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Abstract: In response to the global imperative of mitigating greenhouse gas emissions (GHGs) and
the shifting landscape of business models toward multi-channel structures, this study delves into
the intricacies of a green supply chain. Operating through both online and traditional channels with
uncertain demands, the producer’s distribution strategy prompts an exploration of supply chain
dynamics. Utilizing an integer programming model, this study calculates optimal prices, optimizes
total profit, and minimizes transportation costs to curtail carbon dioxide emissions, depending
on the transportation mode. Additionally, this study incorporates renewable energy sources into
the production and transportation processes to further minimize carbon dioxide emissions. The
integration of renewable energy not only supports environmental goals, but also contributes to the
overall profitability of the supply chain by reducing energy costs. Employing a theoretical technique
for linearization, the model, resolved through the Jimenez and TH methods, demonstrates efficacy in
reconciling economic and environmental goals. The Jimenez method enables the transformation of
fuzzy parameters into deterministic equivalents, allowing for a more reliable optimization during
uncertainty, while the TH method provides an interactive fuzzy multi-objective approach, aligning
the model’s dual objectives for both economic and environmental goals. Notably, when transportation
costs to both markets are equal, the model prioritizes devices with a lower environmental impact,
showcasing adaptability. Furthermore, the proposed solution empowers decision makers to influence
pricing and enhance the entire supply chain’s profitability. In conclusion, this research offers nuanced
insights, strategically aligning economic viability with environmental sustainability in the discourse
on green supply chains.

Keywords: green supply chain; greenhouse gas (GHG); carbon dioxide (CO2); sustainability; integer
programming model

1. Introduction

This study introduces a novel approach by designing a two-channel green supply chain
network, addressing the uncertainties in key parameters. This research combines green
supply chain principles with two-channel networks, focusing on a single product, and a two-
level supply chain involving factories and distribution centers. Emphasis is placed on the
environmental impact of transportation modes between facilities in each channel, directly
influencing greenhouse gas emissions. This study also explores the integration of renewable
energy into supply chain operations. Renewable energy sources, such as solar and wind
power, are leveraged to reduce the carbon footprint of both production and transportation
activities, contributing to the sustainability of the supply chain while maintaining cost-
effectiveness. Each mode varies in cost, time, and environmental effects. The study
comprehensively considers various aspects of supply chain network design, encompassing
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production, pricing, lost sales, related costs, capacity limitations, and delivery time. A
distinctive feature is the incorporation of two sales channels for product distribution.
The first channel involves direct delivery from producer to consumer, while the second
utilizes an intermediary for final customer delivery. Pricing differentials between channels
influence customer demand, causing shifts. Additionally, diverse transportation methods
are evaluated for each market, each with unique characteristics in terms of the cost, delivery
time, and carbon dioxide emissions. Variances in fixed and variable transportation costs
impact the overall cost of product transportation to each market.

This study tackles the urgent need for sustainable practices in supply chains, par-
ticularly as global efforts intensify to reduce greenhouse gas emissions. With industries
increasingly adopting multi-channel distribution, there is a critical gap in the research
on optimizing dual-channel supply chains to meet both economic and environmental
objectives. Current models often lack a comprehensive approach that integrates renewable
energy and emissions reduction within the supply chain. To bridge this gap, our study
introduces a green supply chain model that incorporates renewable energy and minimizes
carbon emissions, thereby aligning financial profitability with environmental responsibility.
This approach offers a novel solution to address the dual objectives of economic efficiency
and sustainability, catering to the evolving needs of modern supply chains.

This paper presents a mixed-integer programming model with dual objectives, aiming
to both maximize the profit of the entire supply chain and minimize greenhouse gas
emissions. Given the NP-hard nature of the mathematical model, a two-step approach is
employed for resolution. Initially, the model is transformed into an equivalent auxiliary
deterministic form, followed by the application of an interactive fuzzy multi-objective
programming approach in the second stage to render the model single-objective and
derive the Pareto optimal solution set. This process results in an equivalent deterministic
single-objective model, effectively solved using IBM CPLEX ILOG software (Version 12.7.1).
Motivated by the imperative to address the challenges posed by the NP-hard complexity
and the growing need to integrate green supply chain design into contemporary markets,
this research seeks to establish a harmonious equilibrium between environmental and
economic considerations. The proposed multi-objective model not only focuses on profit
maximization, but also incorporates environmental factors, specifically greenhouse gas
emissions, as crucial objective functions.

This study’s unique contributions include the development of a dual-channel green sup-
ply chain model that integrates renewable energy sources, optimizing both profitability and
environmental impact. Unlike previous models, this approach addresses uncertainty through
a fuzzy multi-objective framework, which not only accounts for emissions reduction, but also
adapts dynamically to shifting market conditions and demand patterns. This integration of
sustainability into a multi-channel structure represents a significant advancement in green
supply chain research, aligning economic and environmental goals effectively.

2. Literature Review

In contemporary times, the exponential expansion of the economy and human endeav-
ors has resulted in an escalated concentration of greenhouse gases (GHGs) in the Earth’s
atmosphere, consequently contributing to global warming. In response to the heightened
recognition of the adverse impacts of climate change and the imposition of governmental
regulations, there is a pronounced emphasis on mitigating the emissions of greenhouse
gases, with particular emphasis on carbon dioxide (CO2)—the predominant greenhouse
gas attributed to human activities. The principal origins of greenhouse gas emissions are
human activities across diverse economic sectors, encompassing electricity generation,
transportation, industrial processes, commercial and residential domains, and agricultural
practices. As delineated in the 2021 report by the United States Environmental Protection
Agency (EPA), emissions of greenhouse gases (GHGs) originating from both road and
non-road transportation are projected to constitute approximately 29% of the aggregate
greenhouse gas emissions in the United States. This percentage is notably higher than



Sustainability 2024, 16, 9710 3 of 24

the annual growth rate observed in the years spanning from 1990 to 2019 within other
sectors [1]. Emissions from transportation predominantly stem from the combustion of
fossil fuels in various modes, including automobiles, trucks, maritime vessels, trains, and
aircrafts. Recent studies highlight the growing role of renewable energy in supply chains.
For instance, renewable energy in production and logistics has been shown to significantly
lower greenhouse gas emissions, as well as reduce operational costs. The adoption of solar,
wind, and other renewable energy sources offers companies an opportunity to achieving
both economic and environmental objectives in their supply chains. Numerous nations
have implemented regulatory measures, including carbon tax plans, aimed at mitigating
carbon emissions throughout the production-to-transportation continuum. Consequently,
there exists a paramount imperative to diminish carbon emissions in logistics operations
and concurrently enhance energy consumption efficiency [2].

In light of the accelerated progress in information technology within the industrial
landscape, there has been a discernible transformation in consumer procurement patterns.
Specifically, consumers are increasingly engaging in both direct procurement from man-
ufacturing facilities and indirect procurement through distribution centers. This shift
underscores the evolving dynamics of purchasing behavior within the contemporary in-
dustrial context [3]. Conversely, there has been a heightened focus among producers on the
establishment and optimization of direct distribution channels. This strategic emphasis
is exemplified by the fact that 68% of producers of consumer goods have proactively in-
stituted online sales channels. This strategic realignment underscores a concerted effort
within the industrial realm to adapt to contemporary market dynamics and leverage digital
platforms for enhanced consumer engagement and commerce [4]. Henceforth, there is
a discernible imperative to undertake a comprehensive restructuring of the distribution
frameworks within the supply chain. It is pertinent to assert that a pivotal facet in the
formulation of dual-channel supply chain networks lies in the judicious determination
of competitive pricing dynamics between the two distinct distribution channels. This
underscores the criticality of strategic decision making in optimizing supply chain con-
figurations to align with contemporary market demands, thus ensuring competitiveness
and operational efficiency [5]. Hence, the imperative in industrial engineering lies in
competitively attracting consumers through the strategic calibration of optimal pricing
structures, expeditious delivery protocols for goods and services, and establishing direct
communication channels. Borovička [6] introduced a fuzzy multi-objective mathematical
programming model aimed at the environmental optimization of supply chain design in
uncertain conditions. The model addresses the simultaneous minimization of environ-
mental impacts, conventional production costs, and accommodates capacity constraints.
Notably, a methodology grounded in product life cycle assessment is employed to identify
and quantify environmental impacts within this framework. Porkar et al. [7] proposed a
stochastic multi-objective, multi-level, and multi-period model addressing the integrated
logistics network within an environment marked by uncertainty. The primary objectives en-
compass profit maximization, minimization of customer response time, and maximization
of product quality. Notably, the model incorporates non-deterministic parameters, such as
collection and recycling costs, product price, demand rate, and return rate. Yavari et al. [8]
developed a multi-product closed-loop supply chain model that concurrently addresses
network design and supplier selection. The model is formulated within a dual-objective
framework and incorporates a fuzzy environment to enhance its adaptability to uncertain
conditions. Hosseini Dehshiri and Amiri [9] undertook a study focusing on the design of
a closed-loop, multi-cycle, multi-product supply chain network. The model incorporates
environmental and economic objectives while accounting for parameter uncertainties. Fur-
thermore, the design incorporates the concepts of compensable deficiency and discount
to enhance the robustness and practicality of the model. Wang et al. [10] introduced a
nonlinear mixed integer programming model addressing the cumulative production plan-
ning problem within a multi-product, multi-cycle framework in the context of a green
supply chain. The model is developed under the assumption of non-deterministic demand.
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With a primary focus on minimizing total costs, the model incorporates considerations for
the interplay between delivery time, transportation costs, and greenhouse gas emissions
levels, emphasizing the integration of environmental and economic factors in decision
making. Ahmadi Malakot et al. [11] introduced a stochastic mathematical model and a
replenishment policy for perishable products within a centralized two-level supply chain.
Their model incorporates costs associated with various transportation modes, inventories,
environmental impacts, and uncertain demands. Li et al. [12] addressed a green supply
chain network design problem that incorporates a carbon trading program for suppliers.
The objective is to maximize the overall profit of the supply chain. The formulated model
specifies the optimal placement and capacity of facilities, the ideal product flow between
these facilities, and the optimal selling price of goods. Wang and Wan [13] introduced a
multi-objective, mixed-integer, mathematical model that concurrently aims at maximizing
profit and minimizing carbon emissions. The formulated model accounts for the influence
of product price and environmental attributes on customer demand, while also addressing
uncertainties in the production process. Pathak et al. [14] developed a mathematical model
for a two-channel and two-level supply chain comprising a manufacturer and a distributor.
The manufacturer employs both a direct online channel and a traditional retail channel for
product distribution. The study employs the Stackelberg game analysis to determine the
optimal levels of inventory, sales price, and service level for both sales channels. Soleimani
et al. [15] investigated a hierarchical pricing system within a dual distribution channel
employing the Stackelberg game analysis. The study aimed to determine the optimal prices
for the wholesaler, retailer, and direct channel sales price. Nasrollahi et al. [16] developed
a mathematical model to analyze pricing factors in a two-channel system for products
with a short life cycle. The study explored a closed-loop supply chain, where the original
product is distributed through traditional channels, and the reproduced product is sold
via an online channel. The research focused on assessing the influence of two critical
factors: the customer’s tendency to buy reproduced goods and their preference for direct
sales transactions.

Moreover, recent studies have further advanced the discussion on multi-objective opti-
mization in supply chains, particularly in the context of environmental sustainability and
uncertainty. Almotairi et al. [17] introduced a performance analysis of a fully intuitionistic,
fuzzy, multi-objective, multi-item, solid fractional transportation model, emphasizing the
importance of accounting for uncertainties in transportation parameters. Their model not
only addresses the complexities of real-world applications, but also showcases the potential
for integrating fuzzy decision-making processes within supply chain optimization, which is
another significant contribution. El Sayed and Baky [18] explored a multi-choice, fractional,
stochastic, multi-objective transportation problem. Their research highlights the relevance
of incorporating uncertainty in the coefficients of fractional objective functions, providing a
robust framework that can be applied to various real-world transportation scenarios. Ad,
El Sayed et al. [19] developed an interactive approach for solving a bi-level, multi-objective
supply chain model, focusing on minimizing transportation costs and delivery time under
uncertain demand conditions. This study illustrates the practical applicability of inter-
active methodologies in supply chain management, further reinforcing the significance
of addressing uncertainty in decision-making processes. These contributions underscore
the ongoing evolution in supply chain design, particularly concerning the integration of
sustainability goals alongside traditional economic objectives. Our research builds on these
insights by addressing gaps in the existing literature related to dual-channel distribution
strategies, environmental considerations, and the optimization of pricing decisions in a
comprehensive framework.

This review of the existing literature highlights a shortage of articles in the field of
supply chain design that simultaneously address environmental concerns, the integration
of dual online and traditional sales channels, and pricing decisions. Prior research has often
been reliant on supply chain models containing restrictive assumptions. This article offers
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unique contributions, each designed to address the existing research gaps relative to prior
studies. We consider each of these contributions as the objectives of this research:

• Development of a Fuzzy Multi-Objective Optimization Model for a Dual-Channel
Green Supply Chain

This objective emphasizes the novelty of the proposed model, designed to optimize
both economic and environmental outcomes while addressing uncertainties in parame-
ter values.

• Introduction of a Multi-Objective Framework to Integrate Economic and Environ-
mental Dimensions

The model provides a balanced approach that supports decision making across both
economic and sustainability goals, ensuring alignment with environmental objectives.

• Linearization of the Nonlinear Model to Enable Computational Efficiency

Using precise linearization techniques, the model’s nonlinear components are trans-
formed into an equivalent linear format, facilitating a more efficient computational solution.

• Evaluation of Capacity Constraints and Optimal Allocation of Transport Resources
by Route

This objective addresses the practical limitations in transport capacity and vehicle
allocation, tailored for each route to enhance operational feasibility.

• Implementation of a Two-Step Solution Method for the Multi-Objective Fuzzy Model

This objective clarifies the use of a structured two-step approach to resolve the fuzzy
multi-objective model, balancing computational efficiency with accuracy in decision making.

3. Model Formulation

This research introduces a mathematical model for optimizing the design of a two-
channel supply chain network, accounting for environmental impacts and parameter
uncertainties. The suggested model employs a formulation based on mixed-integer pro-
gramming, integrating dual objectives to maximize profits and minimize greenhouse gas
emissions. The structured supply chain encompasses several manufacturing plants, dis-
tributors, a direct channel serving Region 1 customers, and an indirect channel catering to
Region 2 customers, as illustrated in Figure 1.
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This model is intended to guide strategic decision making in multi-channel green
supply chain networks. The dual focus on profitability and environmental sustainability,
including emissions reduction and renewable energy integration, underscores its appli-
cation to long-term planning and optimization. While tactical and operational decisions
may be influenced by the outcomes of this model, the primary focus remains on achieving
overarching, sustainable goals within a long-term planning horizon.

In Region 1, customers utilize the direct channel (internet) to place orders with factories,
employing a singular mode of transportation that results in expedited delivery, but incurs
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higher pollution levels and increased costs compared to the indirect channel. In a multi-
period supply chain scenario, the inventory is consolidated with the primary supplier.
Conversely, Region 2 customers engage the traditional channel with a retailer intermediary
for order placement in the supply chain. Within this sales channel, goods are dispatched
using various transportation modes, each associated with distinct carbon dioxide emissions
and fixed and variable transportation costs. The formulated Mixed-Integer Nonlinear
Programming (MINLP) model is characterized as single period, single product, and multi-
level. The model includes a renewable energy factor (REi) in the production cost and
emissions reduction calculations. Renewable energy is assumed to lower production costs
and reduce greenhouse gas emissions (GHFis) in comparison to traditional energy sources.
The impact of renewable energy on overall supply chain performance is incorporated into
both the profit maximization and emissions reduction objectives. The single-round nature
of the supply chain leads to the omission of inventory and associated maintenance costs at
production and distribution centers. Furthermore, all fixed costs are computed over a single
period. This model accounts for uncertainties in the environment, influencing primary
customer demand, delivery time to the final customer, and carbon dioxide emissions
resulting from product production and transportation.

3.1. Assumptions

The model is predicated on several key assumptions:

• This model uniquely assumes that renewable energy sources (e.g., solar and wind)
in production and transportation activities not only reduce carbon emissions, but
also contribute to cost-efficiency. Unlike previous models, this approach treats re-
newable energy integration as a variable factor, allowing the model to dynamically
adjust to environmental and operational changes, thus enhancing both economic and
environmental objectives within the dual-channel structure.

• The positions of primary customers, factories, and distribution centers are known and
remain constant.

• Each producer has the capability to dispatch products to both direct and indirect customers.
• A delivery time constraint is imposed on sending goods to markets for both direct and

indirect channels.
• Factories and distribution centers possess a limited capacity for sending goods.
• Deficiency is permissible, and any surplus beyond ordered quantities is consid-

ered lost.
• The assumption is made that the entire production during the period is allocated by

the factory to the direct market and distribution centers.
• Variations in production costs and greenhouse gas emissions from factories arise due

to diverse production technologies.
• Each mode of transport incurs fixed costs for sending and variable costs for each unit

of goods dispatched.

3.2. Model Indexes

i : Index of candidate locations for factories, i = {1, 2, and 3, . . . ., I}
j : Index of candidate locations for distributors, j = {1, 2, and 3, . . . ., J}
m1 : Index of specific locations for online customers, m1 = {1, 2, and 3, . . . ., M1}
m2 : Index of specific locations for traditional customers, m2 = {1, 2, and 3, . . . ., M2}
n : Index to identify the type of transportation, n = {1, 2, and 3, . . . ., N}

3.3. Parameters
∼

UD1 : Uncertain basic product demand in the market m1
∼

UD2 : Uncertain basic product demand in the market m2
FCFi : The f ixed cost o f setting up the f actory i
FCDj : The f ixed cost o f setting up the distributor j
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FCTn : The f ixed cost o f transporting goods by means o f transport n
VCTn : The variable cost o f sending goods by means o f transport n per unit o f distance
LVn : Product carrying capacity f or the nth vehicle
CGi : The cost o f creating a unit o f goods in the f actory i
MFi : The maximum capacity o f the f actory i
MDj : The maximum capacity o f distributor j
PLm1 : Penalty f or each lost sales unit in the online channel
PLm2 : Penalty f or each lost sales unit in the triditional channel

∼
DTDjm2n : Non − deterministic delivery time, f rom distributor jto indirect market m2 through
means of transport n

∼
DTFim1n : Non − deterministic delivery time f rom f actory i to direct market m1 by means of
transport n
MDTm1 : Maximum possible delivery time f or market m1
MDTm2 : Maximum possible delivery time f or market m2
NFMmax

im1n : The maximum available number of means of transportation n from factory i to
market m1
NFDmax

ijn : The maximum available number of means of transportation n from factory i to distribution
center j
NDMmax

jm2n : The maximum available number o f means o f transportationn f rom the distributor j to
the market m2∼
GHFi : Uncertain amount of carbon dioxide emissions for producing each unit of product in the f actory i

∼
GHVn : Uncertain amount of carbon dioxide emissions for the nth means of transport per unit distance
DFDij : Distance between f actory i and distribution center j
DDMjm2 : Distance between distribution center j and market m2
DFMim1 : Distance between f actory i and market m1
PS : price elasticity o f demand
α : Substitution degree between two distribution channels (0 ≤ α ≤ 1)
N : A big number

3.4. Variables

FLi =

{
1
0

i f an open f actory is located in candidate location i
Otherwise

DLj =

{
1
0

i f a distribution center is placed in candidate location j
Otherwise

TFMim1n =

{
1
0

i f there is transportation f rom f actory i to market m1
Otherwise

TDMjm2n =

{
1
0

i f goods are transported f rom distributor j to market m2
Otherwise

TFDijn =

{
1
0

i f the shipment is made f rom f actory i to distributor j
Otherwise

Dm1 : The amount o f customer demand m1 in the direct channel (online)
Dm2 : The amount o f customer demand m2 in the indirect (traditional) channel
QFDijn = The amount of goods transported from factory i to distributor j through thenth

means o f transportation
QFMim1n = The amount of goods transported from factory i to market m1 through thenth

means o f transportation
QDMjm2n = The amount of goods transported from distributor j to market m2 through thenth

means o f transportation
SPm1 = Selling price per product unit in the m1 market
SPm2 = Selling price per product unit in the m2 market
NVFDijn = The number o f means o f transportation n f rom f actory i to distributor j
NVFMim1n = Number o f means o f transportation n f rom f actory i to market m1
NVDMjm2n = Number o f means o f transportation n f rom distributor j to market m2
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3.5. Objective Functions of the Model

In this section, a conceptual two-objective mathematical programming model is in-
troduced, where two distinct objective functions are delineated, namely economic and
environmental considerations. The primary objective function seeks to maximize the ag-
gregate profit within the framework of the supply chain design, encompassing various
constituent elements, such as:

Income generated from the sale of products:

∑
i, m1, n

SPm1.QFMim1n + ∑
j, m2, n

SPm2.QDMjm2n (1)

Fixed cost of setting up factories and distribution centers:

∑
i

FCFi.FLi + ∑
j

FCDj.DLj (2)

Production cost:

∑
i, j, n

CGi.QFDijn + ∑
j, m1, n

CGi.QFMim1n (3)

Fixed cost of transportation:

∑
i, j, n

NVFDijn.FCTn + ∑
i, m1, n

NVFMim1n.FCTn + ∑
j, m2, n

NVDMjm2n.FCTn (4)

Variable cost of transportation:

∑
i, j, n

NVFDijn.DFDij.VCTn + ∑
i, m1, n

NVFMim1n.DFMim1 .VCTn + ∑
j, m2, n

NVDMjm2n.DDMjm2 .VCTn (5)

Shortage cost (lost sales):

∑
m1

PLm1

(
Dm1 − ∑

i, n
QFMim1n

)
+ ∑

m2

PLm2

(
Dm2 − ∑

j, n
QDMjm2n

)
(6)

The initial component of the objective function within the context of the problem
seeks to optimize the aggregate profit by maximizing the yield derived from the disparity
between mathematical expressions 2 through 6 and Equation (1).

Equation (7) constitutes the subsequent component of the model’s objective func-
tion, designed to minimize carbon dioxide emissions in the context of production and
transportation activities within the supply chain network.

Min Z2 :
(

∑
i, j, m1, n

∼
GHFi

(
QFMim1n + QFDijn

)
+ ∑

i, m1, n

∼
GHVn.DFMim1 .NVFMim1n

+ ∑
i, j, n

∼
GHVn.DFDij.NVFDijn + ∑

i, m2, n

∼
GHVn.DDMjm2 .NVDMjm2n

) (7)

3.6. Constraints

∑
i,n

QFMim1n ≤ Dm1 ∀ m1 (8)

∑
j, n

QDMjm2n ≤ Dm2 ∀ m2 (9)

∑
m2, n

QDMjm2n ≤ ∑
i,n

QFDijn ∀ j (10)
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∑
m1, n

QFMim1n + ∑
i,n

QFDijn ≤ MFi.FLi ∀ i (11)

∑
i,n

QFDijn ≤ MDj.DLj ∀ j (12)

∑
i,n

QFDijn ≤ N.DLj ∀ j (13)

TFMim1n.
∼

DTFim1n ≤ MDTm1 ∀ i, m1, n (14)

TDMjm2n.
∼

DTDjm2n ≤ MDTm2 ∀ j, m2, n (15)

NVFMim1n ≤ TFMim1n.NFMmax
im1n ∀i, m1, n (16)

NVFDijn ≤ TFDijn.NFDmax
ijn ∀i, j, n (17)

NVDMjm2n ≤ TDMjm2n.NDMmax
jm2n ∀j, m2, n (18)

TFMim1n

NFMmax
im1n

≤ NVFMim1n ≤ TFMim1n.NFMmax
im1n ∀i, m1, n (19)

TFDijn

NFDmax
ijn

≤ NVFDijn ≤ TFDijn.NFDmax
ijn ∀i, j, n (20)

TDMjm2n

NDMmax
jm2n

≤ NVDMjm2n ≤ TDMjm2n.NDMmax
jm2n ∀j, m2, n (21)

NVFMim1n − 1 +
1
N

≤
QFMim1n

LVn
≤ NVFMim1n ∀i, m1, n (22)

NVFDijn − 1 +
1
N

≤
QFDijn

LVn
≤ NVFDijn ∀i, j, n (23)

NVDMjm2n − 1 +
1
N

≤
QDMjm2n

LVn
≤ NVDMjm2n ∀j, m2, n (24)

Dm1 =
∼

UD1 − PS1. SPm1+ ∝1 SPm2 ∀m1, m2 (25)

Dm2 =
∼

UD2 − PS2. SPm2+ ∝2 SPm1 ∀m1, m2 (26)

QFDijn, QDMjm2n, QFMim1n, SPm1, SPm2 ≥ 0 ∀i, j, n, m1, m2 (27)

TFDijn, TFMim1n, TDMjm2n, FLi, DLj ∈ {0, 1} ∀i, j, n, m1, m2 (28)

Constraints (8) and (9) pertain to the fulfillment of customer demand across both
direct and indirect sales channels, acknowledging the potential for lost sales in either
avenue. Constraint (10) ensures that the flow of output from distributors to the second
market remains below the input flow to the distributor, while Constraint (11) posits that
the aggregate output from factories does not surpass the production capacity, contingent
upon the factory being operational. Constraint (12) guarantees that the total input flow to
distributors does not exceed their capacity, contingent upon the distributor facility being
operational. Additionally, Constraint (13) ensures the conveyance of products from the
factory to the distributor only when the distribution center is operational.
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Restrictions (14) and (15) delineate temporal constraints governing the delivery of
products to markets. Constraints (16) to (21) prescribe limitations on the available means of
transportation between facilities and their utilization for shipments. Restrictions (22) to (24)
elucidate the interplay between the number of utilized transportation means and their
carrying capacity, affirming that the chosen transportation quantity aligns with the volume
of goods dispatched between facilities.

Constraint (25) embodies the customer demand function in the direct channel, while
Constraint (26) characterizes the demand function in the indirect channel. In the context of
two-channel distribution networks, the demand for each channel is contingent upon the
pricing of both channels. The parameters PS1 and PS2 denote the price elasticity of demand
in the direct and indirect channels, respectively, with the assumption that PS1 > PS2. Pa-
rameters ∝1 and ∝2 signify the price sensitivity of each distribution channel to the product
price in the other channel, reflecting the magnitude of demand shift between channels.
The hypothesis PS> α posits that an increase in the unit price results in more customers
discontinuing purchases in one distribution channel compared to those migrating to the op-

posing channel due to the price escalation. The non-deterministic parameters
∼

UD1 and
∼

UD2
signify the market size for products in both the direct and indirect markets.

Constraints (27) and (28) delineate the permissible range for decision variables in the
given context.

3.7. Linearization

Equation (1) denotes the multiplication of an integer variable and a continuous vari-
able, introducing nonlinearity to the model. In order to achieve linearization of the model,
the variables QFMim1n and QDMjm2n are reformulated through the representation of a set
of zero and one binary variables, facilitated by relationships (29) to (31).

QFMim1n =
r−1

∑
h=0

2hyh + (UL − 2r + 1)yr (29)

Q < UL (30)

2r < UL < 2r+1 (31)

In the formulation, the variables yhim1n (for h = 0, . . ., r − 1) and yr (for h = r) represent
binary variables, assuming values of zero or one. The variable UL denotes the upper limit
pertaining to the quantity of goods transported to each market. In the current model, UL
is equivalent to the demand quantity for both the direct and indirect markets. Through
the implementation of the aforementioned modifications, the initial term of the nonlinear
expression (1) is reconfigured and expressed as Equation (32).

r−1

∑
h=0

2h.SPm1.yhim1n + (UL − 2r + 1).SPm1.yr (32)

Equation (32) presents the multiplication of a binary variable by a continuous variable,
thus retaining its inherent nonlinearity. Consequently, an assumption is posited:

USPhim1n = SPm1.yhim1n (33)

Ultimately, through the implementation of the aforementioned modifications, Equation (1)
within the objective function, f1, is reformulated as follows:



Sustainability 2024, 16, 9710 11 of 24

r−1
∑
h

∑
i,m1,n

2h.USPhim1n

+ ∑
i,m1,n

(UL − 2r + 1).USPhim1n

+
r−1
∑
h

∑
j,m2,n

2h.USPhjm2n + ∑
j,m2,n

(UL − 2r + 1).USPhjm2n

(34)

Subsequently, the ensuing equations are incorporated into the constraints of the model:

QFMim1n = ∑r−1
h=0 2hyhim1n + (ULm1 − 2r + 1)yrim1n ∀ i, m1, n (35)

SPm1 −
[(

1 − yhim1n
)

N
]
≤ USPhim1n ≤ SPm1 ∀ h, i, m1, n (36)

USPhim1n ≤ yhim1n.N ∀ h, i, m1, n (37)

QDMjm2n = ∑r−1
h=0 2hyhjm2n + (ULm2 − 2r + 1)yrjm2n ∀ j, m2, n (38)

SPm2 −
[(

1 − yrjm2n
)

N
]
≤ USPhjm2n ≤ SPm2 ∀ h, j, m2, n (39)

USPhjm2n ≤ yrjm2n.N ∀ h, j, m2, n (40)

4. Methodology

To address the presented fuzzy multi-objective model, characterized by imprecise
coefficients within both the objective function and constraints, a two-stage solution method-
ology is employed. During the initial phase, a transformation of the primary model into an
equivalent auxiliary deterministic model is executed. This procedure employs a fusion of
methodologies previously utilized by researchers in [20,21]. The methodology leverages
robust mathematical constructs, such as “expectation interval” and “expectation value”,
thereby ensuring computational efficiency. Notably, this approach preserves linearity and
avoids augmenting the count of objective functions and inequality constraints.

In the subsequent stage, the interactive, fuzzy, multi-objective programming approach,
denoted as the TH method and introduced by Torabi and Hassini [22], is implemented. The
proposed methodology incorporates renewable energy in production and transportation,
adjusting the model to reflect the associated reduction in both energy costs and carbon
emissions. The model quantifies the cost savings and environmental benefits achieved
through the use of renewable energy, adding an additional layer of optimization in the
pursuit of a sustainable supply chain. This method facilitates the conversion of the single-
objective model and facilitates the derivation of the set of Pareto optimal solutions.

4.1. Equivalent Deterministic Model

The approach presented by Jiménez et al. [20] focuses on elucidating the concepts of the
“expected interval” (EI) and the “expected value” (EV) for a fuzzy number. Equation (41)
explicitly outlines the membership function of the triangular fuzzy number,

∼
ω:

θ∼
ω(x)

=


fω(x) = x−ωw

ωo−ωw i f ωw ≤ x ≤ ωo

1 i f x = ωo

gω(x) = ωt−x
ωt−ωo i f ωw ≤ x ≤ ωo

0 i f x ≤ ωw or x ≥ ωt

(41)

As outlined in the work by Jiménez and collaborators [20], the articulation of EI and
the anticipated value, EV, for a fuzzy number is presented as follows:

EI
(∼

ω
)
= [Eω

1 , Eω
2 ] =

[∫ 1

0
f−1
ω (x)dx,

∫ 1

0
g−1

ω (x)dx
]
=

[
1
2
(ωw + ωo),

1
2
(
ωo + ωt) ] (42)
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EV
(∼

ω
)
=

Eω
1 + Eω

2
2

=
ωw + 2ωo + ωt

2
(43)

For two given fuzzy numbers, denoted as
∼
a and

∼
b , the quantification of the degree of

membership of
∼
a surpassing

∼
b is explicated as follows:

θN

(
∼
a ,

∼
b
)
=


0 i f Ea

2 − Eb
1 < 0

Ea
2−Eb

1
Ea

2−Eb
1−(Ea

1−Eb
2)

i f 0 ∋
[

Ea
1 − Eb

2, Ea
2 − Eb

1

]
1 i f Ea

1 − Eb
2 > 0

(44)

When the value of θN(
∼
a ,

∼
b) ≥ β, the assertion is made that

∼
a is greater than or equal

to
∼
b by at least the degree represented by β, as illustrated by the representation

∼
a β ≥

∼
b .

For any given pair of fuzzy numbers, denoted as
∼
a and

∼
b , it is posited that

∼
a re-

lating to
∼
b is equivalent to the probability denoted as β if the following relationships

concurrently hold:
∼
a β

2
≥

∼
b and

∼
a β

2
≤

∼
b (45)

Equation (45) is synonymous with Equation (46).

β

2
≤ θN

(
∼
a ,

∼
b
)
≤ 1 − β

2
(46)

Utilizing the defined concepts of EI and EV within the context of fuzzy numbers,
we systematically formulate the auxiliary deterministic model aligned with the proposed
two-channel green supply chain network design model as follows:

Min Z2 :

(
∑

i, j, m1, n

(
GHFω

i +2GHFo
i +GHFt

i
4

)(
QFMim1n + QFDijn

)
+ ∑

i, m1, n

(
GHVω

i +2GHVo
i +GHVt

i
4

)
.DFMim1 .NVFMim1n

+ ∑
i, j, n

(
GHVω

i +2GHVo
i +GHVt

i
4

)
.DFDij.NVFDijn

+ ∑
i, m2, n

(
GHVω

i +2GHVo
i +GHVt

i
4

)
.DDMjm2 .NVDMjm2n

)
(47)

S.t.[(
β

2

)
UDt

1 + UDo
1

2
+

(
1 − β

2

)
UDω

1 + UDo
1

2

]
− (PS1·SPm1 + α1.SPm2) ≤ Dm1 ∀ m1, m2 (48)

[(
1 − β

2

)
UDt

1 + UDo
1

2
+

(
β

2

)
UDω

1 + UDo
1

2

]
− (PS1·SPm1 + α1.SPm2) ≥ Dm1 ∀ m1, m2 (49)

[(
β

2

)
UDt

2 + UDo
2

2
+

(
1 − β

2

)
UDω

2 + UDo
2

2

]
− (PS2·SPm2 + α2.SPm1) ≤ Dm2 ∀ m1, m2 (50)[(

1 − β

2

)
UDt

2 + UDo
2

2
+

(
β

2

)
UDω

2 + UDo
2

2

]
− (PS2·SPm2 + α2.SPm1) ≥ Dm2 ∀ m1, m2 (51)[

(β)
DFDo

jm2n + DFDt
jm2n

2
+ (1 − β)

DFDω
jm2n + DFDo

jm2n

2

]
TDMjm2n ≤ MDTm2 ∀ j, m2, n (52)
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[
(β)

DFDo
jm1n + DFDt

jm1n

2
+ (1 − β)

DFDω
jm1n + DFDo

jm1n

2

]
TDMjm2n ≤ MDTm1 ∀ i, m1, n (53)

The formulated mathematical expressions are correspondingly synonymous with the
fuzzy objective function denoted as (7) and the fuzzy constraints specified by (14), (15),
(25), and (26).

4.2. Fuzzy Solution Approach

In the prescribed methodology for addressing the non-deterministic and multi-objective
mathematical model, a dual-stage solution strategy amalgamating the programming elu-
cidated in the antecedent section and the TH method is employed. A key merit of this
approach lies in its heightened adaptability, affording the capacity to quantify and modu-
late the level of goal satisfaction in accordance with the preferences of the decision maker.
In the antecedent section, we derived an equivalent deterministic auxiliary model. In this
phase, the multi-objective deterministic model undergoes a transformation into a singular-
objective model predicated on the priorities set forth by the decision maker. The procedural
sequence of this method is delineated as follows:

First Step: Ascertaining the triangular distributions corresponding to the fuzzy param-
eters inherent in the problem and articulating the multi-objective complex integer linear
programming model.

Second Step: Converting the fuzzy objective functions into deterministic objective
functions through the application of the expected value methodology based on imprecise
parameters.

Third Step: Establishing the value of α and de-fuzzifying the constraints, thereby
formulating the equivalent auxiliary deterministic model.

Step Four: Identifying the β-positive ideal solution (β-PIS) and β-negative ideal
solution (β-NIS) for every objective function within a β-feasible level.

Fifth Step: Ascertaining the linear membership function associated with each objective
function, as articulated by Equations (54) and (55) delineating the functional expressions
for the respective objectives.

θ1(x) =


1 i f z1 < zβ−PIS

1
zβ−NIS

1 −z1

zβ−NIS
1 −zβ−PIS

1

i f zβ−PIS
1 ≤ z1 ≤ zβ−NIS

1

0 i f z1 > zβ−NIS
1

(54)

θ2(x) =


1 i f z2 < zβ−PIS

2
zβ−NIS

2 −z2

zβ−NIS
2 −zβ−PIS

2

i f zβ−PIS
2 ≤ z2 ≤ zβ−NIS

2

0 i f z2 > zβ−NIS
2

(55)

Sixth Step: Converting the multi-objective deterministic complex integer linear model
into a singular-objective model through the application of the Torabi and Hassini cumula-
tive function, as expounded in reference [22].

maxδ(x) = γδ0 + (1 − γ)∑
r

φrθr(x) (56)

S.t.
δ0< θr(x), r = 1, 2 (57)

x∈ F(x), δ0 and δ ∈ [0, 1] (58)

This ensures that F(x) constitutes the feasible region encompassing the variables inher-
ent in the equivalent deterministic model, with θr(x) serving as the parameter denoting
the degree of satisfaction for the rth objective function. φr and γ play pivotal roles in
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delineating the significance attributed to the rth objective function and determining the
compensation coefficient, respectively.

Seventh Step: Identifying the values of γ and φr , and subsequently solving the
associated single-objective complex integer linear programming model. Should the decision
maker find the current solution satisfactory, the solution process concludes; otherwise,
proceed to Step 3 to obtain an alternative solution.

5. Verification of the Model and Analysis of Scenarios

In this section, the proposed model and solution method are validated through a
numerical test using IBM ILOG CPLEX Optimization Studio software (Version 12.7.1).
Triangular fuzzy numbers are generated by randomly generating the most probable value
of each ωo parameter using Table 1. Subsequently, utilizing a uniform distribution of
two random numbers (h1, h2) within the range of 0.2 to 0.8, optimal pessimistic (ωw) and
optimistic (ωt) values of the fuzzy number are computed based on the provided relations.

Table 1. Source of random generation of datasets.

Parameter Random
Distribution of Data Parameter Random

Distribution of Data

UD1 U(360, 400) DTFim1n U(24, 35)

UD2 U(360, 400) DTDjm2n U(36, 48)

FCFi U(80, 000, 90, 000) MDTm1 U(30, 33)

FCDj U(60, 000, 70, 000) MDTm2 U(40, 45)

CGi U(200, 205) GHFi U(4.5, 5)

FCTn U(70, 90) GHVn U(0.6, 2.3)

VCTn U(0.02, 0.05) LVn U(30, 50)

MFi U(200, 250) NFMmax
im1n U(5, 8)

MDj U(100, 110) NFDmax
ijn U(5, 8)

PLm1 U(50, 90) NDMmax
jm2n U(5, 8)

PLm2 U(50, 75)

The evaluation of model performance is based on two principal criteria: economic
performance, quantified by total profit maximization, and environmental performance,
quantified by the reduction in carbon emissions. These criteria support a balanced assess-
ment of the model’s dual objectives. Additionally, a sensitivity analysis was performed to
examine how fluctuations in pricing and demand impact these criteria, offering further
insights into the model’s stability and effectiveness across various scenarios.

ωt = (1 + h1)ω
o (59)

ωw = (1 − h2)ω
o (60)

To estimate the parameters of
∼

GHFi and
∼

GHVn, Table 2 is utilized. This table provides
information on greenhouse gas emissions levels for various types of road transportation,
considering both their carrying capacity and per-unit distance.

Given the elevated relative importance assigned to the first objective function, we
established the values (φ1, φ2) as (0.3, 0.7) to address the sample problem. In pursuit
of unbalanced solutions with a heightened satisfaction degree level for the first objective
function, the parameter γ is set to 0.4. Table 3 presents the values of the objective functions’
components and their respective degrees of satisfaction in the TH method, following the
resolution of the sample problem with the parameters outlined in Table 1.
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Table 2. Emissions levels of greenhouse gases for different vehicles [1].

Vehicle Type Weight of
Cargo [tons]

Travel Distance
[kilometers]

Transportation Effort
[ton-kilometers] CO2 [kg] Source

1 Petrol van 5 12,000 60,000 19,320 [1]

2 Diesel van 5 12,000 60,000 62,100 [1]

3 Compact truck 5 12,000 60,000 15,120 [1]

4 Intermediate truck 5 12,000 60,000 10,620 [1]

5 Large truck 5 12,000 60,000 7440 [1]

6 Urban trailer 5 12,000 60,000 7380 [1]

7 Standard trailer 5 12,000 60,000 4440 [1]

8 Semi-trailer 5 12,000 60,000 3780 [1]

9 Mega-trailer 5 12,000 60,000 3480 [1]

Note: The CO2 emissions values provided in this table are sourced from the “EPA Report, 2021” and represent
estimated emissions based on average fuel consumption and emissions rates for each vehicle type. The emissions
levels are calculated by considering standard transportation distances and weights. The payload capacities listed
are based on standardized truck size classifications, reflecting typical values within the industry for each vehicle
type. These standardized capacities ensure consistency in emissions calculations and align with industry practices
for vehicle classifications.

Table 3. The numerical outcomes of the objective functions within the specified scenario.

(φ1,φ2)= (0.7, 0.3),γ= 0.4,β= 0.9

Objective Functions Components of Objective
Functions Components Value Objective Function

Values
Degree of Satisfaction

(θr(x))

z1

Revenue from product sales 409,190

50,717 0.872

Fixed cost of setting
up facilities 307,720

Production cost 49,400

Transportation’s constant
expense 1290

Transportation’s fluctuating
expenses 59.46

Cost of deficiency 0

z2 Co2 emissions 8073.9 8073.9 0.529

The decision variables for the problem encompass the demand associated with both
direct and indirect markets, the pricing of the product in each market, the variable repre-
senting the flow of goods among the supply chain facilities, and the quantity and type of
transportation means employed for goods transportation, as illustrated in Figure 2.

In assessing the pricing strategy for distribution channels, careful consideration is
given to both the price sensitivity of customer demand (PS) and the degree of substitution
among distribution channels (α), particularly within the larger direct distribution channel
denoted as (α1, α2 = (0.3, 0.2) and as (PS1, PS2) = (0.5, 0.4).

The direct distribution channel exhibits a noticeable disparity in the quantity of de-
mand and dispatched goods when compared to the traditional channel. Additionally,
in the resolved sample problem, the model takes into account the higher level of CO2
emissions associated with transportation vehicles employed in the direct market, owing
to the specific vehicle type selected. Consequently, the model exhibits a preference for
dispatching fewer goods to the initial market, thereby determining optimal prices within
the respective channels. As the demand for each channel is contingent on the pricing of
both channels, disparities in prices between the two channels can prompt shifts in customer
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demands between them. The heightened sensitivity of demand to pricing within the direct
channel results in a more pronounced impact on the demand from online customers.
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The quantitative and categorical attributes of the transportation fleet employed are
systematically documented within Table 4. Each cell in the table is structured to denote
the pertinent details, where the initial numerical value signifies the count of transportation
vehicles, while the subsequent numerical entry designates the specific type of vehicle. To
illustrate, the notation “2-3” conveys that products originating from Manufacturer 1 have
been transported to Distribution Center 3, utilizing three distinct transportation vehicles of
type 2.

Table 4. The variable values denoting the quantity and classification of vehicles as derived from the
model’s output.

Distribution Centers Direct Channel Customers (m1) Indirect Channel Customers (m2)

1 2 3 1 2 3 1 2 3

Factories
1 0 0 3-2 0 0 2-1 0 0 0

2 0 1-3 0 2-1 2-1 0 0 0 0

Distribution
centers

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 1-3

3 0 0 0 0 0 0 2-2 2-2 0

In the envisaged scenario, the selection of transportation modalities has been metic-
ulously orchestrated to facilitate the conveyance of goods to the direct market through
vehicles characterized by diminished capacity and reduced transportation costs. Addi-
tionally, incorporating renewable energy into production processes, such as solar or wind
energy, further reduces operational costs and carbon dioxide emissions. This shift to re-
newable energy demonstrates a significant impact in lowering the overall environmental
footprint of the supply chain, while maintaining cost-effectiveness. Through a comprehen-
sive analysis, encompassing the computation of fixed and variable transportation costs
alongside the quantification of goods dispatched to respective markets, the per-unit trans-
portation cost for goods destined for the direct market is determined to be 4.12 units, while
that for the indirect market stands at 6.5 units.

Concurrently, the emissions of carbon dioxide (CO2) attributable to the utilized trans-
portation means within the distribution channel surpass those associated with the con-
ventional channel. Notwithstanding the aforementioned conditions, the volume of goods
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dispatched to the indirect sales market, as revealed in the output of the sample problem,
exceeds that directed to the online market.

To elucidate the influence of individual cost factors and transportation expenses on the
demand generated by each market, an additional illustrative problem has been formulated
under the premise of equivalent transportation costs for goods in both markets. The ensuing
outcomes are systematically presented in Table 5 for comprehensive analysis and scrutiny.

Table 5. The output of scenario 2 in the case of equal transportation costs.

(φ1,φ2)= (0.7, 0.3),γ= 0.4,β= 0.9

Direct distribution channel
Demand 29-30-29

Price 1653

Indirect distribution channel
Demand 53-55-53

Price 1642

Objective function values
z1 50,742

z2 8088.5

The degree of contentment derived from achieving the objective function
θ1 0.919

θ2 0.140

The outcomes delineated in Table 5 reveal a discernible trend, where the escalation
of transportation costs within the direct distribution channel precipitates a concomitant
reduction in the demand observed within this particular channel, as juxtaposed against
the baseline scenario. The discernible variance in demand between the first and second
markets is primarily attributable to the elevated level of equipment wastage linked to
transportation in the direct distribution channel. This elucidative scenario underscores
that, in instances where transportation costs are equitably distributed for the dispatch of
goods to both markets, there is a predilection toward the utilization of transportation means
characterized by lower carbon dioxide emissions. Consequently, a discernible reduction in
the quantity dispatched to the first market, in comparison to the initial scenario, is evident.
The augmentation in demand disparity between the two channels is also reflected in the
discernible optimal price differential.

6. Sensitivity Analysis

In this segment, an examination of the sensitivity of the objective functions to varia-
tions in the coefficients associated with the price–demand relationship and the cumulative
function TH is undertaken. The ensuing results are comprehensively documented, encom-
passing the values of the objective functions, their respective levels of satisfaction, and the
pertinent variables associated with both price and demand.

The assessment seeks to shed light on the impact of alterations in the specified coeffi-
cients on the overall optimization objectives. Through a systematic analysis, the sensitivity
analysis elucidates the degree to which changes in these coefficients influence the effective-
ness and performance of the model, providing valuable insights into the robustness and
reliability of the established optimization framework. The reported outcomes provide a
nuanced understanding of the interplay between key parameters and the achievement of
optimal solutions within the industrial engineering context under consideration.

6.1. Sensitivity Analysis of Price–Demand Parameters in Modeling

Leveraging the dimensions and parameters elucidated in the preceding section, a
rigorous sensitivity analysis is performed of the PS and α parameters.

Initially, a systematic exploration involving varied values of parameter α has been
conducted, culminating in the determination and documentation of optimal values for
SPm1, SPm2, Dm1 , and Dm2 , along with the corresponding outcomes for objective functions
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and the respective degrees of satisfaction of the defined objectives. These comprehensive
findings are systematically presented in Table 6. To execute the numerical assessment, a
conjecture is made, where the assumed price sensitivity of demand for both the first and
second markets is set at 0.4.

Table 6. Optimal decision variable values and objective function assessment in sensitivity analysis of
the PS parameter.

PS Dm1 Dm2 SPm1 SPm2 z1 z2 θ1 θ2

0.21 108 139 1749 1712 72,656 8084.1 0.998 0.534

0.22 134 206 1801 1742 73,843 8149.1 0.706 0.532

0.23 135 212 1901 1807 120,880 8166.6 0.818 0.530

0.24 135 212 2012 1921 160,140 8167.3 0.831 0.530

0.25 136 212 2147 2056 207,050 8168.9 0.852 0.537

0.26 136 212 2297 2207 259,370 8168.9 0.880 0.536

0.27 143 259 2386 2217 318,190 8214.1 0.817 0.533

0.28 144 264 2635 2451 334,970 8296.3 0.715 0.652

0.29 146 298 2875 2691 417,150 8359.1 0.705 0.670

0.41 170 274 2379 2224 320,800 8217.9 0.833 0.534

0.42 134 272 2214 2063 248,250 8215.6 0.823 0.524

0.43 96 251 2140 2061 199,170 8187.7 0.822 0.535

0.44 96 249 2013 1940 150,110 8170.2 0.778 0.531

0.45 92 248 1893 1816 122,730 8145.0 0.831 0.531

0.46 92 246 1789 1748 87,304 8114.4 0.796 0.531

0.47 87 160 1750 1713 69,223 8098.5 0.946 0.137

0.48 87 160 1656 1652 49,140 8084.0 0.897 0.140

0.49 87 156 1650 1626 47,044 8075.1 0.554 0.140

The findings presented in Table 6 elucidate that, under the condition of equality in
substitution coefficients across both distribution channels and the symmetrical transfer
of demand between online and traditional markets, an increase in said coefficient yields
a concurrent augmentation in the demand across both distribution channels (refer to
Figure 3). Consequently, the optimally determined prices correspondingly escalate in
proportion to the heightened demand levels (refer to Figure 4). It is established that the
widening disparity in optimal prices between the two distribution channels corresponds
to an increase in the divergence of demand between the direct and indirect markets. As
demand and price experience increments, the values of the first and second objective
functions follow suit. Specifically, the first objective function attains improved values,
while the second objective function exhibits less favorable outcomes. Further analysis, as
depicted in Figure 5, reveals that the sensitivity of the first objective function to variations
in the demand substitution coefficient, subsequently influenced by changes in price and
demand, significantly surpasses the sensitivity observed in the second objective function.

Subsequently, the optimal values of Dm1 , Dm2 , SPm1, and SPm2, encompassing the
objective functions and the associated degree of satisfaction, are ascertained across varying
values of the PS parameter. In conducting this numerical evaluation, a uniform assumption
is made for the parameter α within both the direct and indirect distribution channels, with
its value set at 0.3.
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As evidenced in Table 7, an observable trend emerges, indicating that an escalation
in the PS coefficient is associated with a concurrent reduction in both direct and indirect
market demands. This trend is visually depicted in Figures 6 and 7, where a discernible
decrease in market demands is illustrated as the PS coefficient experiences an increase.
Hence, in a comprehensive context, an anticipatable outcome is that, under the premise of
uniformity across all conditions within both distribution channels, the equality of pricing
between the two channels would result in an absence of disparity in the magnitude of
direct and indirect demand. Consequent to the diminution in both the demand and
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price, the optimal values pertaining to the first and second objective functions undergo a
corresponding reduction. Figure 8 visually delineates this observation, underscoring that
the sensitivity of the first objective function to fluctuations in the price sensitivity coefficient
of demand substantially surpasses that of the second objective function.

Table 7. Model sensitivity analysis based on TH cumulative objective function parameters.

Minimum Degree
of Possibility

The Degree of Importance of
the Objective Functions

The Degree of Contentment Derived
from Achieving the Objective Function Objective Function Values

γ (φ1, φ2) θ1 θ2 z1 z2

0.8

(0.0, 2.8) 0.572 0.572 32,711 7394.9

(0.5, 0.5) 0.587 0.562 35,164 7504

(0.8, 0.2) 0.885 0.466 51,450 9158.1

0.3

(0.0, 2.8) 0.372 0.448 21,628 9469.8

(0.5, 0.5) 0.574 0.529 33,862 8084.1

(0.8, 0.2) 0.923 0.466 53,680 9160.1
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6.2. Sensitivity Analysis of the Model Using Parameters in the Cumulative Objective Function
(TH Method)

In this section, a concise compilation of the outcomes derived from the numerical tests
conducted with varying values of the parameters φr and γ in the cumulative objective
function of the TH method is presented. These parameters, denoting the significance
assigned to the objective functions and regulating the minimum degree of satisfaction of
said objectives, are systematically documented in Table 7. As illustrated in Table 7, an
observation becomes apparent, suggesting that changes in the value of φ for each objective
function lead to proportional variations in the satisfaction levels linked to the respective
objective function. Conversely, an elevated value assigned to the γ parameter signifies a
heightened emphasis on the minimum degree of satisfaction of goals (δ0), consequently
yielding an improved lower limit for goal satisfaction. This emphasis contributes to the
generation of more balanced and acceptable solutions within the optimization framework.
Hence, through the decrement of the γ parameter value from 0.8 to 0.3, discernible shifts in
the optimally derived solutions for the objective functions transpire, resulting in a notable
increase in their imbalance. Consequently, it is deduced that a reduction in the γ parameter
corresponds to a diminished emphasis on achieving an enhanced lower limit for goal
satisfaction. The Pareto frontier, delineating the trade-offs between conflicting objectives in
the experimental problem, is illustrated in Figure 9 as it evolves in response to variations
in the coefficients of the TH function. The numerical annotations associated with distinct
points on the optimality diagram serve to denote the relative significance assigned to the
first and second objective functions, encapsulated by the respective parameters (φ1, φ2). It
is recognized that alterations in the coefficients of the cumulative function TH yield diverse
responses and values for the objectives. These variations facilitate the determination of an
optimal Pareto state for the problem, contingent upon the decision maker’s preferences.
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7. Conclusions

The proposed dual-channel green supply chain model was rigorously examined under
two transportation cost scenarios: one with uniform costs across both markets and another
with lower costs in the primary market. The results indicate that, when transportation costs
are equivalent, a higher volume of goods is routed through environmentally sustainable
channels. This finding highlights the model’s efficacy in harmonizing economic and
environmental goals, underscoring its value in fostering more sustainable distribution
networks. Sensitivity analysis demonstrates that decision makers can strategically adjust
price–demand sensitivity coefficients and market-specific substitution rates to optimize
pricing strategies, thereby enhancing supply chain profitability. These insights validate the
model’s potential to integrate and align economic and environmental objectives, driving
distribution networks toward both increased sustainability and profitability.

Furthermore, this study underscores the positive impact of renewable energy on both
economic viability and environmental sustainability within the supply chain. Renewable
energy not only supports emissions reduction targets, but also reduces operational costs,
establishing it as a crucial element of a greener, more efficient supply chain. Future research
should explore expanded roles for renewable energy across different supply chain stages to
further reinforce sustainability.

Key parameter analysis reveals the model’s adaptability, allowing decision makers
to prioritize specific objectives. The flexibility to calibrate the model for either balanced
or customized solutions aligned with specific priorities is a significant advantage. This
adaptability renders the model suitable for a wide range of decision-making scenarios,
strengthening its robustness. Future studies should expand the model’s applicability
by exploring omni-channel approaches in green supply chains, integrating permissible
deficiency allowances in response to demand, or employing heuristic and metaheuristic
methods to enhance scalability and analytical efficiency. These directions highlight a
commitment to advancing the model’s capacity to address the evolving complexities of
this domain.

Limitations and Future Directions

While this model provides a comprehensive framework for optimizing dual-channel
green supply chain operations, it faces several limitations. First, the inherent data uncer-
tainty and model sensitivity, due to the reliance on specific parameter values and stochastic
data generation for demand, costs, and emissions factors, present challenges. Although
fuzzy multi-objective programming helps mitigate these uncertainties, the model’s accu-
racy remains highly dependent on high-quality input data. Future studies should enhance
model robustness through extensive sensitivity analyses or dynamic data updates.

Additionally, future research could benefit from a more detailed exploration of CO2
emissions’ differentiation across product segments, particularly in multi-channel retail
structures. Retailers in diverse sectors, such as food and non-food, encounter distinct
environmental impacts, especially regarding Scope 1, 2, and 3 emissions. These scopes
encompass emissions from direct operations, purchased energy, and the broader supply
chain. Each segment also faces unique circular economy challenges that merit further
investigation. A segment-specific approach could enhance the model by incorporating
more precise emissions data, fostering a holistic perspective in green supply chain design.

Finally, the scope of renewable energy sources considered here is limited to solar and
wind, which may not represent the full spectrum of global renewable options. Regional
variations in integration costs and efficiencies could affect the model’s generalizability.
Broadening the range of renewable energy types, along with region-specific considerations,
would enhance the model’s practical value. Furthermore, although this study incorporates
multiple transportation modes with varied emissions factors, it could benefit from refined
metrics, such as vehicle-specific emissions rates or regional regulatory influences on trans-
portation. These refinements would allow for a more nuanced analysis of transportation
emissions and costs.
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