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Abstract. Magnetic monopoles, predicted by Dirac, entered a new paradigm
with the discovery of emergent monopoles within dipole lattices known as
bulk and artificial spin ices. The observation of monopoles in certain artificial
systems, and their absence from other similar structures, is a significant puzzle.
Connected artificial spin-ice structures attract much attention in terms of the
possibility to read states electrically, and offer the possibility of monopole
defect control via well-understood domain wall processes. Nevertheless, full
comprehension of the underlying processes is lacking. Here, we establish one
of the overriding components. We demonstrate using high-resolution scanning
transmission x-ray microscopy (STXM) the cooperative process associated with
two transverse domain walls that creates the monopole defect in NiFe. The
feature size of the array is large compared to the exchange length in the
ferromagnet, and the two transverse domain walls give a rich internal structure
to the monopole defect vertex. The magnetic Coulomb repulsion between two
domain walls carrying the same sign of magnetic charge stabilizes the monopole
defects at fields greater than the depinning field for a single wall at that vertex.
These observations allow us to form an overview of monopole defect control
possibilities from extrinsic pinning as in Co arrays (the extreme extrinsic limit
being isolated bar structures) to intrinsic pinning captured here.
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Spin-ice materials have been studied intensively over the last 10 years and have been shown
to be model systems to study frustration [1, 2]. These materials have a pyrochlore structure,
and magnetic moments (µ) of approximately 10µB are located at the corners of the tetrahedra.
The minimum energy configuration is when two spins point into a tetrahedron, and two point
out of a tetrahedron. This configuration is known as the ice rules, due to similarities to the
bonding in water ice. A recent theoretical treatment [3] has proposed an alternative model of
spin ice whereby the magnetic moments are considered to be ‘dumbells’ with magnetic charges
of ±q localized at the centres of the tetrahedra. Using this model the ice rules translate to a
configuration where there is a magnetic charge of zero at the centres of the tetrahedra. The model
goes on to predict that a spin flip on the lattice leads to an ice-rule-violating defect with finite
magnetic charges of ±2q on the centres of adjacent tetrahedra. Once formed, these magnetic
charges propagate by further spin flips at an energy cost solely associated with the magnetic
Coulomb interaction, creating charge-carrying quasiparticle excitations above the ground state
with no conserved magnetic moment. These intrinsic quasiparticles act as sources and sinks of
H and M, and hence may be considered magnetic monopoles [3]. There is now overwhelming
evidence that these monopoles indeed exist, carry a magnetic charge of 5µBÅ−1 and obey a
magnetic Coulomb’s law; see for example [4].

Artificial spin-ice materials [5] made up of arrays of magnetic nanobars of length l, width w
and thickness t, arranged in a geometrically frustrated structure, share a great deal, conceptually
speaking, with the parallel field of bulk pyrochlores. In the nanoarrays the magnetic charge
q = µ/ l holds; however, unlike in the bulk, µ is no longer a fundamental quantity of a
magnetic atom, but rather governed by the saturation magnetization MS of the ferromagnet
and the volume of the bars. Thus ideally q = MStw and can be continuously tuned by choice
of material and bar dimensions. The Sherrington–Kirkpatrick [6] replica mean-field description
of spin glasses forms the basis of algorithms for neural network computation. Frustrated atomic
moments offered no prospect of creating neural network hardware because the spins could not
be individually read, written or manipulated. Intriguingly all of that functionality is already
available for artificial spin-ice nanostructures, so neural network reconfigurable logic hardware
is a realizable possibility.

For any nanostructured array of identical bars, the sum charge at a vertex, Q, is effectively
quantized into integer multiples of q and the magnetic charge carriers have Q = ±2q . In
a square lattice, a zero magnetic charge (two-in, two-out) state can be realized, but on a
honeycomb lattice three bars meet at each vertex and the ice rule leaves residual magnetic charge
(Q = ±q) at each vertex, a state known as ‘Kagome spin ice’ [7]. The vertex charge influences
the charge carriers at short range, creating a Coulombic pinning potential [8] and hence playing
a role in the magnetic switching [9, 10]. Note that we reserve the term ‘monopole’ for the highly
symmetric Q = ±3q ice-rule defect rather than using it as a generic term for a magnetic charge
carrier.

In the natural pyrochlores, the monopoles propagate by the flipping of atomic magnetic
moments. In the nanostructures, the monopoles are formed by the switching of nanobar
moments, which occurs by the nucleation and propagation of domain walls. The latter can
be considered to be the magnetic charge carriers in our system. The magnetic field at which
magnetic charge flows is determined by the fields at which domain walls are depinned or
nucleated. In our permalloy arrays, the edge nucleation fields and internal depinning fields
are much lower than internal nucleation fields, so the magnetic charge flows by propagation
of domain walls from edge to edge, and the switching transition is complete before the
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intra-array nucleation field is reached. In this paper, we make a distinction between intrinsic
and extrinsic pinning. We define intrinsic pinning as the pinning that results from on-site carrier-
vertex magnetic Coulomb interactions defined by the geometry of the array and the magnetic
properties from which the array is formed. The Coulomb interactions are independent of which
vertex the charge is traversing, and if only intrinsic pinning were present and the array were
perfectly regular and infinite, all bars would switch at the same magnetic field and monopole
defects would never be observed in the array [9, 10]. We define extrinsic pinning as pinning
due to quenched disorder; in reality the vertices in our arrays are not perfectly identical and
the intrinsic pinning potentials are modified by variations in wire width and thickness, and
by defects produced by the nanostructuring process. Extrinsic pinning causes different bars to
switch at different fields. When extrinsic pinning dominates, monopole defects can be trapped
at specific vertices with higher than average domain wall depinning fields, as we previously
observed in cobalt honeycombs [8]. In this context, a honeycomb array of isolated bars [11] can
be considered as the infinite pinning regime where a domain wall must be nucleated for each
switching event.

For both applications and fundamental studies of magnetic charge carriers [9, 12], it is
desirable to avoid local, extrinsic pinning of the charge. NiFe is the material of choice for
many nanomagnetic applications [13]–[15] where pinning is minimized; thus the formation
and internal structure of monopole defects in NiFe structures are of particular interest. Here we
describe an intrinsic mechanism of monopole defect formation based on the magnetic Coulomb
interactions between two domain walls trying to move onto the same vertex. As each wall
prevents the transit of the other, we term this ‘magnetic Coulomb blockade’.

In this paper, we image monopole defects at ultra-high resolution using scanning
transmission x-ray microscopy (STXM) and study their formation using OOMMF (Objected
Orientated Micro-Magnetic Framework) simulations [16]. Figure 1 sets out a number of
possible monopole defect formation scenarios. Previously we have established [8] that magnetic
monopole defects are created in cobalt honeycombs after a conditioning routine by the pathway
represented in figures 1(a) and (b) by a single bar switching event. The monopole defect is
stabilized by large extrinsic domain wall pinning fields.

The strong differences in domain wall depinning fields [17] between magnetically soft
NiFe (with virtually no magnetocrystalline anisotropy and magnetostriction allowing the
magnetic properties to be dominated by the shape of the wire) and Co (which is magnetically
harder) may provide a clue to why monopole defects in connected permalloy honeycombs have
remained so elusive [10, 18, 19].

Here we study two permalloy honeycomb samples, which were fabricated by e-beam
lithography on SiN membranes, evaporation of Ni81Fe19 and lift-off. One is composed of
8 nm thick permalloy with nanobar dimensions of w = 100 nm and l = 1 µm and a spatial
extent of (100 µm)2. The other is composed of t = 16 nm permalloy and has the same nanobar
dimensions and a smaller spatial extent (8 µm)2. Note that the film thickness is chosen to ensure
that transverse domain walls [20] persist in permalloy honeycomb structures [10, 21]. Room
temperature STXM studies were carried out on beamline 11.02 at the Advanced Light Source
(Berkeley, CA, USA). The sample was mounted in the STXM chamber between the pole pieces
of an electromagnet, which allowed the application of an in-plane field of ±60 mT in situ.
The chamber was pumped down to a pressure of approximately 100 mT before filling with He
gas. Elliptically polarized x-rays were provided by an undulating beamline after which they
were focused to a spot size of approximately 30 nm using a Fresnel zone plate. The sample
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Figure 1. Monopole formation scenarios. The magnetization (black arrows)
can be thought of as equal and opposite magnetic charges separated by a
single bar length. The sum of these charges are shown by red (net positive
charge) and blue circles (net negative charge): (a) initial (saturated) state
(with field applied along positive x-direction) that survives to remanence.
(b) 1Q = 2 monopole vertex formed when negative applied field causes a
+2 domain wall nucleation at a −1 vertex simultaneously forming a −3
monopole vertex. (c) Field-induced +2 domain wall nucleation at a +1 vertex,
(d) double domain wall vertex and (e) ice-rule vertex with magnetic charge
disorder and (f) 1Q = 4 monopole vertex.

and electromagnet were mounted at approximately 30◦ with respect to the x-ray propagation
vector, which allowed the in-plane component of the magnetization to be probed using the x-ray
magnetic circular dichroism (XMCD) effect. Micromagnetic simulations were performed with
the OOMMF [16]. A cell size of 5 nm was used to construct the mesh, and the magnetization
was allowed to relax in the absence of an applied magnetic field in order to find a minimum
energy configuration. The magnetocrystalline anisotropy of Ni81Fe19 was assumed to be zero,
the exchange stiffness was taken to be 1.3 × 10−11 J m−1, and the saturation magnetization was
assumed to be 800 emu cm−3.

After saturating the magnetization in the positive x-direction, we took large area STXM
images in increasing negative field steps until a monopole defect was located in the image, and
then collected a high-resolution image at that vertex. In the 16 nm thick array, this occurred
at 6.0 mT and is shown in figure 2(a). The two bright areas that can be seen just off the vertex
centre suggest that a monopole defect consists of two transverse domain walls. We then returned
to zero field and collected a high-resolution image at the same vertex. The monopole defect with
magnetic charge −3q (3-out state) persists at remanence, and is shown in figure 2(b). Both the
creation of monopole defects at particular fields and their survival at remanence suggest that
once formed they are pinned to a site and are important observations.
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Figure 2. Monopoles at high resolution. Black colour contrast represents
magnetization with a positive x-component and white represents magnetization
with a negative x-component. (a) A high-resolution STXM image of a monopole
defect −3q state in −6.0 mT field. (b) A high-resolution STXM image of a
monopole defect −3q state in remanence at zero field, formed by the application
of a preconditioning field of −6.0 mT. A micro-magnetic simulation of (c) the
contrast map of the x-component of magnetization and (d) the micro-magnetic
configuration of a −3q monopole defect state. The dashed circle (radius
∼150 nm) indicates the extent of distortion from the idealized 3-out state.

The observation of a two-domain wall state was investigated further by micromagnetic
simulations [16]. Figure 2(c) shows a −3q monopole defect state produced by the simulations
at remanence, in excellent agreement with the experimental image. The simulated nanomagnetic
configuration is shown in figure 2(d). The simulations confirm that two transverse domain walls
are present and are pinned off the vertex centre. The x-component of the dipole moment (mx ) of
the core of the two transverse domain walls is anti-aligned with the moment on the horizontal
nanowires. This forces the opposite sign of m y in the walls and therefore implies opposite
chirality with respect to the local Ising axis (magnetization direction). Note that the vertex is
large (>100 nm) compared with the exchange length in permalloy (5 nm) and it is interesting
that on lengthscales less than the array feature size (wire width), the monopole defect vertex
contains topologically conserved entities (transverse domain walls) with finite dipole moment.
Distortions from the idealized picture of a monopole defect on an Ising spin lattice extend up to
150 nm from the vertex centre. The asymmetry here appears much more pronounced than in the
monopole defects formed by a single wall extrinsic pinning process in cobalt honeycombs [8].

Returning to the question of the relationship of monopole defects to the reversal process
in the array, we can construct an effective M-H loop by taking images in many applied fields.
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Figure 3. Monopoles in the switching process. (a) A digital hysteresis loop
constructed from images for numerous magnetic reversals. Where a data point
corresponds to a specific figure, the figure number is indicated in parentheses.
The normalized magnetization was obtained by taking the ratio of the number
of bars with positive Mx to those with negative Mx for each field value. Five
separate reversals are shown: a 8 nm film, sweep 1 (black squares) and sweep
2 (red circles). A 16 nm film, sweep 1 (open green squares) and sweep 2 (blue
circles). A 16 nm minor loop (orange crosses). STXM image of a honeycomb
structure at (b) 0 mT and (c) −4.65 mT. Black colour contrast indicates that
the magnetization has a positive component of magnetization, whereas white
indicates a negative x-component.

During several field cycles monopole defects were found at fields between 4 and 5 mT in the
8 nm array and 6 and 7 mT in the 16 nm array, confirming the observations shown in figure 2.
Figure 3(a) shows the reverse segment of the M-H loops. Two example large-area STXM
images of the 8 nm array at remanence and at −4.65 mT are shown in figures 3(b) and (c)
and the full set of images for that switching transition are shown in supplementary figure 1,
available at stacks.iop.org/NJP/13/023023/mmedia. At remanence all the bars have positive
mx , whereas at −4.65 mT the majority of bars have switched to having a negative mx . Two
monopole defects are captured in this image, as highlighted by the dotted circles. Interestingly,
monopoles are observed only in fields close to the end of the field reversal process, in contrast
to Co honeycombs where monopoles formed preferentially at the beginning of the field reversal
process [8].

To study the monopole defect depinning process in more detail, high-resolution images
were collected at the same vertex in increasing negative field steps on the reverse leg of the minor
loop (after preconditioning). These images are shown in figures 4(a)–(f). As the field increases,
the two tail–tail domain walls are pushed together on to the vertex, and mx becomes increasingly
negative within the walls. At a field of approximately 7.5 mT (16 nm array), the monopole is
depinned as a domain wall propagates along the horizontal bar, switching the vertex into an ice-
rule state with all bars having a negative magnetization component. Companion micro-magnetic
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Figure 4. Monopole defects under magnetic pressure. (a–f) STXM images of
the −3q monopole defect in figure 2(a) in a magnetic field along the negative
x-direction. (g, h) Micromagnetic simulations of a −3q monopole defect in
the application of an applied magnetic field close to Hd. Note that the zero-
temperature nature of the OOMMF code means that, to make meaningful
comparison to the experimental data, the field scale is normalized to the
monopole depinning field (Hd).

simulations of a single vertex that had been preset to a −3q state are shown in figures 4(g)–(h)
and in supplementary figure 2, available at stacks.iop.org/NJP/13/023023/mmedia. Here the
movement of the domain walls towards each other is captured as is the monopole depinning
field (Hd).

The underlying magnetic charge distribution in the simulations shown in figures 2(b)
and 4(g) is plotted in figures 5(a) (remanence) and 5(b) (0.96Hd), respectively. Even at
remanence, both domain walls are seen to be distorted, with a complex asymmetric charge
distribution [22]. A simplified point-charge model of the coercive field of honeycombs has
been proposed [9, 10]. A magnetic point charge Q is driven by an applied field (H) with a
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Figure 5. Effective magnetic charge model. (a, b) The magnetic charge density
distribution at the monopole defect in the micromagnetic simulations (a) in
zero field (figure 2(c)) and (b) in a field close to the monopole depinning field
(H/Hd = 0.96, figure 4(g)). Red corresponds to negative charge density and
blue corresponds to positive charge density. Arrows indicate separation between
regions of maximum positive charge density. (c) Simple diagram demonstrating
point-charge model, where each domain wall is represented by a point charge
of −2q. (d) Modified point-charge model, where the unscreened regions of
maximum magnetic charge density are used to calculate the depinning field.
(e) Energy profile demonstrating the interaction between a domain wall (+2q)
and the complex magnetic charge distribution at a vertex (±q). (f) Single domain
wall pinning profile (red dotted line), magnetic Coulomb repulsive energy profile
(blue dotted line) and the sum of the two energy profiles, which is seen by two
domain walls pinned at a vertex (black solid line).

force F = µ0 HQ. Equating the coercive force for switching the bars (HC), to the Coulomb
force (FC) for separating a DW with charge Q = 2q from vertex Q = −q at a separation
corresponding to the DW size (approximately the wire width w) yields µ0 HC = FC/2q =

2 µ0q2/4(2q)πw2
= µ0 MSt/4πw. This corresponds to a coercive field of 12.8 mT for the

16 nm array and 6.4 mT for the 8 nm array. Similarly, one could estimate that the monopole
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depinning field to force two DWs with like charge onto the same vertex at separation w is
µ0 Hd = Fd/2(2q) = µ0(2q)2/8(2q)πw2

= µ0 MSt/4πw. This predicts identical depinning and
coercive fields. Therefore, the depinning field Hd is equivalent to the coercive field HC contrary
to our observation that the monopoles persist after the other bars have switched (Hd > HC).

We can use the OOMMF simulated magnetic charge maps in figure 5 to refine the point-
charge model with effective magnetic charge Q∗ and these effective separations, r∗, giving
effective Coulomb force F∗

= µ0 Q∗2/4πr∗2. We define the effective charge separation, r∗, as
the separation of the two regions of maximum positive magnetic charge density in figures 5(a)
and (b), which gives r∗

0 = 65 nm at remanence (H0) and r∗

d = 50 nm at Hd ∼ 7.5 mT. Equating
the applied compressive force from the field (F = 2 µ0 H(2q) as there are no near-field issues)
to the measured magnetic charge compression, 4 µ0q(Hd − H0) = µ0 Q∗2/4π · [1/r∗2

d − 1/r∗2
0 ]

and rearranging, we obtain effective charge Q∗
= 1.36q. Note that the finite r∗

0 describes the
potential well holding the two DWs close to the vertex (figures 5(e)–(f)). Extending the proposal
that it is the vertex-wall magnetic charge interaction that controls the coercive field [9, 10], we
crudely test the effective charge model. Applying to the t = 8 nm array the same values of
r∗

0 , r∗

d and Q∗(q = MStw) and rearranging for Hd, we obtain Hd = 4.8 mT, in good agreement
with the measured value of 4.8 mT. Furthermore, if we modify the coercive field calculation to
use the effective charge for the local interaction with the vertex, we obtain µ0 HC = FC/2q =

µ0q Q∗/4(2q)πw2, which gives coercive fields of 8.32 mT for the 16 nm array and 4.16 mT for
the 8 nm array, in excellent agreement with the measured switching fields in figure 3(a). This
suggests that the model at least captures the scaling of the coercive field with t/w [23] in the
t�w regime.

The interaction between a domain wall (+2q) and the complex magnetic charge distribution
at a vertex (±q) produces a complex pinning profile [8, 24] (figures 5(e) and (f)). In the
double-wall case there is an additional effective magnetic Coulomb force between the walls
F∗

= µ0 Q∗2/4πr∗2 (figure 5(f)). This phenomenological model describes well the observed
equilibrium wall separation, the persistence after the switching of all other bars, and the survival
at remanence of the monopole defects.

There are significant differences between the behaviour of permalloy and Co monopole
defects in connected nanostructures. In permalloy, quenched disorder plays a greatly reduced
role, the majority of bars switch in long cascades [10] in a single field step, and the
observed monopoles began as ice-rule vertices of opposite charge, with 1Q = +4 in a single
preconditioning field step. The monopole creation in permalloy is closer to the scenario shown
in figures 1(a)–(f). This work provides insights into the range of monopole defect control limits
that can be engineered through material choice and structure. Extreme pinning can be created by
structures with isolated bars [11] and moderate pinning can be created by choice of a material
with strong magnetic anisotropy such as Co [5]. The intrinsic or weak pinning limit captured
here allows for efficient domain wall transfer through connected magnetic nanowire networks,
ideal for applications that rely on the creation of monopole currents.

In conclusion, in the weak pinning regime of connected permalloy honeycombs, monopole
defect formation is a cooperative process involving two strongly correlated transverse domain
walls. It is a magnetic Coulomb blockade between like-charged domain walls that provides
the pinning potential near the vertex centre for monopole defects. The stability of such
monopole defects is particularly encouraging for data storage purposes. The observation that
monopole defect formation in permalloy requires a spreading of the domain walls into the
nanobars indicates that bar length may be a useful parameter for controlling the monopole
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defect concentration. This is an important development for ice-rule-based devices, such as the
Sherrington–Kirkpatrick [6] parallel processors. Further studies are needed in order to determine
whether such defects can be injected into an array in a controlled manner.
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