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A Viral Infection Risk Indoor Simulator (VIRIS) has been developed to quickly assess and compare 
mitigations for airborne disease spread. This agent-based simulator combines people movement in 
an indoor space, viral transmission modelling and detailed architectural design, and it is powered 
by topologicpy, an open-source Python library. VIRIS generates very fast predictions of the viral 
concentration and the spatiotemporal infection risk for individuals as they move through a given space. 
The simulator is validated with data from a courtroom superspreader event. A sensitivity study for 
unknown parameter values is also performed. We compare several non-pharmaceutical interventions 
(NPIs) issued in UK government guidance, for two indoor settings: a care home and a supermarket. 
Additionally, we have developed the user-friendly VIRIS web app that allows quick exploration of 
diverse scenarios of interest and visualisation, allowing policymakers, architects and space managers 
to easily design or assess infection risk in an indoor space.

Keywords Airborne transmission, Interventions, Agent-based modelling, Architectural design

In the COVID-19 pandemic, more than 700 million were infected and more than 7 million died1. One reason for 
the rapid and widespread transmission is that, unlike many other infectious diseases, it can be transmitted via 
aerosols2. The aerosols can remain suspended in the air for hours and can travel long distances3, thus, increasing 
infection risk.

During the pandemic, policymakers and space managers had to make fast decisions to mitigate transmission, 
often without available scientific inputs. Mathematical modellers, including some of the authors here, collaborated 
closely with governments and developed models of transmission to inform policy, for various indoor scenarios 
including educational settings4,5, restaurants4,6,7, supermarkets8–10, a choral practice11, a courtroom4,12 and a 
train carriage13. These models quantify the infection risk in indoor spaces for different non-pharmaceutical 
interventions (NPIs).

However, people movement was considered in very few models7–9,14–16, limiting the accuracy of simulations, 
especially in settings where people are actively moving around (e.g. supermarkets). In addition, most models 
either neglect the physics of the spread of infectious aerosols8,9,11,12,15,16, or use computational fluid dynamics 
simulations6,10,14, making them too computationally intensive for fast policymaking. Here, building on research 
Kaouri and Woolley used to inform policy during the pandemic4,5, we present VIRIS, a new simulator and a 
web app that incorporates both people movement and aerosol physics in geometrically complex, architecturally 
defined spaces, providing solutions with great speed. Following Lau et al. 4, we use a reaction-diffusion equation 
to simulate the spatiotemporal distribution of infectious aerosols and determine the spatiotemporal infection 
risk extending the Wells-Riley ansatz17. People movement is modelled using an agent-based approach based on 
a navigation graph, embedded into topologicpy18,19 for the purpose of this work. Topologicpy is an advanced 
spatial modelling and analysis software (Python) library for architecture, engineering, and construction; further 
details on topologicpy and the navigation graph can be found in a companion paper20.
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In “Mathematical model and assumptions”, we describe the modelling framework underpinning VIRIS and 
discuss parameter values. In “Results”, we demonstrate how VIRIS can be used to model a series of diverse 
NPIs, in a care home and in a supermarket. In addition, in “Web app”, we introduce a user-friendly web app 
underpinned by VIRIS. The results are discussed in “Discussion”.

Mathematical model and assumptions
We present VIRIS, an agent-based modelling framework and simulator that combines airborne viral 
transmission, people movement and detailed architectural design. Below, we present the model, assumptions, 
parameter values, and its numerical implementation.

Assumptions
An infectious individual is assumed to be a moving point source of infectious aerosols. We assume that the 
aerosols are emitted with zero velocity, a good assumption, since we do not consider coughing or sneezing21. 
In reality, particle size varies, following a probability density function22,23; for simplicity, and similarly to other 
works4,6,7, we assume that the aerosols can be modelled using a single representative size, with a constant 
gravitational settling rate24, γ. Furthermore, we are justified to neglect large droplets, since evaporation happens 
very quickly (seconds to minutes)25,26.

Experimental studies27,28 show that the virus deactivation rate depends on a variety of factors including 
relative humidity, temperature and sunlight. From data27,28, we assume a constant virus deactivation rate, β, as 
reported by van Doramalen et al.29; thus is an accurate assumption for most indoor settings (temperature around 
20 ◦C and relative humidity below 60%).

The infectious aerosols are not well-mixed in an indoor space30,31; they assume a spatiotemporal distribution. 
Here, we focus on single storey buildings, but our methodology can be extended to multistorey buildings. The 
indoor space, which includes furniture, is bounded by walls or doors. Furthermore, without loss of generality, we 
assume perfect reflection of aerosols off walls4. Furniture that is higher than a person’s height are also modelled 
as walls; otherwise we assume that furniture has no effect on viral transmission, since the airborne particles can 
flow over them. We assume that the infectious aerosols are well-mixed along the room height; this allows to 
reduce the three-dimensional (3D) model to a two-dimensional (2D) model of viral transmission.

Poor ventilation is found in many diverse indoor settings (for example, schools32, care homes33, supermarkets34, 
courtrooms12, and restaurants6), usually when windows are closed and fresh air is mainly provided by a 
mechanical ventilation system ineffectively. For these poorly ventilated spaces, we can neglect the advective 
transport of aerosols due to air flows30,31. However, in well ventilated spaces, air flows play a more significant role 
in viral transmission10,14. Therefore, applying our model to well ventilated settings requires further validation 
with real-world data. We represent ventilation as a first-order removal of aerosols using a constant air exchange 
rate, λ. To quantify ventilation quality, we use air changes per hour (ACH), which is widely used by building 
engineers and space managers (ACH is converted to λ via 1 ACH ≈ 2.78× 10−4 air changes per second).

Following the Wells–Riley ansatz17,35, we, thus, model the first-order removal of infectious aerosols with rate 
κ, which is a sum of the virus deactivation rate, gravitational settling rate, and ventilation rate, respectively, that 
is

 κ = β + γ + λ. (1)

All parameter values are given in Table 1.
We approximate the diffusion coefficient of aerosols using the turbulent eddy diffusivity, an empirical 

function that considers local turbulent mixing36:

 D = 0.8λV 2/3, (2)

where V is the room volume. We assume a constant diffusion coefficient in each scenario we consider below, 
determined using the volume of the largest room. Movement of individuals might enhance the advective and 
diffusive transport of aerosols, as shown in the experiments of Mingotti et al. 37, which would then cause a faster 
spread of the aerosols. Also, the effects of walking speed, crowd density and human-to-source distance on the 
diffusion coefficient have been investigated in the experiments of Lim et al. 38; some of these effects could be 
incorporated in future work.

Each individual has several attributes: (I) whether they are infectious or susceptible, (II) whether they are 
a superspreader, (III) if they wear a mask, (IV) their walking speed, v, (V) their movement schedule. Each 
individual follows a schedule consisting of a list of events (e.g. “watching TV” or “attending a lecture”), and each 
event is characterised by a location (x, y) in a 2D plane, a start time, an end time, and an activity (resting, talking, 
talking loudly, exercising, and exercising intensively). Furthermore, each activity is characterised by a breathing 
rate and an aerosol emission rate; see Table 1.

We assume that an individual is either stationary or moving with a constant speed from an event to the next 
event, and that each individual always moves ahead of the end time of their current event to arrive exactly at the 
start time of the next event. We assume that each individual moves along the shortest path between the previous 
and next event locations (assuming they know the space well), and cannot move through domain boundaries and 
obstacles, such as walls and furniture. The trajectory (xi(t), yi(t)) of the ith individual is computed in “Numerical 
implementation”. Moreover, the infection risk of a susceptible individual depends on the total number of inhaled 
infectious aerosols (dose)17,39; we assume that each individual needs the same dose to get infected.
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Modelling viral aerosols using a reaction-diffusion equation
Based on the modelling assumptions above, a reaction-diffusion equation governs the concentration of infectious 
aerosols, C(x, y, t), in the indoor space, which is our domain Ω:

 
∂C

∂t
= D∇2C + S − (κ +RI)C, (3)

where S is the aerosol source term due to the aerosol emissions from the infectious individuals, RI  is the removal 
rate of infectious aerosols due to the breathing of all individuals, and ∇ = (∂/∂x, ∂/∂y), since we reduce 
the model to 2D. Perfect reflection of aerosols off walls corresponds to the Neumann boundary conditions 
∂C/∂n = 0 on ∂Ω, where n is the outward normal direction.

For m infectious individuals, the aerosol source is

 
S(x, y, t) =

m∑
i=1

(1− ηi)Ri

h
δ(x− xi(t))δ(y − yi(t)), (4)

where η is the mask efficiency, R is the infectious aerosol emission rate, h is the room height, δ is the Dirac 
delta function representing a point source, and the subscript i denotes the parameter value for the ith agent. All 
n individuals (both infectious and susceptible) due to breathing correspond to a point sink for the infectious 
aerosols

 
RI(x, y, t) =

n∑
i=1

(1− ηi)ρiδ(x− xi(t))δ(y − yi(t)), (5)

where ρ is the breathing rate. The infectious aerosol emission rate, R, is calculated by R = µRt, where µ is the 
viral load, which depends on the virus type and whether the infectious agent is a superspreader, and Rt is the 
aerosol emission rate, which depends on the activity. The viral load is estimated via

 
µ =

π

6
d3pcv, (6)

Parameter Symbol Value References

Virus deactivation rate β 1.7×10−4 s−1 28,29

Gravitational settling rate γ 1.1×10−4 s−1 24

Air exchange rate ACH (λ) 0.12–3 h−1 (3.3× 10−5–8.3× 10−4 s−1) 4,32

Diffusion coefficient D 4.6× 10−4–4.7× 10−2 m2/s 36

Viral copies per aerosol µ 6.5%–32.5% 12,40,46

Average aerosol diameter dp 5 µm 4,6

Viral load concentration cv 109–5× 109 copies/mL 4,40

Median infectious dose dm 100 particles 4,39

Breathing rate ρ Resting: 1.8×10−4 m3/s 50,51

Talking: 2.2×10−4 m3/s 50

Talking loudly: 2.5×10−4 m3/s 50

Exercising: 1.1×10−3 m3/s 50,52

Exercising intensively: 2.2×10−3 m3/s 51

Aerosol emission rate Rt Resting: 8 particles/s 4,53

Talking: 40 particles/s 4,53

Talking loudly: 80 particles/s 4,53

Exercising: 145 particles/s 50

Exercising intensively: 625 particles/s 50

Mask efficiency η Cotton: 50% 47

Surgical: 60% 47

N95: 90% 48

Walking speed v 1.5 m/s 49

Table 1. Parameter values used in the simulations, for the SARS-CoV-2 virus. Values for β, µ, cv and dm are 
different for other viruses.
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where dp is the average aerosol diameter, and cv is the viral load concentration (copies/mL)40.

Spatiotemporal infection risk
Following the Wells-Riley model17,35, we assume the infection risk of a susceptible individual is an exponential 
function of the dose, d, the number of inhaled infectious aerosols as follows,

 P (d) = 1− e−Id, (7)

where I is infectibility, which depends on the median infectious dose dm via I = − ln(0.5)/dm. The median 
infectious dose is the number of viral copies required to infect 50% of the individuals; the median dose depends 
on the disease41.

The total number of inhaled infectious aerosols can be calculated by

 
d(t) =

∫ t

0

(1− η)ρC(x(τ ), y(τ ), τ )dτ. (8)

We model viral transmission using a discrete S-I-R (Susceptible-Infectious-Removed) model42, where ‘R’ refers 
to the removal of individuals from the space. Removal takes place in some settings, e.g. in a supermarket, where 
infected individuals enter and then leave the space. Note that ‘R’ can also refer to recovery in some models43. 
However, since our simulations cover less than one day, recovery is not applicable here.

Parameter values
Table 1 summarises the parameters used in the simulations, for the SARS-CoV-2 virus. Note that our model can 
easily simulate other airborne diseases (influenza, MERS and SARS among others) by changing the values of 
parameters β, µ, cv and dm. The value of cv for the SARS-CoV-2 virus ranges from 102 to 1011 copies/mL40; the 
range of 108–109 copies/mL is most commonly used in modelling studies12,44–46. Here, we take cv = 109 copies/mL 
(µ = 6.5%) for a “normal” infectious individual and cv = 5× 109 copies/mL (µ = 32.5%) for a superspreader4; 
this was validated with data from a courtroom superspreader outbreak12.

For the SARS-CoV-2 virus, the median infectious dose has been found to be 52 and 256 for seroconversion 
and fever, respectively, using an animal model39. Following Lau et al. 4, we use dm = 100. The values of cv and 
dm will be further justified using uncertainty quantification in “Courtroom”. We consider three types of masks: 
cotton, surgical and N95, with efficiency 50%, 60% and 90%, respectively47,48. The breathing rate and the aerosol 
emission rate of an individual is based on their activity, which has been provided in Table 1. When an individual 
is moving from one event to another, they are assumed to walk with speed 1.5 m/s49. The parameter values for 
walking and exercising are assumed to be the same.

Numerical implementation
The domain Ω and the architectural design are constructed using topologicpy18,19, which has been extended to 
incorporate people movement for the purposes of this project. Topologicpy is a Python-based spatial modelling 
and topological analysis library that supports the conceptual design of architectures; details are given in a 
companion paper20. The first step is to create cuboids to represent rooms and corridors. The surfaces of the 
cuboids represent walls, floors or ceilings. Furniture is also modelled by cuboids. To simulate the movement of 
individuals, we generate a navigation graph, G, for the indoor space20. The vertices of this graph are the locations 
of all possible events, and the edges connecting the vertices represent all possible pathways an individual can 
move on. For each two neighbouring events, we compute on G the shortest path between the event locations20. 
Each individual moves with constant walking speed, and arrive exactly at the start time of the next event.

The reaction-diffusion equation (3) is solved on Ω using a finite element method (FEM)54. We generate a 
mesh for Ω using the default Frontal-Delaunay algorithm in the gmsh library55. Then we discretise the time 
derivative using a backward Euler scheme, discretise the space using piecewise linear elements and compute the 
FEM problem at each time step using the Python-based open-source FEM library scikit-fem56. Note that using 
scikit-fem enables smooth integration with topologicpy in a lightweight fashion, since scikit-fem is smaller than 
1MB in size and only uses NumPy57 and SciPy58 libraries, which are used in topologicpy19. VIRIS runs very fast; 
for example, for tens of individuals with a one-day schedule, it only takes seconds to compute the concentration 
and the infection risk on a standard laptop. All Python scripts can be found in a GitHub repository at  h t t p s : / / g i 
t h u b . c o m / K a t e r i n a K a o u r i / V I R I S     .  

Results
In this section, we apply the simulator to three different indoor settings—courtroom, care home, and 
supermarket—to demonstrate the applicability of the model and its ability to model diverse NPIs. At the end, we 
present the VIRIS app, a user-friendly web app underpinned by the VIRIS simulator.

Courtroom
We consider a courtroom case study from Vaud, Switzerland, in October 2020. The locations, schedules and 
outcomes of all individuals are described in detail12. Three to four individuals were infected during a 3-hour 
court hearing12. This case study has also been modelled in Lau et al.  4, and it was shown that the infectious 
individual has to be a superspreader.
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The courtroom had dimensions of 8.9 m (l)× 5.6 m (w)× 3 m (h), so the room volume is 150 m3. The 
room was very poorly ventilated, with ACH = 0.23 h−1 (λ = 6.4× 10−5 s−1). Using equation (2), the diffusion 
coefficient is determined to be D = 1.4× 10−3 m2/s. The hearing involved 10 individuals (P1–P10), with 
locations as shown in Figure 1a.

The court hearing lasted from 2:00 p.m. to 5:00 p.m. There were breaks from 2:00 p.m. to 2:05 p.m., from 
2:23 p.m. to 2:30 p.m., from 2:55 p.m. to 3:10 p.m., and from 3:44 p.m. to 3:50 p.m., during which only the jury 
members P1–P4 remained in the room12. The witness P10 was only present from 3:10 p.m. to 3:44 p.m. As shown 
in Fig. 1a, P1 was the only infectious individual, and is assumed to be a superspreader with µ = 32.5%. P2, P3, P4 
and P5 were found infected after the hearing. However, P5 had contact with another infectious individual before 
this hearing, so we assume that P5 was not infected during the hearing. The activities of each individual during 
the hearing are listed in Fig. 1b. All other parameters are as in Table 1.

We perform a parameter sweep for µ and dm to examine which pair of parameter values results in the highest 
probability,

 
p =

4∏
i=2

Pi

10∏
i=5

(1− Pi), (9)

of reproducing exactly the infection data reported in Vernez et al. 12 (P2–P4 infected and P5–P10 not infected). 
Figure 1 visualises p for µ ranging from 0 to 100% and dm ranging from 50 to 260. The purple dashed box encloses 
possible values of these parameters12,39,40,46. Note that we allowed µ to be an order of magnitude greater than the 
upper limit used in recent modelling studies12,46, but still within the range found in experimental work40. The 
red cross indicates the parameter values used in this paper, which falls within the region where we cannot reject 
the null hypothesis, that our model exactly reproduces the reality since p > 0.05.

Figure 2a shows the concentration of infectious aerosols at the end of the hearing (5:00 p.m.). Figure 2b shows 
the infection risk of each susceptible individual over time, where orange colour represents the individuals who 
are infected after the hearing, while green colour represents who are not. We set the threshold of infection risk 
at 50% to determine whether a susceptible individual is infected. Note that a different threshold will result in 
a different number of infected people (e.g. P3 will also be found to be infected, if we set the threshold at 35%).

As shown in Fig. 1a, P2 and P4 were closest to the infectious individual P1 (at 1.5 m) during the entire 3-h 
hearing, where a high infectious aerosol concentration and infection risk is predicted by the model. P3 was 
also present in the entire hearing but was slightly further away from P1 (at 3 m); P3, thus, has the third highest 

Fig. 1. Courtroom scenario: (a) the location of each individual, and their infection status (� for infectious, ⊕
 for infected, and ⃝ for not infected)12. (b) The activities of each individual during the hearing and the 

breaks12. (c) Probability of the model reproducing (a), calculated by Eq. (9), as µ varies from 0 to 100% and dm 
varies from 50 to 260. The red cross indicates the parameter values used in our work. The purple dashed box 
encloses the possible values12,39,40,46.
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infection risk. P5 and P10 were at a similar distance from P1; P5 has a much higher infection risk than P10, as 
P10 was only present in the courtroom for only 34 min. This result confirms that both proximity and duration of 
contact have significant impact on the infection risk.

Care home
Next, we consider a typical section of a UK care home59, where six individuals (P1–P6) move around from 8:00 
a.m. to 11:00 p.m. One of the individuals (P1) is infectious. This scenario demonstrates the versatility of our 

Fig. 2. Courtroom scenario: (a) the location of each individual, their infection status (red colour for infectious, 
orange colour for infected, and green colour for not infected), and the concentration of infectious aerosols 
at the end of the hearing (5:00 p.m.). The threshold of infection risk was set at 50% for an individual to get 
infected. (b) The infection risk of susceptible individuals, P2, P3, P4, P5, P6, P10. Individuals P7, P8 and P9 are 
omitted from this plot, since their infection risk curve is low (below 50%), and approximately equal to that of 
P6.
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model to consider different agent schedules and NPIs. Many of the NPIs we study below were suggested by the 
UK government during the pandemic60.

The care home has dimensions of 14 m (l)× 13 m (w)× 3 m (h), and includes five bedrooms (BRs) and 
two common rooms (CRs), as shown in Fig. 3. We assume that each individual is in one of the two common 
rooms from 9:00 a.m. to 12:00 p.m. (P1, P3, P5 in CR1; P2, P4, P6 in CR2), from 2:00 p.m. to 5:00 p.m. (P1, P2

, P3 in CR1; P4, P5, P6 in CR2), and from 5:00 p.m. to 8:00 p.m. (P4, P5, P6 in CR1; P1, P2, P3 in CR2). At any 
other time, each individual is in their bedroom (see Fig. 3a). Each individual is assumed to be resting when in 
the bedroom and talking in a common room.

We assume P1 is a superspreader (µ = 32.5%) and that the ventilation is very poor (λ = 3.3×10−5 s−1

, ACH = 0.12 h−1). We set D = 4.6× 10−4 m2/s using the common room volume V = 72 m3 in equation 
(2). We model the movement of individuals based on the prescribed schedule and simulate the concentration 
of infectious aerosols in the common room and the infection risk of each individual. Figure 3b presents the 
infectious aerosol concentration and the six individuals’ locations at 5:30pm; we see that three individuals (P2, 
P3, P5) have already gotten infected by P1.

We compare six NPIs: (I) improving ventilation from ACH = 0.12 h−1 to ACH = 3 h−1 (note that the 
ASHRAE recommended minimum ventilation setting for care homes is 2–4 h−1)61, (II) everyone wears a 
surgical mask (η = 60%), (III) no common room time, (IV) reducing the time in the common room by 50%, 
(V) introducing a two-hour break with no access to the common room from 5:00 p.m. to 7:00 p.m., and delaying 
the third common room gathering to 7:00 p.m. to 10:00 p.m. (VI) individuals only interact within 2 small social 
groups of three. Interventions I, III and IV correspond to the UK government’s guidance on infection prevention 
and control measures for social care providers and managers, as updated in July, 202460. The NPIs we choose 
showcase how easy is to customise our model to assess diverse interventions, and provide useful comparisons. 
For instance, we design intervention V because we observe that P1 leaves behind them a high concentration of 

Fig. 3. Care home scenario. Each individual is represented by a cylinder and gives a colour according to their 
infection status. The concentration of infectious aerosols is represented using a colour scale. Two snapshots of 
the simulation are shown at (a) 8:30 a.m. (all individuals are resting in their bedrooms) and (b) 5:30 p.m. At 
5:30 p.m., three more individuals are likely to be infected.
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infectious aerosols; individuals entering the space after P1 inhale the aerosols (see the purple regions in CR1 of 
Fig. 3b) and, thus, experience higher infection risk.

In Fig. 4, we present the average infection risk of the five susceptible individuals P2–P6 in the original scenario, 
and when implementing interventions I–VI. The average infection risk is calculated as the sum of infection risk 
of all susceptible individuals, divided by the number of susceptible individuals. The most effective intervention 
is, as expected, III (no common room time), where the infection risk is zero, since there is no contact between the 
infectious individual and others. The second most effective intervention is II (everyone wears a surgical mask), 
which reduces the average infection risk by more than 40%. The third most effective intervention is I (improving 
ventilation), followed by intervention VI (individuals only interact within two small social groups of three), 
which also results in a reduction of more than 30% in the average infection risk. The other two interventions (IV, 
V) show similar effectiveness and reduce the average infection risk by approximately 15%.

Supermarket
Here, we study a small supermarket and use the model to visualise infection hotspots and again compare several 
NPIs. The supermarket has dimensions of 14 m (l)× 14 m (w)× 3 m (h), as shown in Fig. 5a. We assume that 
the ventilation is very poor (ACH = 0.12 h−1, i.e. λ = 3.3×10−5 s−1 and D = 1.9× 10−3 m2/s).

We generate random schedules for the individuals. Each individual enters the supermarket from the door, 
picks up a basket, chooses items from the shelves, pays at a checkout and exits through the same door. An 
individual’s schedule is primarily determined by three parameters: frequency of customers entering the 
supermarket, f, the number of items each customer will buy, N, and the time it takes to choose each item, T. We 
set f = 1 min−1, N = 6, and T uniformly distributed from 40 to 80 s, that is the average T is 60 s and standard 
deviation is equal to 11.55 s. The locations of the six items are uniformly randomly assigned on the boundary of 
shelves. The middle two checkouts are closed for the original scenario (these two will be opened for a NPI). The 
customer pays at one of the other two checkouts randomly, when they are not being used. The checkout time is 
also T = 60±11.55 s (defined by a continuous uniform distribution between 40 and 80 s). Each customer, thus, 
spends an average of 7.5 min in the supermarket.

From 8:00 a.m. to 12:00 p.m., 240 individuals, thus, enter the supermarket. As in the care home scenario, 
we assume that 1/6 of the individuals are infectious (40 individuals are infectious and 200 individuals are 
susceptible), and that all infectious individuals are not superspreaders (µ = 6.5%). Figure 5a shows the 
concentration of infectious aerosols at 10:00 a.m. (2 h since the start time). There are two infectious individuals 
and eight susceptible individuals, represented by red and green colours, respectively. Figure 5b,c present the 
average concentration of infectious aerosols in the supermarket during the (b) first and (c) last hour of opening, 
where it accumulates over time and hotspots are identified in busy aisles and checkout regions.

Next, we compare five interventions: (I) improving ventilation from ACH = 0.12 h−1 to ACH = 3 h−1 (based 
on the baseline ventilation of a small shop34), (II) all customers wear a surgical mask (η = 60%), (III) halving the 
number of people entering, (IV) reducing the duration of shopping for each customer by 50% (T = 20–40 s), 
(V) opening also the two middle checkouts to avoid crowding. Interventions III, IV and V are based on the UK 
government’s guidance for consumers on COVID-19 and food62. We simulate interventions I and II using the 
original schedule, and we generate new schedules to implement III, IV and V.

Figure 6 shows the infection risk of susceptible individuals under the original scenario, and when 
implementing the interventions I–V. Since the supermarket opens, the infection risk increases for approximately 
3 h, due to the accumulation of infectious aerosols, as shown in Fig. 5b,c, then reaches a steady state value during 
the last hour. For each intervention, the simulation results are fitted to a logistic curve for comparison. Here, 

Fig. 4. The average infection risk of the five susceptible individuals in the original care home scenario, and 
when implementing six different NPIs: (I) improving ventilation from ACH = 0.12 h−1 to ACH = 3 h−1, (II) 
everyone wears a surgical mask (η = 60%), (III) no common room time, (IV) reducing common room time 
by 50%, (V) introducing a two-hour break with no access to the common room from 5:00 p.m. to 7:00 p.m., 
and moving the third common room event to 7:00 p.m. to 10:00 p.m. (VI) individuals only interact within two 
small social groups of three.
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we choose the logistic curve, because it exhibits a quasi-linear phase first, followed by a saturation phase, which 
mimics the observed trend in the infection risk evolution.

If we compare the infection risk at 12:00 p.m., the most effective intervention is II (wearing a surgical mask), 
which reduces the infection risk by 2.8%. The second most effective intervention is I (improving ventilation to 
ACH = 3 h−1), which reduces the infection risk by 2.4%. The third most effective intervention is IV (reducing 
shopping time by 50%), which reduces the infection risk by 2.3%, followed by intervention III (halving the 
number of people entering), reducing the infection risk by 1.3%. The opening of two more checkouts, however, 
shows insignificant impact on the infection risk in the scenario considered here.

Fig. 5. Supermarket scenario: (a) the concentration of infectious aerosols at 10:00am. Individuals are 
represented by cylinders (infectious by red colour and susceptible by green colour). The average concentration 
of infectious aerosols during the (b) first hour (8:00 a.m.–9:00 a.m.) and (c) last hour of opening (11:00 
a.m.–12:00 p.m.).
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Web app
In this section, we have used VIRIS to study infection spread in three different indoor settings, and demonstrated 
its ability to assess diverse NPIs. We have also developed a user-friendly web app (https://viris.app). The app will 
enable policymakers and space managers to assess NPIs and issue evidence-based guidance, architects to assess 
architectural designs, and the general public to get a better understanding of NPIs and their relative role in 
reducing the infection risk.

Figure 7 shows three screenshots of the VIRIS app. Figure 7a shows the Landing Page. Figure 7b presents 
the Overview panel of the Wizard to set up a simulation. The wizard allows the user to set up the simulation 
step-by-step: the users can import their own architectural geometry or select from preset scenarios, specify 
people movements, and set parameter values. The simulation is executed at the last step pressing “Run”, and the 
simulation results are shown on the Simulation Playground, as shown in Fig. 7c. At the Simulation Playground, 
the users can export their simulation results (including raw data) to their local machine. The user can visualise 
the simulation as an animation (3D or 2D), see a summary table and also a plot of the individuals’ infection risk 
over time. The users can also use the scroll bar on the bottom to visualise a specific time step of the simulation.

The app has been discussed with the Welsh Government and we are looking into using it to study various 
indoor settings according to the government’s priorities.

Discussion
In this paper, we present VIRIS, a new epidemic simulator that combines airborne viral transmission, people 
movement, and detailed architectural design19,20. The modelling framework couples airborne transmission 
modelling based on the Wells–Riley ansatz4,17,35 with agent-based simulations of individuals’ movement, and 
the architectural software topologicpy19,20. VIRIS enables fast simulations employing a finite element method to 
solve the reaction-diffusion equation (3) for the viral concentration; a simulation of tens of individuals moving 
over a whole day can be computed within 1 min on a standard laptop. The model’s versatility and applicability 
has been demonstrated in three indoor settings: courtroom, care home and supermarket.

The model aims to enable policymakers and space managers to assess and issue guidance to mitigate the 
transmission of airborne diseases in indoor spaces. In addition, it could help architects and engineers to assess 
designs that mitigate infection risk20. In this work, we examine and rank different NPIs, many of those included 
in UK Government guidance, for care homes60 (Fig. 4) and for a small supermarket62 (Fig. 6).

Three NPIs have been studied for both the care home and the supermarket: improving ventilation, wearing 
a surgical mask, and reducing the duration of person-person interactions. Based on our simulations, wearing a 
surgical mask (60% efficiency) has been found to be the most effective NPI in both cases. Improving ventilation 
from ACH = 0.12 h−1 to ACH = 3 h−1 (25-fold increase) is the second most effective intervention in both 
scenarios.

While we expect that the infection risk exhibits a monotonic decrease with increasing ACH, we instead see 
a rise in the risk when ACH improves from 0.1 to 0.4 h−1 in the courtroom, as presented in Supplementary Fig. 
S1 online. The impact of ACH on the infection risk is determined by the competition between the diffusion 
and ventilation terms in equation (3). Based on the simulation results, the diffusion dominates for small ACH, 
particularly in scenarios where individuals remain stationary, causing the infection risk to rise, while the 
ventilation term dominates for larger ACH, causing the infection risk to decrease.

In addition, we highlight the importance of designing and studying scenario-customised NPIs. For 
example, we consider socialising within small groups in the care home, and show that it is the third most 

Fig. 6. The infection risk of susceptible individuals in the original supermarket scenario, and when 
implementing different NPIs: (I) improving ventilation from ACH = 0.12 h−1 to ACH = 3 h−1, (II) all wearing 
a surgical mask (η = 60%), (III) halving the number of people entering, (IV) reducing the duration of shopping 
for each customer by 50% (T = 30s), (V) opening another two checkouts. The dots represent infection risk 
of each susceptible individual leaving the supermarket. For each intervention, a logistic curve is fitted to the 
infection risk data.

 

Scientific Reports |        (2024) 14:28220 10| https://doi.org/10.1038/s41598-024-79525-6

www.nature.com/scientificreports/

https://viris.app
http://www.nature.com/scientificreports


effective intervention following imposing no common room time and everyone wearing a surgical mask. In 
the supermarket, we instead study halving the number of customers and opening two more checkouts. The 
former intervention greatly reduces the infection risk, while the latter one is found to be ineffective. These results 
underscore the need to assess interventions specific to each setting, a task our model can easily fulfil.

We emphasise that all results presented here are specific to the parameters, indoor layout, and schedules used 
in this paper. These are used to showcase the ease of customising our model to evaluate diverse NPIs, rather 

Fig. 7. Screenshots of the web app: (a) Landing page, (b) Wizard for setting up the simulation, and (c) 
Simulation playground for visualising the results.
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than to recommend any particular NPI for real-world application. The quantitative results and conclusions need 
further validation and verification before being used to inform decisions. Change of parameters can be very 
easily done in VIRIS and this is further facilitated by the VIRIS app.

The care home and the supermarket are studied based on typical but fictitious designs59; model calibration 
using real geometries is needed before using VIRIS to inform decision-making in real life. Model calibration 
for various real settings is in development through our collaboration with policymakers, space managers and 
architects. Moreover, extensions in the modelling framework can be undertaken; for instance, to consider 
multi-level buildings and to solve equation (3) in three dimensions. These extensions can be well supported 
by topologicpy19,20, but require substantial changes in the simulator and the web app. Future work could also 
incorporate more detailed fluid dynamics models4,10,14,37,38,63,64, but preserving computational efficiency would 
then be very challenging.

In conclusion, we have presented VIRIS, a modelling framework, simulator and app for airborne viral 
transmission, which combines detailed people movement and architectural design. We have demonstrated the 
applicability and versatility of VIRIS by studying several NPIs in a care home and a supermarket.

Data availability
Data and relevant code for this research work are stored in a GitHub repository:  h t t p s : / / g i t h u b . c o m / K a t e r i n a K 
a o u r i / V I R I S     .  
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