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H I G H L I G H T S

• Extensive digital twin for multi-energy hub systems with P2P energy sharing.
• EXDT enables virtual testing & evaluations of MEHs under various scenarios.
• MARL-based model for predicting stochastic decision-making process of EHs.
• Economic and technical benefits of P2P sharing: increased renewables and financial gains.
• Evaluation of various decision-making and P2P strategies for energy system operations.
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A B S T R A C T

As climate change has become a global concern, the decarbonization of energy systems has become a prominent
solution for CO2 emission reduction. The recent emergence of multi-energy hub systems (MEHs), characterized
by interconnected energy hubs (EHs) and facilitated by energy sharing, presents a promising solution for
seamlessly integrating a significant share of renewable energy sources (RESs) and flexibility among EHs. Faced
with the intricate interplay and uncertainty of future energy markets, an extensive digital twin (EXDT) is pro-
posed to perform predictive testing and evaluate the performance of MESs. This EXDT provides energy system
operators with insights into the coordinated behavior of interconnected EHs under various future scenarios, thus
contributing to smarter decision-making processes. Specifically, an array of scenarios including different
decision-making strategies and P2P energy sharing strategies were considered. For each of these scenarios,"what-
if" tests were conducted using a multi-agent reinforcement learning (MARL)-based method to model the sto-
chastic decision-making process of EHs belonging to different stakeholders with access to local information.
Uncertainties during operation can be mitigated using Markov Game (MG) by capturing knowledge from his-
torical energy data. Subsequently, the economic and technical performance were evaluated using multidimen-
sional evaluation indexes. The proposed MARL-based EXDT was applied to a representative 4-EH multi-energy
system in China. Simulation results indicate that P2P energy sharing facilitates the local consumption of
renewable energy, providing additional financial benefits and self-sufficiency to each EH and offering peak
shaving to the upstream grid. Additionally, system performance under various decision-making and P2P sharing
strategies was tested and evaluated to identify the impact of these strategies on system operation.
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1. Introduction

1.1. Background

As the climate crisis has become a great global concern, it is a
decisive moment for international efforts to tackle greenhouse gas
(GHG) emissions. The number of countries pledging to reach net-zero
emissions by mid-century or shortly thereafter continues to grow [1].
Given that the energy sector is a primary GHG emitter, its decarbon-
ization is crucial for curtailing CO₂ emissions. Potential pathways for
reducing carbon emissions in energy systems include substituting con-
ventional fossil energy with various renewable energy sources, utilizing
advanced energy conversion and storage technologies, and implement-
ing demand response measures [2]. Over the past decade, the develop-
ment of multi-energy systems (MESs) has been the trend. These systems
provide a novel approach to accommodate increasing renewable energy
integration and incorporate energy-saving technologies. By collectively
managing multi-energy flows, which were previously dispatched inde-
pendently, MESs harness complementary flexibility and provide a sys-
tematic solution for achieving peak emissions and carbon neutrality.

1.2. Literature review

An Energy Hub (EH) functions as a multi-energy management unit
for MESs, enabling the district linking of various energy sources while
regulating energy conversion and storage processes [3]. This modeling
concept provides a feasible solution for enhancing the synergy and
operational flexibility of integrated energy systems [4]. As a result, the
modeling and operational optimization of EHs have garnered increasing
research interest. References [5–7]focus on the mathematical models of
EHs, developing energy coupling matrices for multi-energy converters,
energy transmission lines, energy storage systems, and various load
demands. Optimizing EH operations, which involves complex multi-
energy and temporal couplings, presents a nonlinear optimization
challenge. Extensive efforts using gradient descent [8] and heuristic
methods [9] have been made to achieve optimal solutions. For example,
in [10], a linearized model and the Karush-Kuhn-Tucker (KKT) condi-
tions were adopted to obtain optimal coordination of flexible resources
in an integrated gas-heat-electricity energy system. An improved version
of particle swarm optimization (PSO) was used in [11] to solve the
multi-energy coordinated optimization problem of community EHs.

Besides independent operation, by engaging in energy market
transactions, an EH can interlink with other EHs to share energy sur-
pluses or mitigate deficits. Peer-to-peer (P2P) energy sharing is gaining
considerable research attention as an effective management scheme for
prosumers with RESs within a local energy market (LEM) [12]. This
approach facilitates direct energy and information exchanges among
EHs. Technically, it provides access to energy resources in local grids,
energy storage solutions and demand response measures implemented
by end-users [13]. In this way, P2P energy sharing contributes to energy
balancing and enhances the flexibility of EHs as system flexibility pri-
marily stems from energy storage and demand response measures.
Financially, the P2P LEM allows EHs to trade surplus or deficit renew-
able energy and benefit from more favorable pricing than traditional
upstream grid transactions. Studies by Wei et al. [14] and Junhui et al.
[15], have demonstrated the improved flexibility and economic gains
from P2P sharing between EHs.

Existing research on P2P sharing frameworks generally focuses on
two categories: hierarchical [16] and decentralized P2P paradigms
[17–19]. A typical P2P energy sharing framework consists of physical
models, business models, and control models. In terms of physical sys-
tems, studies have included various entities, ranging from individual
buildings [20,21] and microgrids [16] to multi-microgrids [22],
engaging as peers in the energy trading process. Regarding business
models, extensive research has analyzed market designs for P2P trading
[23], with a focus on pricing [24] and matching mechanisms [25] and

benefit allocation among participants [26]. Additionally, both cooper-
ative [27,28] and non-cooperative [29] game theories have been
applied to capture the conflicting interests of different participants in a
computationally feasible way, optimizing bidding decisions to achieve
either minimum cost [30] or maximum self-sufficiency [31] under the
established market rules. For individual control, techniques such as
reinforcement learning [32], alternating direction method of multipliers
(ADMM)-based [33] and improved ADMM-based [34,35] optimization
have been employed to achieve desirable outcomes, such as Nash
equilibrium, through iterative processes.

Considering P2P energy sharing, coordinating multiple interlinked
EHs (MEHs) offers a solution to integrating high shares of RESs and
leveraging the complementary flexibility of energy systems across large-
scale areas [36]. Despite the technical and financial advantages afore-
mentioned, the integration of MEHs presents several challenges. 1) The
decision space, which aggregates the operational behavior of each in-
dependent EH, is continuous and high-dimensional. When accounting
for both P2P interactions among EHs and internal energy flow man-
agement within each EH, the complexity grows exponentially. 2) The
multi-stakeholder nature of connected EHs raises privacy concerns,
often resulting in a reluctance to share complete information between
EHs. Consequently, the decision-making process of each EH becomes
autonomous and stochastic, relying on incomplete information. 3)
Additionally, the interactions and energy sharing among connected EHs
further increase the uncertainties associated with future scenarios.

To address the complex nonlinearity and high dimensionality of
decision-making processes while considering the privacy protection of
autonomous EHs, simplifications have been widely employed in existing
literature.

In response to the challenges of nonlinearity and high dimension-
ality, simplified models in literature [37,38] were used, where the
operation of EHs was modeled using mixed-integer linear programming.
Similarly, linear node power balance models were employed in [39,40]
to determine the energy flow transmission and loss. Except for the linear
model, independent operation hypotheses were adopted in [41], where
a decentralized bi-level framework for multi-carrier system optimization
was proposed.

Regarding privacy and safety concerns, the authors in [19,42]
introduced a multi-agent system (MAS) structure for P2P energy
sharing, demonstrating its effectiveness in protecting the privacy of
multiple entities. Additionally, distributed ledger technology, such as
blockchain, has been used to secure transactions in P2P sharing, with
blockchain-based smart contracts being tailored for P2P energy sharing
[43]. These approaches highlight the potential of P2P energy sharing to
transform energy distribution and consumption within LEMs. However,
the decision-making processes of EHs are typically formulated deter-
ministically, aiming for an optimal solution based on perfect global in-
formation [44].

As a result of these simplifications, we often lose sight of the oper-
ational dynamics and interactions of EHs. For instance, linear processing
may fail to capture intricate dynamics such as demand-side thermal
dynamics, and fluctuations in energy markets. Simplified interaction
models usually do not account for power exchange between EHs, leading
to potential inefficiencies as the complementarity between different EHs
is disregarded. The use of deterministic physical model-based [45] and
programming-based [46] approaches to simplify the decision-making
process of EHs overlooks the inherently stochastic nature of these pro-
cesses. Furthermore, limited access to model parameters, global infor-
mation, and significant computational demands [47] make these
approaches impractical.

Additionally, these approaches seldom address the uncertainties
inherent in future scenarios, including EH interactions and the imple-
mentation of P2P energy sharing strategies.

To further investigate the energy behavior of EHs involving multiple
stakeholders, it is essential to consider their stochastic, local
information-based decision-making processes and the uncertainties

S. Li et al. Applied Energy 380 (2025) 124908 

2 



associated with future scenarios. Recognizing that obtaining practical,
real-time machine-monitoring data under various operational condi-
tions can be both costly and impractical, a high-resolution simulation
approach is required to effectively model these complex systems.

Recently, the concept of the Digital Twin (DT) has been proposed,
first used for the future generation of NASA and U.S. Air Force vehicles
[48]. It provides a new paradigm to integrate ultra-high fidelity simu-
lation (the virtual space) and the physical space [49]. Extensive research
has focused on establishing the mapping between physical and virtual
spaces. For instance, in [50], the connection between a robotic system
and its digital twin was established using a data-driven approach to
provide real-time decision-making. This cyber-physical mapping makes
high-resolution mirroring of the previously mentionedMEH systems and
their P2P energy sharing possible. However, In the energy sector, DTs
find utility in real-time optimization [51], data monitoring [52], fault
detection [53,54] and health management [55] of energy systems of
various scales based on the real-time interaction of physical and virtual
spaces. The historical operational data contained within DTs, capable of
reflecting the operational logic or patterns of their physical systems,
remain underutilized.

In summary, MESs composed of interconnected EHs and facilitated
by P2P energy sharing represent a significant advancement in inte-
grating substantial proportions of renewable energy and enhancing the
flexibility of future energy systems.

However, due to the high-dimensional, nonlinear, and even non-
convex nature of these systems, conventional centralized or decentral-
ized methods, as reported in previous works, fail to capture the full
dynamics of MEHs, accounting for both EH operation and interaction.
These methods also overlook the stochastic decision-making processes
and the consideration of future scenarios in MESs with P2P energy
sharing. Moreover, such approaches, particularly model-based methods,
rely on accurate models of and complete information, which may
encounter challenges related to model construction, convergence, and
computational demands [56].

To delve deeper into this novel type of energy system, The following
research gaps require exploration:

1) Accurate modeling of the energy behavior of each EH, including P2P
energy sharing and multi-energy flow management, while account-
ing for the stochastic nature of their decision-making processes. This
stochastic element arises from imperfect information and the au-
tonomy of decision-making.

2) Comprehensive testing and evaluation of the energy system across a
range of future scenarios, including various decision-making and P2P
energy sharing strategies. This is crucial for energy system operators
to understand and adapt to potential future developments.

3) An extensive DT enables the testing and evaluation of energy system
technologies (decision-making and P2P energy sharing strategies as
discussed in this work). It can integrate the energy behavior model
with future scenarios, and the corresponding evaluation system into
a simulated environment, offering a practical alternative to physical
system testing and providing valuable insights into the operation of
MEHs with P2P for energy system managers.

2. Motivation and contribution

This work addresses the research gap and limited understanding of
the emerging energy system paradigm, namely MEH. The novelty of this
work primarily stems from:

1) Given that physical testing and commissioning for MEHs with P2P
sharing are often unfeasible, and there is a need to explore potential
future scenarios, we proposed an extensive digital twin (EXDT)
approach. This approach aims to extend the function of DTs beyond
mere historical data analysis and real-time data monitoring for en-
ergy systems, fully leveraging the high-resolution mirroring of

physical systems and historical operational pattern data provided by
CPSs.

2) Unlike existing centralized or model-based approaches, we
employed a multi-agent reinforcement learning-based method to
address the nonlinearity and high-dimensionality inherent in the
EHs’ decision-making process. Additionally, we account for the sto-
chastic nature of each EH’s operation under privacy concerns.

3) Multiple scenarios of P2P energy sharing are considered in this work,
providing a comprehensive analysis of its impact on MEH systems.

By using this EXTD, we can predict and model the energy behavior of
interconnected EHs under various scenarios, and subsequently evaluate
the performance of the MEH system both economically and technically.
Our approach empowers stakeholders to explore the full potential of
MEH systems within a simulated environment, facilitating thorough
testing of system functionalities, performance assessment across various
scenarios, and validation of innovative energy management strategies.
Ultimately, This work accelerates the transition from theoretical con-
cepts to real-world implementations. This work contains prominent
contributions as follows.

1) We have broadened the scope of the current DT framework into a
more versatile form, enabling predictive testing and evaluation of
future energy systems. For the first time, an extensive DT supporting
systematic testing and evaluation specific to MEH systems consid-
ering P2P energy sharing has been developed. This EXDT encom-
passes a range of hypothetical scenarios, energy behavior predictive
modeling, multidimensional evaluation indexes, CPS, and data ex-
change among them. Using this EXDT, a comprehensive evaluation
of MESs with P2P energy sharing under diverse future scenarios can
be observed.

2) Considering the stochastic decision-making process of each EH, we
introduced a novel multi-agent reinforcement learning-based
method for their energy behavior predictive modeling. This is the
first implementation of such a method, designed to extract energy
behavior patterns from the historical data of CPS and to simulate the
decision-making processes of each EH in various future scenarios.
This multi-agent framework effectively models the stochastic nature
and autonomous decision-making process of each EH’s energy
behavior.

3) In consideration of potential future scenarios, various decision-
making strategies (both cooperative and non-cooperative) of EHs,
as well as different P2P energy sharing strategies, were examined in
this study. A comparative analysis of these scenarios was conducted
using a multi-dimensional evaluation index system, identifying the
strengths and weaknesses of the proposed strategies.

3. The framework of the proposed extensive digital twin

In this work, the function of DT for energy systems is broadened.
Traditionally, DTs have focused on historical data analysis and real-time
data monitoring. Few DTs for energy systems consider the CPS’s func-
tion as a virtual testbed or simulation environment for conducting dig-
ital system testing and predicting and evaluating system performance
under future scenarios. The EXDTs proposed in this work enable more
comprehensive and forward-looking analyses, facilitating better
decision-making and system design in the energy sector. The super-
structure of the proposed EXDT for MEH systems is presented in Fig. 1.

In this work, potential scenarios in the future including decision-
making models and P2P sharing are hypothesized. The energy
behavior decision-making process of each energy hub across these sce-
narios is predicted and modeled by intelligent agents within the multi-
agent system depicted in Fig. 1. The Scenario module (Hypothetic sce-
narios in Fig. 1) and Energy behavior model are interlinked in a "what-if"
way indicating how each EH would behave under specific scenarios. By
running "what-if" simulations, the operational pattern of energy systems
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using P2P energy sharing in different scenarios can be analyzed.
Virtual digital models in Fig. 1 are connected with real physical

systems by data exchange and databases. We extend the utility of DTs
beyond physical systems by integrating digital models and energy
behavior models through bidirectional data transmission and virtual
databases. In the proposed EXDT framework, the energy behavior of
each EH, determined by its corresponding agent through stochastic
decision-making processes, is communicated to digital models for
execution. Digital models then provide the system states and perfor-
mance parameters after executing specific behaviors. System states refer
to operational conditions such as meteorological parameters, renewable
energy generation, storage status, and demand-side thermal conditions,
while performance parameters include energy consumption and finan-
cial costs. Apart from serving as a testbed for providing system states
feedback on executing given behavior signals, the virtual digital model
also offers a digital database of virtual operational trajectory data for
data-driven training of intelligent agents.

Subsequently, according to the performance parameter provided by
the digital model, the operational performance of the entire MEH system
can be evaluated using a multi-dimensional evaluation index, providing
a comprehensive assessment.

To ensure high resolution in the virtual digital model, bidirectional
data exchange and dynamic correction between the virtual model and
the physical system are typically necessary. The receding horizon
approach, extensively discussed in the literature, is commonly used for
this correction. In this work, we focus on the virtual testing and evalu-
ation aspects, specifically concentrating on the interaction of other
modules (behavior model, scenarios, and evaluation index) with the
CPS. This interaction aims to capture and predict the stochastic decision-
making processes of multiple energy hubs in various scenarios, as well as
to understand their impact on system operational states and perfor-
mance. For simplification, the data exchange between the virtual and
physical components of the CPS is omitted, and we use the virtual model
solely as a high-resolution CPS, acting as a virtual testbed.

The rest of this paper is organized as follows: Multi-agent rein-
forcement learning is used to mirror the energy behavior of energy hubs.

Its mechanism is elaborated in Section 4. Section 5 provides a full
overview of the hypothetical scenarios considered in this work and
Section 6 interprets a comprehensive evaluation index used to assess
system performance across various scenarios. A multiple energy hub
system, which serves as the simulation case study, is introduced in
Section 7, along with the presentation and discussion of the simulation
results. Lastly, the conclusion and future work summarized in this work
are discussed in Section 8.

4. Energy behavior modeling using multi-agent reinforcement
learning

In prior research, centralized model-based optimization methods
were commonly used to determine the energy behavior of EHs within a
MEH system. This deterministic approach assumes that a central oper-
ator or each EH has access to global information, including private data.
However, this assumption is often impractical, particularly when EHs
are owned by different stakeholders, resulting in significant model
inaccuracies. Given the nature of EHs’ decision-making processes,
several challenges arise: 1) The complexity of the model due to the
nonlinearity or non-convexity introduced by the supply and demand
dynamics of each EH, as well as the intricacies of P2P energy sharing
market rules, is difficult to capture. 2) Private information, such as the
renewable energy generation of each EH, is typically not shared.

In this study, we utilize multi-agent reinforcement learning to model
the decision-making processes of autonomous EHs in various scenarios.
On one hand, the Markov Game in reinforcement learning algorithms
allows the modeling of the P2P energy market matching and multi-
energy dispatch of each EH, which are challenging to express explic-
itly in mathematical terms. By constructing a one-to-one mapping be-
tween EHs and agents, the decision-making process of each EH is
formulated as the sequential decision-making problem of its corre-
sponding agent. The data-driven training process extracts knowledge
from historical energy data to address uncertainties. On the other hand,
the multi-agent structure of multi-agent reinforcement learning aligns
well with the MEH system. It reflects the interactions (whether

Fig. 1. The superstructure of the extensive digital twin proposed in this work.
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cooperative or non-cooperative) among EHs and captures the stochas-
ticity of each EH’s decision-making, particularly under imperfect in-
formation scenarios that consider privacy concerns.

In conclusion, multi-agent reinforcement learning is an effective
solution to complex sequential decision-making problems involving
nonlinearity and non-convexity among multiple entities with privacy
concerns. It aids in protecting the privacy of each entity while reducing
the iterations and communication requirements.

This section delves deeper into the energy behavior model shown in
Fig. 1 and its linkage with other parts. As outlined in the scenario
module (see Section 5), which encompasses decision-making and P2P
energy sharing strategies, agents operating within the multi-agent en-
ergy behavior model engage in a "what-if" simulation. In this "what-if"
simulation, agents take action (a), such as P2P energy sharing andmulti-
energy dispatch within the EH, according to state (s) provided by the
cyber-physical system (CPS) and the specific scenario. The CPS then
functions as a virtual environment providing feedback on the execution
outcomes of the determined energy behavior, which, in turn, influences
state (s’) and reward (r) updating. The closed-loop interaction between
the multi-agent decision-making model and the virtual environment
generates virtual operational data trajectories (s, a, s’, r), which are then
stored in a virtual database (D) for agent training. This training process
significantly enhances the individual reasonability of agents, ultimately
contributing to the formation of swarm intelligence among them.
Following execution, the performance of these "what-if" cases, specif-
ically the performance of the MEH system across various scenarios, is
assessed through a comprehensive evaluation index.

4.1. Multi-agent deep deterministic policy gradient reinforcement learning

Recently, multi-agent reinforcement learning (MARL) has been re-
ported in many prominent sequential decision-making problems, such as
playing the game of Alpha Go [57,58], playing real-time strategy games,
like StarCraft II [59] and Dota2 [60], and card games [61], robotic
control [62], as well as autonomous driving [63].

There exist numerous MARL algorithms, with one notable example
being the multi-agent deep deterministic policy gradient (MADDPG)
algorithm. MADDPG is categorized as a multi-agent policy gradient al-
gorithm, wherein agents learn policies solely based on local information
during execution. A key feature of MADDPG is its decentralized frame-
work, enabling it to effectively address continuous action spaces and
adapt to either cooperative or competitive interactions among agents. As
a model-free method without any assumptions about the mathematical
model of the environment or the communication structure between
agents, this algorithm finds application in the realm of decision
modeling for complex multi-agent systems.

Extensive literature highlights the robustness of MADDPG, show-
casing its superior convergence and cumulative rewards when compared
to existing methods. These advantages are particularly evident in both
cooperative and competitive scenarios, underscoring the algorithm’s
effectiveness in various contexts [64].

In this work, agents in Fig. 2 make energy behavior decisions ac-
cording to local observations and undergo training to enhance their
intelligence through a historical data replay buffer. This decision and
training process employs MADDPG, and is elaborated as below.

4.1.1. Markov game
In this work, we use a multi-agent extension of Markov decision

Fig. 2. Multi-agent energy behavior model in the proposed extensive digital twin.
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processes (MDPs) called partially observable Markov games to formu-
late the behavior trajectory of a set of agents N [65]. A Markov game is

defined by a tuple
(
N,
{
Si
}

i∈N ,
{
Аi}

i∈N , ρ,
{
Ri}

i∈N , γ
)
, where N =

{1,2, 3,…,N} denotes the set of agents, Si denotes the state space of
agent i, and Ai denotes the action space of agent i. To choose actions,
each agent i uses a stochastic policy μφi : Si→Ai, which conducts the state
transition to the next state, according to the transition function T. Unlike
single-agent systems, multi-agent systems are not a mere simple aggre-
gation of individual intelligent agents; there exist interactions and
mutual influences among these agents. The state transitions in a multi-
agent system environment and the rewards for each intelligent agent
are influenced by the joint action set of all agents T: Si × A1 × A2 × A3×

…× AN→S’i. ρ denotes the transition probability from current state
(
si ∈ Si,∀i ∈ N

)
to the next state

(
s’i ∈ Si,∀i ∈ N

)
, by taking certain joint

actions
(
ai ∈ Ai,∀i ∈ N

)
. Each agent i obtains rewards as a function of

the state and agent’s action ri: Si × Ai→Ri. Each agent i’s objective is to
maximize its own cumulative expected return Ri:Ri =

∑Tmax
t=0 γt rit , where

γ is a discount factor and Tmax is the time horizon. More details about the
state and the action of agents are elaborated in the following
subsections.

4.1.2. State and observation
The state (s) refers to the system’s status. In a multi-agent environ-

ment, each agent may have a partial view of the system state (s), pri-
marily due to privacy concerns. Agent i’s observation is represented as
oi. In this study, agent i’s observation (oi) comprises both public and
private components, as illustrated in Eq. (1). The public component,
denoted as IiP, encompasses information shared among all agents, such as
time, upstream electricity prices, gas prices, heating prices, and mete-
orological information. On the other hand, Iip, represents agent i’s pri-
vate state, which includes EH i’s operational status, including renewable
energy generation profiles, electrical demands, thermal responses, and
the state of energy storage units (SoC) within EH i. x denotes the set of all
agents’ observation in Eq. (2).

oi =
(
IiP, I

i
p

)
∀i ∈ N (1)

x =
{
o1, o2,…, oN

}
(2)

4.1.3. Action
The action represents the energy-related behaviors that agents take

in response to a given state and scenario. Agent i’s action, denoted as ai is
defined in Eq. (3) and consists of two components. The former, aiP2P,
refers to the P2P electricity sharing behaviors of EH i, encompassing the
price and quantity of electricity exchanged in the local P2P market. The
second component, aiEH, encompasses the multi-energy flow manage-
ment of EH i, which includes the following energy behaviors: 1)
importing or exporting multi-energy from or to the upstream grid, 2)
converting energy within the EH, such as energy flows to combined heat

and power, heat pumps, boilers, and chillers, etc., and 3) managing the
charge/discharge rates of multi-energy storage units, including elec-
tricity, heating, and cooling. The full action space Ai of agent i consists of
all possible combinations of ai within its feasible space. Typically, the
feasible space is regulated by physical operational constraints.

ai =
(
aiP2P, a

i
EH

)
∀i ∈ N (3)

4.1.4. State transition
The state transition process is governed by the transition function

(T), as depicted in Eq. (4), and this function is emulated through CPSs. It
can be observed that the state of agent i in the subsequent time step is
related to the collective action set comprising the P2P energy trading
and multi-energy dispatch actions of all agents(i ∈ N, − i ∈ N, i ∕= − i), as
well as the disturbance of Gaussian noiseω.

s’i = T
(
si, ai, a− i,ω

)
∀i ∈ N (4)

4.1.5. Reward
Likewise, the reward (r) of each agent earned by taking specific ac-

tions is simulated by the CPS. In this case, an integrated reward function
consisting of energy cost (Costi) and penalty term (Penaltyi) is employed,
as shown in Eq. (4). It means, the objective of each agent is to minimize
the energy cost of its corresponding EH and meet its end-users’ demand.

ri = −
(
Costi +Penaltyi

)
∀i ∈ N (5)

4.1.6. Network update
An actor-critic structure is used by MADDPG. As to each agent i, the

actor is a fully connected neural network that maps the local observation
(oi) to action (ai) following the policy (μφi ). Its objective is to obtain the
largest maximum expected cumulative reward (Qμφi

(
x, a1, a2,…, aN

)
).

This objective can be achieved by directly adjusting the parameter (φi)
of the policy. The gradient of the policy can be written as Eq. (6), and the
parameter (φi) will be updated by taking steps in the direction
(∇φi J(μφi )), as shown in Eq. (7):

∇φi J(μφi ) = Еx,a∼D
[
∇φiμφi

(
ai|oi

)
∇aiQμφi

(
x, a1, a2,…, aN

)
|ai = μφi

(
oi
) ]

(6)

φi←φi + ηa∇φi J(μφi ) (7)

where ηa denotes the learning rate of the actor network, and E denotes
expectation. D denotes the historical dataset provided by the CPS, used
for the experience replay buffer. Specifically, operational data tuples
[
x, a1, a2,…, aN
⏟̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅ ⏟

a

,x’, ri
]
are stored in D and then sampled in batches for

the actor and critic network training.
Qμφi

(
x, a1, a2,…, aN

)
denotes the action-value indicating the cumu-

lative reward obtained by taking policy (μφi ). The action-value

Table 1
The actor-critic structure of MADDPG.

Network Formulation Input Output

Actor
Actor ai = μφi

(
oi
) 1) Observation

(oi)
Action(ai),to calculate Qμφi

in the critic network

Target
Actor

aʹi = μφʹi
(
ó i)

φ’i = τφi + (1 − τ)φ’i
1) The next observation

(ó i)
The next action (aʹi), to calculateQμʹ

φi
in the target critic for the critic network update

Critic

Critic Qμφi

(
x, a1, a2,…, aN

)
1) Observation
2) Action
3) Output of actor

Action-value (Qμφi
), for parameter update of the actor (Eq. (6)(7)) and critic network (Eq. (8)(9))

Target Critic
Qμʹ

φi

(
x’, aʹ1, aʹ2,…, aʹN

)

θ’i = τθi + (1 − τ)θ’i
1) The next observation
2) Output of target actor

The next action-value estimation (Qμʹ
φi
), for the critic network update (Eq. (8)(9))
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(Qμφi

(
x, a1, a2,…, aN

)
) is approximated by the critic network to assess

the action output of the actor network. This value is used to guide the
update of the policy network. The objective of the value network is to
achieve an unbiased estimation ofQμφi

(
x, a1, a2,…, aN

)
. The data sets for

training are sampled from D, and the loss function (L) is formulated as
Eq. (8) and (9). Data training processes are conducted to adjust pa-
rameters (θ) of the deep neural network of the critic network and
minimize the training loss.

L
(
φi) = Еx,a,r,x’

[(
Qμφi

(
x, a1, a2,…, aN

)
− y

)2
]

(8)

y = ri + γQμʹ
φi

(
x’, aʹ1, aʹ2,…, aʹN)

⃒
⃒
⃒a’i = μʹ

φ’i
(
o’i
)

(9)

where –i denotes all agents except agent i, and μ’ = {μφʹi , μφʹ− i} (i ∈
N, − i ∈ N, i ∕= − i) is the set of target policies with delayed parameters
(φ’). It is updated periodically in a soft update way, as presented in Eq.
(10). τ is the soft update coefficient. Similarly, the soft update of the
delayed parameter (θ’) of the target critic network can be conducted
according to Eq. (11).

φ’i = τφi +(1 − τ)φ’i (10)

θ’i = τθi +(1 − τ)θ’i (11)

It can be observed from Eq. (9) that the training of the critic network
involves the policies of all agents. However, due to privacy concerns or
communication limitations, this global assumption is impractical. To
mitigate this assumption, a decentralized policy approximation is
introduced. As outlined in Eq. (12), each agent i undertakes an addi-
tional approximation μ⌢ϑij

to estimate the true policy of agent j. This

approximation process employs an entropy regularizer to maximize the
logarithmic probability of agent j’s actions, allowing agent iii to learn
this approximate policy.

L
(

ϑi
j

)
= − Eoj ,aj

⎡

⎣logμ⌢ϑij

(
aj
⃒
⃒oj
)
+ λH

⎛

⎝μ⌢ϑij

⎞

⎠

⎤

⎦ (12)

where ϑ refers to the approximation parameter. H is the entropy of the
policy distribution and λ is its factor.

The structure of the abovementioned networks is summarized in
Table 1.

4.2. Modeling energy behavior of multiple energy hubs using MADDPG

The pseudocode of this Markov game of multi-agent environment is
presented in below Table and the schematic diagram of MADDPG-based
energy behavior modeling is presented in Fig. 3.

The pseudocode of using MADDPG to model the energy behavior of MEH.

Decision-making process modeling of MEHs using MADDPG

1 Initialize the state of each EH and stochastic process (N)
Initialize parameters of actor and critic network of each agent i, φiandθi,
respectively

2 For episode ep = 1 to max_episode:
3 Each agent i(i ∈ N)would interact with CPS i(i ∈ N)to get local observation

(oi)
Update the noise according to the decay factor (ξ: ωep = ωep*ξ)

4 For time_step t = 1 to Tmax:
5 For each agent i:
6 Select the action based on policy (μφi ) and Gaussian noise (ωep):

ait←N
(
μφi

(
oit
⃒
⃒φi ) ,ωep)

7 Send the P2P energy sharing action (ait,P2P) and multi-energy
flow management action (ait,EH) to the local energy market and
CPS environment respectively for execution

(continued on next column)

(continued )

Decision-making process modeling of MEHs using MADDPG

8 Governed by the state-action pair
(
sit , ait

)
, according to the state

translation function (Eq. (4), calculated by virtual digital
models of CPS), the state of CPS environment translates tosit+1

9 Update the observation (oit+1) and reward (rit) (Eq. (5))
10 Communicate with other agents, and store the tuple

(
[
xt ,at ,xt ’, rit

]
) in the replay buffer database (Di)

11 End for
12 End for
13 If len (Di) > batch_size then:
14 For each agent i:
15 Sample (

[
x,a,x’, ri

]
) from the replay buffer (Di) to form a mini

batch (M)
16 Update the parameter (θi) of the critic network by minimizing the

loss function (L
(
φi) =

1
M
∑

i

(
Qμφi

(
x, a1, a2,…, aN

)
− y

)2
) using the

Adam optimizer (Eq. (8)(9))
17 Update the parameter (φi) of actor-network following the max

cumulative reward principle using the Adam optimizer (Eq. (6)(7))
18 End for
19 Conduct soft parameter updates for the target actor and target critic

network according to Eq. (10)(11)
20 End if
21 End for

5. Scenarios

A digital twin establishes a cyber-physical environment capable of
running simulations across various hypothetical scenarios. It enables the
digital testing of novel energy system techniques, providing decision-
makers with insights into the operational patterns of energy systems
under different scenarios. This digital twin-enabled multi-scenario
testing approach has the potential to advance energy system develop-
ment by providing valuable insights to decision-makers before practical
implementation. The scenarios explored in this study are illustrated in
Fig. 4.

These scenarios involve decision-making strategies employed by
autonomous agents and P2P energy sharing strategies regulating energy
matching, as elaborated in Sections 5.1 and 5.2, respectively. Addi-
tionally, global optimum scenarios are considered as reference cases in
this research, accounting for both scenarios with and without P2P
sharing. These reference cases are derived using a mixed-integer
nonlinear programming (MINLP) solver for a central optimization
model. The economic and technical performance of energy systems in
these scenarios will be assessed using a comprehensive evaluation sys-
tem (see Section 6).

5.1. Decision-making strategies of autonomous agents

The interaction between energy hubs (EHs) can take one of two
forms: cooperative or competitive. Typically, EHs owned by different
stakeholders prioritize their individual benefits and may not share all
information with other EHs, leading to a non-cooperative game.
Conversely, EHs under the same ownership, like government agencies,
are more likely to share all information and engage in cooperative
operations.

Consequently, this work examines two categories of decision-making
strategies. For competitive EHs, each agent i optimizes its policy to
maximize its local reward (ri), as indicated in Eq. (5), based on its limited
knowledge of other agents. The non-cooperative game reaches a Nash
equilibrium when no agent can improve its benefits by altering its action
policy.

In contrast, for cooperative EHs, all agents engage in bidirectional
communication, sharing information including observations (o), actions
(a), and policies (μ). They collaborate to achieve the maximum collec-
tive total reward R: R =

∑N
i=1 ri.

Additionally, as a baseline case in this study, a random decision-
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making strategy is employed, wherein each agent selects an action
randomly from its action space.

5.2. P2P energy sharing strategies

In contrast to conventional energy trading, where EHs can only
purchase energy from the upstream grid at a predetermined price (Pgrid),

and sell their generated energy back at a lower price (Pfeed in), the
concept of a local energy market (LEM) offers advantages for EHs by
allowing them to establish energy prices within the range of
(
Pfeed in, Pgrid

)
. The effectiveness of the LEM depends on the specific P2P

energy sharing strategies employed. A well-designed energy sharing
strategy can provide EHs with the incentives to engage in the LEM,
resulting in efficient energy trading and fair allocation of payoffs.

a

x x
a

x x

x' x

x x

x x'

Fig. 3. The schematic diagram of the MADDPG method [66].

Fig. 4. Hypothetical decision-making and P2P sharing scenarios
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In this work, several P2P energy sharing strategies reported in the
literature are examined. They include Discriminatory k-Double Auction
(k-DA), Uniform k-Double Auction (U-k-DA), Average k-Double Auction
(A-k-DA), Vickrey Variant Double Auction (VV-DA), and McAfee’s
Double Auction (M-DA). The supply and demand curves of P2P energy
trading are provided in Fig. 5. Specifically, the energy trading price and
quantity are determined based on the information presented in Fig. 5.
The mathematical formulations for different strategies are listed in
Table 2. For more comprehensive details regarding these P2P sharing
strategies, please refer to references [24, 67].

where S denotes the set of all sellers participating in the P2P energy
trading; B denotes the set of buyers; Q* is the critical intersection point
where aggregate demand and supply meet; Around the intersection
point, the lowest cleared bids (including price and quantity) from buyers
are denoted as (pbL, qbL), while the second-lowest bids are denoted as
(pbL-1, qbL-1); Likewise, highest cleared asks from sellers are denoted as
(psH, qsH), and the second-highest asks are (psH-1, qsH-1). Here, k is the
predetermined constant in the closed interval [0,1].

6. Performance evaluation index

An index system, originally introduced in reference [68], has been
modified and utilized in this study to assess the multi-dimensional
performance of energy systems, particularly with regard to P2P energy
trading. In particular, the economic and technical indices, along with
their respective calculation methods, are detailed in Table 3.

The detailed meanings of the parameters in Table 3 are elaborated in
the Appendix.

Among these metrics, VI, PI, and EI represent the economic metrics
for assessing energy system operation. They provide insights into the
extent of cost-saving potential achieved, the additional benefits gained
through the adoption of specific P2P energy sharing strategies, and the
fairness of payoff allocation among participants based on their
contributions.

On the other hand, EBI, PFI, and SSI function as technical metrics,
offering insights into the energy balance, peak power shifting, and the
reliance on the external bulk power grid when employing specific P2P
energy sharing strategies.

All these metrics are normalized within the [0, 1] range to ensure

consistent and comparable evaluation. Detailed explanations of these
indices can be found in [68].

Notably, The equality index (EI) is defined as the Euclidean distance
(norm 2) between the profit allocation values of participants and the
Sharpe values under a specific P2P trading strategy. This index serves as
a metric for assessing the fairness of profit allocation among participants
in P2P transactions.

The Shapley value (incomeiShapley) is a method used to distribute total
gains among participants in a cooperative game. In the context of a
cooperative game composed of n players (with the set of players denoted
as N), let v be the characteristic function defined as follows: Given an
alliance of players denoted as S, v(S) represents the value of alliance S,
indicating the expected sum of rewards that members within alliance S
can obtain through cooperation. The function v maps subsets of players
to the real number set v : 2n→Rand complies with the specific condition
v(∅) = 0. According to the Shapley value, in a given coalition game (v,
N), the payoff allocated to player i is represented as shown in Eq. (13).

φi(v) =
∑

S∈N/{i}

|S|!(n − |S|− 1)
n!

(v(S) − v(S/{i} ) )

=
∑

S∈N/{i}

(
n

1, ∣S∣, n − ∣S∣ − 1

)− 1

(v(S) − v(S/{i} ) )

(13)

where, S ∈ N/{i} represents the set of players in alliance S excluding
player i, and |S| is the number of members within alliance S. This for-
mula can be explained as follows: Each coalition S consists of multiple
players, and player i’s marginal contribution to coalition S is denoted as
v(S) − v(S/{i} ). Player i’s total contribution is calculated as the
weighted average of their marginal contributions in various possible
alliances.

7. Case study design

An energy system that includes 4 energy hubs (4-EH) in China is used
as the case study. The physical structure of this system is shown in Fig. 6

Fig. 5. The supply and demand curves of various P2P sharing strategies [24].
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7.1. The cyber-physical system: 4-EH system

This 4-EH system comprises four energy hubs
{EH 1,EH 2,EH 3,EH 4} designed to operate autonomously. These hubs
are interconnected by P2P energy sharing and distribution networks
such as the grid. The internal balance of multi-energy supply and de-
mand within each hub is achieved through 1) purchasing or selling
energy from/to the upstream grid, and 2) P2P energy sharing with other
interconnected EHs.

P2P energy trading occurs directly between EHs, allowing each EH to
sell its surplus energy to or purchase energy to cover deficits from other
EHs. This enables all EHs to benefit from local P2P energy prices. Local
energy prices are typically lower than the purchase price and higher
than the feed-in tariffs offered by the upstream grid. Additionally,
achieving local energy balance through P2P sharing can reduce the EHs’
dependence on the grid, facilitating peak load reduction and energy
balancing.

Given the fact that heating and cooling distribution networks are
rarely shared between independent EHs, and the long-distance

Table 2
P2P energy sharing strategies [24,67].

P2P energy sharing strategy Buying price Selling price Trading quantity

Discriminatory k-Double Auction (k-DA) If pbi > psj : pi,j = kpbi + (1 − k)psj (i ∈ B, j ∈ S) Q*
Uniform k- Double Auction (U-k-DA) kpbL + (1 − k)psH Q*

Average k-Double Auction (A-DA) k
∑L

i=1
pbi + (1 − k)

∑H
j=1

psj (i ∈ B, j ∈ S) Q*

Vickrey Variant Double Auction (VV-DA) pbL psH

⎧
⎨

⎩

∑H− 1
j=1

qsj , if
∑L− 1

i=1
qbi ≥

∑H− 1
j=1

qsj
∑L− 1

i=1
qbi , if

∑L− 1
i=1

qbi ≤
∑H− 1

j=1
qsj

McAfee’s Double Auction
(M-DA)

p0 =
1
2
(psH+1 + pbL+1)

⎧
⎪⎨

⎪⎩

p0 ∈ [psH, pbL ]

works the same as U − k − DA

p0 ∕∈ [psH, pbL ]

works the same as VV − DA

⎧
⎪⎨

⎪⎩

p0 ∈ [psH, pbL]

works the same as U − k − DA

p0 ∕∈ [psH, pbL]

works the same as VV − DA

Table 3
The economic and technical index system.

Index Calculation

Value tapping index (VI) VI =
valuetest − valueref
valuemax − valueref

Participation willingness
index (PI) PI = 1 −

costP2P − costmin
costnoP2P − costmin

Equality index (EI) EI = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
incomei − incomeiShapley

)2
√

Energy balance index (EBI)
EBI = 1 −

∑
t∈T

⃒
⃒
⃒
∑

n∈Ψ

(∑
j∈Lln,j,t +

∑
j∈Ggn,j,t

) ⃒
⃒
⃒

∑
t∈T
∑

n∈Ψ
∑

j∈Lln,j,t +
∑

t∈T
∑

n∈Ψ
∑

j∈G

⃒
⃒
⃒gn,j,t

⃒
⃒
⃒

Power flatness index (PFI)
1 −

∑
t∈P∈T

⃒
⃒
⃒
∑

n∈Ψ

(∑
j∈Lln,j,t +

∑
j∈Ggn,j,t

) ⃒
⃒
⃒

∑
t∈T

⃒
⃒
⃒
∑

n∈Ψ

(∑
j∈Lln,j,t +

∑
j∈Ggn,j,t

) ⃒
⃒
⃒

Self-sufficiency index (SSI)

SSI = 1 −

∑
t∈T+∈T

∑
n∈Ψ

(∑
j∈Lln,j,t +

∑
j∈Ggn,j,t

)

∑
t∈T
∑

n∈Ψ
∑

j∈Lln,j,t

T+ =

{

t|
∑

n∈Ψ

(
∑

j∈L
ln,j,t +

∑

j∈G
gn,j,t

)

> 0 , t ∈ T

}

Fig. 6. The structure of the studied 4-EH system.
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transmission of hot/chilled water results in significant losses, this study
focuses solely on P2P electricity trading.

Specifically, the multi-energy structure of a representative EH stud-
ied in this work is depicted in Fig. 7. This EH has access to various energy
sources, including the upstream grid, which provides electricity, gas,
and space heating, the local P2P electricity market, and renewable
generation devices such as photovoltaic (PV) panels and wind turbines
(WT).

After acquiring multi-energy inputs, these inputs are either con-
verted into other forms or dispatched to end-users to fulfill their multi-
energy demands. Several energy conversion devices are considered in
this study, including:

1) Combined heat and power (CHP): CHPs generate both electricity and
heat by consuming natural gas, reducing energy costs due to the
typically lower price of natural gas compared to electricity. CHPs can
directly supply electricity, provide space heating through heat ex-
changers, and provide cooling by coupling with absorption chillers to
serve end-users.

2) Absorption chiller (AC): ACs can utilize the heat produced by CHP to
generate cooling, contributing to efficient cascade utilization of
energy.

3) Electrical chiller (EC): ECs are used for cooling.
4) Heat pump (HP): HPs are employed for heating and cooling

applications.
5) Gas boiler (GB): GBs are used for heating by burning natural gas.

In addition to these energy conversion devices, energy storage (ES)
units such as batteries and thermal tanks are also integrated into the EH
system. These units play a crucial role in addressing temporal and spatial
mismatches between energy demand and supply.

Different forms of energy are distributed to end-users to meet their
electrical and thermal (heating and cooling) demands. End-users in this
study include office, commercial, and hotel buildings. This study also
explores thermal demand response measures for these buildings.

Taking EH1 as an example, detailed information about its energy
conversion devices, renewable energy generation and energy storage are
provided in Table 4, Table 5, and Table 6 respectively.

To formulate the multi-energy input/output and energy conversion
of each connected EH, this work employs a coupling matrix-based
approach for energy hubs, as proposed in [69]. To determine the ther-
mal state of different building types with varying occupant schedules

(such as office and commercial buildings), aggregated building thermal
dynamic models reported in [70] are developed using a data-driven
approach. The historical data required for these models can be pro-
vided by Cyber-Physical Systems (CPSs).

Additionally, it is essential to ensure that the operational constraints
of EHs are met. For instance, constraints related to the state of energy

Fig. 7. Multi-energy flows of a typical energy hub.

Table 4
Energy conversion devices in EH1.

No. Device Capacity
(kW)

Number Total
capacity
(kW)

Rated efficiency

1 CHP 4624 4 18,496 1) 0.5 for power
generation;

2) 0.35 for heat
generation

2
LiBr
absorption
chiller

4324 3 12,972 1.2

3
Electrical
chiller

6997 8 55,976 5.5

4 Heat pump

Cooling:
1052 8

Cooling:
8416

Cooling: 3

Heating:
1094

Heating:
8752

Heating: 3.5

5 Gas boiler 6000 2 12,000 0.95

Table 5
Renewable energy generation of EH1.

No. Device Rated capacity (kW⋅h)

1 PV 20,000
2 WT 30,000

Table 6
Energy energy storage of EH1.

No. Device Rated capacity
(kW⋅h)

Rated efficiency

1 Battery 1280 Charge:0.92; Discharge:
0.85

2 Heating/ Cooling
storage

20,000 Charge:0.90; Discharge:
0.85
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storage units, including their lower and upper limits. The state of these
energy storage units can be calculated using the model presented in
reference [71].

EHs located within the same geographic area generally share a
similar energy flow structure, as illustrated in Fig. 7, but may exhibit
slight variations in device capacities, renewable energy generation, and
demand-side flexibility. To account for these differences and capture the
interactions among EHs with varying characteristics, the following dis-
tinctions in supply, demand sides, and storage units, are considered:

1) EH 1: This EH has higher thermal tolerance, allowing greater flexi-
bility in responding to thermal demand fluctuations.

2) EH 2: EH 2 does not have an energy storage unit available.
3) EH 3: EH 3 lacks renewable generation (e.g., PV or WT).
4) EH 4: EH 4 is equipped with 40,000 kW⋅h of PV generation capacity,

enhancing its renewable energy generation capability.

These distinctions allow for a more comprehensive analysis of in-
teractions and operations of heterogeneous EHs within the same
geographical area.

The natural gas price is set as ¥3.3/Nm3 and that for space heating is
¥0.36/kW⋅h. The electricity selling price is ¥0.135/kW⋅h and purchasing
prices are depicted in Fig. 8.

7.2. The multi-agent reinforcement learning-based energy behavior
modeling:4-agent system

Aligned with the 4-EH physical system, this work develops a rein-
forcement learning-enabled 4-agent system to mirror the decision-
making processes of each EH in various scenarios (see Section 5).

As stated in Section 4.2, for agent i, its observation (oit) at time t (see
Eq. (14)) includes 1) public information (IiP,t): ambient environment
temperature (Ta,t), solar radiation (Solart), time (hourt), time of use en-

ergy tariff
(
pgrid e,t, pgrid h,t, pgrid g,t

)
, and 2) private information (Iip,t): PV

generation (PVi
t), WT generation (WTit), electrical load (Lie,t) at time t,

aggregated indoor air temperature (Tiin,t− 1), Lie,tthe state of battery
(Sie,t− 1), the state of cooling storage (Sic,t− 1), the state of heating storage
(Sih,t− 1) at the end of time t-1.

Subsequently, the energy behavior (ait) of agent i is generated by the
actor network according to its observation (oit). The quality of obser-
vation whether it is perfect or imperfect, depends on the cooperative or
non-cooperative interaction among EHs. Action (ait) indicting energy
behaviors of agent i encompasses both its P2P energy sharing behaviors,

including price and quantity
(
piP2P,t , qiP2P,t

)
, and multi-energy manage-

ment behaviors within the corresponding EH. The latter includes the
multi-energy exchanges with the upstream grid (Pe,t, Pg,t, Ph,t), the gen-
eration of CHP (Gi

CHP,e,t,Gi
CHP,h,t), heat pump (Gi

HP,t), electrical chiller
(Gi

EC,t), gas boiler (Gi
GB,t), and absorption chiller (Gi

AC,t) as well as the
charge/discharge rates of the battery (Ci

e,t), cooling storage (Ci
c,t), and

heating storage (Ci
h,t). The a

i
t of agent i is formulated in Eq. (15).

In summary:

Actions including both the P2P energy sharing (aiP2P) and internal
energy management (aiEH) are executed in the cyber-physical system
(CPS). The state transition and rewards for the state-action pair (st , at)

Fig. 8. Purchasing price of electricity (time of use).

oit =

⎧
⎪⎪⎨

⎪⎪⎩

Ta,t, Solart , hourt , pgrid e,t, pgrid g,t , pgrid h,t
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Public information

, PVi
t ,WTi

t , L
i
e,t,T

i
in,t− 1, S

i
e,t− 1, S

i
c,t− 1, S

i
h,t− 1

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Private information of agent i

⎫
⎪⎪⎬

⎪⎪⎭

(14)

ait =

⎧
⎪⎨

⎪⎩
piP2P,t , q

i
P2P,t

⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
P2P energy sharing among EHs

, Pie,t, P
i
h,t ,P

i
g,t ,G

i
CHP,e,t,G

i
CHP,h,t ,G

i
EC,t ,G

i
GB,t ,G

i
AC,t ,C

i
e,t,C

i
c,t,C

i
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Multi− energy management within EH i
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are calculated by CPS. The reward (rit) received by agent i as a result of
the chosen state-action pair

(
sit , ait

)
is calculated based on the energy cost

(Costit) of EH i and the deviation (Tiexceed,t) of the indoor air temperature

(Tiin,t) from the upper limit (Titolerance) and lower limit (T i
tolerance) of the

temperature tolerance. This deviation serves as a penalty (thermal factor
is the penalty factor), as outlined in Eq. (16).

rit = −
(
Costit + thermal factor×Ti

exceed,t

)
Ti
exceed,t

=

⎧
⎨

⎩

Ti
in,t − Ti

tolerance cooling season
Ti
tolerance − Ti

in,t heating season
(16)

The virtual operational trajectory
(
sit , ait , sit+1, rit

)
of CPS is stored as an

independent digital database for each agent. This database serves as a
source of data for training through a data-driven approach, enhancing
the decision-making capabilities and reasoning of individual agents.
This experience replay mechanism is a well-established technique in
reinforcement learning and is explained in detail in Section 4.

The hyperparameters used in this 4-agent system for reinforcement
learning are listed in Table 7.

It is notable that, as the Tanh activation function is used, the action
output of the actor network is in the range (− 1,1). To meet the physical
constraints of devices within the EH, such as operational boundaries, the
action output is scaled to the operational range (lower limit, upper limit)
of each device, such as CHP, heat pumps, and boilers. In addition to the
operational boundaries (charging and discharging rate constraints),
there is a capacity limit for energy storage units. Therefore, after the
scaling process, an additional clipping process is necessary to ensure that
the capacity of each storage unit remains within its minimum and
maximum limits, preventing overcharging. As mentioned in Section 7.1,
the operational boundaries are provided by CPSs.

7.3. Multi-scenario case design

A series of scenarios are conducted using the proposed extensive
digital twin to simulate the operation of the 4-EH system under various
decision-making and P2P sharing strategies during the typical summer
and winter day. These scenarios are detailed in Table 8, each associated
with a unique identifier.

To account for the stochastic nature of autonomous participants in
the local energy market, simulation-based tests are repeated 100 times.
This iterative approach allows for the collection of statistical informa-
tion that reflects the system’s energy behaviors, enabling a compre-
hensive analysis of system performance and outcomes.

In Table 8, k-DA, U-k-DA, A-DA, VV-DA and M-DA refer to different
P2P energy sharing strategies discussed in this work: Discriminatory k-
Double Auction, Uniform k-Double Auction, Average k-Double Auction,
Vickrey Variant Double Auction, and McAfee’s Double Auction,
respectively. The definition and calculation of these strategies can be
found in Section 5.2 and references [24, 67].

To evaluate the performance of the cases and measure the economic
and technical advantages resulting from P2P local energy sharing, two
reference cases were simulated using the digital twin-based approach:

1) Centralized optimization model considering P2P energy sharing
(COP): This reference case incorporates P2P energy sharing into the
centralized optimization.

2) Centralized optimization model without P2P energy sharing (CO):
This reference case does not consider P2P energy sharing in the
centralized optimization model.

By comparing the results of the test cases with these reference cases,
the impact and benefits of P2P local energy sharing on both economic
and technical aspects can be assessed.

8. Simulation results and discussion

The test cases of the proposed extensive digital twin were pro-
grammed in Python using TensorFlow on a laptop with an Intel i7-
9750H CPU and 8 GB RAM. The reference cases were modeled as a
nonlinear problem in Python and solved using Gurobi, which is a com-
mercial optimization solver widely used for linear, nonlinear, and
mixed-integer programming problems.

As the actor-critic structure of MADDPG is adopted in this work, the
decision-making and training processes are independent. Decision-
making occurs at every time step (1 h in this study) using a well-
trained neural network, with the average time to compute an action
being 6 s. The training process is scheduled at set intervals, specifically
after each episode (24 h in this study), and each training session takes
17 min on average across repeated simulations. Notably, the training
and decision-making processes are conducted separately, allowing the
actor to use parameters updated from the training without impacting the
calculation time for decision-making.

For the centralized reference cases, where temporal coupling is pri-
marily introduced by energy storage, the optimization of an entire
episode is formulated as a large-scale complex MINLP problem. The
computation time per episode using Gurobi is 95 min, with a tolerance
gap set to 0.0001. This time may vary based on the specific solver set-
tings and tolerance conditions applied.

8.1. Economic and technical benefits of P2P local energy trading

In Fig. 9 and Fig. 10, COP and CO represent the centralized optimi-
zation cases with and without P2P energy sharing, respectively. These
two cases serve as reference cases under ideal assumptions, where full
access to all information and a central operator is available. This com-
parison illustrates the economic and technical benefits of P2P energy
sharing. In these figures, the financial benefits are primarily identified

Table 7
hyperparameters in multi-agent reinforcement learning.

Hyperparameters

Actor/Critic
network

Number of layers 5
Number of neurons in hidden layers 64

Activation function Tanh
Learning rate 5e-4

Time step 1 h
Episode length 24 h
Discount factor 0.99
Batch size 32

Training interval 1
Noise decay 0.99

Table 8
a) The cases on a typical summer day. b) The cases on a typical winter day.

a)

P2P energy sharing strategies

k-
DA

U-k-
DA

A-
DA

VV-
DA

M-
DA

Decision-making
strategy

Cooperative S-C S-C-
U

S-C-
A

S-C-
VV

S-C-
M

Non-
cooperative

S-N S-N-
U

S-N-
A

S-N-
VV

S-N-
M

Random S-R S-R-
U

S-R-
A

S-R-
VV

S-R-
M

b)
Decision-making
strategy

Cooperative W-C W-C-
U

W-C-
A

W-C-
VV

W-C-
M

Non-
cooperative

W-
N

W-N-
U

W-N-
A

W-N-
VV

W-N-
M

Random W-
R

W-R-
U

W-R-
A

W-R-
VV

W-R-
M
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through energy cost savings achieved by participating in P2P trading,
while the technical benefits are realized by reducing electricity ex-
changes between the 4-EH system and the upstream grid, thus
enhancing system-wide self-sufficiency.

Among these EHs, EH 4 gains the most significant benefits, achieving
energy bill savings of 25.7 % on a typical summer day and 29.6 % on a
typical winter day, primarily due to its larger PV capacity. EH 4 can sell
surplus PV generation to other EHs at a relatively high price, resulting in
a profit. EH 3 follows as the second-largest beneficiary, with energy bill
savings of 12.0 % on a typical summer day and 7.2 % on a typical winter
day. Since EH 3 does not possess renewable generations, it benefits from
purchasing electricity from other EHs at a relatively low price through
P2P sharing.

Overall, the total energy bill savings generated by P2P sharing of this
4-EH system amount to ¥72,538 (15.2 %) on a typical summer day and

¥33,647 (9.9 %) on a typical winter day.
Apart from the economic benefits, from a technical perspective, the

P2P local energy market facilitates reducing the electricity exchange
between the 4-EH energy system and the upstream grid, particularly
during peak periods. This reduction enables more extensive peak
shaving and valley filling, as depicted in Fig. 10. In the scenario
considering local P2P trading (COP), each EH prioritizes purchasing or
selling energy to meet local load deficits or surplus through P2P trading
with other EHs. This reduces the need to procure or sell electricity from/
to the upstream grid, thereby enhancing the system’s self-sufficiency
and resilience.

8.2. Multi-energy management of each EH

In addition to the P2P energy sharing discussed in Section 8.1, agents

Fig. 9. a) Costs of EHs in CO and COP cases (typical summer day).
b) Costs of EHs in CO and COP cases (typical winter day).
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Fig. 10. a) Energy exchange between 4-EH system and the grid.
b) Energy exchange between 4-EH system and the grid.
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also determine the inner multi-energy flow dispatch within each EH.
This includes the coordination of energy input, energy storage, and
energy conversion devices to meet power, cooling, and heating de-
mands. For example, the power and cooling loads of each EH on a typical
summer day—supplied through input energy, energy conversion de-
vices, and energy storage unit are depicted in Figs. 11–14. These
Figures aim to illustrate how electricity and cooling flows are managed
or allocated within each EH.

The simulation results indicate that during valley electricity price
periods (such as 1:00–6:00 and 22:00–24:00) when both renewable
energy production and the cooling and heating demands are at their

lowest, EHs tend to purchase electricity from the upstream grid at a
reduced price to meet their energy needs. Conversely, during peak and
flat electricity price periods (7:00–22:00), as power and thermal de-
mands rise, reliance on the upstream grid decreases. During these times,
EHs are more inclined to utilize increasing renewable energy generation
and employ the CHP-AC system to produce electricity while recovering
waste heat from the electricity generation process. This approach
effectively and economically meets the multi-energy demands of end-
users.

In cases of electricity surplus or deficit, excess energy generation is
either stored in energy storage units (ES) or shared with other

Fig. 11. a) Electricity flow dispatch in EH1 (typical summer day).
b) Cooling flow dispatch in EH1 (typical summer day).

Fig. 12. a) Electricity flow dispatch in EH2 (typical summer day).
b) Cooling flow dispatch in EH2 (typical summer day).
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interconnected EHs via the local P2P market. Any remaining surplus or
unmet demand that cannot be addressed through storage or P2P trading
is subsequently managed by exporting to or importing from the up-
stream grid. For example, EH 4, which possesses significant renewable
generation capacity, manages peak production periods (such as at
13:00) by first meeting its energy requirements, then storing excess
energy or selling it to other EHs through P2P sharing. If additional
electricity remains, it is exported to the upstream grid. (see Fig. 14).

Regarding conversion devices, priority is given to those with higher
energy efficiency to address cooling and heating needs. In terms of
cooling, absorption chillers (ACs) are used to meet part of the cooling
demand, while high-efficiency electrical chillers (ECs) handle the
remaining cooling needs. Heat pumps (HPs) complement the system
during peak cooling periods. For heating, waste heat from CHP is pri-
marily recycled using heat exchangers, with additional heating re-
quirements met by HPs. Gas boilers (GBs) are employed during peak
heating periods.

As for thermal demand response, load profiles (such as those shown
in Fig. 11b–14b) demonstrate that employing demand response mea-
sures (such as a broader indoor air temperature comfort zone) enables
EH 1 to significantly reduce its thermal demands and achieve lower
energy costs compared to other EHs.

8.3. Comparative analysis of 4-EH system across various scenarios

8.3.1. Multi-dimensional performance evaluation of various P2P sharing
strategies

Appropriate P2P energy sharing can incentivize EHs to participate in
the local P2P energy market and allocate payoffs fairly based on their
contributions. However, due to privacy concerns, non-cooperative

decision-making strategies are more common among EHs, even though
they may lead to performance degradation owing to imperfect
information.

In non-cooperative scenarios, EHs have different roles in the P2P
local energy market based on their characteristics: EH4, with its larger
renewable generation capacity, functions as a producer, selling surplus
PV generation to other EHs; EH3, which lacks access to PV or WT gen-
eration, purchases electricity from other EHs; EH2, without a storage
unit, tends to sell all extra renewable generation through the P2P mar-
ket; and, due to thermal demand response measures, EH1 has the lowest
thermal load to meet, resulting in less frequent trading with other EHs.

Different P2P sharing strategies employ different trading mecha-
nisms, leading to variations in hourly power exchanges in the P2P local
market: Average k-Double Auction (A-DA) promotes P2P energy sharing
and achieves the highest transaction frequency and volume, followed by
Discriminatory k-Double Auction (k-DA) and Uniform k-Double Auction
(U-k-DA); In contrast, McAfee’s Double Auction (M-DA) and the Vickrey
Variant Double Auction (VV-DA) show limited effectiveness in encour-
aging P2P sharing, possibly due to their more complex mechanisms.

It is noteworthy that M-DA and VV-DA result in the highest energy
bills on both typical summer and winter days, suggesting that simpler
P2P trading rules, like A-DA, can provide greater financial benefits
through energy sharing. The financial benefits realized by each EH
through participation in P2P energy sharing on typical summer and
winter days are shown in Table 9.

Overall, the daily energy cost of the 4-EH system (see Section 8.3.2)
corresponds with each P2P strategy’s effectiveness in stimulating energy
sharing, highlighting the financial advantages of P2P energy sharing in
the local energy market.

In addition to the financial benefits associated with different P2P

Fig. 13. a) Electricity flow dispatch in EH3 (typical summer day).
b) Cooling flow dispatch in EH3 (typical summer day).
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sharing strategies discussed earlier, a comprehensive evaluation is
conducted, taking into account various dimensions, including economic
and technical impacts. Detailed information about this multi-

dimensional evaluation index system can be found in Section 6. The
simulation results in Fig. 15, present assessments for both a typical
summer day (left) and a typical winter day (right). These assessments
provide a more holistic view of how different P2P energy sharing stra-
tegies discussed in Section 5.2), influence various aspects of the energy
system.

When using different P2P trading strategies, the 4-EH energy system
exhibits similar performance in terms of energy balance (EBI) and self-
sufficiency (SSI), with no significant differences observed. However,
notable variations appear in other indicators, particularly the value
tapping index (VI), participation willingness index (PI), and power
flatness index (PFI).

Fig. 14. a) Electricity flow dispatch in EH4 (typical summer day).
b) Cooling flow dispatch in EH4 (typical summer day).

Table 9
Financial benefits of each EH resulting from P2P energy sharing.

Cost saving EH 1 EH 2 EH 3 EH 4

Typical summer day
¥ 9857.6
(14.8 %)

¥ 5369.0
(3.7 %)

¥ 31,412.8
(12.0 %)

¥ 21,309.1
(25.7 %)

Typical winter day
¥ 7707.1
(10.8 %)

¥ 2003.4
(2.4 %)

¥ 13,260.6
(7.2 %)

¥ 16,019.4
(29.6 %)

Fig. 15. Multi-dimensional performance evaluation of various P2P sharing strategies. x-axis includes evaluation indices such as VI, PI, and other metrics. The y-axis
covers the six P2P energy sharing strategies. A larger value indicates better performance.
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The A-DA strategy performs well across all evaluation indicators due
to its straightforward supply and demand matching mechanism and fair
price determination. Following A-DA is the k-DA strategy. The U-k-DA
strategy, a variant of k-DA that uses uniform transaction prices for all
EHs, fails to differentiate EHs’ contributions to P2P sharing based on
price. As a result, the equality index (EI) is lower than that of the k-DA
strategy, and it does not effectively incentivize EHs to participate in P2P
trading.

As previously mentioned, M-DA and VV-DA, being the two most
complex P2P trading strategies in terms of trading mechanisms, do not
adequately encourage EHs’ participation in P2P trading. Consequently,
these strategies lead to lower transaction frequency and volume and
perform worse than the other three P2P trading strategies across various
indicators, except for the equality index (EI).

8.3.2. Energy cost of 4-EH system using various decision-making and P2P
sharing strategies

Given the stochastic nature of the decision-making processes in the
studied 4-EH system, repeated simulation experiments were conducted
in this work. Statistical distributions of daily energy costs were obtained
for different strategies that incorporate both decision-making and P2P
energy sharing strategies, as illustrated in Fig. 17.

The results indicate that when connected EHs employ non-
cooperative strategies with partial information sharing, the resulting
energy costs fall between those of cooperative cases and random
decision-making scenarios. This suggests that the virtual data-driven
learning process for agents is effective and provides better economic
performance compared to random energy behavior selection (as seen in
the random cases). The random strategy presents a much wider distri-
bution of costs on both typical summer and winter days and results in
higher energy costs.

The cooperative strategy achieves the lowest energy costs and ex-
hibits a narrower cost distribution. For example, under the k-DA strategy
on a typical summer day, the cooperative decision-making approach
achieves an average energy cost reduction of 1.85 %, while under the A-
DA strategy, it achieves a 1.32 % reduction compared to non-
cooperative cases. This indicates that cooperation among EHs,
including information sharing and a common optimization goal, can
mitigate the stochasticity in the multi-EH decision-making process. The
cooperative strategy not only regulates energy sharing behavior in the

P2P local energy market but also optimizes multi-energy dispatching
within each EH, thereby accessing greater financial benefits.

Regarding the P2P energy sharing strategies, a similar trend is
observed on both typical summer and winter days. Specifically, A-DA
delivers the best economic performance, followed by k-DA, which is
widely used in existing studies on P2P trading. In contrast, the energy
bills under M-DA and VV-DA sharing strategies are the highest, with
potential reasons for this analyzed in Section 8.3.1.

When compared with the reference case (COP), nearly optimal re-
sults are achieved when cooperative EHs engage in P2P energy sharing
using the A-DA and k-DA strategies, with deviations listed in Table 10.
This outcome demonstrates the effectiveness of the proposed multi-
agent reinforcement learning-based energy behavior prediction
method. It also suggests that the self-interested decision-making
behavior of individual EHs, aimed at maximizing their own benefits
while keeping private information unshared, can lead to a slight
degradation in the overall economic performance of the system.

In this table, S refers to a typical summer day, and W denotes a
typical winter day. C represents cooperative scenarios, while N stands
for non-cooperative scenarios. A indicates the A-DA strategy, the. The
specific identifier of cases can be found in Section 7.3. COP refers to the
centralized optimization model that incorporates P2P energy sharing.

9. Conclusion and future work

The multiple energy hub systems (MEH) with local P2P energy
sharing present a promising paradigm for future smart grid. MEHs
enable direct energy trading among multiple EHs, promoting the effi-
cient utilization of locally generated renewable energy and enhancing
overall system flexibility.

To provide energy system operators with valuable insights into the
operation of MEHs under uncertain future scenarios, we proposed an
extensive digital twin (EXDT). This approach goes beyond conventional
digital twins, which typically focus on the cyber-physical system (CPS)
and are traditionally limited to historical data analysis and real-time
monitoring in the energy sector. The EXDT integrates multiple mod-
ules, including a data-driven energy behavior prediction model, hypo-
thetical scenarios, evaluation metrics, and the CPS, all interconnected
through data exchange.

Specifically, the EXDT incorporates an array of hypothetical

Fig. 16. a) Energy cost of 4-EH system in various scenarios on a typical summer day.
b) Energy cost of 4-EH system in various scenarios on a typical winter day. The red line represents the energy cost obtained from the centralized optimization model
that considers P2P energy sharing (COP). The lower grey line indicates the lower quartile of energy costs when using a random strategy, while the upper grey line
denotes the upper quartile of energy costs for the random strategy. The violin plot illustrates the distribution of the 4-EH system’s energy costs across different P2P
energy sharing strategies.
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scenarios that encompass a range of decision-making and P2P sharing
strategies. These scenarios provide system operators with various
operational options, enabling them to explore different pathways. We
then conducted "what-if" simulations to assess the potential outcomes
associated with these scenarios. During this simulation process, we
employed a multi-agent reinforcement learning framework, MADDPG,
to predict and model the stochastic energy behaviors of multiple EHs,
which may be owned by different stakeholders, thereby adding
complexity to the decision-making process.

Compared to conventional deterministic approaches involving a
central operator or model-based assumptions, the MADDPG-based en-
ergy behavior model yields superior performance in handling the
nonlinearity and high-dimensional nature of the decision-making pro-
cess for interconnected EHs. Additionally, it captures the stochastic
characteristics of autonomous EHs with privacy concerns through a
multi-agent structure. Finally, we utilized a comprehensive multi-
dimensional evaluation index system to assess the economic and tech-
nical performance of different P2P energy sharing strategies.

This EXDT enables the prediction and modeling of interconnected
EHs’ behaviors under diverse scenarios, providing insights into the MEH
system’s performance from both economic and technical perspectives.
Ultimately, this approach empowers energy system operators to make
more informed decisions regarding MEHs.

An illustrative 4-EH multi-energy system in China was employed as a
case study to evaluate the economic and technical advantages of P2P
sharing. The system was also used to conduct a comparative analysis of
various scenarios, providing valuable insights for energy system oper-
ators. The key findings from the simulation results are as follows:

Financial and technical benefits of P2P energy sharing for MEH
systems:

1) Economic benefits: by engaging in local P2P energy sharing, inter-
connected EHs can benefit from reasonable local energy prices. For
instance, EH4, which has a large PV generation, can earn profits by
selling its surplus energy through direct P2P sharing. The financial
benefits gained by individual EHs contribute to significant energy
bill savings for the entire system. In this study, the 4-EH system
achieves cost reductions of ¥72,538 (15.2 %) on a typical summer
day and ¥33,647 (9.9 %) on a typical winter day.

2) Technical benefits: from a technical perspective, combining P2P
energy sharing with energy storage and demand response measures
significantly enhances self-sufficiency and peak load management.
During peak hours, driven by higher energy tariffs, EHs tend to share
their energy and manage their flexibility through energy storage and
demand response measures. Consequently, only a small proportion
of demand (20 % for EH3 and 15 % for EH4) is met by the upstream
grid, allowing locally produced generation to be widely distributed
among EHs. This approach not only enhances local energy utilization
but also contributes to CO2 emission reductions and decreased
transmission losses over the long term.

In terms of future scenarios and their impact on system performance:

1) Decision-making strategies: cooperative operational strategies show
a slight advantage over non-cooperative approaches due to the ac-
cess to perfect information and shared optimization goals. For
example, on a typical summer day, non-cooperative cases using k-DA
and A-DA P2P strategies experience average economic performance
degradations of 1.85 % and 1.32 %, respectively. Given that EHs are
often managed by different stakeholders with privacy concerns,

accessing complete information can be challenging, making non-
cooperative strategies more practical in real-world scenarios.

2) P2P energy sharing strategies: among P2P sharing strategies, A-DA
and k-DA stand out, with A-DA being particularly effective in
delivering better economic and technical performance. These stra-
tegies improve EHs’ willingness to engage in the P2P local energy
market and ensure a fair allocation of profits from P2P energy
sharing. Therefore, they are recommended for future P2P energy
markets. Conversely, more complex sharing mechanisms like M-DA
and VV-DA contribute minimally to P2P energy sharing and produce
less satisfactory system performance.

These findings highlight the significant benefits of P2P local energy
sharing and provide valuable insights into choosing effective opera-
tional and sharing strategies for energy system operators in future en-
ergy markets.

In this work, we validated the effectiveness and reasonableness of the
MADDPG-based approach for modeling energy behavior. When
compared to a centralized optimization model, the proposed method
closely approximates global optimal solutions, with slight deviations
observed, such as 0.08 % for S-C-A cases and 0.45 % for S-C cases.

Apart from energy behavior modeling, MADDPG can also be applied
to real-time operation optimization of MEHs and will be explored in the
upcoming work. As discussed in Section 8, the benefits of MADDPG arise
from the decoupled nature of the training and decision-making pro-
cesses for the actor and critic networks. The well-trained actor network
can independently perform decision-making by outputting actions
without relying on concurrent training. Training is carried out periodi-
cally using historical operation data, ensuring that decision-making
computations are not disrupted. In this study, the average decision-
making process took an average of 6 s, demonstrating the method’s
ability to meet real-time management requirements while significantly
reducing computational time compared to traditional physical model-
based approaches.

Additionally, our future research agenda will explore advanced
technologies such as electric vehicles (EVs) and power-to-gas (P2G)
systems, integrate additional P2P sharing strategies, and develop robust
operational strategies capable of addressing uncertainties in renewable
generation and load forecasting. To simplify the model, this study uti-
lizes only the virtual part of the digital twin, with the connection be-
tween the virtual and physical systems omitted. In future work, a
complete DT will be considered, incorporating both virtual and physical
components to fully leverage the capabilities of the cyber-physical
system.

CRediT authorship contribution statement

Shiyao Li: Writing – original draft, Validation, Methodology,
Investigation. Yue Zhou: Writing – review & editing, Supervision,
Methodology. Jianzhong Wu:Writing – review & editing, Supervision,
Methodology, Conceptualization. Yiqun Pan: Supervision, Project
administration, Investigation. Zhizhong Huang: Supervision, Investi-
gation. Nan Zhou: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Table 10
The deviation between test cases from the global optimum.

Test cases S-C S-C-N S-C-A S-N-A W-C W-C-N W-C-A W-N-A

Deviation from the reference case (COP) 0.45 % 2.29 % 0.08 % 1.40 % 2.87 % 4.66 % 0.21 % 1.40 %
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Appendix A. Appendix

(1) Parameters in Table 3

valuetest The total income of participants under the test P2P energy sharing strategy
valueref The total income of participants without P2P energy sharing
valuemax The potential maximum income
costP2P The total energy cost under test P2P energy sharing strategy
costmin The minimum energy cost of all participants
costnoP2P The total energy cost of all participants without P2P energy sharing
incomei The income of participants i under the test P2P energy sharing strategy

incomeiShapley The Shapley value showing the reasonable payoff allocation among participants of the local energy market
T The time horizon
Ψ The set of participants in the local P2P energy market
L The set of devices that consume energy
G The set of devices that produce energy
l The energy consumed
g The energy generated
P The set of peak hours

(2) Nomenclature

Nomenclature

Abbreviation
ADMM Alternating direction multiplier method k-DA k-Double Auction
CPS Cyber-physical system U-k-DA Uniform k- Double Auction
COP Centralized optimization model considering P2P energy sharing A-k-DA Average k-Double Auction
CO Centralized optimization model without P2P energy sharing VV-DA Vickrey Variant Double Auction
DT Digital twin M-DA McAfee’s Double Auction
EXDT Extensive digital twin VI Value tapping index
EH Energy hub PI Participation willingness index
ESS Energy storage systems EI Equality index
GHG Greenhouse gas EBI Energy balance index
MINLP Mixed-integer nonlinear programming PFI Power flatness index
MADDPG Deep deterministic policy gradient SSI Self-sufficiency index
MES Multi-energy system PV Photovoltaic panel
MEH Multi-energy hub system WT Wind turbine
MARL Multi-agent reinforcement learning CHP Combined heat and power
MG Markov Game AC Absorption chiller
P2P Peer-to-peer EC Electrical chiller
PLR Partial load rate HP Heat pump
PSO Particle swarm optimization GB Gas boiler
RES Renewable energy source ES Energy storage
Sets
D Virtual database aiP2P P2P electricity sharing actions of EH i
N The set of agents aiEH The multi-energy optimization actions of EH i
S State space μφi The set of stochastic policies of EH i
A Action space IiP The public information obtained by EH i
x The set of all EH’ observation Iip, The private information obtained by EH i
Variables and parameters
Multi-agent reinforcement learning

Tmax Time horizon φ,θ
Parameters of the deep neural network of the actor and critic network
respectively

Vset Parameters set by end users L
(
φi) Loss function when taking policyμφi

a Action μ⌢ϑi
j

The estimation of the true policy of agent j
r Reward τ Soft update coefficient for target networks
s’ The next step state ϑi

j The approximation parameter of agent j’s policy estimated by agent i
o Observation H The entropy of the policy distribution
γ Discount factor M A mini batch
ω Gaussian noise ηa The learning rate of the actor network

Costi Energy cost of EH i Qμφi

The action-value indicates the cumulative reward obtained by taking
policyμφi

Penaltyi Penalty term for end-users’ thermal comfort
(continued on next page)
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(continued )

Nomenclature

Case study

pgrid,t
The purchase price of the upstream grid at time t, Yuan/kW⋅h or
Yuan/ Nm3 piP2P,t The price of P2P energy sharing of EH i at time t, Yuan/kW⋅h

Pfeed in The feed-in price of the upstream grid, Yuan/kW⋅h qiP2P,t The quantity of P2P energy sharing of EH i at time t, Yuan/kW⋅h

Q* The critical intersection point where the aggregate demand and
supply meet Gi

CHP,t The generation of CHP of EH i at time t, kW

incomeiShapley
The Shapley value is a method used to distribute total gains among
participants in a cooperative game Gi

HP,t The generation of HP of EH i at time t, kW

φi(v) in a given coalition game (v, N), the payoff allocated to player i Gi
EC,t The generation of EC of EH i at time t, kW

Ta,t Ambient environment temperature at time t,◦C Gi
GB,t The generation of GB of EH i at time t, kW

Tiin,t Aggregated indoor air temperature at time t,◦C Gi
AC,t The generation of AC of EH i at time t, kW

Solart Solar radiation Cit The charge/discharge rates of EH i at time t, kW
hourt Time Titolerance The upper limit of the indoor temperature tolerance,◦C

PVi
t PV generation at time t of EH i, kW⋅h T i

tolerance The lower limit of the indoor temperature tolerance,◦C
WTit WT generation at time t of EH i, kW⋅h thermal factor Penalty factor for violating thermal comfort constraints

Lie,t Electrical load of at time t of EH i, kW Tiexceed,t
The deviation of the indoor air temperature from the upper limit and lower
limit of the temperature tolerance, ◦C

Sit The state of storage device at time t of EH i, kW⋅h
Superscript/ subscript
i Agent series number ‘ The next step
-i Other components except for component i t Time step
e Electricity g Natural gas
h Heating c Cooling
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