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A B S T R A C T

The global energy crisis, particularly in isolated and remote regions, has increased interest in renewable energy
sources (RESs) to meet growing energy demands. Integrating RESs with energy storage systems offers a prom-
ising solution to mitigate fluctuations and intermittency, but concerns about cost and reliability remain. This
study explores the optimal design of various microgrid configurations, combining photovoltaic (PV), wind tur-
bine (WT), battery energy storage system (BESS), and diesel generator (DG) systems for Najran city, Saudi
Arabia, via real-world meteorological and load demand data. The Dwarf Mongoose Optimization Algorithm
(DMOA), alongside the salp swarm algorithm (SSA) and whale optimization algorithm (WOA), was applied to
minimize the levelized cost of energy (LCOE) while improving system reliability. The results demonstrate that
the PV/BESS configuration, although cost-effective with an LCOE of 0.038 USD/kWh, fail to meet reliability
constraints with a loss of power supply probability (LPSP) of 0.679. In contrast, the PV, WT, BESS, and DG
configurations achieved an LPSP of 1.9 × 10^–8% with an LCOE of 0.199 USD/kWh, offering a robust and
reliable solution for the region’s energy needs. This paper presents a novel application of the DMOA for opti-
mizing hybrid renewable energy systems, demonstrating its effectiveness in achieving a balance between cost
and reliability. This strategy provides a viable approach for sustainable energy planning in similar regions facing
energy challenges.

Abbreviations and Symbols

MSOT Modified Seagull
Optimization Technique

BG Biomass Gasifier

SOA Seagull Optimization
Algorithm

NPC Net Present Cost

MFFA Modified Farmland Fertility
Algorithm

LCOE Levelized Cost Of
Energy

DMGWO Discrete Multiobjective
Wolf Algorithm

LPSP Loss Of Power Supply
Probability

cEHO constraint Elephant Herd
Optimization Algorithm

LPS loss of power supply

JAYA Jaya algorithm Pdummy dummy load
PSO Particle Swarm

Optimization.
SEC Saudi Electricity

Company
BSA Backtracking Search

Algorithm
pPV(t) Power produced by

each individual PV
panel
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GA Genetic Algorithm PPV PV generated power
MOA Mayfly Optimization

Algorithm
R Solar radiation

IAOA improved Arithmetic
Optimization Algorithm

Rref Solar radiation under
reference conditions

AO Aquila Optimizer PR,PV Rated power of the PV
panel

AOA Original Arithmetic
Optimization Algorithm

NT Photovoltaic panel’s
temperature coefficient

DMOA Dwarf Mongoose
Optimization Algorithm

Tref Temperature under
reference conditions

SSA Salp Swarm Algorithm Tc Cell temperature
IHOGA Improved Hybrid

Optimization by Genetic
Algorithms

Tair Air temperature in the
metrological data of
the site

WOA whale Optimization
Algorithm

Ra Radiation
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(continued )

NSGA-II Nondominated Sorting
Genetic Algorithm

NOCT Operating cell
temperature

TLBO Teaching-Learning-Based
Optimization

NPV Number of PV

CSA Chameleon Swarm
Algorithm

PWT Generated power
output of individual
wind turbines

GWO Gray Wolf Optimization PR,WT Nominal power of a
wind turbine

SOA Seagull Optimization
Algorithm

V Wind speed

STOA Sooty Tern Optimization
Algorithm

VIN Cut in speed

SCA Sine Cosine Algorithm VUP Cut out speed
HS Harmony Search VR Wind speed associated

with the nominal
power

EMS Energy Management
Strategy

CP Power coefficient of the
WT

RESs Renewable Energy Sources ρa Air density
HRES Hybrid Renewable Energy

System
AWT Swept area

GHG Greenhouse Gas ηWT Efficiency of the WT
PV Photovoltaic SOC State of charge
WT Wind Turbine SOCmin Minimum state of the

charge threshold
BESS Battery Energy Storage

System
SOCmax Maximum state of the

charge threshold
DG Diesel Generator ECH Charging energy
FC Fuel Cell EDIS Discharging energy
Cf DG Fuel consumption (L/h). PL Load demand
PDG(t) DG power (kW) σ Rate of self-discharge
Prated DG Rated power of the DG (kW) ηdis Discharging efficiency
αDG and

βDG

Consumption coefficient
curve of the DG

ηch Charging efficiency

CDG Yearly fuel cost CMnt− BAT Yearly maintenance
cost per battery

CF Unit fuel cost CBAT Unit cost per battery
LCC Life cycle cost CConv/Inv Present value of the

converter/inverter
components,

AM Yearly maintenance cost PConv/Inv Price of the converter/
inverter

AC capital cost CMnt− DG Yearly maintenance
cost of each diesel
generator

AMPV PV annual maintenance
costs

CDG Unit cost of each diesel
generator

ACPV PV capital costs DOD Maximum depth of
discharge

CMnt− PV PV yearly maintenance cost SBAT Nominal capacity of
the storage system

CPV Unit cost of each PV panel Rf Renewable energy
fraction

CWT Unit cost of each wind
turbine

Eren Total renewable energy

CMnt− WT Yearly maintenance cost of
each wind turbine

Etot Total Annual Energy
Consumption

n Life of the system QCO Total CO2 emission
amount (Kgco2 /year)

ir Interest rate TotalCf DG Total yearly fuel
consumption
(litre/year)

X Possible population of
mongooses

EF Emission factor for the
fuel (Kgco2/Litre)

xi,j Spatial location of the jth
dimension within the ith
population.

NPC Net present cost

n size of the population AREP Replacement Cost
d dimension of the problem UB Upper Bound
VarMin and

VarMax

Lower and upper bounds of
each problem variable,
respectively.

LB Lower Bound

VarSize Size of the choice variables
or the dimensions of the
problem

bs number of babysitters

1. Introduction

Numerous countries have robust policies for promoting renewable
energy [1], as fossil fuel supplement disruptions highlight the advan-
tages of domestically produced renewable electricity in terms of energy
security. Moreover, the high prices of fossil fuels worldwide make solar
and wind viable alternatives to other fuel sources [2,3]. By the end of
2021, the worldwide renewable energy capacity had reached 3064 GW
[4]. According to Fig. 1, hydropower production has the highest ca-
pacity at 1230 GW, whereas the solar and wind energy capacities are
849 GW and 825 GW, respectively. Furthermore, other renewables
produce 143 GW from bioenergy, 16 GW from geothermal energy, and
524 MW from marine energy [4,5].

The urgency of expanding renewable energy sources is particularly
crucial for reducing greenhouse gas emissions, ensuring energy reli-
ability, and reaching underserved areas [6]. In Saudi Arabia, while
crude oil remains the dominant energy source, there is a noticeable shift
toward renewable energy, despite the initially higher costs. The King-
dom’s abundant solar and wind resources provide significant potential
to reduce dependence on fossil fuels, curb CO2 emissions, and stimulate
economic growth through job creation and energy diversification [7].
This aligns with global trends where solar and wind energy are
becoming viable alternatives as renewable energy capacity worldwide
continues to expand.

The Saudi Electricity Company (SEC) has also made significant
strides toward a cleaner energy mix, with plans to phase out liquid fuels
entirely by 2030 and increase its renewable energy capacity to 19 GW by
2025. These initiatives are part of a broader trend of integrating
renewable energy into national grids, which is a critical step toward
reducing environmental impacts and enhancing energy security in the
face of volatile global energy markets [8].

The demand for electricity in Saudi Arabia has been growing at an
annual rate of 8 %, which necessitates substantial investments in new
energy capacity. As part of its Vision 2030 goals, Saudi Arabia has
committed to substantial renewable energy projects, with plans to install
up to 200 GW of solar power by 2030. These projects not only address
rising energy demands but also have the potential to create 80,000 jobs,
boosting the local economy [7]. Such efforts illustrate Saudi Arabia’s
alignment with the global energy transition, where renewables are
increasingly seen as essential for long-term energy security and
sustainability.

The potential of hybrid power plants, which integrate renewable
sources such as solar, wind, and BESS, is emerging as a key solution to
the challenges of energy reliability and cost efficiency. The cost of
renewable technologies continues to decline, making hybrid systems an
increasingly attractive option for both developed and developing

Fig. 1. Renewable generation capacity by energy source as of 2021.
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countries [9]. These systems ensure the provision of reliable energy,
with the added benefit of reducing emissions and relying on conven-
tional fuels.

While microgrids offer numerous advantages, such as reduced
maintenance costs, emissions, and increased reliability and flexibility,
their initial investment costs tend to be higher than those of conven-
tional power systems. Consequently, recent research has focused on
finding cost-effective ways to determine microgrids’ optimal size and
configuration. In line with previous studies, researchers worldwide have
increasingly recognized the importance of optimizing microgrid systems
with hybrid power sources. Many scholars have developed optimization
techniques to identify optimal microgrid operating points and configu-
rations. These optimization methods typically involve minimizing costs
and emissions or maximizing system reliability. In this context, the
DMOA is an emerging metaheuristic algorithm that has demonstrated
effective performance in solving complex, nonlinear, and optimization
problems. Its unconventional approach combines both exploration and
exploitation phases, enabling it to balance the global search for optimal
solutions while avoiding local minima, which is crucial for systems with
nonlinear constraints such as those found in energy and resource man-
agement. The primary contributions of the research outlined in this
paper are summarized as follows.

• This paper presents a comprehensive modeling approach to deter-
mine the optimal configuration of a standalone microgrid system
designed to meet the demand load of a residential area in Najran city,
KSA. This system incorporates solar panels, wind turbines, BESSs,
and diesel generators, and the effectiveness of the approach is
carefully considered.

• An energy management strategy (EMS) that manages the power flow
between different RESs is presented.

• The analysis is performed on real solar radiation, wind speed and
temperature data recorded for the Najran region in southern Saudi
Arabia. This study takes a significant step toward addressing a real
power shortage problem in a region in Najran city, KSA, by applying
the DOMA algorithm to optimize system components. The use of
real-time meteorological data from the site further enhances the
practical relevance of the research, making the audience feel the
immediate impact of the study.

• To the authors’ knowledge, applying the DOMA optimization algo-
rithm for designing RES microgrids has not been previously reported
in the literature. Moreover, this paper conducts a comprehensive
comparison of the DOMA results with those obtained from other
algorithms, accompanied by a thorough discussion and analysis.
Additionally, various configurations obtained through the optimi-
zation process have been meticulously analyzed and compared.

• The optimization criterion aims to achieve the minimum total cost of
the system, ensuring reliability and thereby offering tangible benefits
for real-world applications.

The subsequent section of the present study is organized in a
sequential manner. Section 2 reviews previous studies related to the
optimization of energy systems. Section 3 provides a comprehensive
overview of the research methodology employed, with a specific focus
on modeling various energy technologies and methods. Section 4 pro-
vides simulation results and discussion. Finally, the study’s conclusions
are presented and discussed in Section 5.

2. Literature review

The increasing adoption of renewable energy also necessitates the
optimization of energy systems to ensure cost effectiveness and reli-
ability. The optimal configurations for RES systems rely on mature
commercial technologies and robust metaheuristic intelligent optimi-
zation techniques [10,11]. For example, the HOMER platform was
extensively utilized in initial research, yielding insights into

constructing energy systems that effectively integrate both traditional
and renewable energy sources. These hybrid systems, which are
enhanced by advanced storage and management techniques, ensure a
reliable and cost-efficient supply of energy. One notable example is a
microgrid system proposed for rural Iraq, which combines solar panels,
hydroelectric power, diesel generators, and batteries. Using HOMER,
researchers determined that the optimal configuration would require an
estimated expenditure of USD 113,201, demonstrating how optimiza-
tion techniques can significantly increase the feasibility of such systems
[12].

Similarly, an efficient design for a hybrid microgrid system was
devised and tested on Kangaroo Island in South Australia. This system
integrated solar panels, wind turbines, diesel generators, and batteries,
and computer simulations demonstrated that the most effective
approach for managing energy consumption was through "load
following”, a method that adapts energy usage on the basis of fluctuating
demands. This approach proved to be the most cost-effective, leading to
the lowest overall energy costs over time. HOMER software is pivotal in
fine-tuning and optimizing this smart energy configuration [13].

Further research presented a sophisticated approach for designing a
small electricity network in El-Qsier, Egypt, using HOMER Pro. The
optimal configuration, derived from entirely renewable sources such as
solar panels, wind turbines, converters, and batteries, demonstrated
how advanced optimization tools could maximize energy reliability and
sustainability, even in remote areas [14]. These case studies underscore
the importance of optimization platforms such as HOMER in ensuring
that renewable energy systems are not only environmentally sustainable
but also economically viable. As more countries adopt renewable energy
technologies, the use of advanced optimization methods becomes
increasingly crucial for achieving cost-efficient, reliable energy
solutions.

Similarly, another study [15] proposed a stand-alone system for
supplying energy to a small community in Malaysia. This system in-
tegrates wind energy, a diesel generator, and batteries to guarantee a
reliable power supply. The study results showed that the use of tech-
nology such as improved hybrid optimization by genetic algorithm
(IHOGA) renewable energy software remains economically feasible and
has a beneficial effect on the environment.

Heuristic algorithms are tools that are commonly utilized to fix the
optimum sizes of hybrid renewable energy systems [16–18]. The
popularity of these algorithms arises from their user-friendly imple-
mentation, avoidance of complex mathematical calculations, and ability
to explore a broad spectrum of potential solutions, providing flexibility
beyond adhering to a single solution pattern [19,20]. Metaheuristic al-
gorithms are characterized by their ability to traverse complex and
nonlinear optimization landscapes. Metaheuristic approaches distin-
guish themselves from conventional optimization techniques because of
their ability to handle nonconvex optimization problems effectively,
thereby revealing and converging toward global optima. This feature is
often lacking in traditional methodologies. The whale optimization al-
gorithm (WOA) demonstrates this feature [21]. This research introduces
a simulation model for a hybrid microgrid system that combines solar
panels, wind turbines, diesel generators, and batteries. The objective is
to determine the optimal dimensions for these components to reduce
energy costs and enhance system reliability. Various optimization al-
gorithms, including the whale optimization algorithm, water cycle al-
gorithm, moth-flame optimizer, and hybrid particle swarm-gravitational
search algorithm, have been used to optimize microgrid design. The
study includes a comprehensive comparison of these algorithms, high-
lighting the superiority of the hybrid whale optimization algorithm. This
analysis utilized precise meteorological information obtained from
Abu-Monqar village in Egypt, which was specifically tailored to address
the energy requirements of remote areas.

Furthermore, another study [22] examined the optimal sizing pro-
cedure for two suggested hybrid solar PV and wind plants in Oman. This
study accounted for the disparity in the wind and solar energy potential

S. Al Dawsari et al. Energy 313 (2024) 133653 

3 



in Oman. Two case studies are discussed and compared. The electricity
costs are determined to be 0.182 USD/kWh and 0.222 USD/kWh for the
12 MW Masirah Island hybrid solar PV and Wind plants, respectively.
These results suggest that the hybrid renewable energy system (HRES) is
promising in Oman. Solar and wind energy have substantial potential.
However, compared with other optimization techniques, iterative and
artificial intelligence optimization techniques are more accurate and
quicker. The use of similar scenarios in other areas of Oman with high
solar PV and wind potential, such as Jabal Alakhdar and Thamrit, is
strongly advised.

Moreover, numerous metaheuristic methods, such as the non-
dominated sorting genetic algorithm (NSGA-II) [23], particle swarm
optimization (PSO) [24], teaching-learning-based optimization (TLBO)
[25], the chameleon swarm algorithm (CSA), gray wolf optimization
(GWO) [26], and the seagull optimization algorithm (SOA) [27], have
been effectively employed to address optimal sizing complexities
inherent to hybrid renewable energy systems. These algorithms have
proven to be highly effective in solving complex optimization problems

and providing practical solutions for the precise sizing of renewable
energy components. These solutions often involve the use of energy
storage systems, such as lithium-ion batteries and/or fuel cells.

The implementation of metaheuristics has garnered significant
attention in various research endeavors, with a focus on achieving
optimal configurations for renewable energy systems. For example, a
study used a Mayfly Optimization Algorithm (MOA) to optimize PV,
biomass gasifier, and fuel cell systems, achieving the lowest energy cost
of $0.2107/kWh, with minimal LPSP and greenhouse gas (GHG) emis-
sions. The MOA outperforms other algorithms, such as the STOA, WOA,
and SCA, in both cost and environmental impact [28]. Using the Jaya
algorithm, the study in Ref. [29] optimized PV, WT, and fuel cell (FC)
sizing in a standalone system to minimize consumer costs, considering
reliability with LPSPmax. The results indicated that the PV-FC setup was
more favorable at 0 % and 2 % LPSPmax. The paper is associated with
PV-WT-FC andWT-FC. Moreover, the performance of the Jaya algorithm
was evaluated against that of other methods. Researcher of [30] opti-
mized a novel hybrid energy system that integrated wind turbines, solar

Table 1
Summary of recent academic investigations into hybrid energy systems.

Reference Year Hybrid system Site Optimization
Method

Objective
Function

Research limitations

[12] 2019 PV/Hydro/Diesel/
Battery

Sakran, Iraq. HOMER. NPV The study did not conduct the validation and comparative
analysis of optimization algorithms.

[13] 2021 PV/Wind/Diesel/
Battery.

Kangaroo Island,
Australia.

HOMER. COE The chosen algorithm needs testing with each different
approach used for task assignment.

[14] 2020 PV/WT/Battery. El-Qsier, Egypt HOMER Pro. TNPC, LCOE,
LPSP, CEG,
JB.

The hybrid systems have not been elaborated upon
extensively in the study.

[15] 2020 WT/Diesel/Battery. Mersing, Malaysis iHOGA, DIgSILENT,
MATLAB Simulink

COE. The hybrid system does not include solar power, and local
renewable resources are not fully utilized.

[21] 2019 PV/Wind/Diesel/
Battery.

Abu-Monqar
village, Egypt.

WOA, WCA, MFO, PSOGSA, COE, LPSP,
Pdummy.

The study could explore how the hybrid systems might affect
the environment and consider how they could impact the
local community in rural areas.

[22] 2015 PV/Wind/Diesel/
Battery.

Al Halaniyat
Masirah Islands,
oman.

Graphic Construction,
Probabilistic, Iterative and
Artificial Intelligence,

COE The article lacks an in-depth exploration of hybrid PV-Wind
systems’ potential constraints, challenges, and drawbacks.

[23] 2018 PV/WT/Battery. – NSGA II COE, LPSP. The possible oversight of practical challenges specific to
deploying a wind-photovoltaic microgrid for remote/rural
telecommunication towers impacts real-world feasibility.

[24] 2021 PV/WT/Battery. Biskra, Algeria PSO LCC the study’s exclusive focus on cost optimization might not
fully address the broader practical considerations, such as
system reliability.

[25] 2019 PV/Wind/Diesel/
Battery.

– TLBO COE, LPSP. The proposed typical scenario method is dependent on the
accuracy and comprehensiveness of historical data, which
could impact the effectiveness of microgrid capacity
configuration.

[26] 2020 PV/WT/Battery. – DMGWO LCOE, LPSP,
and EEG.

Optimal sizing methods for hybrid renewable energy systems
could be applied to various microgrid scenarios, and they are
contemplating this potential extension.

[27] 2020 PV/WT/
Electrolyzer/FC

Qingdao, China SOA, MFFA, MSOT EGC, LPSP Using electrolyzer/fuel cell/hydrogen based energy storge
system could enhance the study’s scope yet may introduce
complexities in analysis and integration.

[28] 2022 PV/WT/BG/FC Abu-Monqar,
Egypt.

STOA, WOA, SCA, MOA. EC, LPSP,
PEXC.

It could be the absence of a broader analysis involving
multiple scenarios with varying parameters.

[29] 2020 PV/WT/FC
PV/FC
WT/FC

Hawksbayin
Pakistan

JAYA
GA, BSA and PSO

TAC The future potential for exploring multiobjective
optimization, trade-offs between LPSPmax and TAC, and
integrating hybrid energy storage systems using modern
meta-heuristic techniques.

[30] 2021 PV, WTs, BG, and
pumped hydro
storage.

Saudi Arabia. WOA, FFA, and PSO. EC The study’s lack of a specific location in Saudi Arabia affects
the practicality and relevance of its proposed hybrid energy
system.

[31] 2022 PV/WT/Diesel/
Battery

Yalova, Turkey HSA ACS The analysis focuses on evaluating the optimizationmethod’s
performance without providing specific details on the
economic and reliability benefits of the proposed hybrid
system.

[32] 2022 PV/Diesel/Battery China’s Gobi
Desert

cEHO, HOMER, PSO NPC, CO2
emissions

The results indicate that the proposed system produces lower
carbon emissions compared to the PSO and HOMER-based
systems. However, a substantial amount of energy generated
by the PV during the day is lost due to the limited battery
capacity.

[33] 2022 PV/WT/Diesel/
Battery

El Kharga Oasis,
Egypt

IAOA NPC The study of the consequences of microgrid systems under
various techno-economic configurations is limited.
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panels, biomass, and pump-hydro storage. By utilizing computational
tools, efficient configurations have been developed to minimize costs
and environmental impact. A comparison with a battery-integrated
system demonstrated the economic viability and efficacy of the pro-
posed hybrid approach.

The study [31] focused mainly on cost-effectiveness and environ-
mental considerations. HRESs beneficial for meeting load requirements,
but determining the ideal size is crucial. The Harmony search (HS) al-
gorithm was used to optimize components in the HRES, including solar,
wind turbine, battery, diesel generator, and inverter components. A
rule-based energy management scheme was proposed to regulate power
flow and minimize system costs while meeting energy demand. The
simulation results demonstrated that the HS approach exhibited supe-
rior performance and convergence characteristics, making it the optimal
choice for size.

A study by Ref. [32] proposed a hybrid solar/diesel/battery system
in rural areas of China’s Gobi Desert. Reducing fuel consumption and
pollution were the two primary goals of the system. The constraint
approach was used to reduce the complexity of the issue. The optimi-
zation procedure employed the elephant herd method (EHO) and its
constraint algorithm (cEHO). The simulation results demonstrate that
the system meets the load demand, with PV penetration influencing
97.9 % of the total expenses. The cEHO algorithm emits 1735 kg of CO2
annually, with a startup cost of 48,680 USD.

The paper [33] proposed a new HRES design that includes battery,
PV, wind, and diesel generator systems. Considering both technical and
ecological factors, the main objective was to reduce the overall net
present cost. The improved arithmetic optimization algorithm (IAOA)
algorithm was derived by modifying the original arithmetic optimiza-
tion algorithm (AOA) by incorporating the main operators utilized in the
Aquila optimizer (AO). The proposed IAOA enhanced the searchability
of a system while mitigating the limitations associated with local search
methods. Two hypothetical scenarios for HRES are proposed. The first
scenario involved the integration of photovoltaic (PV), wind, diesel, and
battery technologies, whereas the second scenario incorporates PV,
diesel, and battery technologies. The findings indicated that the sug-
gested IAOA performs better than the other established algorithms do,
thus presenting a viable alternative for hybrid renewable energy sys-
tems. Table 1 summarizes the system configurations that have been
studied on the basis of the academic sources reviewed.

The study presented in this paper investigates diverse energy system
scenarios with PV, WT, battery, and DG components. The research uses
empirical data, including hourly load demand, irradiation, wind speed,
and temperature readings for 2021 in Najran city, Saudi Arabia, to
establish a robust framework for addressing substantial-scale energy
demands while minimizing costs. The main focus is on optimizing
significant-scale energy requirements, aiming to enhance reliability
while effectively managing expenditures. Consequently, the DMOA
optimization methodology is employed to achieve a dual objective:
reducing operational costs while concurrently mitigating the likelihood

of power supply disruptions.
Furthermore, a comprehensive comparative analysis that includes

different energy system scenarios is rigorously conducted. Each scenario
involves specific combinations of PV, DG, and WT sources and BESSs.
The primary objective of this analytical investigation is to identify the
most economically feasible configuration for a hybrid energy system
while carefully considering the critical goal of minimizing the likelihood
of power supply shortages. This endeavor is underscored by a thorough
examination of each scenario to determine the optimal hybrid energy
system configuration that adeptly navigates the intricate balance be-
tween cost efficiency and the reliability of the power supply. The
incorporation of decision variables, such as the number of wind turbines
(Nwt), photovoltaic panels (Npv), diesel generators (NDG), and BESS units
(Nbat), is an essential aspect of this extensive investigation.

3. Methodology and methods

3.1. PV, WT, DG, and battery energy storage system modeling and
problem solution size

The PV array, wind turbine, and diesel generator in the standalone
PV/WT/DG system are depicted in Fig. 2. They collaborate to generate
electricity capable of managing the workload. The batteries are fully
charged when the electricity generated by the PV and wind sources
equals the power required by the load. The batteries then help provide
the primary source of electricity until their stored energy is depleted
[21] if the energy generated is insufficient to meet the load’s demand. If
the power produced by solar panels, wind turbines, and batteries is
insufficient to meet the required energy demand, the diesel generator
bridges the gap. An essential step before moving on to size is modeling
the hybrid system. Each renewable energy source’s power output and
storage system are estimated via mathematical functions.

3.1.1. PV system model
Access to hourly solar radiation data is crucial for precisely planning

hybrid systems. To accurately determine the power output of each
photovoltaic panel in relation to the available solar radiation, equation
(1) can be used [34]:

pPV(t)=PR,PV ×
(
R
/

Rref
)
×
[
1+NT

(
Tc − Tref

)]
(1)

where pPV(t) refers to the amount of power produced by each individual
PV panel at a specific point in time, t. PR,PV is the rated power of the PV
panel. The symbol "R" represents solar radiation and is based on the
meteorological data of the site, which are measured in units of watts per
square meter (W/m2). The value "Rref" represents the solar radiation
under reference conditions and is typically standardized to 1000 W/m2.
Tref is the cell’s temperature under reference conditions typically set at
25 ◦C. The symbol "NT" represents the photovoltaic panel’s temperature
coefficient, which is valued at − 3.7 × 10− 3 per degree Celsius (◦C) [34].
This coefficient applies to both mono- and polycrystalline silicon types.

Fig. 2. Conceptual illustration of the proposed renewable energy hybrid PV-Wind-DG-Battery system.
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The cell temperature " Tc" can be determined via equation (2).

Tc =Tair + (((NOCT − 20) /800)×Ra) (2)

where the variable Tair signifies the air temperature in the metrological
data of the site, in degrees Celsius, while " Ra" represents radiation.
Additionally, "NOCT" refers to the operating cell temperature measured
in degrees Celsius. These specifications are crucial for photovoltaic (PV)
modules and are officially provided by manufacturers. If the number of
PV panels is denoted as NPV, the generated power can be expressed as:

PPV(t)=NPV × pPV(t) (3)

3.1.2. Wind turbine (WT) system model
Wind power is widely acknowledged as a promising form of energy.

An advantage of this energy source is its lack of greenhouse gas emis-
sions, rendering it environmentally sustainable. Moreover, wind power
is economically efficient, further increasing its popularity. A wind tur-
bine, consisting of multiple blades connected to a generator, is employed
to capture and utilize wind energy. For energy capture, the turbine is
placed on an elevated structure. The power output of each wind turbine
can be determined via equation (4) [23,35]:
⎧
⎪⎪⎨

⎪⎪⎩

PWT(t) = 0 V(t) < VIN
PWT(t) = a(V(t))3 − bPR VIN < V(t) < VR

PWT(t) = PR VR < V(t) < VUP
PWT(t) = 0 V(t) > VUP

(4)

The parameters "a" and "b" are determined via equation (5).
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a =
PR,WT

V3
R − V3

IN

b =
V3
IN

V3
R − V3

IN

(5)

The total generated power can be denoted as:

PR,WT =
1
2

AWT⋅CP⋅ρa⋅ηWT⋅V3
R (6)

where the variable PWT represents the generated power output of indi-
vidual wind turbines at a given time point, the nominal power of a wind
turbine is represented by the variable PR,WT, and the wind speed is
denoted by the variable "V", which is obtained from the metrological
data of the site. The variable VIN represents the speed at which the low
cut occurs, whereas VUP represents the speed at which the upper cut
occurs. Additionally, VR denotes the speed associated with the nominal
power, which is based on the utilized wind turbine. The swept area of
the wind turbines is shown as AWT , and ηWT is the efficiency of the WT.
The power coefficient, denoted as CP, and the air density, represented by
ρa.

3.1.3. Battery model
The battery’s state of charge (SOC) can be represented on the basis of

the time consumed. During the charging mode, the SOC can be
expressed as [21]:

SOC(t)= SOC(t − 1)⋅(1 − σ) + ECH(t) (7)

where

ECH(t)= ((PWT(t) − PL(t))× ηinv +PPV(t))×Δt × ηCH (8)

In the discharge mode, the SOC can be expressed in the following form:

SOC(t)= SOC(t − 1)⋅(1 − σ) − EDIS(t) (9)

where

EDIS(t)=
(

PL(t) − PWT(t)
ηinv

− PPV(t)
)

× Δt
/

ηDIS (10)

The symbol denotes the efficiency of an inverter ηinv. The variable σ
represents the rate at which self-discharge occurs each hour. ECH(t),
EDIS(t), and Pload (t) are the charging energy, discharging energy, and
load demand for energy at time t, respectively. The discharging and
charging efficiencies for the storage system are denoted as ηdis and ηch,
respectively.

3.1.4. DG modeling
The DG supplies energy in the hybrid system when the PV, WT, and

BESS cannot meet the load demands. DG fuel consumption may be
computed as follows [36].

Cf DG(t)= αDG × PDG(t) + βDG × Prated DG (11)

The fuel consumption is denoted as Cf DG (L/h). PDG(t) (kW) repre-
sents the average power. where Prated DG (kW) denotes the rated power of
the DG. The consumption coefficient curve of the DG is given by the
symbols αDG and βDG, with corresponding values of 0.246 L/kWh and
0.08145 L/kWh [21].

The calculation of the yearly fuel cost CDG needed to operate the
generator throughout the system’s lifespan is outlined as follows:

CDG =CF ×
∑8760

t=1
Cf DG(t), (12)

where CF is the unit fuel cost, set in this study at 0.8 USD/ Liter [21].

3.1.5. Life cycle cost (LCC)
The cost studies of the hybrid wind turbine/photovoltaic/battery

(WT/PV/BESS), wind turbine/battery/photovoltaic/diesel (WT/BESS/
PV/DG), and photovoltaic/battery (PV/BESS) schemes apply the
concept of life cycle cost (LCC), which may be expressed as [37].

LCC=
∑

m∈WT,PV,DG,BAT
(ACm +AMm +AREPm) + CDG|for DG if any (13)

where the variables AM, AC and AREP denote the yearly maintenance,
capital, and replacement costs, respectively.

3.1.6. LCC of PV panels
The capital and annual maintenance costs associated with solar

panels are expressed as follows [37]:

ACPV =NPV ⋅ CPV⋅
ir⋅(1+ ir)nPV

(1+ ir)nPV − 1
(14)

AMPV =NPV ⋅CMnt− PV ⋅tPV (15)

The variables CMnt− PV represent the yearly maintenance cost. CPV

denotes the unit cost of each solar panel. NPV is the number of PVs.
Moreover, tPV is the operating time of the PV. nPV is the lifetime of the
PV, and ir denotes the interest rate.

3.1.7. LCC of WTs
The formulation for the maintenance (ACWT) and capital cost

(AMWT) of wind turbines is as follows [37].

ACWT =NWT ⋅ CWT⋅
ir⋅(1+ ir)nWT

(1+ ir)nWT − 1
(16)

AMWT =NWT⋅CMnt− WT⋅tWT (17)

The variables NWT, CWT, and CMnt− WT represent the number of wind
turbine blades, the unit cost, and the yearly maintenance cost of each
wind turbine, respectively. The variables nWT denote the life of the WT,
and tWT is the operating time of the WT.

3.1.8. LCC of batteries
The financial expenses associated with the storage system, including
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both the initial capital cost and the ongoing annual maintenance cost,
can be mathematically represented as [37]:

ACBAT =NBAT ⋅ CBAT⋅
ir⋅(1+ ir)nBAT

(1+ ir)nBAT − 1
(18)

AMBAT =NBAT⋅CMnt− BAT⋅tbatt (19)

In this context, NBAT denotes the number of batteries, CMnt− BAT refers to
the yearly maintenance cost, and CBAT represents the unit initial cost per
battery. Moreover, tbatt represents the operating time of the battery. nBAT
signifies the life of the batteries.

3.1.9. LCC of the converter
The annual capital cost for the converter can be expressed as:

ACconv =Ccap conv⋅
ir⋅(1+ ir)nconv

(1+ ir)nconv − 1
(20)

where
(
Ccap conv

)
denotes the initial capital costs for the installation of

the converter. nconv signifies the life of the converter.
The operating and maintenance costs for the converter can be

expressed as:

AMconv =CO&M conv⋅tconv (21)

where CO&M conv denotes the operating and maintenance cost of the
converter and where tconv denotes the operating time of the converter.

3.1.10. LCC of DGs

ACDG =NDG ⋅ CDG⋅
ir.(1+ ir)nDG

(1+ ir)nDG − 1
(22)

AMDG =NDG⋅CMnt− DG (23)

The variables CMnt− DG, CDG, andNDG represent the yearly maintenance
cost, the unit cost of each diesel generator, and the number of DG
schemes, respectively [21]. nDG signifies the life of the converter.

3.1.11. Replacement cost
Certain components of a photovoltaic/wind turbine/battery system

necessitate replacement multiple times throughout the duration of the
project’s lifespan. The replacement cost of the hybrid system compo-
nents throughout its lifetime is estimated as follows:

AREP =
∑nrep

j=
KC repCu

(
1+ i
1+ r

)nj/(nrep+1)
(24)

In this equation, i represents the inflation rate for replacements, KC rep is
the capacity of the units used in the system, Cu denotes the cost of the
replaced units, and nrep refers to the number of replacements required
over the project lifetime n. This study assumes that a battery’s lifespan is
five years [38]. Similarly, the converter/inverter is expected to have a
lifespan of 10 years [37].

3.1.12. Net present cost
The total AC of the system, including all its components, can be

expressed as [31].

The following equation is utilized to calculate the annual mainte-
nance cost considering the system components:

AM=NPV × CMnt− PV × tPV + NWT × CMnt− WT × tWT + NBAT⋅CMnt− BAT × tbatt

+ CO&M conv × tconv+NDG × CMnt− DG × tDG

(26)

The net present cost (NPC) of the system can be determined by:

NPC =
LCC
CRF

(27)

where the total LCC = AC + AM + AREP + CDG and the capital recovery
factor (CRF) can be assumed to adapt the initial investment cost into an

annual capital expense. It is calculated as CRF(r, n) =
r(1+ r)n

(1+ r)n
− 1

.

Moreover, r represents the interest rate (%), and n denotes the lifespan of
the project under consideration.

3.2. Objective function and constraints

The objective function has been implemented to achieve the cus-
tomer’s required loss of power supply probability (LPSP) with a mini-
mum levelized cost of energy (LCOE) and dummy load (Pdummy). It can be
described as follows:

min f = min
(
λ1LCOE + λ2LPSP + λ3Pdummy

)
(28)

The chosen weighting factors are based on the relative significance of
each objective variable, including LCOE, LPSP, and Pdummy. As a
result, the objective function is adjusted using these weighting factors to
minimize each objective, ultimately enhancing the overall operational
performance. Determining the most suitable values for λ₁, λ₂, and λ₃
requires a trial-and-error approach to obtain the most favorable results.
To be crucial, the aggregate of these weighting factors must equal 1. The
values allocated to λ₁, λ₂, and λ₃ in this investigation are 0.4, 0.5999, and
0.0001, respectively.

The identified constraints are as follows:

NWT ≥ 0 (29)

NPV ≥ 0 (30)

NDG ≥ 0 (31)

NBAT ≥ 0 (32)

PWT(t)+PPV(t) + PBAT + PDG(t) ≥ PL(t) (33)

LPSPDesired ≥ LPSP (34)

SOCmax ≥ SOC(t) (35)

SOCmin ≤ SOC(t) (36)

In this context, SOCmax and SOCmin represent the upper and lower
bounds of the state of charge, respectively. One could compose written
content.

AC=

[

NPV ⋅ CPV ⋅
ir⋅(1+ ir)nPV

(1+ ir)nPV − 1
+NWT ⋅ CWT ⋅

ir⋅(1+ ir)nWT

(1+ ir)nWT − 1
+NBAT ⋅ CBAT ⋅

ir⋅(1+ ir)nBAT

(1+ ir)nBAT − 1
+Ccap conv ⋅

ir⋅(1+ ir)nconv

(1+ ir)nconv − 1
+NDG ⋅ CDG ⋅

ir.(1+ ir)nDG

(1+ ir)nDG − 1

]

(25)
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SOCmin = SBAT(1 − DOD) (37)

where DOD represents the maximum depth of discharge. SBAT denotes
the nominal capacity of the storage system. In the following subsections,
the mathematical expressions of the objective function component and
associated constraint are introduced.

3.2.1. Loss of power supply
When the state of charge at time t, denoted as SOC(t), falls below the

minimum state of the charge threshold (SOCmin), the storage system fails
to meet part of the load. Afterward, when the state of charge (SOCmin) at
time t is equal to the minimum SOC (SOCmin), the loss of power supply
(LPS) can be expressed in the following form:

LPS(t)=PL(t)×Δt − (PDG(t)+PWT(t))×Δt − ((PPV(t)×Δt)
+ SOC(t − Δt) − SOCmin) × ηconv

(38)

To provide a high level of reliability, it is imperative to consider the
possibility of power supply loss (referred to as LPSP) while imple-
menting hybrid renewable energy systems. The loss of power supply

probability (LPSP) is a parameter measured on a scale from 0 to 1. A
value of LPSP = 0 indicates that the load is consistently satisfied,
whereas a value of LPSP = 1 indicates that the load is never satisfied.
The power reliability needs to change on the basis of the load charac-
teristics of different systems. According to Ref. [39], the LPSPD, which
represents the maximum allowed level of low-power supply probability
(LPSP), is estimated to be approximately 0.02 in the context of rural and
standalone applications. In this study, it is assumed that the LPSPD value
is 0.02. This means that a reliability constraint of LPSP <0.02 is
implemented in the optimization of the power generation system. The
calculation of the LPSP can be performed for a specific time, denoted as
T, via the following formula [33]:

LPSP=

∑T

t=1
LPS(t)

∑T

t=1
ELoad(t)

(39)

The variables DOD, SBAT, PPV, PWT, PBAT, PDG, and PL represent the
maximum depth of discharge, nominal capacity of the storage system,

Fig. 3. Annual hourly operation plan of the hybrid MG.
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solar power, wind power, battery power, diesel generator power, and
load power, respectively.

3.2.2. Calculation of the dummy load
Occasionally, when the battery reaches its maximum capacity while

renewable energy exceeds demand, the surplus energy is directed to a
dummy load. This interval, during which the dummy load is activated, is
denoted as:

Pdummy(t)×Δt =(PWT(t) − Pload(t))×Δt +(PPV(t)×Δt − ECH(t)) × ηconv

(40)

It can be represented as follows in another expression:

Edummy(t)= ECH(t) − (Ebmax − Eb(t)), if Eb(t)= Ebmax (41)

Edummy(t)= 0, if E b(t) < E {bmax} (42)

where Edummy(t) = Pdummy(t) × Δt is the excess energy.

3.2.3. Renewable energy fraction
The renewable energy fraction Rf is determined by dividing the total

renewable energy by the total annual consumed energy as follows:

Rf =
Eren

Etot
(43)

where Eren is the total renewable energy (kWh) and where Etot denotes
the total annual energy consumption (kWh).

3.2.4. CO2 emissions
The total amount of CO2 emissions can be calculated as follows:

Qco2(kgCO2/year) = TotalCfDG (litre/year) × EmissionFactor(kgCO2/litre)
(44)

In this context, QCO denotes the total CO2 emission amount
(kgCO2 /year), TotalCf DG represents the total yearly fuel consumption
(litre /year), and EF represents the emission factor for the fuel used
(kgCO2 /litre). For the diesel fuel analyzed in this study, the default CO2
emission factor is 2.6533 (kgCO2 /litre).

3.2.5. Levelized cost of energy (LCOE)
The levelized cost of energy (LCOE) is a crucial quantity in economic

systems. It quantifies the average unit cost of generating useable power
within a given scheme. Mathematically [31], can be expressed as,

LCOE=
LCC

∑8760

t=1
PL(t)

=
Total Life Cycle Cost

Total Lifetime Energy Production
. (45)

3.3. Energy flow scenarios

The energy management system strategy within the designed
microgrid is implemented to guarantee an uninterrupted energy supply
to meet the demand. This energy management process encompasses four
distinct scenarios. Fig. 3 shows the operational approach utilized by the
independent hybrid power systems each hour throughout the year.
Moreover, the energy flow scenarios can be described as follows.

3.3.1. Charging mode

3.3.1.1. Scenario A. Conversely, in cases where the energy generated
from renewables surpasses the load demand, the battery is utilized in
charging mode.

3.3.1.2. Scenario B. When the state of charge (SOC) of the battery
reaches its maximum level and surplus electricity is available, the excess

electricity is directed to a dummy load.

3.3.2. Discharging mode

3.3.2.1. Scenario C. If the generated electricity falls short of the load
requirement, the BESS can be discharged to fulfill the demand. If the
battery discharge is insufficient, a diesel generator is incorporated into
the system as a backup.

3.3.2.2. Scenario D. If the renewable energy, battery, and DG fail to
meet the load requirements consistently, resulting in an energy
shortage, the load power loss (LPS) should be minimized through
calculation.

3.4. The DMOA model

The DMOA algorithm under consideration imitates the compensa-
tory behavioral adjustments observed in dwarf mongooses, including
constraints related to prey size, social structure, and a seminomadic
lifestyle. The social structures are categorized into alpha, scout, and
babysitter groups, facilitating migratory tendencies and territorial
exploration. The proposed DMOA method is delineated in three distinct
phases, as depicted in Fig. 4. The equations presented below are sourced
from Ref. [40] (see Fig. 5).

3.4.1. Population initialization
As shown in Eq. (46), the DMOA optimization starts by setting up the

possible population of mongooses X. The population is made randomly
among the upper bound UB and lower bound LB of the prearranged
situation.

X=

⎡

⎢
⎢
⎣

x1,1 x1,2⋯x1,d− 1 x1,d
x2,1 x2,2⋯x2,d− 1 x2,d

⋮⋮xi,j⋮⋮
xn,1 xn,2⋯xn,d− 1 xn,d

⎤

⎥
⎥
⎦ (46)

The set of current candidate populations, denoted as X, is produced
randomly via Equation (47). where xi,j represents the spatial location of
the jth dimension within the ith population. The value of n describes the

Fig. 4. The optimization steps of the indicated DMOA.
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size of the population, whereas d defines the dimension of the problem.

xi,j = unifrnd(VarMin,VarMax,VarSize) (47)

The function unifrnd generates a random number that follows a

uniform distribution. VarMin and VarMax refer to the lower and upper
bounds of the problem, respectively. The variable VarSize represents the
size of the choice variables or the dimensions of the problem.

Fig. 5. Flow Chart of DMOA.
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3.4.2. Alpha group
After the initialization of the population, the fitness of each solution

is calculated. The probability value for the fitness of each population is
determined via Equation (44), and the selection of the alpha female, α, is
based on this probability.

α=
fiti

∑n

i=1
fiti

(48)

The quantity of mongooses within the alpha group is proportional to
the value denoted as n − bs. In addition, bs is the variable denoting the
quantity of babysitters. The vocalization emitted by the alpha female,
known as a peep, serves as a means of guiding and maintaining cohesion
within the family unit.

Each mongoose sleeps in the first sleeping mound, which is set to 0.
The DMOA uses the expression in equation (49) to create a possible food
spot.

Xi+1 =Xi + phi*peep (49)

where phi is a random number that is spread out evenly between − 1 and
1. The sleeping mound is given in equation (50) after each repetition.

smi =
fiti+1 − fiti

max{|fiti+1, fiti|}
(50)

Equation (51) provides the mean value of the discovered sleeping
mound.

φ=

∑n

i=1
smi

n
(51)

The variable n represents the number of Babysitters.

3.4.3. Scout group
The scouts aim to identify new sleeping mounds, as mongooses tend

to avoid revisiting previously utilized mounds, promoting a continuous
exploration process. The scouting is conducted concurrently with
foraging, wherein the total efficacy of locating a new mound is assessed.
According to the model, the family might encounter a previously un-
identified mound by venturing a sufficient distance during foraging
activities. The scout mongoose is simulated via equation (52).

Xi+1 =

{Xi − CF * phi * rand *
[
Xi − M→

]
ifφi+1 > φi

Xi + CF * phi * rand *
[
Xi − M→

]
else

(52)

where rand denotes a random variable [0,1].

CF =

(

1 − iter
Maxiter

)

(

2 iter
Maxiter

)

" is used to regulate the collective-

volitive movement of the group of mongooses, and it is progressively
reduced in a linear manner as the number of iterations increases. The
vector M→=

∑n
i=1

Xi×smi
Xi

represents the directional movement of the
mongoose toward the new sleeping mound.

3.4.4. The babysitters
The technique entails implementing a rotation system for baby-

sitters, enabling the alpha female to assume leadership during the
group’s daily foraging activities. The quantity of Babysitters is contin-
gent upon the magnitude of the population and influences the algorithm
through a decrease in the overall population size. The algorithm emu-
lates the behavior of this group by decreasing the population size on the
basis of the fraction that represents Babysitters. The babysitter exchange
parameter resets the scouting and food source data while assigning a
fitness weight of zero to the babysitters. The decrease in the mean
weight of the alpha group throughout subsequent iterations impedes the
collective mobility of the group and accentuates the focus on
exploitation.

4. Simulation results and discussion

4.1. Research region and data selection

The city of Najran, situated in southern Saudi Arabia, holds historical
significance because of its role as a crucial junction connecting the
northern, western, and Yemeni regions, as shown in Fig. 6. Geographi-
cally, Najran is positioned between 17 and 20◦ north latitude and 44 and
52◦ east longitude. Its climate is characterized by dry winters and a
humid-subtropical climate, designated "CWa" according to the
Köppen–Geiger classification system [41].

This research investigated the performance and economic feasibility
of a hybrid system on the basis of the actual weather conditions of
Najran. Najran is renowned for being one of the most contemporary
cities. The Najran region had a population of 569,000 people in 2014,
accounting for 1.85 % of the total population of the Kingdom, which was
30.8 million [42].

The data for this location were analyzed continuously for 8760 h.
The data indicate that the area under investigation experiences consis-
tently high levels of solar radiation and high wind speeds throughout the
year. Moreover, the examined region is highly conducive to establishing
both photovoltaic (PV) and wind power plants. Therefore, it holds sig-
nificant promise for the implementation of PV facilities.

Fig. 7 displays a wind speed map of Saudi Arabia, highlighting that
the prevailing wind speeds across most of the country typically fall
within the range of 5–8 meters per second (m/s), making them well
suited for wind energy generation via turbines. The selected study sites
are characterized by wind speeds ranging from 4.28 to 7.21 m/s.

The annual fluctuations in the solar radiation intensity and wind
speed are visually represented in Fig. 8. On the basis of the available
data, the mean daily solar radiation is 227.08 kWh/m2 on average,
whereas the typical wind speed is 6.890 m/s. Notably, the average
power demand in this area is 260 kW.

The power demand in kW for a specific day is demonstrated in Fig. 9.
The peak power is 375 and 340 kW in summer and winter, respectively.
Table 2 lists the system components (PV, WT, DG, and BESS) and their
characteristics.

This study assumes a system lifetime of 25 years and a 6 % interest

Fig. 6. Location of the study area (Najran, situated in southern Saudi Ara-
bia) [43].
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rate. Simulation programs such as MATLAB for optimization have been
used to analyze the results. The number of iterations and number of
search agents are set to 60 and 20, respectively, in the optimization
algorithms. The parameter values of the tested algorithms are as follows:
for the WOA, the value of α decreases from 2 to 0, and the value of b
equals 2 [45]. The DMOA has only one parameter, CF, that can be tuned

via CF =

(

1 − iter
Maxiter

)

(

2* iter
Maxiter

)

. For SSA [46], the parameters are only

the number of slaps and the maximum number of iterations.

4.2. Results and simulations of the optimal case

The optimal number of PV modules, WTs, battery banks, and DGs
that produce the desired output constitute the optimal capacity of a
hybrid system. The outcomes of the optimization procedure are shown
in Table 3. Moreover, Fig. 10 illustrates the best result of the objective
function over the iterations. The DMOA algorithm achieves an optimum
value of 0.220724271 within the predefined operational limits after 10
iterations. In contrast, the SSA algorithm achieves an optimum value of
0.225137323 within the predefined operating limits after 40 iterations.
The WOA achieves an optimum value of 0.229935171 after 30

Fig. 7. (a) Wind speed map in Saudi Arabia. (b) Solar radiation intensity in Saudi Arabia [44].
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iterations, as illustrated in Fig. 10. Fig. 11 displays the specific expenses
of the system components considering the net present value of each
component and their summation, which provides the LCC.

More investigations have been conducted to evaluate the three
applied optimization algorithms. The renewable energy fraction has
been calculated, and its value is 0.7429 for the three algorithms,
whereas the CO2 emissions (tonCO2/year) are 714.69, which is less than
those obtained with the application of the SSA and WOA.

4.3. Robustness of the applied algorithms

The robustness of the WOA, SSA, and DMOA was demonstrated
through thirty consecutive executions. Table 4 presents the statistical
findings for these techniques on the basis of the recorded results. The
data analysis included calculations of the standard deviation, minimum
and maximum values, median values, and means from the ten runs.
Table 4 also facilitates a comparison of the effectiveness of the WOA,
SSA, and DMOA methods in minimizing the objective function. The
table shows the RMSE and RE values, which shed light on how efficiently
these techniques optimize the design of the RES. The simulation results
demonstrate that the DMOA method outperforms the other methods in
terms of the mean, median, maximum, standard deviation, relative
error, mean absolute error, root mean square error, and efficiency. The
formulas can be described as follows:

Standard Deviation (SD)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑nRun

k=0
(Xi − X− )

nRun − 1

√
√
√
√
√

(53)

Root Mean Square Error (RMSE)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑nRun

i=1
(Xi − Xmin)

2

nRun

√
√
√
√
√

(54)

Relative Error (RE)=

∑nRun

i=1
(Xi − Xmin)

Xmin
(56)

Mean Absolute Error (MAE)=

∑nRun

i=1
(Xi − Xmin)

nRun
(57)

Fig. 8. Hourly solar radiation and wind speed in the study area.

Fig. 9. Daily load demand curve.

Table 2
Characteristics of the system components.

Data of PV modules Data of wind turbine Data of Battery Bank

Parameter Value Parameter Value Parameter Value

Model PV − MLT260HC Model Fuhrländer FL 30 Model RS lead − acid battery
Max. power 260 W Rated power 30 kW Size 12v(50Ah)
Length 1625 mm Rotor diameter 12.8 m Efficiency 86 %
Width 1019 mm Swept area 13m2 DOD 0.8
Thickness 46 mm Cut − in speed 2.6m

s
Weight 16.5 kg

Modules
Efficiency

15.7% Cut − off speed 25
m
s

Max. discharge current 750 A

Operating temperature 47∘C Rated speed 12.1
m
s

Internal resistance <= .006 Ω

Temperature coefficient 0.45% Initial cost 58565.79 USD Operating
Temperature

0 − 47∘C

Initial cost 112 USD Replacement cost 34563.226 USD Initial cost 58564.79 USD
O&M cost 1% O&M cost 2.99% O&M cost 3%
Lifetime 25 years Lifetime 20 years Replacement cost 34553.226 USD
Data of diesel generator
Rated power for one DG 100kw Replacement cost 850 USD O&M cost 3%
Initial cost 850 USD Lifetime 10Years Fuel Cost 0.8 USD/litre
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Efficiency=

∑nRun

i=1

(
Xmin
Xi

)

nRun
*100% (58)

In this context, Xi represents the cost function for the applied technique
in each iteration. Xmin represents the optimal value obtained, whereas
nRun denotes the number of runs conducted via MATLAB software.

Fig. 12 shows the convergence characteristics of these ten runs. The
uniformity of the curves depicted in Fig. 12 highlights the resilience of
the DMOA technique. A comparison of the results of the DMOA with
those of the WOA and SSA clearly reveals that the DMOA is significantly
effective in parameter optimization. The DMOA outperformed the WOA
in terms of both objective function values. Since most optimization al-
gorithms draw inspiration from nature, tracking efficiency is gauged by
how frequently the algorithm converges to the best solution. Specif-
ically, the DMOA achieves the best objective function value of
0.220724269 and a tracking efficiency of 99.99 in 10 runs, out-
performing the WOA with values of 0.22143995 and 95.33284247 for
the least efficient algorithm. Furthermore, the top-performing algorithm
demonstrates efficiencies nearing 100 %, reinforcing the suitability of
the DMOA for optimizing the studied RE optimization problem.

The efficacy of the examined techniques was evaluated via a Wil-
coxon signed-rank test, and the results are displayed in Table 5. The
Wilcoxon signed-rank test revealed that the P values for the WOA, SSA,
and DMOA are consistently 2 × 10− 3. All the evaluated methods yield a
rank value of 1, which is consistent with the Wilcoxon signed-rank test.
In addition, all of the methods under evaluation demonstrate statistical
significance.

Fig. 13 presents the analysis of the results via boxplots from 10 ex-
ecutions, providing a comprehensive statistical illustration. The figure
displays the outcomes of 10 runs, presenting the distribution of results
across the boxplots. Significantly, the WOA, SSA, and DMOA methods
consistently produce the most favorable values for the objective function
throughout the ten runs.

4.4. Findings from the optimal sizing analysis

The research described in the paper utilized a comprehensive dataset
and technoeconomic parameters as inputs for the model. Themodel then
underwent 60 iterations of the DMOA. The process yields several
optimal decision variables, minimizing critical metrics such as the NPC,
COE, and LPSP. To facilitate a comparative analysis of different micro-
grid configurations under similar conditions, nine distinct combinations
have been created, incorporating components such as DGs, PVs, WTs,
and batteries, which are PV/WT/BESS, WT/BESS, PV/BESS, PV/WT PV/
WT/BESS/DG, PV/BESS/DG, PV/WT/DG, WT/DG and PV/DG. The
outcomes of these optimizations are presented in Tables 6 and 7.

Table 6 provides a comprehensive overview of various configura-
tions, including PV/WT/BESS/DG, PV/BESS/DG, PV/WT/DG, WT/DG,
and PV/DG. Among these, the PV/WT/BESS/DG configuration emerged
as the most cost-effective choice, demonstrating its efficiency, with a
remarkably low LCOE of 0.199 USD/kWh and a minimal LPSP of 1.9 ×

10− 8%. This configuration has proven highly competitive despite its
complexity, as evidenced by an NPC of 5,798,338 USD. In contrast,
configurations such as PV/BESS/DG and PV/DG, while having lower
LCOE, incurred significantly higher overall costs and initial investments.
The table also shows the optimal size of each configuration.

Table 7 presents the results to clarify the impact of the absence of the
DG from the configuration, which results in a greater value of LPSP,
indicating the absence of system reliability in such cases. Moreover, the
results validate the results of the suggested configuration of PV/Wind/
DG/BESS. The analysis in Table 7, which excluded DG systems, high-
lighted the PV/WT/BESS configuration. It exhibited an adequate bal-
ance between efficiency and costs, with a moderate LCOE of 0.098 USD/
kWh and an LPSP of 0.311 %. However, its high NPC of 2,851,666 USD
indicated a substantial long-term investment. Comparatively, PV/BESSs
stand out because of their exceptionally low LCOE, effectively managing
both initial and long-term costs. However, the LPSP of the PV/BESS
configuration is recorded as 0.679 in the table, indicating a lower level
of reliability. The table also shows the optimal size of each configura-
tion. In the results of Table 7, the LPSP is not constrained or evaluated as
a part of the optimized objective function to show the DG impact in each
configuration. Finally, the results show that the reliability of each

Fig. 10. Convergence curves of the optimization technique, demonstrating the
best score obtained to date.

Fig. 11. Cost details of the system components.

Table 4
The statistical findings for these techniques are based on the recorded results.

Statistical Indices SSA WOA DMOA

Min. 0.220726232 0.22143995 0.220724269
Max. 0.227897784 0.266192081 0.220724282
Mean 0.223670752 0.232827093 0.220724275
Median 0.222836652 0.229948466 0.220724273
SD 0.273371769 1.248740767 4.85477E − 07
RE 0.133401449 0.514231616 2.49265E − 07
MAE 0.00294452 0.011387142 5.50188E − 09
RMSE 0.003923785 0.016431945 7.17513E − 09
Eff. 98.69674515 95.33284247 99.99999751

Table 3
Results of the optimization methods.

SSA WOA DMOA

Best objective function 0.225137323 0.229935171 0.220724271
LCOE(US$/kwh) 0.198683288 0.199357062 0.199096222
LPSP 6.51412E-09 3.07434E-07 3.20657E-09
n_PV 1100 1100 1100
n_WT 14 14 14
n_batt 307 229 400
n_DG 2 2 2
Dummy Load(kwh) 14.56 15.019 14.108
RF 0.7429 0.7429 0.7429
CO2 Emissions (tonCO2/year) 7252.6 7514.0 7146.9
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configuration whose DGs are not present is poor compared with those of
Table 6. Notably, the absence of the DG is also reflected in the decrease
in the emission to zero.

4.5. Performance of the MG

Fig. 14 illustrates the hourly fluctuations in power generation for
different elements within the suggested hybrid system under optimal
DMOA conditions. The components depicted include the power demand
( PI), the total power generated from renewable sources, wind turbines,
and photovoltaics

(
PWT, Ppv, the power produced by diesel units (PDG),

the number of diesel generator units in operation each hour ( DGunit), the
dummy load power (Pdummy), and the power involved in charging and
discharging the storage battery system (PCH&PDIS). Additionally, it in-
dicates the state of charge of the battery bank system as a percentage of
its total capacity (SOC) and the fuel consumption of the diesel generator
units. The discrepancy, denoted as Pdiff , represents the contrast between
the power demand PI and the total power generated from renewable
sources

(
PWT,Ppv

)
.

Figs. 15 and 16 depict the results of DMOA during distinct winter and
summer timeframes, ranging from 1800:1823 h and from 4980:5003 h,
presenting the results of one day in winter and another day in summer.
The daily power load curve displays two clear peaks. The initial peak
occurs at 13:00, during midday, at high temperatures. The second peak
occurs at 17:00, following sunset, coinciding with the time when all
consumers return to their residences. During the late night and early
morning hours, the power produced by the PV array and WT is notably
limited.

Therefore, the two proposed DG units operate collaboratively at
elevated capacity to effectively satisfy the load demand. As sunrise, the
power generated by renewable energy sources increases, enabling a
single DG unit and renewable sources to meet the demand adequately.

Fig. 12. Convergence curves for ten executions employing the (a) SSA, (b) WOA, and (c) DMOA.

Table 5
Wilcoxon signed rank test.

SSA WOA DMOA

p value 2E-03 2E-03 2E-03
Rank 1 1 1

Fig. 13. Best results at the 30th run for the SSA, WOA, and DMOA.
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Fig. 14. Optimal sizing simulation results (DMOA, 8760 h).
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At noon, if the power generated by renewables exceeds the load demand,
one DG unit is deactivated. The surplus energy is then used to charge the
battery banks until they reach their maximum allowable limit, which is
equivalent to a 100% state of charge (SOC).When the battery reaches its
maximum charge, surplus power is directed to a dummy load. In
contrast, as the output from the hybrid renewable system decreases, the
battery starts discharging energy until it reaches its minimum state of
charge (SOCmin). At this stage, the DG unit recommends its operation.

4.6. Sensitivity analysis

Sensitivity analysis is a critical tool for understanding how variations
in the number of renewable sources, specifically the number of PV
panels and wind turbines, influence the overall performance of a smart
grid system. By fixing the number of diesel generators and batteries at
their optimal values, one can isolate the impact of renewable sources on
key metrics such as total cost, cost of energy (COE), loss of power supply
probability (LPSP), and the dummy load.

The results from the analysis indicate that increasing the number of
PV panels and wind turbines from zero to meet the load demand tends to
increase the total costs and COE to find the optimal variables, as shown
in Fig. 17. However, while the total cost decreases with more renewable
sources, the marginal benefit decreases after reaching a certain
threshold, suggesting an optimal number beyond which additional in-
vestments yield falling returns. In terms of reliability, as the number of
PV panels and wind turbines increases, the LPSP decreases significantly,
reflecting increased energy availability and system resilience. In the
context of the sensitivity analysis, the LPSP serves as a crucial indicator
of system reliability. A value of 0 or lower indicates that the load is fully
satisfied, meaning that the system can meet demand without any
shortfalls. Conversely, a positive LPSP value indicates a failure to meet
the load requirements, reflecting a shortage in the power supply.
Moreover, the results show that the dummy load fluctuates on the basis
of renewable output, further emphasizing the importance of integrating
storage to manage variability. The analysis reveals the value of opti-
mizing numerous renewable resources to achieve a balance between
economic efficiency and system reliability.

More sensitivity analysis has been conducted to focus on examining
the impact of varying the number of DGs while keeping the number of
PV panels, WTs, and batteries at their optimal values. The analysis
evaluates key metrics, including total annual cost, cost of energy (COE),
reliability in terms of LPSP, fuel costs, power load ratios, renewable
fraction (RF), and CO2 emissions.

The results are visualized in Fig. 18, which highlights the relation-
ships between the number of DGs and the aforementioned parameters.

For example, the analysis reveals how the cost, COE, and reliability
change as the number of DG units varies. The red markers on the graphs
indicate the optimal configurations of the PV, WT, DG, and battery
systems, as derived from the optimization process. The analysis shows
that increasing the number of DG installations generally leads to an
increase in CO2 emissions and enhances system reliability, as shown in
the graph of the LPSP. In addition, the renewable fraction (RF) is also
constant because the system configuration should maximize the RES
utilization. Increasing the number of DGs results in increased fuel costs
and CO2 emissions. However, the total cost and COE are more sensitive
to changes in the number of DGs, indicating their crucial role in the
system’s economic performance. These findings provide valuable in-
sights into how different configurations of DGs and renewable energy
sources affect the system’s overall efficiency, cost effectiveness, and
environmental impact.

4.7. Financial analysis

To thoroughly evaluate the proposed energy system configurations,
it is crucial to extend the analysis beyond technical performance and
explore financial metrics that assess the project’s economic feasibility
and long-term sustainability. The integration of renewable energy (RE)
technologies and energy storage solutions involves substantial capital
investment. Key financial metric, such as Payback Period (PBP), is vital
for determining the financial viability of the RES.

As a result, the Discounted PBP for the optimal configured RES is
7.62 years, as shown in Fig. 19. Additionally, the total savings over 25
years amount to $5,241,406.72, while the total operating costs for the
same period are $2,811,330.54. Moreover, the optimal configuration
exhibits a Return on Investment (ROI) of 86.44 %, reflecting strong
financial performance with a positive return. Additionally, it has an
acceptable payback period, indicating a quicker return on investment. A
positive ROI demonstrates that this configuration generates returns that
exceed the initial investment.

4.8. Comparative analysis of the study results with those of previous
studies

This section compares the study results with those of prior research
on hybrid renewable energy systems. Several earlier studies are listed for
analysis, utilizing the LCOE as a crucial metric. The LCOE measures the
energy cost per kW and provides valuable insights into the potential of
hybrid microgrid systems in diverse geographic conditions. Notably, the
comparison does not focus on evaluating the quality of prior studies
solely on the basis of LCOE. However, the objective is to provide energy

Table 6
Comparative analysis of renewable energy configurations with DGs based on the DMOA.

Configurations Available technologies Optimal configuration LCOE (USD/kWh) LPSP NPC (USD) CO2 (tonCO2/year) RF

PV WT DG BESS

PV/WT/BESS/DG 1100 14 1.63 400 0.199 1.9 x 10-8 5798338 714.689 0.7429
PV/BESS/DG 1166.01 0 3.35 56.98 0.26 0.015 7456000 1728.599 0.2696
PV/WT/DG 1100 14 2.23 0 0.20 0.007 5893491 818.601 0.7429
WT/DG 0 14 2.61 0 0.23 0.005 6893054 1246.346 0.4886
PV/DG 1108.96 0 3.35 0 0.27 0.004 7841835 1751.2788 0.2564

Table 7
Comparative analysis of renewable energy configurations without DGs based on the DMOA.

Configurations Available technologies Optimal configuration LCOE
USD/kWh)

LPSP (%) NPC (USD)

PV WT DG BESS

PV/WT/BESS 1100 14 0 400 0.098 0.3129 2850359.554
WT/BESS 0 18 0 1526 0.127 0.4030 3686035.825
PV/BESS 1421 0 0 564 0.041 0.6723 1181376.372
PV/WT 1100 14 0 0 0.085 0.3289 2467124.064
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system designers and organisations with insights into local renewable
resources, using LCOE values as a reference.

Table 8 compares the proposed renewable-based microgrid system
with those of previous studies. The analysis revealed that the hybrid
system incorporating PVs, WTs, DGs, and batteries had the lowest LCOE
among the configurations listed in previous studies. Nevertheless, the
PV/BESS configuration has emerged as the most cost-effective scenario.
Importantly, the first scenario, PV/WT/DG/BESS, was deemed more

reliable on the basis of the earlier discussions presented in the study.

4.9. Recommendations

The PV/WT/BESS/DG microgrid configuration-based DOMA algo-
rithm may be considered a recommended configuration on the basis of
the introduced results and the following main reasons.

Fig. 15. The results of one day of simulation in March via DMOA.
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• The PV/BESS microgrid configuration results in the smallest value of
the LCOE of 0.038, whereas the LPSP has the largest value of 0.679.
On the other hand, the PV/WT/BESS/DG microgrid configuration
results in an LPSP value of 1.9 × 10-− 8%, with an LCOE value of
0.199 USD/kWh. The recommended configuration from a practical
point of view is the PV/WT/BESS/DG, which ensures that the load
demand is met.

• The results show that the configuration-based SSA gives the mini-
mum LCOE, but the values of the LPSP and dummy load are larger
than those of DOMA. Moreover, the two values of the LPSP with the
SSA and DOMA are within the predefined limits.

• The performance of the optimization algorithms serves as a critical
criterion for identifying the best algorithm, with a particular focus on
convergence speed and reliability. This is assessed through multiple
individual runs of the optimization problem. Our findings indicate
that the differential optimization multiagent (DOMA) algorithm has
the best convergence characteristics. Furthermore, the reliability and
statistical results consistently demonstrate its superiority. Therefore,
we strongly recommend the DOMA algorithm for this application.

Fig. 16. Results of one day of simulation in August via the DMOA.
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4.10. Limitations

This study focuses primarily on microgrid optimization using real
data, rather than incorporating forecasting techniques, which in-
troduces limitations in accurately predicting renewable energy genera-
tion and demand. Although the integration of renewable energy sources
and energy storage systems is considered, the model does not fully
address the uncertainties and fluctuations inherent in renewable energy
production. Additionally, the research does not provide an in-depth
analysis of the dynamic interaction between microgrids and larger
utility grids, which could impact the scalability and interoperability of
the proposed solutions. Furthermore, the study lacks a thorough ex-
amination of the integration of fast charging and hydrogen refuelling
stations, which is vital for improving energy mobility options in rural

areas. Another limitation of the paper is the focus on BESSs without
considering alternative storage technologies such as hydro pumped
storage, fuel cells, flywheels, supercapacitors, and thermal storage,
which may offer more environmentally sustainable options in certain
contexts.

5. Conclusions

In this work, various microgrid configurations featuring photovoltaic
and wind power plants and BESS systems, both with and without backup
diesel generators, have been optimally designed and compared to opti-
mize renewable energy systems in Najran city/Saudi Arabia. In addition,
this paper represents the first application of DMOA in optimizing the
design of renewable energy sources (RESs), encompassing WT/PV/DG

Fig. 17. Sensitivity analysis considering the variation in the PV and WT at fixed values of the DG and battery.
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RESs, as well as a BESS. Furthermore, the effectiveness of a hybrid en-
ergy system’s optimal configuration has been confirmed through the
implementation of two optimization algorithms, the WOA and SSA. The
process occurred in various phases. Initially, a comprehensive model for
the energy management system was formulated. Three different WOA,
SSA, and DMOA algorithms are subsequently utilized to minimize the
LPSP and LCOE, with the aim of determining the optimal energy system
configuration. To assess the feasibility of this approach, a case study is
conducted to evaluate the optimal design of the energy system by
applying these optimization techniques. The optimization problem was
addressed via MATLAB software. The results of these studies revealed
that the DMOA outperformed the other algorithms, indicating signifi-
cant progress in the field. Attaining the optimal value of the objective
function 0.2 results in the lowest COE of 0.19 USD/kWh. The SSA and
WOA yielded LCOE values of 0.19 USD/kWh. Furthermore, the fuel costs

associated with the proposed hybrid system are lower than those asso-
ciated with alternative methods, as evidenced by the energy cost derived
from the DMOA method. The simulation results demonstrate that the
DMOA exhibits superior accuracy and promising performance compared
with the WOA and SSA. In addition, the statistical analysis confirmed
that the applied optimization techniques exhibit adequate performance
stability, with the DMOA considered the superior algorithm. In future
work, the studied problem can be formulated as a multiobjective opti-
mization problem with enhanced performance by using a hybrid opti-
mization algorithm considering the uncertainty of RE availability.
Moreover, future research in the field of microgrids should prioritize the
development of advanced forecasting techniques to improve the accu-
racy of renewable energy generation predictions. Furthermore,
advanced methods for optimizing load prioritization, such as real-time
algorithms, can be explored to expand decision-making during power

Fig. 18. Sensitivity analysis considering the variation in the number of DGs at fixed values of the PV, WT and battery.
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Fig. 19. payback periods of the optimal configured RES.

Table 8
Comparison of the findings of the current study with those of previous studies.

Ref Configurations Optimization
Method

Site LCOE (US
$/kWh)

[47] PV/Wind/BESS HOMER Abha, Saudi
Arabia

0.614

[48] PV/WT/DG/
BESS

IGWO El-Baharyia
oasis, Egypt

0.2158

[33] PV/Wind/DG/
BESS

IAOA El Kjharga oasis,
Egypt

0.2606

[49] PV/WT/FC ISCA Gonbad, Iran 0.87
[50] PV/WT/FC FPA Ardabil, Iran 0.52
[34] PV/WT/Tid/

BESS
CSA Fuxin,

Northeast China
0.2045

[51] PV/wind/DG/
BESS

HOMER Kudu village,
Nigeria

0.259

[52] PV/WT/DG/
BESS

GOA Yobe, Nigeria 0.3656

[53] WT/DG/BESS HPSODE-FAM Chinese island,
Jiuduansha

0.056

Outlined PV/WT/BESS/
DG

DMOA Najran, KSA 0.199

Outlined PV/WT/BESS DMOA Najran, KSA 0.098
Outlined PV/BESS DMOA Najran, KSA 0.038
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