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SUMMARY
Genetic variation in host immunity impacts the disproportionate burden of infectious diseases that can be
experienced by First Nations peoples. Polymorphic human leukocyte antigen (HLA) class I and killer cell
immunoglobulin-like receptors (KIRs) are key regulators of natural killer (NK) cells, which mediate early infec-
tion control. How this variation impacts their responses across populations is unclear. We show that HLA-
A*24:02 became the dominant ligand for inhibitory KIR3DL1 in First Nations peoples across Oceania, through
positive natural selection. We identify KIR3DL1*114, widespread across and unique to Oceania, as an allele
lineage derived from archaic humans. KIR3DL1*114+NK cells from First Nations Australian donors are in-
hibited through binding HLA-A*24:02. The KIR3DL1*114 lineage is defined by phenylalanine at residue 166.
Structural and binding studies show phenylalanine 166 forms multiple unique contacts with HLA-peptide
complexes, increasing both affinity and specificity. Accordingly, assessing immunogenetic variation and
the functional implications for immunity are fundamental toward understanding population-based disease
associations.
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INTRODUCTION

Host genetics influences immune responses, contributing to the

disproportionate morbidity and mortality from infectious dis-

eases experiencedbyFirst Nations peoples.1–4During viral infec-

tion, HLA class I displays peptides derived from virus proteins on

the surface of infected cells, rendering them liable for elimination

by cytotoxic cells of immunity. Extensive HLA-A, -B, and -C poly-

morphisms both define the repertoire of peptides that may be

presented by a given individual and impact immune cell receptor

binding.5,6 For example, whereas HLA-A*02:01 and -B*08:01,

which are HLA class I types frequent in populations of European

genetic ancestry, mediate protection from severe influenza dis-

ease, HLA-A*24:02, which is highly prevalent in First Nations

Oceanian and American populations, associates with poor

outcome.7 Although HLA-A*02:01, A*24:02, and B*08:01 all

mediate strong influenza-specific cytotoxic T cell responses,8–10

only A*24:02 is also a ligand for inhibitory KIR3DL1, expressed by

natural killer (NK) cells.11 NK cells act early in immune responses

by killing infected cells, releasing cytokines, and stimulating

adaptive immunity.12 Interaction of inhibitory killer cell immuno-

globulin-like receptor (KIR) with HLA class I prevents NK cells

fromdestroying healthy cellswhile enabling them to sense any vi-

rus-induced HLA class I downregulation.13–15 Importantly, the

ability to respond to missing or altered HLA in this manner is

defined by inherited combinations of the highly polymorphic

HLA class I and KIR genes.16

Not every individual has all the KIR capable of interacting with

HLAclass I,andnoteveryHLAclass I allelecan formaKIR ligand.17

This genetically established combinatorial diversity distinguishes

individuals in their infection outcomes.18 In addition tomodulating

effector functions, signaling through KIR educates developing NK

cells to recognize the specific HLA class I ligands expressed by a

given individual.19 The strength of inhibitory signal transduction,

which is dependent both on KIR and HLA allotype, calibrates the

effector and killing capacity of the mature NK cells.20,21 Among

polymorphic receptors shaping diversity of NK cell responses to

viral infection, inhibitory KIR3DL1 dominates.22,23 Enabling recog-

nition by KIR3DL1, HLA-A*24:02 carries the ‘‘Bw4’’ sequence

motif, occurring in amino acid residues 77–83, and common to a

subsetofHLA-Aand -Ballotypes.24Thereare twoancient lineages

of KIR3DL1, which are the 015 lineage that interacts poorly with

HLA-A*24, favoring HLA-B allotypes, and the 005 lineage that in-

teracts both with HLA-A and -B allotypes.25,26 Although there is

a predominance of Bw4+ HLA-A allotypes across Oceania, there

is also a relative lack of 005-lineage KIR3DL1.27

Likely following emigration out of Africa, present-day First Na-

tionsOceaniansdiverged fromEurasians�50–70kya.28,29Subse-

quent admixturewith archaic humans introducednewgeneticma-

terial, having major impact on genes of the immune system.30–36

Archaic human refers to the extinct hominins, suchasDenisovans,

who diverged frommodern humans in Africa�600,000 years ago

to populate Europe and Asia.37 We examined the immunogenetic

composition of First Nations Oceanians and identified a unique

and divergent form of KIR3DL1 having characteristics of archaic

human sequence. Because such archaic introgression rarely in-

volves protein-coding variation, favoring regulatory elements,38,39

we investigated the origin, distribution, and functions of this allele
to determine if it could impact the course of NK cell-driven immu-

nity across Oceania.

RESULTS

High combinatorial diversity of HLA and KIR in First
Nations Australians
Reflecting differential genetic ancestries, environments, and

pathogen exposures, human populations have accumulated

characteristic HLA allele spectra.40 In 80 First Nations Austra-

lians from northern Australia,7 we identified 18, 33, and 25 alleles

of HLA-A, -B, and -C, respectively (Table S1). Accounting for

sample size, this observed diversity in HLA class I alleles is

similar to Europeans and West Africans, representing an inter-

mediate between First Nations Papua New Guineans and south-

ern Africans (Nama and Khomani: Figure 1A), who are among the

most genetically diverse humans.42 A haplotype refers to a spe-

cific combination of alleles that are inherited together. The HLA

class I alleles form 79 distinct haplotypes in the First Nations

Australian cohort (Table S1). The most frequent alleles for

each locus, HLA-A*34:01 (24%), -B*13:01 (18%), and -C*04:01

(23%), respectively, comprise the most frequent HLA class I

haplotype (Figure 1B).HLA-A*34:01 and -B*13:01 are character-

istic to Oceanian populations,43,44 and analysis of genome-wide

SNPs shows this haplotype is Australian/Oceanian in origin

(Figures 1B and S1). Seven of the ten most frequent HLA class

I haplotypes have similar Oceanian-related ancestry, whereas

three are of likely European descent (Figure 1B).

Together, the 76 unique HLA class I alleles encode 67 distinct

protein sequences (allotypes) in First Nations Australians (Fig-

ure 1C). Bw4 is themotif that forms the ligand for KIR3DL1 carried

by some HLA-A and -B allotypes (ligands and nomenclature are

described in STAR Methods). In First Nations Australians,

HLA-A*24:02 is the most frequent Bw4+ HLA allotype present

(21.9%) followed by B*15:22, B*44:02, and B*44:03 (each 2.5%,

Table S1). These HLA allotypes bind more strongly to 005 lineage

than to 015-lineage KIR3DL1 allotypes.23,26 Thus, in First Nations

Australians, most Bw4+ HLA will interact preferentially with

005-lineage KIR3DL1, and in other Oceanians, all the Bw4+ HLA

will interact preferentially with 005-lineage KIR (Figure 1D).

KIR polymorphism affects the capacity of NK cells to respond

to infection-induced changes in HLA class I expression.18,45,46

Of the 13 KIR genes, a total of 121 alleles were identified in

the cohort, including 27 first characterized here (Figure 1E;

Table S1). In addition to KIR3DL1, other KIRs differentially bind

A3 and A11, or the C1 or C2 motifs of HLA class I (STAR

Methods). In the cohort of First Nations Australians, KIR2DL1

(specific for C2+HLA) has nine allotypes, 2DL2/3 (specific for

C1 and some C2) has eight, 3DL1 (Bw4) has 13, and 3DL2 (A3/

11) has eleven (Figure 1F). The inhibitory KIR alleles are arranged

in 55 distinct haplotypes (Figure 1G; Table S1), and every individ-

ual in the cohort has a unique combination of KIR and ligands

(Figure 1H). The distribution ofKIR andHLA class I alleles is char-

acteristic of a diverse population, due in part to admixture with

Europeans, in accordance with genome-wide data.28 First Na-

tions Australians from northern Australia represent a population

with substantial genetic variation that has the potential to diver-

sify the NK cell response to viral infections.13
Cell 187, 7008–7024, November 27, 2024 7009
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The First Nations KIR3DL1*114 allotype is divergent and
likely introgressed
KIR3DL1 is encoded by the KIR3DL1/S1 locus, which also en-

codes the activating KIR3DS1, differentiating an additional line-

age.47 All three lineages of KIR3DL1/S1 were observed in

First Nations Australians, with the 005 lineage represented by

three cell-surface expressed allotypes, the 015 lineage by six

allotypes, and 3DS1 by a single allotype (Figure 2A). All five

KIR3DL1 alleles we first identified here encode distinct allotypes

(Table S1). Of these, KIR3DL1*114was observed in five of the 80

individuals. The KIR3DL1*114 protein sequence is distinguished

fromKIR3DL1*015 by three and *005 by five amino acid changes

(Figure 2B). Importantly, KIR3DL1*114 possesses phenylalanine

at position 166. Residue 166 is subject to positive natural selec-

tion for diversity in hominids,47 with three alternative residues

found at this site in humans (Figure 2B). Residue 166 is located

in the second Ig domain (D1) at the interface with the HLA-pep-

tide complex.24,48

The residues alanine 88 and phenylalanine 166 (Phe-166) that

characterize KIR3DL1*114 are shared with KIR3DL1*086, previ-

ously identified in M�aori27 (Figure 2B). To determine the wider

distribution of these alleles, we analyzed genome-wide SNP

data for 1,210 unrelated Oceanians, comprising 913 samples

from the Oceanian Genomic Variation Project (OGVP),49 and

an additional 297 Papua New Guinean individuals.50 We also

sequenced the KIR and HLA genes from an overlapping cohort

of 645 Papuans. Examining their global distribution (STAR

Methods) indicates KIR3DL1*086 and *114 are both specific to

Oceanians (Figure 2C). Conservative estimates of the allele fre-

quencies range from 1% in Kinh Vietnamese to 21% in Lowland

and 28% in Highland Papuans (Table S3). From individuals hav-

ing both sequence and SNP data, we inferred the local genetic

ancestry and identified 54/56 (92.9%) KIR3DL*114+ haplotypes

as Papuan, with a positive correlation of KIR3DL1*114 with

Papuan-related ancestry across Oceania and Southeast Asia

(Figures S2A–S2D). Thus, KIR3DL1*114 is characteristic to and

widespread throughout Oceania and likely shared by gene flow

into southeast Asia.

Throughout Oceania, KIR3DL1*114 and *086 are each

observed in tight linkage with KIR2DL4*028 and KIR2DS4*019

(Figure 2D), which, together with KIR3DL2*070, characterize
Figure 1. High combinatorial diversity of HLA and KIR in First Nations
(A) Shown is the number of distinct HLA-A, -B, and -C alleles of 75 random ind

deviation from 1,000 resamples with replacement. Unpaired two-sample Wilcoxo

Nations Australians (shaded red) and each reference population (p for each com

(B) The ten most frequent HLA class I haplotypes detected in First Nations Austral

(blue). At the right are shown their frequencies in First Nations Australians (AUS),

underneath). y, haplotype of likely European origin (Figure S1; Table S2).

(C) The distribution of KIR ligands among HLA class I allotypes. The combined fr

(D) Shows the total allele frequencies of Bw4+ HLA-B (left) and Bw4+ HLA-A (ri

interact with 005 lineage KIR3DL1 are shown in light green; those that interact w

(E) The number of distinct KIR alleles detected in 75 individuals from each of the

(F) Frequency spectra of KIR alleles encoding inhibitory receptors specific for HL

distinct KIR allotype. (Blue) Activating KIR3DS1, (purple) allotypes that are not ex

(G) Ten most frequent haplotypes considering inhibitory KIR specific for HLA cla

(H) The number of distinct HLA class I and KIR genotypes observed in 80 First N

functional interactions.

An explanation of HLA and KIR nomenclature is given in STAR Methods.

See also Figure S1.
the First Nations Australian KIR3DL1*114+ haplotypes (Fig-

ure 2D). Each of the four alleles is distinguished from the closest

known allele51 by at least two unique single nucleotide substitu-

tions. Analysis of HLA genotypes confirmed the five individuals

are unlikely to be first- or second-degree relatives. Intrigued

by the distinct characteristics and established evidence that

archaic admixture is detectible in Oceanians,52,53 we further

investigated KIR3DL1*114 carrying haplotypes. Indeed, the

D-statistic, which determines allele sharing across lineages,33,54

shows statistically significant evidence that the KIR3DL1*114

haplotype has an allele composition shared with the Denisovan

genome (D score = 0.95, Z score = 40.6, Figure 2E). This analysis

also showed the minimum length of the haplotype to be

62,276 bp (Table S3), spanning the KIR2DL4 through KIR3DL2

genes. We estimate KIR3DL1*114 diverged from the KIR3DL1

015- and 005-lineages 1.84 mya (95% CI: 0.994–2.996, STAR

Methods). This divergence time is older than the split between

archaic and modern humans, and the *114 allele group is absent

from Africa, suggesting re-introduction from archaic humans to

Oceanian ancestors.32 A competing hypothesis is the ancestral

lineage present in both modern and archaic humans was lost

from Africa either during or shortly after the out-of-Africa migra-

tion. However, the probability of a haplotype of 62.3 kbp being

shared bymodern Oceanians andDenisovans due to incomplete

ancestral lineage sorting is extremely low (8.783 10�9),55 further

supporting transfer to modern humans from archaic humans.

The geographical distribution and sequence divergence of

KIR3DL1*114 carrying haplotypes and significant allele sharing

with Denisovan therefore make them clear candidates for origi-

nating from archaic hominins through introgression.32,35

HLA-A*24:02 is the dominant ligand for KIR3DL1 in First Na-

tions Australians (Figure 1), and the mean allele frequency of

A*24:02 across Oceania and Southeast Asia is 46.1% ± 19.6%

(Figure 2C; Table S3). HLA is subject to balancing selection,

favoring heterozygotes, and promoting diversity in defense

against pathogens.56–58 By contrast here, homozygosity of

HLA-A is higher than expected under neutrality, as indicated

by the Ewens-Watterson F-statistic (e.g., p < 0.05 in Australia;

Table S3). In Australia and Papua New Guinea, HLA-A*24:02

drives the reduced HLA-A diversity, where the number of

A*24:02 homozygotes is significantly higher than expected
Australians
ividuals for each indicated population. Error bars represent mean ± standard

n tests with Bonferroni multiple test correction were performed between First

parison is <0.001, except with Han for HLA-C, which is not significant, ns).

ians. The KIR ligands are colored: A3/11 (yellow), Bw4 (green), C1 (red), and C2

Papua New Guineans (PNG), Europeans (EUR), and East Asians (EAS) (key is

equencies of each subset are shown.

ght) across the representative populations. Bw4+ allotypes that preferentially

ith 005 and 015 lineage in dark green.

populations indicated, obtained as described for (A).

A class I (colored by cognate ligand from B). Each segment corresponds to a

pressed on the cell surface,41 and (gray) gene absence.

ss I.

ations Australians. ‘‘KIR + ligand’’ excludes non-expressed allotypes and non-
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under Hardy-Weinberg equilibrium (p < 0.05, Table S3). The

reduced genetic diversity of HLA-A*24:02 is not observed in

the rest of the genome or in other HLA-A alleles (Figure 2F;

Table S3), and we found no evidence that HLA-A*24:02 has

archaic human origin (Figure S2E). An earlier study suggested

high frequency of HLA-A*24:02 is due to positive natural selec-

tion.59 Here, we used the iHS test, which can detect positive se-

lection within 1,000 generations of present, and identified a

signal acutely centered on HLA-A*24:02 (Figure S2F).

Finally, although we observed the high frequency of HLA-

A*24:02 does not correspond with the frequency of 3DL1*005,

its strongest-binding KIR partner (Figure 2C), we did observe a

statistically significant positive correlation of HLA-A*24:02 with

the combined allele frequencies of KIR3DL1*005 and *114 (Fig-

ure 2G). These findings suggest that the rapid frequency rise of

HLA-A*24:02 across Oceania was permitted by the presence of

KIR3DL1*114 compensating for the scarcity of KIR3DL1*005-line-

age allotypes.

KIR3DL1*114 has 005 lineage properties
KIR3DL1 polymorphism can determine cell surface expression

level, which can impact NK cell function.47 With exceptions, 015

lineage allotypes are expressed at high levels on the NK cell sur-

face, and 005 lineage at low levels.47 Todetermine the cell-surface

expression of KIR3DL1*114, we analyzed NK cells isolated from

blood donors selected according to their KIR3DL1/S1 genotype

(Figures S3A and S3B). KIR3DL1*114 is expressed on the NK

cell surface at significantly lower levels than KIR3DL1*015 or

*001 allotypes (p = 0.0007 and p = 0.0013, respectively) and at a

similar level toKIR3DL1*005 (Figure3A). Thus, theexpression level

of this allotype is like the 005 lineage.

By measuring upregulation of CD107a and interferon

(IFN)-g, we tested the response of primary NK cells to target

cells expressing HLA-A*24:02. Whereas all KIR3DL1+ NK

cells responded to HLA-deficient targets, NK cells expressing

KIR3DL1*114 or *005 were more inhibited by HLA-A*24:02 than

those expressing KIR3DL1*001 or *015-like allotypes (Figure 3B).

Showing that the inhibition is specific to KIR3DL1, the response

was not significantly diminished in NK cells expressing only

KIR2DL2/3 or KIR2DL1 from the same donors, assessed in paral-

lel (Figure 3C). To determine NK cell responses against a broader
Figure 2. KIR3DL1*114 has archaic human origin and coevolved with H

(A) Neighbor-joining phylogenetic analyses of external-domain coding sequenc

represent the three major KIR3DL1/S1 lineages, 005 (blue), 015 (red), 3DS1 (gree

lineage. Bootstrap values for nodes are given when >50%. Lower right pie chart

color scheme, and gray indicates gene absence.

(B) Polymorphic amino acid residues distinguishing the lineages of KIR3DL1/S

sequence; residues identical to *015 are indicated by dashes. Residue 166 is sh

(C) Geographic distribution of KIR3DL1*114/*086, HLA-A*24:02, and KIR3DL1 0

(D) KIR haplotypes carrying KIR3DL1*114 or *086 and the populations from whe

(E) D-statistics for testing Denisovan introgression of KIR3DL1*114 (n = 4), *005 (n

haplotypes contain indicated allele; Z, Z score; D, D score. See STAR Methods

(F) Nucleotide diversity (p) across distinct regions of the genome inHLA-A*24:02,H

windows;HLA-A and -BC are flanking 500 kbp on each side. (***p < 0.001, compa

deviation.

(G) Correlation of HLA-A*24:02 with KIR3DL1*114+005-lineage allele frequencie

Only populations with less than 50% Polynesian-related ancestry (by RFMix) are

See also Figure S2.
set of target cells transfected with HLA class I, we used

interleukin-2 (IL-2)-expanded KIR3DL1+ NK cells from donors ex-

pressing KIR3DL1*001, *005, *015, or *114 (Table S4). The targets

included all three Bw4+ HLA-A and six of eight Bw4+HLA-B

allotypes identified in the First Nations Australian cohort (Fig-

ure 3D). Also included were B*27:05, which preferentially binds

KIR3DL1*005, and A*25:01, which does not bind KIR3DL1.11,26

All four KIR3DL1 allotypes strongly inhibited NK cells from killing

target cells expressing HLA-A*32:01, B*44:02, B*51:01, or

B*57:01 (Figure 3D). Against the remaining targets, we observed

a functional hierarchy, with KIR3DL1*015 and *001 mediating

the least, *005 the greatest, and *114 an intermediate degree of

NK cell inhibition (Figure 3D). Within this hierarchy, NK cells ex-

pressing KIR3DL1*114 resemble those expressing KIR3DL1*001

and *015 in their lack of response to HLA-B*13:01 and B*27:04/

06 targets, yet resemble those expressing KIR3DL1*005 in being

inhibited by HLA-A*23:01 and A*24:02 (A*23:01 is closely related

to A*24:02, sharing identity in Bw4 motif and surrounding resi-

dues51). The observed differences of KIR3DL1*114+NK cell activ-

ities are statistically significant (two-way ANOVA; p < 0.05–

p < 0.001; Figure 3D). The ligand specificity of KIR3DL1*114 is

thus distinct from other allotypes tested in being broader than

015 lineage and narrower than 005-lineage allotypes.

Phenylalanine at residue 166 of KIR3DL1 enhances
recognition of HLA-A*24:02
To test the hypothesis that Phe-166 determines the specificity of

KIR3DL1*114, we performed in vitro analyses using reporter cells

expressing extracellular domains of individual KIR3DL1 allotypes

(Figures S3D–S3F). Here, KIR3DL1*114 reporter cells responded

less strongly to HLA-B*51:01 expressing targets than those ex-

pressing 3DL1*001, *005, or *015, but had enhanced response to-

ward HLA-B*57:01 targets (p < 0.01–0.001; Figure 3E). Whereas

KIR3DL1*005 and *114 reacted strongly to HLA-A*24:02 and

B*27:05 targets, KIR3DL1*001 and *015 did not (p < 0.001; Fig-

ure 3E). We thus observed the same hierarchy of KIR3DL1 allo-

type strength as observed using IL-2-expanded NK cells (Fig-

ure 3D). Mutating residue 166 of KIR3DL1*015 (Figure 3F) from

leucine to phenylalanine significantly increased activity toward

HLA-A*24:02, B*27:05, and B*57:01 (p < 0.01–0.001) but had no

effect on the recognition of HLA-B*13:01 or B*27:06-expressing
LA-A*24:02 in Oceania

es of the KIR3DL1/S1 allotypes observed in First Nations Australians. Colors

n), and recombinant 005/015 alleles (purple). KIR3DL1*114 clusters in the 015

shows relative allele frequencies of the three lineages, according to the same

1, alongside KIR3DL1*086 and *114. KIR3DL1*015 is used as the reference

own in bold.

05-lineage alleles in Oceania and Southeast Asia (Table S3).

re they were characterized. (n.d., not determined).

= 6), and *015 (n = 6). KIR3DL1*114 only includes homozygous individuals. W,

and Table S3.

LA-A*34:01, andHLA-A*11:01 homozygous PapuaNewGuineans.p in 100 bp

red withHLA-A; Wilcoxon test; Table S3). Error bars represent mean ± standard

s. Each dot represents a population, colored by region (SEA, Southeast Asia).

included (others are shown in gray).
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Figure 3. KIR3DL1*114 inhibits NK cells upon recognition of HLA-A*24:02

(A) Shows KIR3DL1 expression levels on the cell surface of primary NK cells isolated from individuals having KIR3DL1*114 (n = 3), *001 (n= 3), *005 (n = 4), or *015-

lineage (n = 4) allotypes (Figures S3A and S3B; Table S4). The geometric mean fluorescence intensity (gMFI) of KIR3DL1 expression for each allotype was

normalized within each donor to KIR3DL1neg NK cells. **p < 0.01, ***p < 0.001; Kruskal-Wallis test. Error bars indicate the standard deviation of the mean.

(B) Shows CD107a (left) and IFN-g (right) expression by ex vivo NK cells following incubation with 721.221 cells expressing HLA-A*24:02. NK cells were isolated

from donors expressing KIR3DL1*114 (n = 3), *001 (n = 3), *005 (n = 6), or *015-like (n = 7). For each donor, values are normalized (%max) to those obtained from

(legend continued on next page)
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targets. In these experiments, KIR3DL1*086 had the same recog-

nition pattern as *114 (Figure 3E), whichwas recapitulated through

leucine to phenylalanine substitution of KIR3DL1*001 residue 166

(Figure 3G). Together, these results clearly show the distinct func-

tional profile observed for KIR3DL1*114+NK cells isolated from

First Nations Australian donors is due to Phe-166.

To understand how substitution at residue 166 affects receptor

function, we compared crystal structures of KIR3DL1*001 and

KIR3DL1*114, each bound to HLA-A*24:02 complexed with the

TW9 peptide. TW9 comprises influenza A virus polymerase

basic protein 2, residues 549–557, and induces a CD8+T cell

response when presented by HLA-A*24:02.60 We determined the

structures to 1.9 Å and 2.4 Å resolution, respectively (Table S5).

Whereas the overall docking geometry of these two KIR3DL1-

HLA receptor-ligand complexes24,48 remains conserved (Fig-

ure 4A), KIR3DL1*001 and *114 differ in their interactions both

with the Bw4 motif and the presented peptide (Figures 4B and

4C). Namely, leucine 166 (Leu-166) forms one van der Waals

(vdw) interaction with isoleucine 80 of the Bw4 motif, whereas

Phe-166 forms nine vdw contacts, interacting with residues 76

and 80 of HLA (Figure S4). The extensive network of hydrophobic

contacts with Bw4 thus enhances recognition of the HLA class I

molecule by KIR3DL1*114 (Figure 4B). Likewise, KIR3DL1*114

directly contacts residues 7 and 8 of the TW9 peptide (P7 and

P8) through three hydrogen bonds and three vdw interactions,

whereas KIR3DL1*001 makes only two vdw contacts and no

hydrogen bonds with P8 (Figure S4). Thus, KIR3DL1*114 makes

more extensive contacts with HLA-A*24:02-TW9 in comparison

to KIR3DL1*001.

Included in thepeptidecontactsmadebyKIR3DL1*114are tyro-

sine 200 (Tyr-200) and glutamic acid 282 (Glu-282), which interact

with P8, and P7 and P8 of the peptide, respectively. By compari-

son, in the KIR3DL1*001-HLA-A*24:02-peptide complex, P8-

Asparagine is rotated away from the interface, preventing the

formation of hydrogen bonds with Glu-282 and Tyr-200 of

KIR3DL1*001 (Figure4C).Concomitantwith thealteredorientation

of P8, Glu-282 adopts a different conformation comparedwith the

same residue in KIR3DL1*114, increasing the distance from P7 to

�5 Å, precluding the formation of a direct contact between these

two residues (Figure 4C). These findings show how Phe-166 en-

hances interaction with ligand both through direct and indirect
KIR3DL1+ NK cells incubated with the parental, HLA class Ineg 721.221 cell line

Wallis test.

(C) As (B), except NK cells were differentiated into those expressing only KIR3DL1

were normalized to the maximal obtained with the parental 221 cell line and compa

***p < 0.001).

(D) Assays using NK cells isolated from ten donors and expanded in vitro using IL

HLA allotype of target cells is indicated on the x axis (allotypes present in the coho

themaximal expression in response to parental 721.221 cells. Background CD107

were performed, and the mean of all replicates from the donors is shown as the b

two-way ANOVA with Bonferroni’s multiple comparisons. For each KIR3DL1 allo

types are given in Table S4.

(E–G) Shows the result of in vitro activation (CD69 upregulation) of reporter cells ex

natural (E) or mutated (F and G) KIR3DL1 allotype that was fused to the intracellula

The reporter cells were incubated with a panel of 721.221 target cells for 8 h,

(Figures S3D and S3E). Three independent experiments were performed, each in

**p < 0.001, ***p < 0.001; two-way ANOVA with Tukey’s multiple comparisons te

See also Figure S3.
mechanisms. Crystallographic analysis of further receptor-ligand

complexeswith HLA class I presenting two other distinct epitopes

(a viral and a self-peptide) showed this enhancement is observed

across disparate ligands for KIR3DL1*114 (Figure 4D; Table S5).

Similar results were obtained for KIR3DL1*086, which also carries

Phe-166 (Figure 4D). Here, the strongest expected interactions

are Phe-166+KIR3DL1 with HLA-A*24:02-NEF (HIV peptide) and

with B*57:03-AW10 (self-peptide), having four and twelve vdw

contacts with peptide, respectively (Figure S4). In summary, poly-

morphism at residue 166 has a substantive role in determining the

functional specificity of KIR3DL1.

KIR3DL1*114 strongly binds influenza peptides
presented by HLA-A*24:02
Given that position 166 of KIR3DL1 affects ligand specificity and

contacts the HLA-bound peptide, we investigated the peptide

specificity of this polymorphism. We selected three influenza A

virus peptides known to bind HLA-A*24:0260 (Figures 5A and

S5) and examined their binding to *001, *015, *005, *086, and

*114 allotypes of KIR3DL1. We also selected one HIV and one

self-derived peptide, known to bind KIR3DL1 when in complex

with HLA-A*24:02 or B*57:03, respectively.61,62 In surface plas-

mon resonance (SPR) experiments, all five HLA class I-peptide

complexes bound to each of the KIR3DL1 allotypes (Figure S5).

For each given ligand, we observed a clear hierarchy of binding.

The KIR3DL1 allotypes showed their greatest distinction in affin-

ity for HLA-B*57:03-AW10 (Figure 5B), where KIR3DL1*001,

*005, and *015 bound weakly with a KD of 40–60 mM, and

KIR3DL1*086 and *114 binding affinities were 20- to 30-fold

stronger, having a KD of 2 mM (Figure S5). This notable increase

in affinity is consistent with the crystallography data showing

multiple interactions with the ligand complex mediated

specifically by Phe-166 (Figure 4; Table S5). Although the binding

hierarchy was the same with HLA-A*24:02-TW9, KIR3DL1*005

represented an intermediate between the two extremes of low-

affinity KIR3DL1*001 or *015, and high-affinity KIR3DL1*086 or

*114 (Figure 5C). To confirm the impact of Phe-166, we made

KIR3DL1*086-166L and *114-166L constructs and repeated

the SPR experiments. Both 3DL1*086-166L and *114–166L

showed reduced binding affinities for the HLA-peptide com-

plexes, in each case being like those of KIR3DL1*005
. Each dot represents one donor. CD107a p = 0.07, IFN-g p = 0.02; Kruskal-

, KIR2DL1/S1, or KIR2DL2/3/S2. Each circle represents one donor. Responses

red using a one-way ANOVAwith Tukey’smultiple comparison test (**p < 0.01,

-2. Each donor was homozygous for one of four expressed KIR3DL1 allotypes.

rt shown in bold). CD107a expression of KIR3DL1+ NK cells was normalized to

a expression by NK cells was subtracted. For each donor, two-three replicates

ar graph with the standard deviation plotted. ***p < 0.001, **p < 0.01, *p < 0.05;

type, triangles, circles, and squares represent the donors used, whose geno-

pressing specific KIR3DL1 allotypes. Jurkat cells were transducedwith a given

r domain of CD3z. Colors represent the KIR3DL1 allotypes, as shown in the key.

and the subsequent upregulation of CD69 was assessed by flow cytometry

triplicate, and statistics performed on the average of the replicates. *p < 0.05,

st.
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Figure 4. Phenylalanine at residue 166 of

KIR3DL1*114 enhances interaction with HLA

ligands

(A) Ribbon diagram of the crystal structures solved

for KIR3DL1*001 (left, cyan) and KIR3DL1*114 (right,

blue) bound to the HLA-A*24:02-TW9 peptide (influ-

enza virus A polymerase basic protein 2 residues

549–557) complex. HLA-A*24:02 in gray, peptide in

mauve, and b2M in orange. KIR3DL1 and HLA do-

mains are labeled on the left, and positions of the

peptide and residue 166 are indicated on the right.

(B) Orthogonal view of KIR3DL1 residue 166 in-

teractions with a1 helix residues of the HLAmolecule.

(Bi) KIR3DL1*001 (L166), (Bii) KIR3DL1*114 (F166).

Dotted lines indicate van der Waals interactions.

(C) (Ci) Side view; cut away to show the interactions of

KIR3DL1 residue 166 with peptide and HLA mole-

cules. Leucine 166 is represented shaded cyan and

phenylalanine dark blue. (Cii) Aerial view of peptide

showing contacts with L166 and (Ciii) F166.

(D) Comparison of interactions of KIR3DL1 residue

166 from allotypes (left to right) KIR3DL1*001, *086,

and *114 with HLA a1 helix residues of (top) HLA-

A*24:02-NEF and (bottom) -B*57:03-AW10. NEF is

derived from HIV-1, AW10 from human catenin.

See also Figure S4.
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(Figures 5B and 5C). The exception was HLA-A*24:02-FF10,

which had similar affinity for each of the KIR3DL1 allotypes

tested (Figures S5C and S5D).

Overall, the binding profiles of KIR3DL1*086 and *114 showed

statistically significant higher affinity values for HLA-A*24:02

complexes than did KIR3DL1*001 or *015 (Figures 5D and 5E).

The greatest variety in binding was seen for KIR3DL1*005,
7016 Cell 187, 7008–7024, November 27, 2024
which bound to HLA-A*24:02-NEF and

B*57:03-AW10, with similar affinity as

KIR3DL1*001 and *015, to HLA-A*24:02-

FF10 with similar affinity as KIR3DL1*086

and *114, and to the remainder at interme-

diate affinity (Figure S5). Interestingly, FF10

has the same sequence as RF8, but with

two additional residues at the N terminus

(Figure 5A). These residues increased the

affinity for all KIR3DL1 allotypes, most

noticeably for KIR3DL1*005, placing this

allotype with similar or greater affinity for

the FF10 peptide as KIR3DL1*086 and

*114 (Figure 5D). Together, these results

suggest that 005-lineage allotypes of

KIR3DL1 are highly peptide selective.

They also indicate that Phe-166 enhances

interactionwithHLA-A*24:02while reducing

the sensitivity of KIR3DL1 for the presented

peptide.

DISCUSSION

Combinatorial diversity of KIR and HLA

class I modulates NK cell-driven control
of infectious disease severity.63,64 Through killing infected cells,

NK cells act before, during, and after development of a memory

immune response. Having roles also in conventional T cell-

driven immunity, NK cells can lyse specific antigen-presenting

cells or kill infected cells through antibody-dependent cytotox-

icity (ADCC), and KIR can modulate potentially autoreactive

T cells.65–68 Optimal interaction of KIR with HLA can therefore



Figure 5. KIR3DL1 allotypes having phenylalanine at residue 166

bind HLA-A*24:02-peptide complexes with greater affinity than do

other allotypes

(A) (Left to right) HLA class I allotype, and name, sequence, and origin of bound

peptide. Residues in bold correspond to P8 of the 9-mer peptide.

(B and C) Shown are the affinity curves of soluble KIR3DL1 allotypes binding to

the immobilized HLA-B*57:03-AW10 (B) or HLA-A*24:02-TW9 complex (C).

The KIR3DL1 allotypes are *001, *005, *015, *086, and *114, and mutations

*086-F166L, *114-F166L. R.U., response units. Mean from two independent

experiments shown. Underneath are shown the mean KD values; ± values and

remaining HLA-A*24:02-peptide binding curves are given in Figure S5.

(D) Comparison of KD values across HLA-A*24:02-peptide complexes. Data

are representative of two independent experiments. Error bars are SEM.
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determine whether an infection is controlled without incurring

collateral damage, both in the short and long term. Conse-

quently, genetically determined diversity of KIR and HLA class

I affects the severity of multiple immune-mediated diseases

and may also affect the course of specific immunotherapies,

including transplantation.16 Among the KIR/HLA interactions,

those of the inhibitory KIR3DL1 with subtypes of HLA-A or -B

dominate in diversity and known implications for infectious dis-

ease. KIR3DL1 alleles are highly differentiated across popula-

tions,25 likely influencing control of region-specific infections.69

We identified KIR3DL1*114 to have strong affinity for HLA-

A*24:02 and their pairing to be uniquely common across Oce-

ania. KIR3DL1 allotypes that bind most strongly to their ligands

drive generation of the most potently acting NK cells. In autoim-

munity and some viral infections, the strongly inhibiting

KIR3DL1 allotypes can associate with protection from disease

severity.16,70,71 By contrast, in hematopoietic cell transplantation

for acute myeloid leukemia, where donor NK cells can kill host

leukemic cells, strongly inhibiting KIR3DL1 allotypes associate

with leukemic relapse.72 Moreover, these strongly inhibiting allo-

types may also reduce success of monoclonal antibody therapy

for specific tumors,73 but improve the course of checkpoint inhi-

bition therapy for others.74 However, most of the above findings

have been established for individuals of European descent, and

little is known about the extent or implications of immunogenetic

variation in First Nations peoples. Our precise functional charac-

terization of the allotypes we describe here therefore has poten-

tial application for multiple aspects of human health across the

Oceania region.

We identified KIR3DL1*114 as an ancient allele group unique to

Oceania that is likely introgressed from Denisovans. Having a

mean allele frequency of 8.5% across Oceania and 25% in Papua

New Guinea, we estimate a minimum of 5 million people to have

KIR3DL1*114. The polymorphism that defines the specificity of

KIR3DL1*114 occurs at a site previously identified under natural

selection for diversity.25WeshowHLA-A*24:02, the contemporary

ligand for KIR3DL1*114, rose to high frequency across Oceania

under positive selection during the time since KIR3DL1*114 was

acquired by modern humans. Together, these findings suggest

thepresenceofKIR3DL1*114permittedHLA-A*24:02 to rise in fre-

quency and that the interaction of this HLA-A with *114 compen-

sates for the lack both of Bw4 motifs carried by HLA-B and the

005 lineage of KIR3DL1. Although the cause and timing of the se-

lection are unknown, one outcome is a unique profile of NK cell re-

ceptor diversity for modern-day individuals in this geographic re-

gion, defined by a predominance of strongly inhibitory KIR3DL1

specific for HLA-A. Having distinct evolutionary histories,13

HLA-A and -B likely complement each other in function. Although

we did not directly study the impact of KIR3DL1*114 on NK cell

education, strong interaction of KIR3DL1*114 with HLA-A*24:02

implicates this combination as a robust educator of NK cells.

Any implications for host immunity of NK cells preferentially inter-

acting with HLA-A remain to be established.
(E) Comparison of KD values obtained by the KIR3DL1 allotypes across the four

HLA-A*24:02 complexes. t test, Bonferroni corrected (Pc).

See also Figure S5.
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Although not selected by any health criteria, the initial cohort

was assembled to investigate the high prevalence of severe

influenza disease in First Nations Australians.4,7 Influenza virus

remains a major threat to human health,75 and treatment for se-

vere disease is limited. One of the most frequent HLA class I al-

lotypes in the cohort and the most frequent across Oceania is

A*24:02, which presents a risk for developing severe respiratory

disease following influenza infection.10 Peak influenza virus repli-

cation occurs within days of infection, prior to the establishment

of T cell-driven immune responses. Subsequently, memory

T cells ensure repeat challenges by the same or similar virus

strain are eliminated. Innate immune responses are therefore

necessary to ensure survival when challenged by a strain not

previously encountered. NK cells are critical in this early

response.76,77 NK cells can recognize and kill influenza-infected

cells,78 and NK cell activation is critical for coordinating and

modulating cytotoxic T cell activity to influenza virus infection.79

Further highlighting the importance of their role fighting this

infection, influenza virus has evolvedmultiple strategies to evade

NK cells.80 Accordingly, impaired NK cell function associates

with influenza virus susceptibility.81 Potentially impairing their

function, NK cells isolated from lungs express high levels of

inhibitory KIR,67 and influenza virus infection causes redistribu-

tion of HLA class I on the cell surface such that KIR binds

more efficiently.82 That HLA-A*24:02, uniquely among HLA class

I allotypes common in Oceania, enables interaction with

KIR3DL1 implicates NK cells in the increased susceptibility to se-

vere influenza observed for First Nations Oceanians.

Resembling the functional characteristics of the KIR3DL1*114

interaction with HLA-A*24:02, KIR2DL1 is a stronger and more

specific receptor for HLA-C than is KIR2DL3.83 In individuals car-

rying both KIR2DL1 and KIR2DL3, those NK cells expressing

KIR2DL1 had a more inhibited response to influenza-virus-in-

fected cells than those expressing KIR2DL3.84 Although the ef-

fects of KIR3DL1 polymorphism were not investigated, those

findings suggest that the strong specific inhibition of NK cells

mediated by KIR3DL1*114 interaction with HLA-A*24:02 will be

detrimental to control of influenza virus infection. The influenza

virus peptides we studied here had been selected for their ability

to stimulate cytotoxic T cell activity when complexed with HLA-

A*24:02,60 yet we show the same complexes strongly and spe-

cifically inhibit NK cell effector activities. Strong inhibition of

NK cells may limit their ability to control influenza virus infection.

Alternatively, any reduced ability of NK cells to dampen the

T cell-driven immune responses may increase the likelihood for

collateral damage.15 The implications of these findings will there-

fore need further investigation in severe influenza disease

settings.

Previous work identifying introgressed immune genes identi-

fied single molecules of limited, albeit critical, function in innate

immunity and have tended to identify non-coding variants that

may affect expression.30,39 Exceptions include one rare (HLA-

B*73) and one more frequent (HLA-A*11) HLA allele but with no

data regarding their functions obtained.35 By contrast, we

describe an immune receptor allotype characteristic to Oceania

and currently representing up to 30% individuals in populations

throughout this geographic region. The interaction of NK cell re-

ceptors with HLA has wide-ranging implications for innate and
7018 Cell 187, 7008–7024, November 27, 2024
adaptive immunity, not limited to infectious disease, including

autoimmunity, cancer, immunotherapy, and neurological dis-

ease. As we present direct evidence for functional distinction

of the interactions involving KIR3DL1*114, our work thus shows

how archaic admixture could have lasting impact on the health of

First Nations peoples. We also note that, in addition to archaic

introgression, we show that more recent gene flow from Euro-

peans has had a substantial impact on the immunogenetic diver-

sity of First Nations Australians in relation to other First Nations

Oceanians.
Limitations of the study
Phe-166 is encoded by a CTT-TTT codon change carried by a

haplotype that we show to be highly likely of Denisovan origin.

All haplotypes sharing flanking SNPs from the 369 that we

sequenced also carried the TTT codon. Although we assume

from this observation that Phe-166 is Denisovan in origin, it

cannot be ruled out from the data we have that any of the

SNPs that define this haplotype could have been derived inmod-

ern humans since the Denisovan admixture event took place.

Population-specific co-evolution of KIR and HLA class I

ligands is a defining feature of the KIR/HLA class I system.85

Here, the prevailing dogma is that the system is subject to

balancing selection, whereby populations respond rapidly to

any perturbations of the balance through polymorphism that al-

ters specificity or function.16 KIRs appear to be evolving more

rapidly than HLA, able to alter function through single nucleotide

substitution, gene deletion, duplication, or fusion, and here we

also highlight the use of pre-existing variation.86 Although we

have focused the study on infectious diseases, combinatorial di-

versity of KIR and HLA class I may be affected by natural selec-

tion through their critical role early in placentation.13,16 As HLA-A

and -B are not expressed by fetal trophoblast cells, the role of

NK cells in reproduction is unlikely to have driven the co-evolu-

tion of KIR3DL1*114 with HLA-A*24:02. An assumption we

therefore make is that the combination of HLA-A*24:02 with

KIR3DL1*114 has been advantageous toward controlling spe-

cific pathogen or pathogens that remain unknown. Further

work is therefore required to identify the pathogens and whether

they remain a threat to health in Oceania.
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d Sequences of the newly characterized HLA and KIR alleles have been

deposited in GenBank under accession numbers MH301276-78 and

MH938271-297 and are publicly available as of the date of publication.

d Protein structures were deposited in the Research Collaboratory for

Structural Bioinformatics Protein Data Bank under accession codes,

9BL2-6, 9BL9, and 9BLA, and are publicly available as of the date of

publication.

d This paper does not report any original code.

d This paper analyzes existing, publicly available data, accessible at PDB:

7K80, https://www.ebi.ac.uk/ipd/, https://ftp.ncbi.nlm.nih.gov/pub/

mhc/mhc/Final%20Archive/IHWG/Anthropology/, https://www.international

genome.org/, https://www.simonsfoundation.org/simons-genome-

diversity-project/.

d Any additional information required to analyze the data reported in this

paper is available from the lead contact upon request.
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9. Quiñones-Parra, S., Grant, E., Loh, L., Nguyen, T.H.O., Campbell, K.A.,

Tong, S.Y.C., Miller, A., Doherty, P.C., Vijaykrishna, D., Rossjohn, J.,

et al. (2014). Preexisting CD8+ T-cell immunity to the H7N9 influenza A

virus varies across ethnicities. Proc. Natl. Acad. Sci. USA 111, 1049–

1054. https://doi.org/10.1073/pnas.1322229111.

10. Hertz, T., Oshansky, C.M., Roddam, P.L., DeVincenzo, J.P., Caniza,

M.A., Jojic, N., Mallal, S., Phillips, E., James, I., Halloran, M.E., et al.

(2013). HLA targeting efficiency correlates with human T-cell response

magnitude and with mortality from influenza A infection. Proc. Natl.

Acad. Sci. USA 110, 13492–13497. https://doi.org/10.1073/pnas.

1221555110.

11. Stern, M., Ruggeri, L., Capanni, M., Mancusi, A., and Velardi, A. (2008).

Human leukocyte antigens A23, A24, and A32 but not A25 are ligands

for KIR3DL1. Blood 112, 708–710. https://doi.org/10.1182/blood-2008-

02-137521.

12. Lam, V.C., and Lanier, L.L. (2017). NK cells in host responses to viral in-

fections. Curr. Opin. Immunol. 44, 43–51. https://doi.org/10.1016/j.coi.

2016.11.003.

13. Parham, P., and Moffett, A. (2013). Variable NK cell receptors and their

MHC class I ligands in immunity, reproduction and human evolution.

Nat. Rev. Immunol. 13, 133–144. https://doi.org/10.1038/nri3370.

14. Björkström, N.K., Strunz, B., and Ljunggren, H.G. (2022). Natural killer

cells in antiviral immunity. Nat. Rev. Immunol. 22, 112–123. https://doi.

org/10.1038/s41577-021-00558-3.

15. Mahmoud, A.B., Tu, M.M., Wight, A., Zein, H.S., Rahim, M.M.A., Lee,

S.H., Sekhon, H.S., Brown, E.G., andMakrigiannis, A.P. (2016). Influenza

virus targets Class I MHC-educated NK cells for immunoevasion. PLoS

Pathog. 12, e1005446. https://doi.org/10.1371/journal.ppat.1005446.

16. Pollock, N.R., Harrison, G.F., and Norman, P.J. (2022). Immunogenomics

of killer cell immunoglobulin-like receptor (KIR) and HLA Class I: coevo-

lution and consequences for human health. J. Allergy Clin. Immunol.

Pract. 10, 1763–1775. https://doi.org/10.1016/j.jaip.2022.04.036.

17. Uhrberg, M., Valiante, N.M., Shum, B.P., Shilling, H.G., Lienert-Weiden-

bach, K., Corliss, B., Tyan, D., Lanier, L.L., and Parham, P. (1997). Human

diversity in killer cell inhibitory receptor genes. Immunity 7, 753–763.

https://doi.org/10.1016/S1074-7613(00)80394-5.

18. Martin, M.P., Naranbhai, V., Shea, P.R., Qi, Y., Ramsuran, V., Vince, N.,

Gao, X., Thomas, R., Brumme, Z.L., Carlson, J.M., et al. (2018). Killer cell

immunoglobulin-like receptor 3DL1 variation modifies HLA-B*57 protec-

tion against HIV-1. J. Clin. Invest. 128, 1903–1912. https://doi.org/10.

1172/JCI98463.
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Schraiber, J.G., Jay, F., Prüfer, K., de Filippo, C., et al. (2012). A high-

coverage genome sequence from an archaic Denisovan individual. Sci-

ence 338, 222–226. https://doi.org/10.1126/science.1224344.

34. Jacobs, G.S., Hudjashov, G., Saag, L., Kusuma, P., Darusallam, C.C.,

Lawson, D.J., Mondal, M., Pagani, L., Ricaut, F.X., Stoneking, M., et al.

https://doi.org/10.1146/annurev-genom-091212-153455
https://doi.org/10.1038/icb.2017.47
https://doi.org/10.1038/icb.2017.47
https://doi.org/10.1073/pnas.88.20.8987
https://doi.org/10.1073/pnas.1322229111
https://doi.org/10.1073/pnas.1221555110
https://doi.org/10.1073/pnas.1221555110
https://doi.org/10.1182/blood-2008-02-137521
https://doi.org/10.1182/blood-2008-02-137521
https://doi.org/10.1016/j.coi.2016.11.003
https://doi.org/10.1016/j.coi.2016.11.003
https://doi.org/10.1038/nri3370
https://doi.org/10.1038/s41577-021-00558-3
https://doi.org/10.1038/s41577-021-00558-3
https://doi.org/10.1371/journal.ppat.1005446
https://doi.org/10.1016/j.jaip.2022.04.036
https://doi.org/10.1016/S1074-7613(00)80394-5
https://doi.org/10.1172/JCI98463
https://doi.org/10.1172/JCI98463
https://doi.org/10.1016/j.immuni.2006.06.013
https://doi.org/10.1073/pnas.0712229105
https://doi.org/10.1073/pnas.0712229105
https://doi.org/10.1182/bloodadvances.2023009827
https://doi.org/10.1038/ng2035
https://doi.org/10.4049/jimmunol.1502469
https://doi.org/10.4049/jimmunol.1502469
https://doi.org/10.1038/nature10517
https://doi.org/10.1038/nature10517
https://doi.org/10.1038/ng2111
https://doi.org/10.1038/ng2111
https://doi.org/10.1084/jem.20152023
https://doi.org/10.1007/s00251-014-0794-1
https://doi.org/10.1007/s00251-014-0794-1
https://doi.org/10.1038/nature18299
https://doi.org/10.1038/srep43041
https://doi.org/10.1016/j.cell.2016.09.024
https://doi.org/10.1016/j.cell.2016.09.024
https://doi.org/10.1126/science.aax2083
https://doi.org/10.1038/s41586-021-03236-5
https://doi.org/10.1038/s41586-021-03236-5
https://doi.org/10.1126/science.1224344


ll
OPEN ACCESSArticle
(2019). Multiple deeply divergent denisovan ancestries in Papuans. Cell

177, 1010–1021.e32. https://doi.org/10.1016/j.cell.2019.02.035.

35. Abi-Rached, L., Jobin, M.J., Kulkarni, S., McWhinnie, A., Dalva, K., Gra-

gert, L., Babrzadeh, F., Gharizadeh, B., Luo, M., Plummer, F.A., et al.

(2011). The shaping of modern human immune systems by multiregional

admixture with archaic humans. Science 334, 89–94. https://doi.org/10.

1126/science.1209202.

36. Zammit, N.W., Siggs, O.M., Gray, P.E., Horikawa, K., Langley, D.B., Wal-

ters, S.N., Daley, S.R., Loetsch, C.,Warren, J., Yap, J.Y., et al. (2019). De-

nisovan, modern human andmouse TNFAIP3 alleles tune A20 phosphor-

ylation and immunity. Nat. Immunol. 20, 1299–1310. https://doi.org/10.

1038/s41590-019-0492-0.

37. Zeberg, H., Jakobsson, M., and Pääbo, S. (2024). The genetic changes
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Nemat-Gorgani et al.97 N/A

Yucpa KIR3DL1/S1 and HLA class I

frequencies

Gendzekhadze et al.98 N/A

Chinese Southern Han KIR3DL1/S1 and

HLA class I frequencies

Deng et al.99 N/A

Europeans from USA KIR3DL1/S1 and HLA

class I frequencies

Amorim et al.100 N/A

Malay KIR3DL1/S1 and HLA class I

frequencies

Tao et al.101 N/A

1000 Genomes Project KIR3DL1/S1

genotypes

Norman et al.102 N/A

KIR3DL1/S1 frequencies, multiple

populations

Norman et al.25 N/A

Native South American KIR3DL1/S1 allele

frequencies

Vargas et al.103 N/A

KIR3DL1/S1 allele frequencies from 7

African populations

Nemat-Gorgani et al.104 N/A

Experimental models: Cell lines

Human 721.221 cells Laboratory of Peter Parham;

Shimizu and DeMars105
N/A

Human 721.221 cells expressing specified

HLA-A, -B or -C allele

Laboratory of Andrew Brooks;

Saunders et al.26,48,106; Laboratory

of Peter Parham; Saunders et al.106

N/A

293T cells ATCC Cat#CRL-3216

Jurkat cells Laboratory of James McCluskey;

Macdonald et al.107
N/A

Expi293F� cells ThermoFisher Cat#A14527

Expi293F� GnTI cells ThermoFisher Cat#A39240

Oligonucleotides

Mutagenesis primers This paper (Bioneer Pacific) See Table S4

Recombinant DNA

Codon-optimized HLA-B*51:01 construct GeneArt Strings N/A

pcDNA3.1(-) Mammalian Expression Vector Invitrogen Cat#V79520

KIR3DL1*001/*005 CD3z constructs O’Connor et al.108 N/A

RSV.5neo.B2705 Laboratory of James McCluskey;

Williams et al.109
N/A

pET-30 vector Studier and Moffatt110 N/A

pHLSec Mammalian Expression Vector Novagen Cat#99845

Software and algorithms

R version 4.1.1, 4.3.1 r-project.org N/A

PING Marin et al.111 https://github.com/Hollenbach-lab/PING

PONG Harrison et al.112 https://github.com/NormanLabUCD/

PONG

NGSengine 1.7.0 GenDX https://www.gendx.com/

STRUCTURE Falush et al.113 https://web.stanford.edu/group/

pritchardlab/structure.html

Mega 6.0 Tamura et al.114 https://www.megasoftware.net/

PLINK2 Chang et al.115 https://www.cog-genomics.org/plink/2.0/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

KING version 2.2.2 Manichaikul et al.116 https://www.kingrelatedness.com/

HIBAG v1.36.4 Zheng et al.117 https://bioconductor.org/packages/

release/bioc/html/HIBAG.html

EAGLE Taliun et al.118 https://alkesgroup.broadinstitute.org/

Eagle/downloads/

Generic Mapping Tools (GMT) Wessel and Smith119 https://www.generic-mapping-tools.org/

download/

ADMIXTURE v1.3.0 Alexander et al.120 https://dalexander.github.io/admixture/

download.html

pong v1.5 Behr et al.121 https://github.com/ramachandran-lab/

pong

RFMix v2.03 Maples et al.122 https://github.com/slowkoni/rfmix

SHAPEIT v4.2.2 Delaneau et al.123 https://odelaneau.github.io/shapeit4/

Bcftools 1.7 Danecek et al.124 https://samtools.github.io/bcftools/

MEGA v11.0.13 Tamura et al.125 https://www.megasoftware.net/

PAML v4.8 Yang126 http://abacus.gene.ucl.ac.uk/software/

paml.html

Picardtools v2.27.5 http://broadinstitute.github.io/picard N/A

Admixtools v7.0.2 Patterson et al.54 https://github.com/DReichLab/AdmixTools

Arlequin v3.5.2 Excoffier et al.127 https://cmpg.unibe.ch/software/

arlequin35/Arl35Downloads.html

VCFtools v0.1.15 Danecek et al.128 https://vcftools.github.io/index.html

Selscan v1.2.0 Szpiech and Hernandez129 https://github.com/szpiech/selscan

XDS Kabsch130 https://xds.mr.mpg.de/

Aimless (CCP4i program suite) Collaborative Computational Project131 https://www.ccp4.ac.uk/

Phenix Phenix project - Lawrence Berkeley

Laboratory. Adams et al.132
https://phenix-online.org/

COOT MRC Laboratory of Molecular Biology.

Emsley and Cowtan133
https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

PyMOL Schrödinger, Inc. https://pymol.org/2/

MX2 Beamline Australian Synchrotron N/A

BIAcore T200 GE Healthcare N/A

GraphPad Prism v9 GraphPad N/A

BD FACS Diva v8.0.3 BD Biosciences N/A

BD Fortessa II or BD FACS Canto II BD Biosciences N/A

FlowJo v9.9.6 or 10.9.0 BD Biosciences N/A

bioRender biorender.com Graphical abstract

Other

S200 16/60 column GE Healthcare Cat#28989335

HiTrap-Q anion exchange chromatography GE Healthcare Cat#17115301

CM5 sensorchip Cytiva Cat#BR100530
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human Participants
First Nations Australian Donors

All experiments conformed to the National Health and Medical Research Council (NHMRC) of Australia code of practice and were

approved by The University of Melbourne Human Research Ethics Committee (Applications #1441452.1 and #0931311.5) and the

Human Research Ethics Committee of the Northern Territory Department of Health and Menzies School of Health Research

(#HREC-2012-1928). Healthy, self-declared First Nations Australian volunteers were recruited from the Royal Darwin Hospital Outpa-

tient clinic as part of the ‘‘Looking Into inFluenza T-cell immunity’’ (LIFT) cohort.7 Written informed consent was obtained from all
e4 Cell 187, 7008–7024.e1–e10, November 27, 2024
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donors.Median agewas 45 years (interquartile range 30, 55) and 52%weremale.7 Per individual information on age and gender is not

available and unlikely to affect the results of the gene sequencing or NK cell assays performed. Peripheral blood mononuclear cells

(PBMC) were isolated from heparinized blood using Ficoll-Paque (GE Healthcare, Marlborough, MA, USA) density gradient centrifu-

gation and resuspended in fetal calf or bovine serum (FCS/FBS; Gibco/ThermoFisher Scientific, Waltham, MA, USA) containing 10%

DMSO for cryopreservation. Samples from other individuals were obtained from Australian Red Cross LifeBlood with approval from

the University of Melbourne Human Research Ethics Committee (Project 1238243.2), with PBMC isolated from buffy coats and cry-

opreserved as above.

Papua New Guinea Donors

DNA was obtained from 645 Papuan individuals as described previously.50 Briefly, samples were sourced from a library of samples

collected in the 1980s in a series of collaborative projects between the Institute forMedical Research in Papua NewGuinea, Liverpool

School of Tropical Medicine, and the University of Oxford, UK. The samples were collected, following informed consent, to under-

stand genetic differences between highland and lowland populations in relation to differential disease risk. The median recorded age

was 23 years (interquartile range 17, 30) and 42.5% were male. All samples were collected at the time with regulatory approval from

the Papua NewGuinea Institute of Medical Research, and the Papua NewGuineaMedical Research Advisory Council, and endorsed

by the Public Health Department. Updated approval for contemporary genetic analysis was provided by the Institute for Medical

Research in Papua New Guinea, and the Oxford Tropical Research Ethics Committee (OxTREC).

METHOD DETAILS

KIR and KIR-ligand nomenclature
The KIR locus varies in gene content from approximately six to 13 genes per haplotype.16 Included are up to four genes encoding

inhibitory receptors specific for HLA class I; KIR2DL1, 2DL2/3, 3DL1 and 3DL2. In turn a given HLA class I allotype may contain

one of four distinct amino acid motifs that enables it to become a KIR ligand. Those HLA allotypes that do not have either of these

motifs do not function as KIR ligands. The ligand motifs are A3/11 (carried by some HLA-A), Bw4 (some HLA-A and B), C1 (some

HLA-B and C) or C2 (some HLA-C). KIR2DL1 is specific for C2+HLA, 2DL2/3 for C1 and some C2, 3DL1 for Bw4, and 3DL2 for

A3/11. KIR are named according to the number of external Ig-like domains (2D or 3D), which can bind to the ligand, and ‘L’ denotes

‘long’ cytoplasmic tail that can transmit a signal to inhibit cellular activity upon ligand binding. Throughout this manuscript, any unique

DNA sequence that spans a coding region is considered a distinct allele. Those alleles that encode a unique protein sequence define

an allotype.

High-resolution KIR and HLA allele genotyping
Genomic DNA from the 80 LIFT donors was prepared from PBMC, or granulocytes isolated after Ficoll separation of PBMC from

whole blood, using the DNeasy Blood and Tissue DNA extraction kit (Qiagen, Hilden, Germany). DNA was quantified using a Qubit

machine (Life Technologies, Carlsbad, CA, USA). KIR andHLA class I and II genes were analysed concurrently using high throughput

sequencing, as described.102 Sequencing was performed using aMiSeq instrument (Illumina) with V3 chemistry, and the sequencing

read length was 2 x 300 bp. To determine the gene and allelic content of the KIR locus, sequenced reads were analysed using the

Pushing Immunogenetics to the Next Generation (PING) pipeline.102,111 The IPD-KIR database v2.13 was used as the source of refer-

ence sequences.51 HLA alleles were determined using NGSengine 1.7.0 (GenDX, Utrecht, Holland). HLA typing of the additional do-

nors used for NK cell experiments was performed by the Victorian Transplantation and Immunogenetics Service (Australian Red

Cross LifeBlood). The KIR3DL1 subtype of these donors was initially identified from gDNA using a multiplex PCR134 and confirmed

by high resolution KIR typing as above.

Admixture analysis
A previous genome wide study of First Nations Australians identified admixture with Europeans.28 To determine the contribution of

this admixture to the high HLA diversity in First Nations Australians, we compared the distribution of HLA-A and -B alleles to those of

other populations chosen to represent major world groups. We did not include HLA-C due to strong linkage disequilibrium (LD) with

HLA-B. We examined admixture among the populations using the program STRUCTURE.113 As additional data we used HLA class I

genotypes of individuals obtained from the 13th Histocompatibility Workshop93 (https://ftp.ncbi.nlm.nih.gov/pub/mhc/mhc/Final%

20Archive/IHWG/Anthropology/), as well as M�aori,27 Ga-Adangbe,96 Hadza,104 and Khomani97 individuals; thus 3,196 individuals

were included from 32 populations (Table S2), representing five regions (Europe, Oceania, South East Asia, East Asia, and Sub-

Saharan Africa). Using STRUCTURE,113 the 3,196 individuals were assigned to pre-determined K clusters (K=2 to K=5), where indi-

viduals may have contributions from more than one cluster.

The STRUCUTRE analysis showed the First Nations Australian HLA class I genotypes cluster with other Oceanian populations but

are distinguished from them by having a proportion of genetic ancestry shared with Europeans (Figure S1). This finding focused on

the HLA class I genes is thus consistent with the independent genome-wide study.28 Restricting our analysis to European, Oceanian

and Southeast Asian groups revealed that up to 39% of the sampled First Nations Australians have >50% and 33% have >75% Eu-

ropean genetic ancestry detected in their HLA class I genes (Figure S1). A separate, allele specific, analysis permitted inclusion of

HLA-C. Analyzing only alleles observed in more than one individual, 9/15 HLA-A, 11/28 HLA-B alleles, and 6/17 HLA-C were
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identified to originate from Europeans (Figure S1). One allele of HLA-A (A*34:01), six alleles of HLA-B (B*13:01, *15:21, *15:25, *27:04,

*27:06, *56:02) and one allele of HLA-C (*15:09) are present in Papua NewGuineans, but not Europeans, indicating their likely Ocean-

ian origin for First Nations Australians. A further three alleles (B*40:06, *48:01, *55:02) were identified in East Asians, but not Papua

New Guineans or Europeans. As East Asian admixture is not detected in First Nations Australians from Northern Australia,28 these

three alleles also likely arrived in Australia during the migration from Papua New Guinea.

Analysis of the ten most frequent First Nations Australian HLA class I haplotypes identified six that were observed also in Papua

New Guineans and not Europeans, and three in Europeans but not Papua New Guineans (Figure S1). Although this analysis has low

sensitivity, the overall admixture proportions and geographic HLA allele distributions are consistent with previous studies.28,44,135

Together, these results show that although the HLA class I allele distribution of First Nations Australians from the North Top End re-

gion is closely related to other Oceanian populations, diversity has been increased through admixture with Europeans.

Novel Allele Confirmation
For confirming novel KIR alleles, individual exons of the KIR genes were amplified from genomic DNA and subjected to Sanger

sequencing using primers and protocols as described.96 The IPD-KIR database v2.13 was used as the source of reference se-

quences.51 For confirming HLA allele sequences, HLA-A, -B, -C genes were amplified using long-range PCR reactions from the

MIA FORA NGS high-throughput kit (Immucor, Inc., Norcross, GA, USA), performed and analyzed according to the manufacturer’s

protocol. The IPD-IMGT/HLA database v3.25.0 was used as a source of reference sequences.92 All novel allele sequences were

deposited in GenBank and IPD,51 and the accession numbers are given in Table S1D.

Phylogenetic analysis
Neighbour-joining phylogenetic analyses of the coding determining sequence (CDS) of the external domains (cytoplasmic tail

excluded) were generated, with 500 bootstrap replicates, using the Tamura-Nei model with pairwise deletion, using Mega 6.0.114

Population comparisons
To measure HLA and KIR diversity across populations (Figure 1) we used representative groups that were previously genotyped to

the same high resolution as this study; West Africans from Ghana,96 Nama and Khomani Southern Africans,97 Yucpa Amerindians,98

Chinese Southern Han,99 Europeans from USA,100 Malay,101 and M�aori.27 The number of distinct alleles present in 75 randomly

selected individuals was counted, and the process was repeated for 1,000 permutations with replacement.

Worldwide distribution of KIR3DL1 ligands
To determine the relative proportions of HLA-A and -B allotypes carrying ligands for 005-lineage and 015 lineage KIR3DL1 we used

HLA allele frequency data from the same populations as above. Those allotypes carrying the Bw4 motif of residues 77-83 (N/D77,

I/T80, A/L81, L82, R83),13 were divided into those that bind preferentially to 005-lineage KIR3DL1 and those that also bind to

015-lineage KIR3DL1. A threshold of 25% maximum binding as previously determined (Figure 2C from Saunders et al.26) was

used to distinguish these characteristics. For rare allotypes present in the data set but not previously tested, the binding pattern

of the closest aligning allotype was used (e.g. HLA-A*24:03 was given the same value as A*24:02). HLA-A*25 and B*13 have not

been shown as effective ligands for KIR3DL123,26,48 and were counted as non-binders for this analysis.

Worldwide distribution of KIR3DL1 alleles
KIR3DL1 allele frequencies were obtained from previously sequenced 1000 Genomes individuals,102 and other worldwide popula-

tions,25,99–101,103,104 includingM�aori and Polynesians27 and First Nations Australians and Papua NewGuineans (this study). KIR3DL1

allele frequencies from additional Oceanian populations were determined through imputation, as described below.

Genome-wide array data
We analyzed previously generated genome-wide array data from 913 Oceanian individuals from the Oceanian Genome Variation

Project (OGVP)49 and an additional set of 297 Papua New Guinea individuals,50 genotyped using the Multi-Ethnic Genotyping Array

(MEGA) array.We used PLINK2115 to exclude individuals or SNPs having genotypemissingness > 10%, and SNPs havingminor allele

frequency < 1%. We also removed related individuals (2nd degree or more), as estimated using KING version 2.2.2.116 The final Oce-

anian dataset after quality control filtering contained 471,417 SNPs and 1,108 unrelated individuals. Of these, 345 individuals over-

lappedwith the set of individuals sequenced as described above. TheOceanian dataset was thenmergedwith reference populations

from the phase3 1000 Genomes Project136: Utah residents (CEPH) with Northern and Western European ancestry (CEU), Han Chi-

nese in Beijing, China (CHB), Kinh in Ho Chi Minh City, Vietnam (KHV), and Yoruban from Idaban, Nigeria (YRI), available in http://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. The final merged dataset contained 463,750 SNPs and 1,517 individuals.

HLA and KIR imputation
HLA alleles were imputed from the genome-wide array data using HIBAG version 1.36.4,117 using default parameters and the pre-

trained Asian model for the human genome build GRCh37/hg19, available at https://hibag.s3.amazonaws.com/download/hlares_

param/Asian-HLA4-hg19.RData. To assess the accuracy of the imputation, we compared with those individuals who had been
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genotyped using other means: Papua New Guinea (345 sequenced as described above), 1000G CHB and KHV (https://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HLA_types/). Accuracy, defined as the number of correct calls per sample divided

by the size of the dataset (2N), was 95.81%.

KIR3DL1/S1 alleles were imputed from the genome-wide array data using PONG.112 We first performed SNP imputation using the

Michigan imputation server, where the data was phased using EAGLE.118 Only high-quality imputed variants were kept (Rsq > 0.3).

The published PONG training models did not include the 3DL1*114 allele. We therefore trained a new model using 150 Papua New

Guinea, 60 CHB and 40 KHV individuals, and tested the model with 153 Papua NewGuineans, 20 CHB, and 24 KHV individuals. This

model has an accuracy of 70.05%. Specifically, for 3DL1*114 we prioritized a high specificity (97.72%), to avoid reporting false pos-

itives and overestimating its frequency. The estimates of 3DL1*114 allele frequency are thus conservative.

Mapping allele distributions
Relative allele frequencies were plotted using theGenericMapping Tools (GMT).119 Available point valueswere used to estimate two-

dimensional frequency distributions with blockmean and surface functions as previously described.56 We used the psmask function

to clip unreliable map areas, considering reliable only those grid cells within a 1,300 km radius of a data point.

Genetic ancestry analyses of Oceanian dataset
To analyze the genetic structure across our Oceanian dataset, we performed ADMIXTURE analysis, using the merged genome-wide

array data. LD pruning was applied using PLINK2,115 with a window size of 200kb, step size of 50 SNPs and r2 threshold of 0.5, re-

sulting in 247,344 unlinked SNPs. ADMIXTURE version 1.3.0120 was run in unsupervised mode using ten different iterations with

random seeds. The major mode for the ten independent runs was identified using pong version 1.5.121 As shown in Figure S2A,

at K=5, there was a component maximized in the YRI population (dark red: ‘‘African-related’’), others maximized in CEU (orange:

‘‘European-related’’), CHB (beige: ‘‘East Asian – related’’), Highlanders from Papua New Guinea (blue: ‘‘Papuan-related’’), and Poly-

nesian populations (purple: ‘‘Polynesian-related’’).

After estimating the global genetic ancestries with ADMIXTURE, we used RFMix version 2.03122 to perform local ancestry infer-

ence. Data was phased using SHAPEIT version 4.2.2,123 with default parameters. RFMix was run with one Expectation-

Maximization iteration and four reference panels. As reference, we used the KHV and CHB (n=202) for the East Asian ancestry proxy,

CEU (n=99) for the European proxy, the Papuan reference panel included those individuals with >99% of ‘‘Papuan-related’’ compo-

nent in the ADMIXTURE analysis (n=100), and the Polynesian panel included individuals with >90% of ‘‘Papuan-related’’ component

(n=80). We only kept windows having a marginal probability >90%. Correlations between global ancestry proportions inferred from

ADMIXTURE K=5 and RFMIX were higher than 0.94 for all ancestries, and higher than 0.98 for both the Polynesian and Papuan-

related components (Figure S2B).

Divergence time estimation
Divergence times between KIR3DL1*114 and *005 and *015 gene sequences (13,781 bp) were estimated. Bcftools 1.7 consensus124

was used to obtain the KIR3DL1 gene sequences from short-read sequencing data obtained from four KIR3DL1*114 homozygous

Papuan individuals. We used the ClustalW algorithm of MEGA 11.0.13125 to align these sequences with one KIR3DL1*015 and one

KIR3DL1*005 sequence (GenBank ID GU182342.1 and GU182344.1, respectively) and constructed a maximum likelihood phyloge-

netic tree with default parameters. Divergence time was estimated using mcmctree of PAML v4.8,126 using the same parameters

as,137 except the ‘RootAge’, which was set to a maximum of 6.5mya, corresponding to the split of chimpanzee and human.138

The acceptance proportions, times and rates were stable throughout the MCMC runs. Analysis convergence was further explored

running the analysis 10 times with different random seeds, showing similar values for the ten sets of posterior times.

Denisovan introgression: D-statistics
To infer Denisovan introgression, we used genome-wide chromosome 19 SNP data from the 1000G Yoruban from Idaban, Nigeria

(YRI, KIR3DS1- individuals, N= 104),94 the Denisovan genome (http://cdna.eva.mpg.de/denisova/VCF),33 the predicted ancestral

sequence for Homo sapiens derived from a multiple alignment of seven primate genomes (available in https://ftp.ensembl.org/

pub/release-76/fasta/ancestral_alleles), as well as the 14 KHV individuals, and four KIR3DL1*114+ homozygous individuals

described above. The Denisovan genome was lifted over from hg19 to the GRCh38 reference using Picardtools v2.27.5

LiftoverVCF (http://broadinstitute.github.io/picard). After keeping only common SNPs from the KIR2DL4-3DL1 genomic region, 65

SNPs remained in the merged dataset. A similar approach was used for HLA-A alleles, using OGVP array data. Here in each case

the allele sequence +/- 500kbp was used.

D-statistics, whichmeasure the degree of allele sharing across populations, were calculated using Admixtools 7.0.254 in the formof

D-statistic (W, YRI, Denisovan genomic sequence, Ancestral sequence), where W corresponds to individuals carrying KIR3DL1*114,

*005, or *015. Significant introgression from Denisovan to KIR3DL1 haplotypes was considered when D-score > 0 and Z-score > 3.

A recombination hotspot divides the KIR locus into two regions, termed ‘centromeric’ and ‘telomeric’ according to their orienta-

tion.139 All four KIR3DL1*114 homozygous Papuan individuals we sequenced have the following telomeric KIR haplotype:

2DL4*028�3DL1*114�2DS4*019�3DL2*002, which is the most common haplotype in Papuan 3DL1*114+ individuals (Figure 2D).

To infer the length of the introgressed haplotype, we performed the D-statistic test as described above, but progressively including
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KIR genes from the telomeric and centromeric regions (2DL4-3DL1-2DS4-3DL2, and 2DL1-2DL2/3-2DS2-3DL3, respectively), until

the number of BABA SNPs stopped increasing (SNPs where the allele is shared between the target 3DL1*114 and Denisovan

genome).

To test if the KIR3DL1*114 carrying haplotype is a result of incomplete lineage sorting instead of archaic gene flow into modern

humans, we applied the following formula55: P = 1 � gammaCDF
�
H;shape = 2;rate = 1

L

�
; where P is the probability that a haplo-

type of a particular length (H) is shared between Oceanians and Denisovans due to incomplete lineage sorting; and L = 1= ðr 3 tÞ,
where r is recombination rate per generation per base pair (bp) (mean recombination rate aroundKIR2DL4�KIR3DL2 is: 2.913 10�8;

from the HapMap recombination map140,141) and t is the number of generations since the Denisovan and modern human divergence

(300 3 103 years ago / 25 years per generation55). After applying the formula, we found that the probability of a haplotype of length

62,276 bp present in modern Oceanians due to incomplete ancestral lineage sorting is 8.78 3 10�9, which supports the alternative

hypothesis of being in modern Oceanians due to Denisovan introgression.

Statistical tests for positive selection
To examine the frequency distribution of HLA alleles, we used Arlequin version 3.5.2127 and R version 4.3.1 to calculate the Ewens-

Watterson F-statistic for homozygosity and Hardy Weinberg Equilibrium (HWE) chi-squared tests. We also calculated the nucleotide

diversity (p) in 100 bp windows from genome-wide array data using VCFtools version 0.1.15.128 Although pmay be underestimated

using SNP array compared to sequencing data,142–144 the results are consistent with HLA-A*24:02 carrying haplotypes having lower

diversity than the two other HLA-A alleles common in the geographic region.

To test for evidence of recent positive selection of HLA-A*24:02, we computed the iHS statistic (integrated haplotype score145). We

used publicly available whole genomephased sequences of 15 Papua NewGuinea individuals from the Simons GenomeDiversity Proj-

ect (SGDP,95 available at: https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data2021/). We used these results

because SNP coverage within the HLA-A region in the MEGA array used for OGVP is insufficient to correctly construct the ancestral

and derived haplotypes needed for the iHS calculation. We assigned the ancestral and derived state for each variant based on the

ancestral state information from the 1000G phase3 data.136 iHS calculation and normalization across frequency bins of the unstandard-

ized iHS were performed using selscan version 1.2.0129 with default parameters. To validate that the selection signal observed is due to

theHLA-A*24:02, we imputed theHLA-A alleles in these individuals using HIBAG version 1.36.4,117 and identified 7 and 5HLA-A*24:02

homozygotes and heterozygotes, respectively. All the SNPs within the iHS positive peak within the HLA-A and flanking region have

derived alleles in HLA-A*24:02+ individuals, confirming the positive selection signal is related to the haplotype of HLA-A*24:02.

Purification and expansion of NK cells
PBMC samples were thawed, and NK cells isolated using the EasySep� Human NK Cell Enrichment Kit, according to the manufac-

turer’s instructions (Stemcell Technologies Vancouver, Canada). Primary NK cells were rested overnight in complete media before

use in ex vivo analyses. Expanded NK cells were prepared by incubating with irradiated feeder cells and HLA-G-expressing 721.221

cells in the presence of 100 U/mL rhIL2 (Miltenyi) and 1.5 ng/mL PHA (Gibco/ThermoFisher Scientific) in complete media as previ-

ously described.26 All feeder cells were isolated from a single independent donor (donor CM: HLA-A*32:01, A*33:01, B*07:05,

B*44:03, C*03:03, C*0701; KIR3DL1*004/KIR3DS1*013). The complete media was RPMI 1640 supplemented with 7.5mM HEPES,

2 mM L-Glutamine, 150 mM non-essential amino acids, 76 mM 2-ME, 150 mg/ml streptomycin and 10% FBS (In Vitro Technologies,

Noble Park North, VIC, Australia) and 100 U/mL rhIL2 (Miltenyi, Bergisch Gladbach, Germany).

Target cell lines
The B-lymphoblastoid cell line 721.221,105 which expresses no endogenous HLA-A, -B or -C105, transfected with HLA-A*23:01,

A*24:02, A*25:01, A*32:01, B*08:01, B*13:01, B*27:05, B*44:02, B*57:01, B*58:01, C*04:01 or C*07:02 have been described previ-

ously.26,48,106 Codon optimised HLA-B*51:01 constructs were purchased (GeneArt Strings, ThermoFisher Scientific) and cloned

into pcDNA3.1(-) using EcoRI and BamHI. HLA-B*27:04 and B*27:06 were generated in the RSV5neo109 plasmid via sequential

site directed mutagenesis from HLA-B*27:05 using primers listed in Table S4. Plasmid constructs were electroporated into

721.221 cells at 200V and 975mF and placed under geneticin selection as previously described.26 Transfected cells were sorted

for HLA class I expression following staining with pan-HLA class I specific W6/32 monoclonal antibody; cells were stained using un-

conjugated W6/32, and counterstained using FITC conjugated antibody specific for IgG. The geometric mean fluorescence intensity

(gMFI) of HLA class I expression for each of the cell lines was determined (Table S4). They were maintained in RPMI 1640media (Me-

dia Preparation Unit, University of Melbourne, Australia) supplemented as above, but without IL2. Expression of specific HLA allo-

types was confirmed by staining with mAb specific for the Bw4 epitope (RM7.9.6388), HLA-B27 (ME189) or the B17 (B*57 and

B*58) serotype (3E1290), followed by anti-mouse IgG-FITC, or HLA-A24/A2 (One Lambda) followed by anti-mouse IgM-PE. The

HLA-C controls were stained using a directly conjugated antibody specific for HLA-C/E (DT9; PE; BD Pharmingen).

NK cell assays
NK cells were incubated with HLA class I-transfected or non-transfected target cells at a 1:2 (ex vivo NK cells) or 1:1 (expanded NK

cells) effector:target ratio for 1 hour at 37oC in the presence of anti-CD107a-PECy5 (H4A3; BD Biosciences, San Jose, CA, USA). We
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usedCD107a as ameasurement of degranulation and thus a proxy for NK cell killing of target cells146 and IFNg as amarker for NK cell

activation. Monensin (GolgiStop; BD Biosciences) was added according to the manufacturer’s recommendations and following a

further four hours of incubation, cells were washed and cell surface stained. The cells were stained for the following markers:

KIR3DL1 (NKB1 (DX9), FITC; BD Biosciences), KIR2DL2/L3/S2 (GL183, PE-Cy5.5; Beckman Coulter, Brea, CA, USA), KIR2DL1/

S1 (EB6B, PE-Cy7; Beckman Coulter), LILRB1 (HP-F1, APC; eBioscience/ThermoFisher), and NKG2A (Z199, PE; Beckman Coulter).

Ex vivo NK cells were further stained with Live/Dead Aqua (LifeTechnologies/ThermoFisher), CD56 BV786 (BD Biosciences) and

CD3 UCHT1, PacificBlue (BioLegend, San Diego, CA, USA). Expanded NK cells were further stained with eBioscience� Fixable

Viability Dye eFluor� 780 (Invitrogen/ThermoFisher), CD56 (NCAM16.2, BV421: BD Biosciences) and CD3 (SK7, APC-Cy7, BD Bio-

sciences). Cells were fixed and permeabilized (Cytofix/Cytoperm kit; BD Biosciences), stained for IFNg (B27, AF700; BD Biosci-

ences) and acquired using a BD LSRFortessa flow cytometer, with FACS DIVA software (Version 8.0.3).

KIR3DL1+ NK cells were identified by gating on live NK cells (CD56+CD3-CD14/19-). NK cells expressing other inhibitory receptors

for HLA class I were excluded by selecting those negative for NKG2A, KIR2DL2/3 and KIR2DL1/S1. NK cell degranulation

(CD107a146) and IFNg production was assessed using FlowJo software version 9.9.6 (BD Biosciences, USA). The gating strategy

is shown in Figure S3A. To account for any differences in themaximal cytokine production profiles between individuals, themaximum

percentage (% of max of IFNg or CD107a) for each donor was normalized to those values obtained from KIR3DL1+ NK cells incu-

bated with the parental 721.221 cell line. Showing that the inhibition is specific to KIR3DL1, upregulation of CD107a or IFNg was

not significantly diminished in NK cells expressing only KIR2DL2/3 or KIR2DL1/S1 from the same donors, assessed in parallel (Fig-

ure 3C). Secondly, target cell induced degranulation was restored by blocking the interaction using the KIR3DL1-specificmonoclonal

antibody DX9 (Figure S3C). Also included in the expanded NK cell assays were HLA-A*25:01 (Bw4+), HLA-C*07:02 (C1), neither of

which are recognised by KIR3DL1.48

Jurkat-KIR cellular reporter and activation assay
Constructs encoding KIR3DL1*001 or *005 linked to CD3z in the GFP+ pMIGII91 vector have been described previously.108 The

KIR3DL1*015+CD3z construct was generated by sequential site directed mutagenesis from the KIR3DL1*001+CD3z construct

(Table S4). Further mutagenesis was then performed to generate KIR3DL1*086, *114, *001L166F and *015L166F constructs.

Each KIR3DL1+CD3z construct was transduced into the Jurkat CD4+ T cell line, using retrovirus.147 Briefly, 4mg pMIGII.-

KIR3DL1+CD3z along with 4mg pPAM-E91 and 2mg pVSVG91 was transfected into 293T cells using Fugene6 as per manufacturer’s

instructions (Promega) and cultured in DMEM media with 10 % FBS and supplements. Twenty-four hours after transfection, super-

natant was collected, filtered, and used to resuspend freshly pelleted Jurkat107 cells. Media transfer was performed twice daily for six

days and transduced Jurkat cells were then selected by sorting for GFP and KIR3DL1 surface expression using anti-Human CD158e/

k-PE, clone 5.133 (Miltenyi Biotec). Stably transduced Jurkat cells were maintained in RPMI (Gibco/ThermoFisher) supplemented as

described above for NK cells, but without IL-2. For activation assays, transduced Jurkat cells expressing specific KIR3DL1+CD3z

allotypes were incubated with equal numbers of HLA-transfected or non-transfected 721.221 targets for eight hours at 37�C. Cells
were then washed, stained for CD69 (clone FN50, PE; BD Biosciences) and fixed. Samples were analysed using a BD FACSCantoII

and the expression of CD69 on GFP+ transduced Jurkat cells was assessed using FlowJo software Version 10.9.0 (BD Biosciences).

Protein expression and purification
The heavy chains (residues 1-276) of HLA-A*24:02, C*05:01 and B*57:03 were expressed into inclusion bodies in E.coli BL21 (DE3)

from the pET-30 vector110 and refolded in the presence of full-length b2-microglobulin (residues 1-99) and the relevant peptides, and

purified as described previously.24,148 Briefly, the HLA-peptide complexes were refolded by dilution into refolding buffer (5 M Urea,

100 mM Tris-HCl (pH 8), 2 mM Na-EDTA, 400 mM L-arginine-HCl, 0.5 mM oxidized glutathione, 5 mM reduced glutathione, 1 mM

PMSF) and stirred for 72 h at 4�C. Then, the refolded solutions were dialyzed in 10 mM Tris-HCl pH 8.0 and purified by anion ex-

change on a diethylaminoethylcellulose column, followed by gel filtration (S200 16/60 column, GE Healthcare) and HiTrap-Q anion

exchange chromatography (GE Healthcare).

Residues spanning from 1 to 299 of KIR3DL1*001, *005, *015 (with an N-terminal 6xHis), and *086, *114, *086-166L and *114-166L

(with a C-terminal 6xHis), with secretion tags, were cloned into the pHLSec mammalian expression vector (Novagen) and expressed

in Expi293F� cells (Thermo Fisher) for Surface Plasmon Resonance (SPR) experiments and Expi293F� GnTI- cells for structural

studies. Soluble proteins were purified after 7 days from the culture media using Ni-NTA resin (Qiagen) and further purified by size

exclusion chromatography using an S200 16/60 column (GE Healthcare). For SPR studies, purified KIR proteins were concentrated

in a buffer composed of 10 mM HEPES-HCl (pH 7.4) and 300 mM NaCl. For crystallization trials, KIR proteins were concentrated to

15 mg/mL in 10 mM Tris-HCl (pH 8) and deglycosylated overnight at 4�C with EndoH (New England Biolabs).

Crystallisation and structure determination
All KIR3DL1/HLA/peptide complexes described were combined at 1:1 molar ratio and crystallized at 294 K using the hanging-drop

vapour-diffusion method from a solution comprising 14%-18% PEG 3350, 2% Tacsimate pH 5 and 0.1 M tri-sodium citrate pH 5.6.

Crystals were equilibrated in crystallization solution with 35% PEG 3350 added as cryoprotectant and then flash-frozen in liquid ni-

trogen. Crystallographic diffraction data were collected at the MX2 beamline (Australian Synchrotron). The data were processed with

the program XDS130 and scaled using Aimless from the CCP4 suite of program.131 The crystal structures were determined by
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molecular replacement using PHASERwith KIR3DL1*001 and HLA-A*24:02 (PDB 7K80) as searchmodels. Refinement of themodels

was carried out with iterative rounds of refinement in Phenix132 and manual building in COOT.133 Data collection and refinements

statistics are summarised in Table S5. Data were deposited in the Research Collaboratory for Structural Bioinformatics PDB with

the accession codes 9BL2-6, 9BL9 and 9BLA. KIR3DL1*001 bound to HLA-A*24:02-NEF was described previously (7K80).48

Surface Plasmon Resonance
SPR experiments were conducted using a BIAcore T200 instrument (GE Healthcare Life Sciences) as previously described.61 Briefly,

the HLA-peptide complexes were captured, to a density of�800 resonance units, on a CM5 sensorchip (Cytiva) by immobilization of

the anti-HLA mAb W6/32 (generated in-house).87 KIR3DL1*001, *005, *015, *086, *114, *086-166L and *114–166L were serially

diluted (0–150 mM) and injected (60 s association, 180 s dissociation) over the chip at a flow rate of 5 ml/min at 298 K in a buffer

composed of 10 mM HEPES-HCl (pH 7.4), 300 mM NaCl and 0.005% surfactant P20. Chip surfaces were regenerated between

each analyte injection using Gentle Ag/Ab elution buffer (Thermo Scientific). Resulting sensograms were subtracted against a refer-

ence flow cell coupledwithW6/32 in the absence of HLA ligand capture. Binding affinities were determined by equilibrium analysis by

implementing the one-site specific binding model using GraphPad Prism v9. All data are representative of two independent exper-

iments, each conducted using duplicate samples. To allow direct comparison, for affinity curves the KD fold change was normalised

based on the Bmax, where Bmax was equated to 1000RU for each KIR3DL1/HLA experiment. Data are represented asmean ± SEM.

QUANTIFICATION AND STATISTICAL ANALYSIS

The description of all statistical analyses is in the corresponding figure legends. For each test, the alternative hypothesis was two-

sided. Bar plot error bars represent mean ± standard deviation. Number of bootstraps, permutation resamples, and independent

experimental replicates are indicated in the figure legends. P-values < 0.05 or Z-scores > |3| were considered significant. All multiple

test correction was performed using the Bonferroni method. Plots and statistical tests were performed using R version 4.1.1.149 or

GraphPad Prism v9.
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Figure S1. Ancestry proportions of HLA class I alleles and haplotypes, related to Figure 1

(A) Ancestry analysis using HLA-A and -B genotypes of representative populations (Table S2). K values at the bottom indicate the number of population clusters

used for that analysis. Each horizontal line represents one individual, with colors indicating relative proportions of the K clusters. First Nations Australians are

marked with a box outlined with gray dotted line. The other populations represent Europe, Oceania, Southeast Asia, East Asia, and Sub-Saharan Africa, as

indicated at the right.

(B) Shows the genetic ancestry proportions estimated from HLA-A and -B genotypes of the 80 First Nations Australians. Here, the analysis is restricted to

European, Oceanic, and Southeast Asian populations, and each vertical line represents one individual. Colors indicate relative proportions of the K components,

and each of them is assigned to a population group (key at the bottom), where each component is maximized.

(C) HLA-A, -B, and -C alleles observed in >1 First Nations Australian are studied. Shown are the frequencies of those alleles observed in (Ci) Europeans, (Cii) First

Nations Australians having >50% European-related ancestry in HLA (B), (Ciii) First Nations Australians having <50% European-related ancestry in HLA, (Civ)

Papua New Guineans, and (Cv) East Asians. Colors depict the log10 frequencies as given in the key. Alleles absent from Papuans but present in Europeans and

thus of likely European origin are indicated with purple text; those absent from Europeans are indicated with green text. Those alleles absent from Europeans and

Papuans but present in East Asians are indicated in orange text. Any alleles present in both Europeans and East Asians are denoted European if frequency <1.5%

in East Asians, and vice versa.

(D) For the ten most frequent HLA class I haplotypes observed in First Nations Australians (left), this shows the log10 frequency in Europeans (Di), First Nations

Australians (Dii and Diii), Papua New Guineans (Div), and East Asians (Dv). Colors depict the frequencies as given in the key at the right. Green text indicates

oceanic-descent haplotypes, and purple text indicates likely European-descent haplotypes. For two haplotypes (8 and 10) having inconclusive ancestries

from the haplotype frequencies, the genetic ancestries of the component alleles derived in (C) are shown. Haplotypes of likely European origin are marked with a

red box.
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Figure S2. Identifying distribution and ancestry of KIR3DL1*114 and HLA-A*24:02, related to Figure 2

(A) Global ancestry proportions estimated using ADMIXTURE at K = 5 from SNP array data of the Oceanian and 1000G merged dataset. The major mode of ten

independent runs is shown. Each vertical bar represents an individual. These global ancestry proportions were used to identify individuals to be used in the

reference panel for the local ancestry inference using RFMIX.

(B) Quality control of the local ancestry analyses performed with RFMIX, showing the correlation between global ancestry proportions inferred from ADMIXTURE

K = 5 and RFMIX. The high correlations indicate that RFMIX inference does not show a systemic bias in any of the ancestry panels. The results from RFMIX were

used to identify the genetic ancestry of the KIR3DL1*114, *005-lineage, and *015-lineage haplotypes in our dataset.

(C) Correlation of genome-wide proportion of Papuan-related ancestry with frequency of KIR3DL1*114. Top: shows the populations represented by the OGVP.

Each dot represents a population, with diameter corresponding to sample size. Bottom: Papuan-related ancestry for each population studies represents the

mean genome-wide ancestry inferred from RFMix. Each dot represents a population group colored by region. SEA, Southeast Asia.

(D) Shows the number of KIR3DL1*114, *01502, or *00501 carrying haplotypes having either Papuan, East Asian, Polynesian, or European Ancestry, as described

in (B).

(E) Results of Z and D tests for Denisovan introgression ofHLA-A*24:02, *34:01, and *11:01. AnHLA-A*11 sequence was identified previously to be present in the

Denisovan genome.35

(F) Manhattan plot showing the positive iHS scores (representing selection on the derived alleles) performed on theHLA-A*24:02 homozygous and heterozygous

Papuans from SGDP.95 Dashed lines represent top 1% and 5% iHS score thresholds.
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Figure S3. Flow cytometry gating strategies and controls for ex vivo and IL-2 expanded KIR3DL1+ NK cell inhibition assays, related to

Figure 3

(A) Flow cytometry gating strategy used to identify ex vivo single positive KIR3DL1+ NK cells following incubation with target cells. (Left to right, top to bottom)

Purified NK cells were first identified by their forward and side scatter, single cells were selected, and debris removed. Dead cells and those expressing CD14 or

CD19 were excluded before gating on CD3�CD56+ cells (NK cells). NK cells expressing KIR3DL1 but not NKG2A were next selected, and KIR3DL1+ NK cells co-

expressing KIR2DL1/S1 or KIR2DL2/3/S2 were excluded.

(B) Production of IFN-g and CD107a by single positive KIR3DL1+ NK cells alone or with targets was then assessed.

(C) Shows the results of NK cell experiments from two donors, with andwithout KIR3DL1 blocking. KIR3DL1+ NK cells were sorted and expanded, then incubated

with HLA-expressing target cells in the presence (gray) and absence (orange) of 10 mg/mL DX9 antibody. The resulting expression of CD107a was assessed using

flow cytometry (A and B).

(D) Jurkat cells were transduced with KIR3DL1 allotypes fused to the intracellular domain of CD3z.

(E) GFP and KIR3DL1 expression on transduced Jurkat cells were assessed via flow cytometry, staining with anti-KIR3DL1/2-PE (clone 5.133: Miltenyi Biotec).

(F) Representative plots showing GFP expression andCD69 upregulation on reporter cells following 8 h incubationwith a panel of HLA-transfected 721.221 target

cells. Cells were stained with anti-CD69-PE and gated on GFP+ cells (untransfected cells on GFP negative cells), with the percentage of CD69+ cells taken as

those with expression above that seen with no targets.

ll
OPEN ACCESS Article



Figure S4. Contact points of KIR3DL1 with HLA-peptide complexes, related to Figure 4

(A) Compares contact points of KIR3DL1 residue 166 with P8 from HLA-A*24:02-TW9 or B*57:03-AW10, across KIR3DL1 allotypes *001, *086, and *114.

(B and C) Shown are van der Waals (vdw) and hydrogen bonds (H-bonds) identified through crystallography of KIR3DL1*114 or *001 with HLA-A*24:02-TW9

complex. (B) Interactions of KIR3DL1 with HLA molecule. (C) Interactions of KIR3DL1 with TW9 peptide.

(D) Lists the vdw interactions between Phe-166 of KIR3DL1*114 and the peptide residues.
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Figure S5. Surface plasmon resonance: Peptides and data, related to Figure 5

(A) Sequence and origin of peptides used for HLA class I/peptide complexes. HLA-C*05:01-SAE is used as a negative control, which does not bind KIR3DL1.24

(B) Sensorgrams of KIR3DL1 allotypes (*001, *005, *015, *086, and *114, and mutations *086-F166L, *114-F166L) binding to refolded HLA-peptide complexes.

Experiments were performed in duplicate, and one replicate is shown.

(C) Affinity curves of KIR3DL1 allotype binding to immobilized HLA-peptide complexes. R.U., response units.

(D) Steady-state KD for interactions of KIR3DL1 allotypes with HLA-peptide complexes. N.B., no binding (no detectable interaction). Data are derived from two

independent experiments.
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