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A B S T R A C T

This paper presents a novel small-signal stability margin (SSSM) constrained optimal power flow model for 
generation dispatch to minimize the generation cost while retaining adequate SSSM. The SSSM constraint is 
described in terms of the total active load variation between an initial operating point and the critical point, 
which is located on the dynamic performance boundary of small-signal stability. From the existing SSSM model, 
where the steady-state equation and the small-signal stability equation are taken into account, a modified SSSM 
model is proposed to reduce the computational requirement. The sensitivity representation of SSSM with respect 
to operating parameters is newly derived, which makes it possible for the SSSM and steady-state optimization 
problems to be jointly solved. A joint solution approach is proposed to solve the small-signal stability margin 
constrained optimal power flow (SSSMC-OPF) model. Simulation results show that the proposed approach can 
effectively minimize the generation cost subject to retaining a certain level of SSSM. For an 8-machine 24-bus 
system and a modified practical 68-machine 2395-bus system, the generation costs of SSSMC-OPF are increased 
by 5.28% and 2.73%, respectively, but the SSSMs are improved by 45% and 14.41%, respectively, compared to 
the optimal power flow.

1. Introduction

1.1. Motivation

Optimal power flow (OPF) has become a powerful tool for modern 
power system operation and planning [1–3]. However, the increased 
penetration of renewable energy resources [4,5] and energy storages 
[6,7] in power systems will have a significant impact on both the grid 
structure and the power flow distribution, which may lead to inadequate 
damping behaviour or even instability. If stability requirements are not 
met by the results obtained from the traditional OPF, generation re- 
dispatch is required. With the development of computer technology 
and optimization methodologies, stability conditions can also be 
incorporated into the traditional OPF model [8,9]. Small-signal stability 
constrained optimal power flow (SSSC-OPF) has gained attention in 
recent years [10], as the SSSC-OPF can provide the complete resched-
uling information while considering the economic objectives and small- 
signal stability constraints.

1.2. Literature review

Typically, the small-signal stability constraint can be formed by the 
eigenvalues and/or damping ratios of electromechanical oscillation 
modes. A small-signal stability constraint, described by the minimum 
damping ratio, was first introduced in the optimization model by [11], 
which sought to maximize the power transfer without violating the 
small-signal stability constraint. In [12], the small-signal stability 
constraint was formulated based on the real part of critical eigenvalues, 
which was incorporated into the optimal power flow model and solved 
by the primal–dual interior point method. The potential of reactive 
power to improve the dynamic performance of power systems was 
investigated in [13]. Since eigenvalues considered in the small-signal 
stability constraint may change during the iteration process, a 
gradient sampling theory was introduced in [14] to efficiently solve the 
SSSC-OPF model, and a sequential approach was proposed in [15] to 
approach the optimal operating point step-by-step. To reduce the 
computational requirement of solving the SSSC-OPF problem, stability 
constraints were developed in [16–18] using a bilinear matrix inequality 
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approach, which avoids the repeated calculation of eigenvalues and 
their sensitivities. In [19], a data-driven small-signal stability constraint, 
expressed as an explicit function of generator voltages, was also devel-
oped and included in the OPF model.

Currently, most small-signal stability constrained optimization 
problems have focused on the stability and/or dynamic performance at 
an operating point [10–20]. However, for practical power systems, it is 
obviously more reasonable and intuitive to retain a certain small-signal 
stability margin (SSSM). The SSSM is described by the relationship be-
tween an initial operating point and the critical point, in which the 
critical point is located on the stability boundary or dynamic perfor-
mance boundary of small-signal stability. Progress has been made in 
understanding the SSSM and monitoring the critical mode first crosses 
the imaginary axis or damping ratio line with various approaches. For 
example, the optimization technique [21] and the rightmost eigenvalue 
tracing approach [22] have been utilized to identify the critical point 
and compute the SSSM. To date, the three-stage strategy [23], namely 
the estimation stage, correction stage, and verification stage, has been 
the most effective method for computing the SSSM under a given di-
rection of load and generation variation.

Extensive research works have focused on voltage stability margin 
constrained optimal power flow (VSMC-OPF) problems [24,25], but 
there is still little research on small-signal stability margin constrained 
optimal power flow (SSSMC-OPF) problems. In [26], the SSSM 
constraint was defined using a second-order approximation approach for 
measuring the distance from an initial operating point to the critical 
point, which is located on the small-signal stability boundary. The 
conditions that power systems must satisfy at the critical point are 
composed of the steady-state equation and the requirement of the largest 
real part of critical modes. In [27], this SSSM constraint was incorpo-
rated into stochastic optimal power flow model to minimize the oper-
ating cost. The taxonomy of aforementioned literatures is shown in 
Table 1.

1.3. Research gaps

Based on the research background and Table 1, it is evident that the 
following research gaps exist in the field of SSSMC-OPF problems.

Many publications have discussed the small-signal stability con-
strained operation optimization problems [10–20], SSSM problems 
[21–23,26], and VSMC-OPF problems [24,25,27], but there is still little 
research on SSSMC-OPF problems [26,27].

In the formation of the SSSM constraint in [26] and [27], the 
requirement of the largest real part of critical modes at the critical point 
was considered, but the damping ratio requirement was not taken into 
account. Furthermore, the SSSM constraint was defined using a second- 
order approximation approach.

1.4. Contributions

In order to fill these research gaps, this paper proposes a novel OPF 
model with exact SSSM constraint. The SSSM constraint is defined based 

on the total active load variation between an initial operating point and 
the critical point, which is located on the dynamic performance 
boundary of small-signal stability. From the existing SSSM model, where 
the steady-state and the minimum damping ratio requirements are 
considered, a modified SSSM model is developed to reduce the compu-
tational requirement. A joint solution approach is designed to effectively 
solve the SSSMC-OPF model, where the sensitivity representation of 
SSSM with respect to operating parameters is newly derived and utilized 
to guide the optimization direction. The main contributions are sum-
marized as follows, and the graphical abstract as shown in Fig. 1. 

(1) A novel OPF model with exact SSSM constraint is proposed for 
generation dispatch to minimize the operating cost while 
retaining the system with a given SSSM.

(2) A joint solution approach is developed to effectively solve the 
SSSMC-OPF model, and the conflicting relationship between 
generation cost and SSSM is revealed.

(3) Based on a modified SSSM model, the analytical representation of 
the SSSM sensitivities with respect to operating parameters is 
newly derived, which can be used for SSSM analysis and control, 
SSSM constrained optimization problems, among other 
applications.

1.5. Paper organization

The remainder of this paper is organized as follows. In Section 2, the 
system dynamic model considering the load and generation variation is 
presented. The modified SSSM model is presented in Section 3. In Sec-
tion 4, the proposed SSSMC-OPF model is introduced. In Section 5, a 
joint solution approach for the proposed model, as well as the SSSM 
sensitivities, are given in detail. In Section 6, the effectiveness of the 
proposed approach is tested and validated on an 8-machine system and a 
modified practical system. Finally, the conclusions are drawn in Section 
7.

2. System dynamic model considering the load and generation 
variation

Generally, the load and generation variation can be expressed as 
[23,28]: 
⎧
⎪⎪⎨

⎪⎪⎩

PL = PN
L + μBP

L

QL = QN
L + μBQ

L

PG = PN
G + μBP

G

, (1) 

where P and Q, respectively, denote column vectors of active and 
reactive power. B indicates the column vector describing the direction of 
power variation, which can be determined by the short-term forecasting 
of load demands and the generation rescheduling scheme [23]. μ rep-
resents a scalar parameter subject to variation. Superscripts “P” and “Q” 
represent active and reactive power, respectively. Subscripts “L” and “G” 

Table 1 
Comparison of the Literature with This Paper.

Ref. SSSC-OO VSMC-OPF SSSM SSSMC-OPF

LRP MDR LRP MDR

[10–20] Yes No No No No No
[21–23] No No Exact Exact No No
[24,25] No Yes No No No No
[26] No No Second-order 

approximation
No No No

[27] No Second-order 
approximation

No No Second-order 
approximation

No

This paper No No No No Exact Exact

SSSC-OO: small-signal stability constrained operation optimization, LRP: Largest real part of critical modes, MDR: minimum damping ratio of critical modes.
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denote load and generator buses, respectively. Superscript “N” stands for 
the initial operating point. PL, QL, and PG represent power vectors at 
arbitrary operating point.

The differential–algebraic equations of power systems used for sta-
bility analysis, taking into account the variation of power, can be 
expressed as 

ẋ = Fd(x,m), (2a) 

0 = Ga(x,m, μ), (2b) 

where x and m denote column vectors of state and non-state variables, 
respectively. Fd and Ga describe the differential and algebraic relations 
in power systems, respectively. In (2b), (1) is taken into account.

Let ẋ1 = [ẋT 0]T and F1 =
[
FT

d GT
a
]T. For convenience, (2) can be 

simplified as 

ẋ1 = F1(x,m, μ). (3) 

The state space equation (4) at the given parameter μ can be obtained 
by linearizing (3) and eliminating the non-state vector m. 

Δẋ = AΔx, (4) 

where A represents the state matrix, Δ indicates tiny changes.
The eigenvalues of A are typically used for small-signal stability 

analysis. For an oscillatory mode corresponding to complex eigenvalues 
λ = σ ± jω, the damping ratio ζ can be obtained by 

ζ = −
σ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2 + ω2

√ , (5) 

where σ and ω denote the real and imaginary parts of the eigenvalue λ, 
respectively.

3. Modified SSSM model

In this section, first, the SSSM model is introduced, which takes into 
account the steady-state equation and the small-signal stability equa-
tion. More importantly, a modified SSSM model is then proposed.

3.1. SSSM index

Assuming that the minimum damping ratio of an initial operating 
point is greater than ζT at μ = 0. As μ increases, the initial operating 
point will change. When a pair of eigenvalues reach the damping ratio 
line ζT at μ = μC first, the operating point is defined as the critical point 
located at the dynamic performance boundary. In this case, if ζT = 0, the 
critical point is located at the small-signal stability boundary. Thus, the 
SSSM can be defined as the percentage change in the total active load for 
a given direction of power variation that would cause the damping ratio 

to reach its minimum limit. Mathematically, the SSSM index γ can be 
described as 

γ =
PC

L,Σ − PN
L,Σ

PN
L,Σ

× 100%, (6) 

where PN
L,Σ and PC

L,Σ denote the total active load at the initial operating 
point and the critical point, respectively. The relationship between PN

L,Σ 

and PC
L,Σ can be derived from the first equation in (1) as 

PC
L,Σ = PN

L,Σ + μBP
L,Σ, (7) 

where BP
L,Σ represents the sum of all elements in vector BP

L.
By substituting (7) into (6), (6) can be reformulated as 

γ = μ
BP

L,Σ

PN
L,Σ

× 100%, (8) 

From (8), with a specific direction of the load and generation vari-
ation, the SSSM index is determined by μ. The SSSM index in (6) or (8) 
visually describes the power variation that a power system can with-
stand at an initial operating point. If the SSSM index is greater than zero, 
the system is in an adequate damping condition along a specific direc-
tion of power variation from the initial operating point to the critical 
point.

3.2. SSSM model

Let λ̃m = σ̃m ± jω̃m denotes the eigenvalue corresponding to the 
minimum damping ratio at the critical point with the right eigenvector 
Ũ = ŨRe ± jŨIm. The steady-state equation and the small-signal stability 
equation that must be satisfied simultaneously at the critical point are as 
follows [23]

F1(x̃, m̃, μ̃) = 0, (9a) 

AŨRe − σ̃mŨRe + ω̃mŨIm = 0, (9b) 

AŨIm − σ̃mŨIm − ω̃mŨRe = 0, (9c) 

UT
ReŨRe +UT

ImŨIm − 1 = 0, (9d) 

UT
ReŨIm − UT

ImŨRe = 0, (9e) 

σ̃m/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ̃2
m + ω̃2

m

√

+ ζT = 0, (9f) 

where symbols x, m, and μ are the same as that in (2), symbol “~” in-
dicates the critical point, superscript “T” denotes the transpose of the 
matrix, (9a) represents the steady-state operating condition, (9b) and 

Fig. 1. Graphical abstract.
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(9c) indicate the characteristic equation on the real domain, (9d) and 
(9e) denote the normalized equation on the real domain, and (9f) rep-
resents the minimum damping ratio requirement. All unknown variables 
in (9) can be collected in a vector y1 defined as 

y1 = [x̃T
, m̃T

, Ũ
T
Re, Ũ

T
Im, σ̃m, ω̃m, μ̃]

T
. (10) 

Let NS and NM stand for the number of elements in state vector x̃ and 
non-state vector m̃, respectively. The total number of elements in y1 is 
3NS + NM + 3, which is equal to the dimension of (9). For large-scale 
systems with a large number of state and non-state variables, the solu-
tion of (9) is computationally intensive. To reduce the computational 
requirement without compromising the results, a modified SSSM model 
is proposed in the next section, in which the number of equations and 
variables in (9a) are reduced.

3.3. Modified SSSM model

Equation (9a) is utilized to determine the operation state of a power 
system, i.e., determine the values of all state and non-state variables. 
However, the operation state of the power system can also be completely 
determined by partial state and non-state variables. Since the values of 
controller variables do not change in steady-state, controller equations 
are ineffective in steady-state operation of the system. Therefore, a large 
number of controller equations contained in (9a) can be excluded.

For a system of NG-machine, only partial state and non-state vari-
ables are required, which can be collected in a vector y2 in (11) with sub- 
vector M1(i) corresponding to ith machine, V collecting the real and 
imaginary parts of all the nodal voltages except the slack bus, and IG 
collecting the real and imaginary parts of all the generator nodal 
currents. 

y2 = [M1(1),⋯,M1(i),⋯,M1(NG),V
T, IT

G]
T
, (11a) 

M1(i) = [Idi, Iqi,Vdi,Vqi, δi], (11b) 

where subscripts “d” and “q” refer to the machine dq frame, δ indicates 
the power angle measured with respect to the reference machine.

To completely determine the value of all elements in vector y2, the 
power flow equation can be combined with the following equation 

IG = [YGGYGL]V, (12a) 

Vqicosδi +Vdisinδi − Vxi = 0, (12b) 

Vqisinδi − Vdicosδi − Vyi = 0, (12c) 

Ixicosδi + Iyisinδi − Iqi = 0, (12d) 

Ixisinδi − Iyicosδi − Idi = 0, (12e) 

arctan(EQyi/EQxi) − δi = 0, (12f) 

where subscripts “x” and “y” refer to the network frame, YGG and YGL 
represent the submatrices of the nodal admittance matrix Y corre-
sponding to the generator, EQ denote the virtual electromotive force, 
(12a) indicates the network equation, (12b)–(12e) denote the coordi-
nate transformation, and (12f) represents the power angle equation. EQxi 
and EQyi can be expressed by 

EQxi = Vxi +RaiIxi − XqiIyi, (12g) 

EQyi = Vyi +RaiIyi +XqiIxi, (12h) 

where Ra and Xq represent stator resistance and synchronous reactance, 
respectively. For convenience, the power flow equation and (12) at the 
critical point can be simply expressed as 

F2(ỹ2, μ̃) = 0. (13) 

Unlike (9a), ineffective controller equations under steady-state are 
not included in (13). Therefore, a modified SSSM model is formed by 
using (13) instead of (9a). For a system of NG-machine and NB-bus, the 
vector y3 collecting all unknown variables of the modified SSSM model 
has the form of 

y3 = [ỹT
2 , Ũ

T
Re, Ũ

T
Im, σ̃m, ω̃m, μ̃]

T
. (14) 

The total number of elements in y2 or ỹ2 is 2NB + 7NG-2, while the 
total number of elements in y3 is 2NB + 7NG + 2NS + 1. The number of 
equations in the modified SSSM model is the same as the number of 
unknown variables. Results of the modified SSSM model are consistent 
with the SSSM model, but the number of equations in the modified SSSM 
model is reduced by NS + NM-2NB-7NG + 2. For a modified practical 
system in Section 6.2, the number of equations in the modified SSSM 
model is reduced by 2417 compared to the SSSM model with the 
equations being 10124.

4. Optimal power flow model with an exact SSSM constraint

In this section, first, a novel SSSMC-OPF model is proposed for 
generation dispatch in order to minimize the generation cost subject to 
an exact SSSM constraint under a given direction of power variation. 
The differences between the presented model and existing models are 
then analyzed.

It should be noted that from the perspective of the stability analysis, 
the SSSM is defined based on the relationship between an initial oper-
ating point and the critical point. However, both steady-state optimi-
zation and SSSM problems are included in the SSSMC-OPF problem. For 
the convenience in later presentation, in this paper, the initial operating 
point includes operating points before and after optimization.

4.1. SSSMC-OPF model

In order to incorporate an exact SSSM limit into the standard OPF 
model, several modeling techniques can be used [24,29,30]. For 
example, the SSSM condition may be modeled as an inequality 
constraint, or as one of the objective functions, etc. In this paper, the 
SSSM condition is considered as an inequality constraint to be included 
in the standard OPF model. The objective function and all constraints 
used in the SSSMC-OPF problem are described in detail below.

1) Objective Function: Minimizing the generation cost is considered as 
the objective function in this paper, which may be expressed as (15). 
Note that other objective functions can also be used, such as minimizing 
the generation adjustment cost or minimizing the active power 
adjustment. 

minf =
∑NG

i=1

(
ai(PN

Gi)
2
+ biPN

Gi + ci

)
, (15) 

where ai, bi, and ci denote cost coefficients of the ith generator.
2) Power Flow Equations at an Initial Operating Point: 

PN
Gi − PN

Li = VN
i

∑NB

j=1
VN

j (GijcosθN
ij + BijsinθN

ij ), (16) 

QN
Gi − QN

Li = VN
i

∑NB

j=1
VN

j (GijsinθN
ij − BijcosθN

ij ), (17) 

where Gij and Bij represent the real and imaginary parts of the ith row, jth 
column element in the nodal admittance matrix, respectively, θN

ij =

θN
i − θN

j , VN
i and θN

i indicate the voltage magnitude and angle of bus i at 
an initial point, respectively.
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3) Technical Limits at an Initial Operating Point: 

Pmin
Gi ≤ PN

Gi ≤ Pmax
Gi , (18) 

Qmin
Gi ≤ QN

Gi ≤ Qmax
Gi , (19) 

Vmin
i ≤ VN

i ≤ Vmax
i , (20) 

(IN
ij )

2
≤ (Imax

ij )
2
, (21) 

where superscripts “min” and “max” denote the lower and upper limits, 
respectively, and IN

ij represents the current between buses i and j.
4) SSSM Constraint: In general, power systems should not approach 

their stability limits, but a certain margin should be retained [31]. The 
SSSM limit of a power system can be expressed by an inequality 
constraint as 

γ ≥ γmin, (22) 

where γ can be computed from the modified SSSM model in Section 3, 
γmin can be determined according to the system operational requirement 
or related standards.

4.2. Relation to the existing models

In [10–20], only the stability and/or dynamic performance are 
considered in the small-signal stability constrained optimization models. 
The generation dispatch information obtained by the proposed SSSMC- 
OPF model not only ensures the dynamic performance, but also provides 
the power variation that a power system can withstand.

Regarding the construction of SSSM constraints, the SSSM constraint 
in [27] requires that the critical point to be located at the stability 
boundary, while (22) requires that the critical point to be located at the 
dynamic performance boundary. In addition, the SSSM constraint in 
[27] was described by a second-order approximation approach, while 
(22) is an accurate representation. Compared to the existing models, the 
proposed SSSMC-OPF model is more intuitive and reasonable.

5. A joint solution approach for SSSMC-OPF

The SSSMC-OPF model (15)–(22) is a nonlinear programming 
problem that can be solved by many mature algorithms (e.g., deter-
ministic algorithms, non-deterministic algorithms) [32,33]. Generally 
speaking, deterministic algorithms can generate reasonable optimal 
solutions with excellent computational speed. Conventionally, deter-
ministic algorithms can be classified into two categories: alternating 
solution techniques and joint solution techniques [32]. Compared with 
alternating solution techniques, joint solution techniques have advan-
tages in convergence and computational speed.

However, the complexity of solving the SSSMC-OPF model using 
joint solution techniques is significantly increased by the following two 
reasons. 

(1) The computation of SSSM index in (22) is quite complex because 
the steady-state equation and the small-signal stability equation 
are included in the modified SSSM model.

(2) The sensitivities of the SSSM with respect to operating parame-
ters are necessary for the joint solution of the SSSM and OPF 
problems. Existing SSSM sensitivity calculations are mainly 
related to the small-signal stability boundary [20,26], and must 
be extended to the dynamic performance boundary.

In this section, first, a joint solution approach for the SSSMC-OPF 
problem is proposed. The analytical representation of the SSSM sensi-
tivities with respect to operating parameters is then derived.

5.1. Problem reformulation

The SSSMC-OPF problem can be compactly rewritten as 

minf(u) (23) 

s.t. h(u) = 0 (24) 

g(u) ≤ 0, (25) 

where u denotes the column vector of control variables composed of the 
active power output PN

Gi and the voltage magnitude VN
Gi of all generators 

except for the slack generator,f represents the objective function, h and g 
indicate the vectors corresponding to the equality and inequality con-
straints, respectively.

It should be noted that the SSSM constraint (22) is an implicit 
function of u and can also be included in (25). This is because the SSSM 
constraint (22) is defined under a given direction of power variation, 
and if u is given, the SSSM index γ can be computed from (9b)–(9f), (13), 
as well as (6) or (8).

5.2. Problem solution

Various optimization techniques could be used for the joint solution 
of the SSSMC-OPF problem [32]. Since the second-order SSSM sensi-
tivity calculation is very complicated, in this paper, the quasi-Newton 
technique is used because of its simplicity and ease of implementation 
[34,35]. An augmented Lagrangian function can be formed as 

L(u, z) = f(u)+ zTh(u) +
∑r

i=1
[ℓi⋅max{0, gi(u)} ]2, (26) 

where z denotes the vector of Lagrangian multipliers, ℓi indicates the 
penalty factor for the ith inequality constraint, and r represents the total 
number of inequality constraints in (25).

With K = [uT zT]T, the Karush-Kuhn-Tucker (KKT) condition of the 
augmented Lagrangian function of (26) can be derived as 
{
∇uL(K) = 0
∇zL(K) = 0 , (27) 

where ∇uL and ∇zL are gradient vectors of the Lagrangian with respect 
to control vector and Lagrangian multipliers vector, respectively.

The correction equations of the KKT condition can be written under 
the quasi-Newton technique as 

K(l+1) = K(l) − η(l)H(l)∇L(K(l)), (28) 

where the superscript “l” indicates the iteration number of the quasi- 
Newton technique, η denotes the optimal step length obtained using 
the one-dimensional search [34], and H(l) represents the approximation 
inverse of Hessian matrix of the Lagrangian of (26) at the operation 
point K(l). H(l) is improved in this paper by the popular Broyden- 
Fletcher-Goldfarb-Shanno (BFGS) technique [34].

5.3. Computation of the SSSM index

The SSSM index will be used in the computation of the value of the 
augmented Lagrangian function (26). However, how to efficiently solve 
the modified SSSM model is a problem. As discussed in Section 3.3, the 
number of equations in the modified SSSM model is the same as the 
number of unknown variables, it can be solved by using the Newton 
method or its variants. However, since the steady-state equation and the 
small-signal stability equation are included in the modified SSSM model, 
it may fail to converge if appropriate initial values are not provided.

To deal with this problem, a three-stage strategy was proposed in 
[23]. In the first stage, the critical eigenvalue that first crosses the 
damping ratio line was determined; in the second stage, the exact SSSM 
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can be obtained by the Newton method; in the third stage, computa-
tional results were verified. The three-stage strategy is utilized to solve 
the modified SSSM model in this paper.

5.4. SSSM sensitivities

The SSSM sensitivities with respect to variables in vector K will be 
used in the calculation of the gradient vector in (27). Since the SSSM 
sensitivities with respect to the Lagrangian multipliers vector z in K are 
0, the analytical sensitivity representation of the SSSM with respect to 
the control vector u in K is described in detail below.

For arbitrary parameter in vector u, such as κi, the derivative of the 
SSSM index γ can be derived from (6) or (8) as 

∂γ
∂κi

= (
∂μ̃
∂κi

BP
L,Σ

PN
L,Σ

+
μ̃

PN
L,Σ

∂BP
L,Σ

∂κi
−

μ̃BP
L,Σ

(PN
L,Σ)

2

∂PN
L,Σ

∂κi
) × 100%. (29) 

∂BP
L,Σ/∂κi is related to the direction of power variation, and ∂PN

L,Σ/∂κi is 
related to the load model. Both are easy to obtain, while ∂μ̃/∂κi is rela-
tively complicated. Since ̃μ is the last element in vector y3 of (14), ∂μ̃/∂κi 

in ∂y3/∂κi can be derived from (9b)–(9f) and (13). For convenience, 
(9b)–(9f) and (13) can be rewritten compactly as 

G(y3) = 0. (30) 

The derivative of y3 will be obtained from the differentiation of (30) 
using the differential chain rule and expressed as 

∂y3

∂κi
= − J− 1∂G

∂κi
, (31) 

where 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C 0 0 0 0 S
D A − σ̃mI ω̃mI − ŨRe ŨIm R
Dʹ − ω̃mI A − σ̃mI − ŨIm − ŨRe Rʹ

0 UT
Re UT

Im 0 0 0
0 − UT

Im UT
Re 0 0 0

0 0 0 Y Z 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (32) 

where J denotes the Jacobian matrix of G(y3), C and S represent the 
partial derivative matrixes of F2 in (13) with respect to ỹ2 and μ̃, 
respectively, Y and Z indicate the derivatives of (9f) with respect to σ̃m 

and ω̃m, respectively, R and Rʹ denote the derivatives of (9b) and (9c) 
with respect to μ̃, respectively, which can be expressed as 

R =
∂A
∂μ̃ŨRe,Rʹ =

∂A
∂μ̃ŨIm, (33) 

D and Dʹ represent the derivatives of (9b) and (9c) with respect to ̃y2, 

respectively. For illustration, suppose that ̃yk
2, Ũ

j
Re, and Ũ

j
Im represent the 

kth, jth, and jth element of ỹ2,ŨRe, and ŨIm, respectively. Dik and Dʹ
ik 

indicate the elements at the ith row, kth column in matrixes D and Dʹ, 
respectively, and can be obtained by 

Dik =
∑NS

j=1
(
∂Aij

∂ỹk
2

Ũ
j
Re),D

ʹ
ik =

∑NS

j=1
(
∂Aij

∂ỹk
2

Ũ
j
Im). (34) 

The derivatives of the state matrix A with respect to arbitrary system 
parameters can be found in [36,37]. From (29)–(34), the computational 
requirement of the SSSM sensitivities are mainly concentrated in the 
formation and inverse of J. In fact, only ∂μ̃/∂κi in ∂y3/∂κi is needed 
during the SSSMC-OPF solving process, the last row of the matrix J− 1 

formed when solving the SSSM with the Newton method can be used 
directly for calculating the SSSM sensitivities. The use of the Newton 
method to solve the SSSM facilitates the direct calculation of ∂γ/∂κi.

It is worth pointing out that the derivative of SSSM (or y3) with 
respect to arbitrary operating parameters (e.g., nodal injection, PV- 
voltage) can be derived by the approach in (29)–(34).

5.5. Flowchart of the complete approach

For the sake of simplicity, a computational flowchart of the proposed 
approach for the SSSMC-OPF is given in Fig. 2. It consists of three core 
steps: calculating the augmented Lagrangian function, updating H(l) 

with the BFGS technique, and one-dimensional search. The computa-
tional burden is mainly concentrated in the third step, as the SSSM index 
is repeatedly computed. In this paper, the 3-stage strategy is utilized to 
compute the SSSM, where the Newton method is used in the second 
stage. A detailed description of the 3-stage strategy can be found in [23].

6. Case studies

In this section, the proposed approach is applied to an 8-machine 24- 
bus system and a modified practical 68-machine 2395-bus system to 
illustrate the effectiveness. For all systems, the generators are described 
by the sixth-order model [38]. Except for the equivalent generator, all 
the generators are equipped with excitation system, turbine governor, 
and PSS. The loads are modeled as constant impedance. Assuming that 
all loads are increased by the same percentage from the initial operating 
point [20,22–24,28], the amount of load increase is distributed to all 
generators at the marginal cost of generation.

The adopted computing platform is a personal workstation with 2.4- 
GHz Intel Xeon Silver 4214R CPU and 32 GB RAM. The runtime envi-
ronment is Visual Fortran 11.0. The damping ratio threshold ζT is set to 
be 3 %. The convergence tolerance for both the proposed approach and 
the 3-stage strategy is set to be 10− 6.

Fig. 2. Flowchart of the proposed approach for SSSMC-OPF.
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6.1. 8-Machine 24-bus system

The 8-machine 24-bus system of Fig. 3 is often used for small-signal 
stability analysis [35–37,39–41]. Details of network parameters, nodal 
powers, and control system parameters can be found in [41]. The 
generator cost coefficients are listed in Table 2. Since the slack generator 
G8 can be regarded as an equivalent generator, the lower and upper 
limits of active power for G8 are 100 MW and 1000 MW, respectively, 
the lower and upper limits of active power for the remaining generators 
are 100 MW and 600 MW, respectively; the lower limit of reactive power 
of all generators is − 100 MVar, the upper limits of reactive power for the 
slack generator and the remaining generators are 484.32 MVar and 
371.85 MVar, respectively. The acceptable voltage magnitudes of all 
buses can vary between 1.05 p.u. and 0.95 p.u.

1) Comparison of the modified SSSM model and SSSM model
In the 8-machine system, there are 114 state variables and 189 non- 

state variables. The minimum damping ratio of the initial operating state 
is 3.30 %, and the corresponding mode is − 0.1269 ± j3.8397. Whether 
the SSSM model or the modified SSSM mode is used, the computed SSSM 
index γ by the 3-stage strategy is 58.11 %. However, solving the SSSM 
model takes 6.27 s, while solving the modified SSSM model takes only 
3.08 s. This is because ineffective controller equations under steady- 
state are not included in the modified SSSM model.

The number of equations in the SSSM model is 534. Using the 
approach described in Section 3.3, the number of equations in the 
modified SSSM model is 333. Compared with the SSSM model, the 
number of equations in the modified SSSM model is reduced by 201.

2) Verification of SSSM sensitivities
In order to verify the derived analytical representation of SSSM 

sensitivities, the SSSM sensitivities computed from the analytical 
approach and the numerical approach are listed in Table 3. In the table, 
the superscript “N” has been dropped for convenience, γ̇a is obtained 
using the analytical representation of (29)–(34), while γ̇n is computed 
from the numerical calculation of either Δγ/ΔPN

Gi or Δγ/ΔVN
Gi. It can be 

observed that γ̇n and γ̇a have the same sign and are on the same order of 
magnitude. This indicates that the analytical representation of SSSM 
sensitivities is accurate and can be utilized to guide the optimization 
direction of the SSSMC-OPF.

3) Effectiveness of the proposed approach
To analyze the effectiveness of the proposed approach, OPF results 

with and without SSSM constraints are listed in Table 4, where L denotes 
the augmented Lagrangian function value, ζmin and λmin represent the 

minimum damping ratio and the corresponding eigenvalue, respec-
tively. From rows 2 and 3 of Table 4, the augmented Lagrangian function 
value is reduced from 34148.43 to 31060.18 and the minimum damping 
ratio decreases from 3.30 % to 2.78 %. Since the minimum damping 
ratio in the standard OPF results is less than 3 %, the SSSM index is 0. 
The results indicate that the standard OPF may result in a decrease in the 
SSSM index or even fail to meet requirements.

It can be observed from rows 3 and 4 of Table 4 that the critical mode 
of OPF and OPF with γ ≥ 35 % are the same mode, the difference in the 
augmented Lagrangian function value is only 62.16. However, the 
minimum damping ratio at the optimal operating point obtained from 
OPF with γ ≥ 35 % is satisfied, and the SSSM index is 35.31 %. This is 
because the SSSM constraint plays an important role in the optimization. 
For OPF with γ ≥ 35 %, curves of the augmented Lagrangian function 
value L and SSSM with iterations are given in Fig. 4, variations of the 
minimum damping ratio ζmin and the corresponding mode λmin with 
iterations are given in Table 5. From Fig. 4 and Table 5, both the min-
imum damping ratio and the SSSM index are satisfied in the optimiza-
tion process. It can also be observed that neither the minimum damping 
ratio nor the SSSM index varies monotonically during the optimization 
process. This phenomenon is related to the selection of initial values (e. 
g., control variables, penalty factors).

From rows 4 to 6 of Table 4, it can be observed that the optimization 
results all satisfy the SSSM requirements, and minimum operating cost 
and maximum SSSM index are in conflict. The larger the SSSM 
threshold, the higher the generation cost. Detailed results of initial state, 
standard OPF, and OPF with γ ≥ 45 % are provided by Table 6. From the 
comparison of the initial state and the standard OPF, it can be observed 
that the changes in the active power output of G1 and G2 are relatively 
large, where the active power output of G1 increases by 2 p.u. to reach 
the upper limit, and the active power output of G2 decreases by 2.9206 

Fig. 3. Network diagram of the 8-machine 24-bus system.

Table 2 
Generation Cost Coefficients for 8-Machine 24-Bus System.

Generator No. a ($/MW2) b ($/MW) c ($)

1 5.04 × 10− 3 2.00 1200.64
2 2.00 × 10− 2 5.00 1857.20
3 1.47 × 10− 2 4.20 1625.92
4 1.18 × 10− 2 3.64 1395.19
5 1.62 × 10− 2 2.57 1651.55
6 7.79 × 10− 3 3.11 1611.39
7 1.67 × 10− 2 2.24 1810.83
8 1.66 × 10− 2 3.46 1486.81

Table 3 
SSSM Sensitivities to Active Injections and Voltage Magnitudes at Generator 
Buses for 8-Machine 24-Bus System.

Variable γ̇a γ̇n Variable γ̇a γ̇n

PG1 − 0.167724 − 0.167756 VG1 2.228889 1.790832
PG2 − 0.044616 − 0.044647 VG2 − 0.211474 − 0.273715
PG3 − 0.066279 − 0.066298 VG3 − 0.035514 − 0.072762
PG4 − 0.140628 − 0.140646 VG4 0.705065 0.624830
PG5 − 0.118153 − 0.118167 VG5 0.506030 0.430408
PG6 − 0.021048 − 0.021052 VG6 − 0.109228 − 0.109346
PG7 − 0.030425 − 0.030432 VG7 0.056975 0.041853

Table 4 
OPF Results with and Without SSSM Constraints for 8-Machine 24-Bus System.

L SSSM ζmin λmin

Initial state 34148.43 58.11 % 3.30 % − 0.1269 ± j3.8397
Standard OPF 31060.18 0 2.78 % − 0.1091 ± j3.9173
γ ≥ 35 % 31122.34 35.31 % 3.39 % − 0.1318 ± j3.8872
γ ≥ 40 % 31855.89 40.05 % 3.36 % − 0.1304 ± j3.8764
γ ≥ 45 % 32698.98 45.00 % 3.36 % − 0.1316 ± j3.9148
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p.u. This is because G1 has the cheapest marginal cost of generation and 
G2 has the highest marginal cost of generation, as shown in Table 2. 
From the comparison of the standard OPF and OPF with γ ≥ 45 % in 
Tables 4 and 6, it can be observed that in order to meet the SSSM 
requirement, the active power output and voltage magnitude of the 
generators have changed, resulting in the value of the augmented 
Lagrangian function increased by 5.28 %.

From the active power output at the optimal operating point and the 
corresponding critical operating point, i.e., PN

Gi and PC
Gi in OPF with γ ≥

45 %, it can be observed that the critical operating point is obtained 
when the nodal voltages of all generators are kept constant and the total 
generation increases from 26.8259 p.u. to 39.1142 p.u.

6.2. A modified practical system

The modified practical system shown in Fig. 5 [38] consists of 68 
synchronous machines, 2395 buses, 5488 transmission lines, 1496 
transformers, and 458 constant impedance loads, of which 57 generators 
can be rescheduled. The total active and reactive load power are 35244 
MW and 11199.41 MVar, respectively. Details of network parameters, 

nodal powers, and control system parameters can be found in com-
mercial software PSASP (Power System Analysis Software Package) 
[38].

In this case, the total number of state and non-state variables is 1220 
and 6461, respectively. The number of equations in the SSSM model is 
10124, while the number of equations in the modified SSSM model is 
7707. Compared with the SSSM model, the number of equations in the 
modified SSSM model is reduced by 2417.

OPF results with and without SSSM constraints are shown in Table 7. 
Taking OPF with γ ≥ 10 % as an example, curves of the augmented 
Lagrangian function value L and SSSM with iterations are given in Fig. 6. 
It can be observed from rows 2 and 3 of Table 7 that by solving standard 
OPF model, the augmented Lagrangian function value is decreased from 
159110.21 to 114303.84. However, the minimum damping ratio of the 
operating point is reduced from 4.09 % to − 0.62 %, resulting in a SSSM 
of 0. From Fig. 6 and rows 3 and 4 of Table 7, it can be seen that 
compared with standard OPF, SSSMC-OPF has relatively high operating 
cost, but effectively ensures the minimum damping ratio and SSSM 
index of the operating point. It can also be observed from rows 4 and 5 of 
Table 7 that the generation cost increases with more tightened SSSM 
constraint. Compared to the standard OPF, the augmented Lagrangian 
function value obtained from OPF with γ ≥ 14 % is increased by 2.73 %, 
but the optimal operating point can withstand a load increase of 
5078.66 MW and 1613.83 MVar along the given direction of power 
variation to reach the critical operating point.

7. Conclusion

An OPF technique with exact SSSM constraint is described in this 
paper. The SSSM is measured by the percentage change in the total 
active load for a given direction of power variation that would cause the 
damping ratio to reach its minimum limit. A modified SSSM model is 
then proposed to reduce the computational requirement for practical 
studies. Subsequently, an OPF model with the SSSM inequality 
constraint is established and solved by a joint solution approach, where 
the analytical representation of the SSSM sensitivities is derived and 
utilized to guide the optimization direction. The use of the modified 
SSSM model and the three-stage strategy facilitates the direct calcula-
tion of SSSM derivatives. Finally, case studies on the 8-machine 24-bus 
system and the modified practical 68-machine 2395-bus system show 
that the generation costs of the SSSMC-OPF are only 5.28 % and 2.73 % 
higher than those of the OPF, while the SSSMs are improved by 45 % and 
14.41 %, respectively. Simulation results demonstrate that the proposed 
approach can be effectively used for adjusting the system operating 
point to minimize the generation cost while retaining sufficient small- 
signal stability margin.

It is worth pointing out that in the proposed SSSMC-OPF model, the 
direction of load and generation variation is specified. The worst-case 
direction of power variation is more reasonable when the direction of 
power variation cannot be accurately determined or when uncertainty is 
considered. For high renewable energy penetrated power systems, the 
SSSMC-OPF considering the worst-case direction of power increase will 

Fig. 4. Curves of the augmented Lagrangian function value L and SSSM with 
iterations under γ ≥ 35 % for 8-machine 24-bus system.

Table 5 
Variations of ζmin and λmin under γ ≥ 35 % for 8-Machine 24-Bus System.

Iter. λmin ζmin Iter. λmin ζmin

1 − 0.1269 ± j3.8397 3.30 % 7 − 0.1339 ± j3.9238 3.41 %
2 − 0.1287 ± j3.8524 3.34 % 8 − 0.1321 ± j3.8525 3.42 %
3 − 0.1293 ± j3.8514 3.35 % 9 − 0.1331 ± j3.8835 3.42 %
4 − 0.1260 ± j3.8788 3.24 % 10 − 0.1318 ± j3.8872 3.39 %
5 − 0.1259 ± j3.8797 3.24 % 11 − 0.1318 ± j3.8872 3.39 %
6 − 0.1312 ± j3.9240 3.34 %   

Table 6 
Detailed Results of Initial state, Standard OPF, and OPF with γ ≥ 45 % for 8-Machine 24-Bus System.

Generator 
No.

Initial state Standard OPF OPF with γ ≥ 45 %

PN
Gi 

(p.u.)
QN

Gi 
(p.u.)

VN
Gi 

(p.u.)
PN

Gi 
(p.u.)

QN
Gi 

(p.u.)
VN

Gi 
(p.u.)

PN
Gi 

(p.u.)
QN

Gi 
(p.u.)

VN
Gi 

(p.u.)
PC

Gi 
(p.u.)

QC
Gi 

(p.u.)

1 4.0000 1.2990 1.0000 6.0000 1.6571 0.9883 4.5646 0.4969 0.9560 7.6237 3.8503
2 4.6000 1.1033 1.0000 1.6794 0.4768 1.0005 3.5849 0.8248 1.0019 4.2252 2.0824
3 2.3000 2.4330 1.0000 2.5047 1.8338 0.9510 2.4282 2.2801 0.9793 3.7744 4.5236
4 3.2500 0.7777 1.0000 3.1768 1.5297 1.0326 3.2827 1.2826 1.0477 4.9398 2.8372
5 3.0600 0.8781 1.0000 2.6139 0.1691 0.9788 2.9887 1.4985 1.0461 4.3353 3.3203
6 4.0000 3.5753 1.0000 5.3422 3.4606 0.9953 4.3555 3.1721 0.9689 7.1780 5.7085
7 3.1000 3.1202 1.0000 2.8163 2.8719 0.9884 3.0960 2.7864 0.9756 4.5757 5.5817
8 2.5748 0.5705 0.9700 2.6033 0.7621 0.9700 2.5253 0.9537 0.9700 2.4621 3.0115
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be investigated in the future.
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