accuracy of community detection of Greedy-SoftMHV, NGC and Growth-SoftMHV drop sharp
according to Figure 14c. However, LMC maintains its community detection accuracy between 0.4 an
0.5.

In general, according to Figure 14, LMC is the most affordable algorithm for finding ρ-happ
vertices, especially when another objective is community detection. In contrast, Growth-SoftMHV
costly and may perform poorly when the number of vertices is large.

5.3. Performance of LMC

In this section, we briefly investigate the performance of LMC. As it can be seen in Line 5
Algorithm 3, an uncoloured vertex is randomly chosen from the neighbourhood of already colour
vertices. It is possible that choosing another vertex at a step affects the quality of the final solutio
To investigate this, we performed LMC 10 times over each of the 28,000 graphs of the second te
with 200 ≤ n < 3,000 vertices, introduced in Section 5.2. The result of running LMC is reported
Figure 15.
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(a) (b)

(c)

Figure 14: Comparing (a) running time, (b) average number of ρ-happy vertices and (c) average accuracy
community detection of the four algorithms. The data is from the second test whose graphs are on 200 ≤ n
3,000 vertices.
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(a) (b)

(c) (d)

Figure 15: The performance of LMC (a) when there is no constraints on ρ, (b) when ρ > ξ, (c) when ρ <
and (d) when ρ < ξ2 . The data were collected by running LMC 10 times for each of 28,000 randomly generat
graphs with 200 ≤ n < 3,000 vertice of the second test.
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Figure 15a shows the minimum, mean and maximum of the number of ρ-happy vertices divid
by the number of vertices. In this case, the minimum is almost always 0 while the maximum is almo
always 1. The mean, however, is between 0.5 and 0.8, and as n increases, the mean also shows
tendency to rise. Figures 15b, 15c and 15d are for the same fraction with additional restrictions
ρ > ξ, ρ < ξ and ρ < ξ

2 , respectively. When ρ > ξ, the maximum and minimum do not change, b
the mean falls between 0.4 and 0.7. When ρ < ξ (and when ρ < ξ2 ), the maximum is again 1, but t
minimum increases to around 0.4 (resp. 0.75) and the mean increases to around 0.95 (resp. 0.98
which again tends to be higher as n increases.

6. Conclusion

This paper theoretically and experimentally establishes a connection between the soft happ
colouring of graphs and their community structure. Since conventional happy colouring is a sp
cial case of soft happy colouring, and the main intention of defining these sorts of colouring w
homophily (which is a property of social networks explainable by community structures), soft happ
colouring is a more powerful tool to achieve the intended goal.

One of the achievements of this paper is to theoretically show that for the induced colouring b
communities of a graph in the SBM, almost surely all the vertices are ρ-happy if ρ is small enoug
Another is finding the threshold ξ which indicates how small this ρ should be. The other is showin
that if ρ < limn→∞ ξ, then the communities almost certainly induce a ρ-happy colouring on the ve
tices. Experimental analysis of over large number of randomly generated graphs perfectly verified t
theoretical expectations.

Additionally, we developed algorithms to tackle the soft happy colouring problem. We adopt tw
existing algorithms from [35] and present a novel algorithm, Local Maximal Colouring. The alg
rithm has no reliance on ρ, however, its output shows considerable correlation with the communiti
of the tested networks while it has an inexpensive running cost. Therefore, for practical purpose
multiple runs of LMC are conducted to find the best possible result for the both objectives of so
happy colouring and community detection.

There are numerous possibilities for future work. Further studies can include considering the r
lations of (soft) happy colouring with communities of random graph models other than the simplifi
stochastic block model G(n, k, p, q). Looking at the induced colouring of detected communities b
algorithms, such as spectral clustering, for their number of ρ-happy vertices can also be interestin
on its own because these algorithms may find communities different from what graph generators pr
duce. Another area for future work can be maximizing the number of ρ-happy coloured vertices usin
mathematical/constraint programming, metaheuristics (tabu search and evolutionary algorithms), an
matheuristics (CMSA and CMSA-TS) for ρ-happy colouring similar to [30] by Thiruvady and Lew
Improving known algorithms for soft happy colouring, similar to what Ghirardi and Salassa [1
suggest, is another possible study in future. Especially, one can think of improvements to the LM
because of its low time cost and its output’s correlation with the community structure of its input.

31



Journal Pre-proof

ts.

ck

ls:
m

e,
g

e
si,
er

g

ge

-
1,

m

n
s,
s,

n
Jo
ur

na
l P

re
-p

ro
of

Declarations of interest

None

References

[1] Emmanuel Abbe. Community detection and stochastic block models: Recent developmen
Journal of Machine Learning Research, 18(177):1–86, 2018. 2.2, 2.2

[2] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the stochastic blo
model. IEEE Transactions on Information Theory, 62(1):471–487, 2016. 2.2

[3] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block mode
Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposiu
on Foundations of Computer Science, pages 670–688, 2015. 2.2, 2.2

[4] Akanksha Agrawal, N.R. Aravind, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kar
Juho Lauri, Neeldhara Misra, and I. Vinod Reddy. Parameterized complexity of happy colorin
problems. Theoretical Computer Science, 835:58–81, 2020. 1

[5] N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. Linear tim
algorithms for happy vertex coloring problems for trees. In Veli Mäkinen, Simon J. Pugli
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networks

Highlights

• Soft happy colouring of a graph is related to its community structure

• The colouring used communities can make all the vertices ρ-happy if ρ is small

• The threshold ξ is found so that communities make all the vertices ρ-happy

• Communities of large graphs almost certainly induce ρ-happy colouring

• The heuristic algorithm LMC’s output highly correlates with community structure
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