
Stokes flows in a two-
dimensional bifurcation
Yidan Xue1,2,3, Stephen J. Payne4 and Sarah L. Waters1

1Mathematical Institute, University of Oxford, Oxford, UK
2School of Mathematics, Cardiff University, Cardiff, UK
3School of Health Sciences, The University of Manchester, Manchester, UK
4Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan

 YX, 0000-0001-9532-8671; SJP, 0000-0003-1156-2810;
SLW, 0000-0001-5285-0523

The flow network model is an established approach to
approximate pressure–flow relationships in a bifurcating
network, and has been widely used in many contexts.
Existing models typically assume unidirectional flow and
exploit Poiseuille’s law, and thus neglect the impact of
bifurcation geometry and finite-sized objects on the flow.
We determine the impact of bifurcation geometry and
objects by computing Stokes flows in a two-dimensional
(2D) bifurcation using the Lightning-AAA Rational Stokes
algorithm, a novel mesh-free algorithm for solving 2D
Stokes flow problems utilizing an applied complex analysis
approach based on rational approximation of the Goursat
functions. We compute the flow conductances of bifurcations
with different channel widths, bifurcation angles, curved
boundary geometries and fixed circular objects. We quantify
the difference between the computed conductances and their
Poiseuille law approximations to demonstrate the importance
of incorporating detailed bifurcation geometry into existing
flow network models. We parametrize the flow conductances
of 2D bifurcation as functions of the dimensionless parameters
of bifurcation geometry and a fixed object using a machine
learning approach, which is simple to use and provides more
accurate approximations than Poiseuille’s law. Finally, the
details of the 2D Stokes flows in bifurcations are presented.

1. Introduction
The computation of fluid flows within networks underpins
many biological, industrial and engineering applications. For
instance, quantifying blood flow in an organ or an organ
system can help us better understand its physiological functions
[1]. Other biological applications include microvascular flows
[2,3], oxygen transport [4–7], drug delivery [8] and microfluidic
devices [9,10]. Flow networks have also been used to estimate
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permeability and multiphase flow properties in porous media [11–13].
The standard way to approximate flows in a network is via a flow network modelling approach,

which is a zero-dimensional (0D) model of the underlying three-dimensional (3D) flow problem,
where junctions and boundary points of the network are represented by nodes with flow segments
between them. By assuming steady unidirectional flow subject to no-slip wall conditions in each flow
segment, the flow conductance is then described by Poiseuille’s law [14]. For a flow segment modelled
as a tube of circular cross-section, the conductance is

(1.1)G = q
Δp = πd4

128μl ,
where q is the flow rate, Δp is the pressure drop across the segment, d is the diameter, μ is the viscosity
(a constant or a function of diameter) and l is the segment length. Poiseuille’s law applies to Newtonian
viscous fluid or a non-Newtonian fluid that can be represented as a Newtonian fluid with an effective
viscosity. Note that Poiseuille’s law for two-dimensional (2D) channels is G = q/Δp = d3/12μl, where
now d is the channel width.

By imposing continuity of flux at internal nodes, a linear system for pressures and fluxes can be
constructed via

(1.2)GP = Q,

where G is the conductance tensor, P is the vector of nodal pressures and Q is the vector of segment
fluxes. The conductance tensor is a property of the network geometry and provides a simplified
representation of the relationship between pressures and fluxes. Note that the conductance tensor
is also affected by the presence of finite-sized objects in the network. In addition, the pressure–flux
relationship is no longer linear when the viscosity depends on factors such as the volume of red
blood cells when considering blood flow [2,15,16]. The flow and red blood cell distribution are then
computed via an iterative solver [17].

While Poiseuille’s law is based on the assumption of unidirectional flow, this assumption no longer
holds at junction regions or near finite-sized objects, and the Poiseuille law approximation for flow
conductance in networks loses accuracy. Furthermore, detailed flow modelling becomes extremely
useful for understanding local stress distributions for tissue growth [18], advective transport of
finite-sized objects [19] or advection–diffusion of tiny particles [20].

In this article, we use a 2D Stokes flow model to propose an updated flow conductance model for a
2D bifurcation, which considers both the bifurcation geometry and the presence of finite-sized objects,
and thus accurately predicts the pressure–flux relationship. We note that the same model reduction
concept can be used to consider conductances in a 3D bifurcation, though applying it in 3D would
require an adapted numerical approach. Additionally, we use the Stokes flow model to examine the
details of 2D flow in bifurcations.

To the best of our knowledge, Stokes flows in bifurcations have not yet been thoroughly studied
either analytically or numerically, even for a 2D set-up. Analytical or semianalytical solutions exist for
simpler 2D Stokes flow problems, including flows near a corner [21], in a partitioned channel [22],
in an expanded channel [23] and in a constricted channel [24]. However, these analytical techniques
are not suitable for solving 2D Stokes flows in a bifurcation with complex boundary geometries.
Alternatively, numerical methods can be used to compute 2D Stokes flows in a bifurcation, includ-
ing finite-element methods [25] and boundary integral methods [26]. However, these methods are
computationally expensive, which may prohibit a comprehensive interrogation of parameter space,
even for 2D scenarios.

Recent developments in rational approximation [27–30] have underpinned novel algorithms to
compute 2D Stokes flows in general domains using an applied complex variable approach [31,32].
Following the lightning algorithm for solving Laplace’s equation [28], Brubeck & Trefethen [31]
developed the lightning Stokes solver. The stream function, which satisfies the biharmonic equation,
was represented using two complex analytic Goursat functions [33] and approximated by rational
functions with clustering poles distributed exponentially near corners [31]. Based on the lightning
algorithm, Xue et al. developed the Lightning-AAA Rational Stokes (LARS) algorithm [32] for
computing 2D Stokes flows in general domains, including domains that have curved boundaries or
are multiply connected. The computations typically take less than 1 s on a laptop and give solutions
with at least six-digit accuracy [32].

In this article, we use the LARS algorithm to compute Stokes flows in 2D bifurcations considering
different bifurcation and particle geometries. Our computations encompass bifurcations with different

2
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 12: 241392

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 J

an
ua

ry
 2

02
5 



channel widths, bifurcation angles, curved boundary geometries, as well as the scenarios with a fixed
circular particle of varying size and location. We compute the flow conductances in three channels,
and compare these against their Poiseuille’s law approximations to demonstrate the need to incorpo-
rate detailed flow modelling into flow network models. We then parametrize flow conductances
as functions of dimensionless geometrical parameters of the bifurcation using a machine learning
approach, facilitating their application to 2D flow network simulations. Furthermore, we present
flow features that cannot be captured by a network model, including streamline patterns and flow
separations [21,34,35].

In §2, we formulate the physical problem in dimensionless form and give a representation for the flow
conductances of a 2D bifurcation. In §3, we introduce the LARS algorithm for computing 2D Stokes flows
using rational approximation. The results are presented in §4, followed by discussion in §5.

2. Problem formulation
We consider a 2D bifurcation with one inlet parent channel with width d, and two outlet child channels
with widths d1 and d2, respectively, as shown in figure 1a. The centrelines of three channels intersect at
the origin of a Cartesian coordinate system x = (x, y)T. The angles between the positive x axis and the
two channel centrelines are denoted α and β, respectively. Each channel has centreline length l.

We consider steady flow of an incompressible Newtonian viscous fluid governed by the Stokes and
continuity equations:

(2.1)μ∇2u = ∇p, ∇ ⋅ u = 0,

where u = (u, v)T is the 2D velocity field, p is the pressure and μ is the viscosity. We prescribe nor-
mal stress and parallel flow boundary conditions at the three channel openings, and zero velocity
boundary conditions on the channel walls. The boundary conditions are equivalent to flow entering
and exiting the bifurcation with a fully developed parabolic flow profile. The flow is driven by the
pressure values prescribed at the channel openings. The flux in the inlet parent channel is thenq = ∫Γu ⋅ nds, where Γ is a channel cross-section and n is the unit normal vector. The fluxes in two
outlet child channels are q1 and q2, respectively.

2.1. Non-dimensionalization
We non-dimensionalize as follows:

(2.2)X = xd ,U = uq/d , P = pμq/d2 ,

where capitals denote dimensionless variables. The dimensionless Stokes equations in component
form, together with the continuity equation, then become

(2.3)∂2U
∂X2 + ∂

2U
∂Y 2 = ∂P∂X ,

(2.4)∂2V
∂X2 + ∂

2V
∂Y 2 = ∂P∂Y ,

(2.5)∂U
∂X + ∂V∂Y = 0.

We set the dimensionless centreline length L = l/d = 2 for each channel to ensure the flow domain has
sufficient length to achieve fully developed flow at the outlets. Without loss of generality, we set the
dimensionless pressure at the inlet as P0 = 0. For a 2D bifurcation, the system is then characterized by
the following dimensionless parameters: child channel widths D1 = d1/d and D2 = d2/d, outlet pressuresP1 = p1d2/μq and P2 = p2d2/μq and bifurcation angles α and β.

In §4.4, we compute the flow in bifurcations with curved boundary geometries, where the channel
boundaries are described by cubic Bézier curves. In §4.5, we consider flow past a fixed cylindrical
particle in the bifurcation. The dimensionless centre location and radius of the particle are X0 = (X0,Y0)
and R, respectively.

Having defined the dimensionless problem, we now formulate a linear relationship between the
pressures (P1 and P2) and fluxes (Q1 = q1/q and Q2 = q2/q) at the two outlets.

3
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2.2. Zero-dimensional network model
The relationship between pressures and fluxes of Stokes flows in the bifurcation can be reduced to a 0D
network model (figure 1b). The dimensionless fluxes in the flow segments are related via

(2.6)Q = Q1 + Q2 = G0(P0 − Pc),Q1 = G1(Pc − P1),Q2 = G2(Pc − P2),

where G0, G1 and G2 are flow conductances that depend on the bifurcation and particle geometry.
When P0 = 0,

(2.7)Pc = G1P1 + G2P2G0 + G1 + G2
.

From (2.6), we now have a linear system relating the pressures and fluxes at two outlets, which we can
represent by (1.2), where P = (P1, P2)T, Q = (Q1,Q2)T and

(2.8)

G =

−G1G2 − G1G0G0 + G1 + G2

G1G2G0 + G1 + G2G1G2G0 + G1 + G2

−G2G1 − G2G0G0 + G1 + G2

is the conductance tensor.
When two solutions of flux vector Q for two linearly independent P (e.g. P = [10]T and P = [01]T) are

provided, the rank 2 conductance tensor G and the three components G0, G1 and G2 can be calculated.
Using G and (1.2), we can then predict flux for any set of pressure conditions.

For an idealized bifurcation, where the junction is simplified as a node and the fluid flow in each
channel is assumed to be fully developed, we can approximate the three flow conductances using
Poiseuille’s law for 2D channel flows [14],

(2.9)G~0 = 1
12L ,G~1 = D1

3

12L ,G~2 = D2
3

12L ,

where G~ is the idealized flow conductance. Using (2.8) and (2.9), the pressure–flux relationship for the
idealized 2D bifurcation can be approximated by

2

2

2

1

D1

D2

β

α

P1

P2

P0 = 0

Q

Q1

Q2

X

Y

X0
R

P0 Pc

P1

P2

G0

G1

G2

Q

Q1

Q2

(a) (b)

Figure 1. Schematic of Stokes flow through a 2D bifurcation (a) and its flow network representation (b). The solid and dash-dotted
lines in (a) indicate the domain and particle boundaries (§4.5), respectively.
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(2.10)

−D1
3D2

3 − D1
3

12L(1 + D1
3 + D2

3)
D1

3D2
3

12L(1 + D1
3 + D2

3)D1
3D2

3

12L(1 + D1
3 + D2

3)
−D1

3D2
3 − D2

3

12L(1 + D1
3 + D2

3)

P = G~P = Q.

In this article, we will compute G for bifurcations with different geometries using the numerical
method presented in §3, and compare those against G~  to show the difference.

3. Computing two-dimensional Stokes flows via rational approximation
We compute the 2D Stokes flows in a bifurcation using the LARS algorithm [32], which uses an
applied complex variable approach with rational approximation. The LARS algorithm results in at
least six-digit accuracy in less than 1 s. In this section, we summarize the LARS algorithm, referring the
interested reader to further details in [32].

3.1. The Goursat representation for biharmonic equations
We define a stream function ψ for the dimensionless Stokes flow problem as

(3.1)U = ∂ψ∂Y ,V = − ∂ψ∂X ,

which satisfies the biharmonic equation

(3.2)∇4ψ = 0.

In the complex plane ζ = X + iY , where i = −1, we have

(3.3)
∂
∂ζ = 1

2
∂
∂X − i ∂∂Y , ∂

∂ζ‾ = 1
2
∂
∂X + i ∂∂Y ,

where overbars denote complex conjugates. Then, the biharmonic equation can be rewritten as

(3.4)
∂4ψ
∂2ζ∂2ζ‾ = 0,

which has a solution in the form

(3.5)ψ(ζ, ζ‾) = Im[ζ‾f(ζ) + g(ζ)],

where f(ζ) and g(ζ) are two analytic functions in the fluid domain, known as the Goursat functions
[33]. The dimensionless velocity, pressure and vorticity magnitude (Ω = ∂V /∂X − ∂U/∂Y ) can then be
expressed in terms of Goursat functions as

(3.6)U − iV = − f(ζ) + ζ‾f′(ζ) + g′(ζ),

(3.7)P − iΩ = 4f′(ζ).

The Goursat representation satisfies the biharmonic equation by construction. To solve the Stokes flow
problem, we therefore need to determine the Goursat functions such that the boundary conditions are
satisfied.

3.2. Approximating the Goursat functions using rational functions
The LARS algorithm approximates the Goursat functions using rational functions [31,32]. The rational
function basis consists of poles for the singularities [27,28,31], polynomial for the smooth part [29] and
Laurent series for multiply connected domains [36,37] of the solution. This leads to a rational functionr(ζ) in the form

(3.8)r(ζ) = ∑j = 1

m ajζ − zj + ∑j = 0

n bjζj + ∑i = 1

p
∑j = 1

q cij(ζ − ζi)−j,

5
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where aj, bj and cij are complex coefficients to be determined, z are poles and ζi is a point in the ith
hole (recalling the particle in figure 1). Note that we also need to include two log terms in two Goursat
functions (one for f(ζ) and one for g(ζ)) corresponding to each hole, due to the logarithmic conjugation
theorem [36,38].

It has been shown that an analytic function in a polygon domain can be approximated with a
root–exponential convergence, if the poles are exponentially clustered near corner singularities [28].
This leads to the lightning algorithm for computing Laplace problems [28] and 2D Stokes flows [31] in
polygon domains. For bifurcations with sharp corners, we follow the lightning algorithm to place poles
clustering towards each corner singularity.

For bifurcations with smooth boundaries, we first approximate the Schwarz function F(ζ) = ζ‾ on
each curved boundary using the AAA algorithm [27,30]. The AAA algorithm searches for the best
rational approximation in a barycentric form automatically. We choose the Schwarz function here,
because it only depends on the boundary shape instead of the boundary value. After finding the
rational function that approximates the boundary shape, we use its poles outside the domain to
approximate the Goursat functions. This is known as the AAA-least squares approximation [30].

We perform a Vandermonde with Arnoldi orthogonalization [29] to construct a well-conditioned
basis for the polynomial, poles and Laurent series. Imposing the boundary conditions of the fluid
problem (3.6 and 3.7), the complex coefficients a, b and c in two Goursat functions can be computed
easily by solving a least-squares problem. The computation is carried out using MATLAB and all codes
are available in the GitHub repository: https://github.com/YidanXue/stokes_2d_bifurcation.

4. Results
Using the LARS algorithm, we present Stokes flows in 2D bifurcations with different geometries,
including child channel widths, bifurcation angles and curved boundary geometries. We also consider
bifurcations with circular particles inside and quantify their impact on the pressure–flux relationship.
In §§4.1−4.5, we compute the flow conductances for different bifurcation geometries, and compare
these against the Poiseuille’s law approximation (2.10) where applicable. In §4.7, we investigate details
of the 2D flow in bifurcations, which cannot be captured using a flow network model.

4.1. Two-dimensional Stokes flows in a bifurcation
Figure 2 presents the Stokes flows in a typical 2D bifurcation, where D1 = 0.9, D2 = 0.8, α = π/4,β = π/3 and L = 2 for P1 = P2 = −1. The lightning algorithm places poles exponentially clustered towards
three sharp corners of the geometry, where the placement of poles are indicated by red dots in
figure 2. Using a polynomial of degree 24 with 48 poles clustered near each corner, a solution
can be computed in less than 0.5 s. The maximum error in dimensionless velocity components
and pressures on the domain boundary is less than 10−8. For this geometry, the computed conduc-
tances are G0 = 0.0422, G1 = 0.0313 and G2 = 0.0226, while the idealized conductances are G~0 = 0.0417,G~1 = 0.0304 and G~2 = 0.0213 with relative differences (G0 − G~0)/G~0 = 1.34%, (G1 − G~1)/G~1 = 2.93% and
(G2 − G~2)/G~2 = 5.73%, respectively.

4.2. Effects of channel width on conductance
For a bifurcation consisting of three straight channels with L = 2, the geometry has four degrees
of freedom: D1, D2, α and β. To investigate the effects of the width of two child channels on the
computed conductances, we first set the bifurcation angles α = π/4 and β = π/4 (we investigate the
effects of changing the bifurcation angles in §4.3). Figure 3 shows the relative differences between the
computed conductances G0, G1 and G2 and their Poiseuille’s law approximations, for D1,D2 ∈ [0.5,1].
The black curve indicates the possible widths of the two child channels if they obey Murray’s law [39]
in 2D: D1

2 + D2
2 = D2 = 1. Note that every term is to the third power in the original Murray’s law for 3D

problems [39].
For the considered parameters, we see that the Poiseuille’s law approximation underestimates the

flow conductance in two child channels. The error in the idealized flow conductance in the parent
channel only becomes significant when D1 and D2 are close to 0.5. Furthermore, (G1 − G~1)/G~1 is 16.6%,
while (G2 − G~2)/G~2 is approximately 1%, when D1 = 0.5 and D2 = 1. This indicates that the Poiseuille’s
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law approximation underestimates not only the total flux through a bifurcation but also the fraction of
flux that enters the first channel, when D1 = 0.5 and D2 = 1.

4.3. Effects of bifurcation angle on flow partition
Figure 4 presents Stokes flows in bifurcations with different bifurcation angles, when D1 = D2 = 1, L = 2
and P1 = P2 = −1. Poiseuille’s law predicts that the child channels will have an even flow partition
regardless of bifurcation angle. However, Stokes flow simulations reveal that the first channel receives
more flow than the second channel in cases figure 4a–c and e. We observe that the centre streamline
of the parent channel (coloured in red), which is the streamline corresponding to equal flow partition,
enters the first channel in these cases.

While setting D1 = D2 = 1 and L = 2, we perform a parameter sweep for α, β ∈ [0, π/2] except when|α + β| < π/2, since this will lead to a small angle or an overlap between the two child channels. As
shown in figure 5, Poiseuille’s law underestimates the flow conductance in the three flow segments,
while the maximum deviations in G0, G1 and G2 happen at α = β = π/2; α = π/2 and β = 0; and α = 0 andβ = π/2, respectively. When α = π/2 and β = 0, the computed conductance in the first channel is about
9% higher than the idealized conductance, while the difference in the other channel is much smaller.
This leads to more flow in the first channel than the second channel as shown in cases in figure 4a, c
and e, where α = π/2 and β < π/2.
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Figure 2. Stokes flows in a 2D bifurcation for P1 = P2 = −1, solved by the lightning algorithm, where D1 = 0.9, D2 = 0.8,α = π/4, β = π/3 and L = 2. The streamlines are denoted by black lines and the velocity magnitude is represented by a colourmap.
The locations of the poles are marked by red dots.
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Figure 3. Relative differences in G0, G1 and G2 from 2D Stokes flows simulations, compared with Poiseuille’s law approximations forD1,D2 ∈ [0.5,1], when α = π/4, β = π/4 and L = 2. The black curve indicates the possible widths of two child channels based on
Murray’s law in 2D. The symmetry of the parameter space in each figure is indicated by a dash-dotted line.
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4.4. Effects of curved boundary geometry on bifurcation flow
Figure 6a presents the Stokes flows computed in the same bifurcation as shown in figure 1, but with
curved boundaries. Using a polynomial of degree 48 with poles placed by the AAA algorithm [27,30]
near the three curved boundaries, the solution is computed to the accuracy O(10−7).
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Figure 4. Stokes flows in a 2D bifurcation with different bifurcation angles, when D1 = D2 = 1, L = 2 and P1 = P2 = −1. The
centre streamline of the parent channel is coloured in red. Other streamlines are coloured in black.
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Figure 5. Relative differences in G0, G1 and G2 from 2D Stokes flows simulations, compared with Poiseuille’s law approximations for
different bifurcation angles, when D1 = D2 = 1 and L = 2.
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In the same parameter space as §4.2, we compute G0, G1 and G2 using 2D Stokes flow simulations
and compare these against their Poiseuille law approximations based on the inlet and outlet width
in the top row of figure 7. The Poiseuille law underestimates the flow conductance up to more than
70%, due to the increase in the channel width inside the bifurcation. There are two reasons for the
error in the idealized conductance: (i) the increase of bifurcation area and (ii) the flow is no longer
unidirectional in the bifurcation.

To investigate the impact of the bifurcation area, we first connect the centre of three boundary
curves with the bifurcation centre to separate the bifurcation into three regions with areas A0, A1 andA2, as shown in figure 6b. For each region, we keep the length at L = 2 and scale the width of the
corresponding channel to match the area (D = A0/L, D1 = A1/L and D2 = A2/L), so that an area-preserved
conductance G can be calculated via Poiseuille’s law. The relative difference between 2D Stokes flow
simulations and area-preserved conductances are presented in the bottom row of figure 7. These
results indicate that the failure of Poiseuille’s law for predicting conductances in bifurcations with
curved boundaries is primarily due to the disruption of the unidirectional flow assumption, instead of
the change of bifurcation area.

4.5. Effects of a fixed object on bifurcation flow
We now consider bifurcations containing one fixed cylindrical particle in a symmetrical bifurcation
(D1 = D2 = 1, α = β = π/4 and L = 2) to investigate the effects of the location and size of the particle on the
three flow conductances. Figure 8a shows the Stokes flows computed in a bifurcation for D1 = D2 = 1,α = β = π/4, L = 2 and P1 = P2 = −1, with a fixed cylindrical particle at (X0,Y0) = (0,0) and R = 0.2. In
addition to poles and a degree 80 polynomial, we also include a degree 20 Laurent series about the
centre of the cylinder (blue point) in the rational function basis, as shown in figure 8a. The solution is
computed to the accuracy O(10−7) in 0.6 s. A similar case has been considered in [32], where further
details of the numerical algorithm can also be found.

Figure 9 shows the effects of (X0,Y0) and R on the flow conductance of three channels, compared
with the Poiseuille’s law approximation without considering the particle (G~), and area-preserved
conductances by scaling the channel width to consider the area loss due to the presence of the particle
(G). Following the previous section, we connect the bifurcation centre and three bifurcating corners to
separate the bifurcation into three regions, as shown in figure 8b, and compute the area for each region
not occupied by the particle. For each region, we keep the length at L = 2 and scale the width for the
area-preserved conductance calculation.

Similarly to the results from §4.4, the failure of Poiseuille’s law for predicting conductances in
bifurcations with a fixed particle is mainly due to the disruption of the unidirectional flow assumption,
rather than the modifications to the bifurcation area due to the particle. We see that for the area-pre-
served cases (second row of figure 9a), the errors in G can be greater than 40%. Note that the error in
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Figure 6. (a) Stokes flows in a 2D bifurcation with smooth boundaries solved by the LARS algorithm, where D1 = 0.9, D2 = 0.8,α = π/4, β = π/3, L = 2 and P1 = P2 = −1. The streamlines are denoted by black lines and the velocity magnitude is
represented by a colourmap. The AAA poles are marked by red dots. (b) Area for each channel when calculating area-preserved
conductance G.
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G can be greater than that in G~ for channels without a particle, if one compares the upper limit of the
colour scale between the first row and the second row of figure 9a, because the area-preserved scaling
leads to D < D and thus further underestimates the flow conductance.

Furthermore, we consider the impact of particle sizes on flow conductance, where R = 0.1 in figure
9a and R = 0.2 in figure 9b. When the particle radius doubles from 0.1 to 0.2, the flow conductance of
the channel containing the particle is further reduced, resulting in increased errors in both G~ and G.

The presence of a fixed cylindrical particle mainly reduces G~ of the channel containing the cylinder,
while slightly affecting other channels, as represented by the cyan regions in figure 9. In addition, G~
is higher when the gap between the cylinder and the channel wall is smaller. Following Williams et
al. [40], our results also suggest that the resistance of 2D channel (or bifurcation) flow is minimized
when the particle touches the bifurcation boundary and thus has less disruption on the fast flows in
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Figure 7. Relative differences in G0, G1 and G2, compared with their Poiseuille’s law approximations based on inlet and outlet
channel width (top row), or scaled channel width to preserve bifurcation area (bottom row), for the bifurcation with smooth
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the channel centre. This highlights the importance of considering the lateral location of the finite-sized
objects using a 2D model for accurate flow conductance computations.

4.6. Learn the flow conductances using neural network models
We see that the flow conductance is sensitive to bifurcation geometry and the presence of fixed
finite-sized objects. We now determine the nonlinear relationship between dimensionless geometric
parameters and the conductance tensor using machine learning models. We perform 1000 simulations
using the LARS algorithm in straight channel bifurcations for random geometrical parameters inD1,D2 ∈ [0.5,1], α, β ∈ [0, π/2] and L = 2. Using the simulation results, we train three neural network
models, which read inputs of D1, D2, α and β and each generate a component of the conductance tensor
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Figure 9. Flow conductances compared with Poiseuille’s law approximation (G~) and area-preserved conductances (G). The
bifurcation has D1 = D2 = 1, α = β = π/4 and L = 2 with a fixed cylindrical particle with different centre location (X0,Y0)
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G. The neural network has a simple structure consisting of three fully connected feedforward layers
of size 20, and each layer uses a rectified linear unit activation function. We train the neural networks
by minimizing the mean squared error between the predicted and simulated conductance components
using 80% of the data, and validate the prediction using the other 20% of the data. The training and
testing were carried out using the fitrnet function in MATLAB.

Figure 10a presents the comparison between the predicted and simulated G1 of 1000 cases with
different geometrical parameters. The top panel shows the training results of 800 cases, where the
LARS simulation results and the neural network predictions are represented by crosses and red
circles, respectively. The bottom panel validates the predictions for the remaining 200 cases using the
trained neural network against the LARS simulations. The mean squared error between predicted and
simulated G1 in 200 validation cases is 2.27 × 10−7. The prediction of a flow conductance using the
trained neural network takes approximately 5 μs, which is much faster than performing 2D Stokes
flow simulations. These results indicate that the flow conductance tensor for Stokes flows in any
2D bifurcation can be highly accurately approximated using its geometrical parameters and a neural
network model learning their relationship from data.

In addition, we train neural networks in the same way for bifurcations with curved boundaries in
the same parameter space of D1, D2, α and β, where the results of 1000 cases are presented in figure 10b.
Although the bifurcation geometry is now bounded by cubic Bézier curves instead of straight channels,
the workflow provides a good approximation of conductance tensor. The mean squared error of G1 in
200 validation cases is 2.29 × 10−7.

In §4.5, we have shown that the presence of a fixed cylindrical particle can have a significant impact
on flow conductances. In the same bifurcation as shown in figure 8, we train neural networks to predict
the conductance tensor as a function of the particle location (X0,Y0 ∈ [−1,1]) and its radius (R ∈ (0,0.3]).
For this scenario, we use 2000 LARS simulation results (1600 for training and 400 for validation).
The mean squared error of G1 in 400 validation cases is 5.15 × 10−7. These results suggest the neural
network approach is able to predict the flow conductance tensor for a bifurcation containing a particle
of different size at different locations.

4.7. Separation of Stokes flows in a two-dimensional bifurcation for different outlet pressures
Having focused on computing flow conductances, we now investigate the streamline patterns in a
bifurcation for different P1 and P2, which can only be understood via 2D Stokes flow models. Here,
we focus on the streamline that separates the fluids into two child channels. This is important, for
example, when considering the advective transport of passive tracers.

Figure 11 displays the streamlines that separate the flows for different P1 − P2, when D1 = D2 = 1,α = β = π/4 and L = 2. In all scenarios, the pressures P1 and P2 are set to maintain a constant inlet fluxQ = 1. For cases (a)–(c), the red streamline separates the flow that enters two child channels. Note that
the end point of the streamline is not exactly at (but very close to) the sharp corner between the two
child channels in (b) and (c). For cases (d)–(f), the red streamline separates the flow from the parent
channel and the first channel that enters the second channel, since the flow direction reverses in the
first channel. Based on Stokes flow simulations, the reverse flow appears when P1 − P2 > 22.49, while it
is estimated to be P1 − P2 = 24 using Poiseuille’s law.

Figure 12 presents the separation of Stokes flows in the same geometry, but with a fixed cylindrical
particle at the origin with a radius of 0.2. Compared with figure 11, the reverse flow happens at
approximately P1 − P2 = 33.22. In addition, the end point of the streamline that separates the flows
is much further away from the sharp corner between the two child channels, compared with the
no-particle scenario.

5. Discussion
In this article, we computed 2D Stokes flows in a single bifurcation, and investigated the effects of
bifurcation geometry on flows, with a focus on the flow conductances. Taking full advantage of the
great speed and accuracy of our 2D Stokes flow solver [32], we performed simulations for parameters
including child channel widths and bifurcation angles. We considered the effects of domain boundaries
and a fixed cylindrical particles on Stokes flows in a bifurcation. The relationship between the flow
conductances and the geometrical parameters for these scenarios was learned via neural network
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models, and the accuracy of their predictions was validated against 2D Stokes simulation results. In
addition, we investigated the separation of Stokes flows in a bifurcation for different outlet pressures.

Our simulation results show that the bifurcation geometry can significantly impact the conductan-
ces. In §4.3, we present Stokes flows in bifurcations with the same channel widths, but different
branching angles. All these bifurcations are represented by the same flow network model, if the flow
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Figure 10. Neural network training and validation for the conductance tensor for (a) bifurcations with straight channels;
(b) bifurcations with curved boundaries; (c) bifurcation with a fixed cylindrical particle of different sizes at different locations. The LARS
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conductances are approximated by Poiseuille’s law. However, some of these idealized approximations
can have an error up to 9% for L = 2 in the parameter space of α and β in figure 5. Note that the choice
of L = 2 implies relatively short channels. The per cent deviation in the idealized conductance would
be less if the channels were longer, which is often the case in practical situations of interest, since
Poiseuille’s law becomes a more accurate approximation for the conductance of fully developed flows
in straight channels.

For bifurcation with curved boundaries instead of straight edges in §4.4, the Poiseuille law
approximation significantly underestimates the conductances, mainly due to the disruption of the
unidirectional flow assumption, while the increase of the bifurcation area plays a secondary role. These
simulation results indicate that the Poiseuille’s law is not suitable to approximate flow conductances of
bifurcations with changing channel widths.

We also considered a fixed cylindrical particle in a bifurcation and its impact on conductance.
Following the curved boundary scenarios, we show that the Poiseuille’s law overestimates the channel
conductance mainly due to the violation of the unidirectional flow assumption, rather than the loss of
bifurcation area occupied by the particle. These results further show that Poiseuille’s law is not able to
predict accurate conductances in bifurcations with fixed finite-sized objects.
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Figure 11. Stokes flows in a 2D bifurcation for different P1 = P2, when D1 = D2 = 1, α = β = π/4, L = 2 and Q = 1. The
streamline that separates the flows into two channels is coloured in red. Other streamlines are coloured in black. The flow directions
are indicated using arrows outside.
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In addition, the particle mainly reduces the flow conductance of the channel containing the particle,
while having little effect on other channels. This local effect holds even when the particle centre is
within one channel width from the bifurcation centre (figure 9). These results suggest that, when
computing the pressure–flux relationship in a large 2D flow network with multiple objects, we may
identify channels containing objects, and only update the flow conductance of these channels, based on
the local nature of the impact. Similar local effects are expected for 3D flows and moving objects, but
further investigation will be required.

To improve the applicability of our simulation results to studies in flow networks, we fitted the
flow conductances as machine learning models of dimensionless geometrical parameters describing
the bifurcation. We show simple neural networks can be effective in representing accurate relationships
between conductances and geometrical parameters. We provide our workflow and the trained neural
network in an online repository, so now one can approximate the conductances in a 2D bifurcation
without the need to run new simulations. Furthermore, it is possible to use the workflow to perform
additional 2D Stokes flow simulations for additional bifurcation geometries using the LARS algorithm
[32], and train new machine learning models.

These successful examples indicate that neural network models can provide a much more accurate
approximation for flow conductances of bifurcations in a flow network than using Poiseuille’s law. In a
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Figure 12. Stokes flows in a 2D bifurcation containing a fixed cylindrical particle ((X0,Y0) = (0,0) and R = 0.2) for differentP1 = P2, when D1 = D2 = 1, α = β = π/4, L = 2 and Q = 1. The streamline that separates the flows into two channels is
coloured in red.
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flow network that consists of several orders of bifurcations, one may decompose the network into units
of segments and bifurcations, and use Poiseuille’s law and trained neural networks to approximate
their conductance, respectively.

We have shown that the neural network model is able to consider the impact of fixed cylindri-
cal particles on conductances. To consider realistic scenarios of particle transport in a network,
we need to investigate whether the machine learning models can accurately capture the impact of
moving particles or multiple particles in a bifurcation. These problems involve more complex physics,
necessitating the design of a neural network structure and optimization procedure to accelerate the
training and improve the accuracy of predictions [41–43]. One recent example of applying machine
learning techniques to predict the distribution of red blood cells in 3D microvascular networks can be
found in [44].

It should be noted that the updated network model, despite considering bifurcation geometry
details in approximating conductances, is still a 0D approach that compresses most flow information.
The flow details, as presented in §4.7, can only be obtained by Stokes flow simulations [32]. In addition,
it has been revealed in §4.5 that the flow conductance tensor of a bifurcation (or even a channel) with
a fixed cylinder depends on the lateral location of the cylinder, another result that cannot be obtained
from a 0D model.

The results presented in this work are purely 2D. In principle, a similar flow network for the
pressure–flux relationship can be derived for any 3D bifurcation from 3D Stokes flow simulations.
However, the parameter space that defines a 3D bifurcation is expected to be larger, requiring a more
comprehensive search of parameter space, that might, for example, quantify out-of-plane effects when
the three branches are not in the same plane. In addition, the LARS algorithm used here relies on
complex variables, making it inapplicable to 3D Stokes equations. To compute Stokes flows in 3D
bifurcations, an alternative numerical method needs to be used, for instance, a finite-element method
[25].

In summary, we have demonstrated that incorporating detailed bifurcation geometry and fixed
objects into flow network models significantly improves their accuracy in estimating flow conduc-
tances, using a workflow that combines the LARS algorithm and a machine learning approach. In
addition, our simulation results have shown the limitations of Poiseuille’s law approximations and
underpinned the potential of machine learning models to provide more accurate predictions for flow
and particle transport in branching networks.
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