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In this paper, we investigate stochastic heat equation with sublinear diffu-
sion coefficients. By assuming certain concavity of the diffusion coefficient,
we establish non-trivial moment upper bounds and almost sure spatial asymp-
totic properties for solutions. These results shed light on the smoothing inter-
mittency effect under weak diffusion (i.e., sublinear growth) previously ob-
served by Zeldovich et al. [ZMRS87]. The sample-path spatial asymptotics
obtained in this paper partially bridge a gap in earlier works of Conus et
al. [CJKS13, CJK13], which focused on two extreme scenarios: a linear dif-
fusion coefficient and a bounded diffusion coefficient. Our approach is highly
robust and applicable to a variety of stochastic partial differential equations,
including the one-dimensional stochastic wave equation.
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1. Introduction. In this paper, we investigate the stochastic partial differential equa-
tions (SPDEs) in the sublinear regime. More precisely, we focus on the asymptotic behavior
of the following stochastic heat equation (SHE)

∂

∂t
u(t, x) =

1

2
∆u(t, x) + σ(u(t, x))Ẇ (t, x), t > 0, x ∈Rd,

u(0, ·) = µ,

(1.1)

where the diffusion coefficient σ(·) is assumed to be locally bounded and exhibits sublinear
growth at infinity. Previous studies have extensively examined the case when σ(·) has linear
growth at infinity, which results in an intermittent solution. In particular, a solution is said to
be intermittent if the moment Lyapunov exponents λp and λp of this solution, defined by

λp := limsup
t→∞

1

t
logE [|u(t, x)|p] and λp := lim inf

t→∞

1

t
logE [|u(t, x)|p] (p≥ 2),

satisfy the property that λ2 > 0. The literature on this topic is extensive, and interested read-
ers may consult [CM94, FK09, CD15b, Che15a, KKX17] and references therein. Zeldovich
et al. [ZRS90, Chapter 9] have observed that intermittency is a universal phenomenon. It oc-
curs irrespective of the underlying properties of the instability in a random medium, as long
as the random field is of multiplicative type. However, they have also noted in [ZMRS87]
(see also [ZRS90, Section 8.9]) that “smoothing intermittency”, where the high maxima of
solutions have smaller growth, should be expected in the presence of “weak diffusion”—
when σ(·) exhibits sublinear growth at infinity. The authors substantiated their statement by
highlighting the power growth of the moments when σ(·) is bounded, such as

σ(u) =
u

1 + u
,(1.2)

and when the noise is white in time and space-independent. Inspired by these previous works,
this paper aims to analyze the smoothing intermittency property in broader weak diffusion
cases and demonstrate the influence of σ(·) on the moment growth rate of solutions.

Note that this paper focuses on studying the intermittency property, which examines the
distribution and propagation of peaks and valleys across the entire spatial domain Rd, as seen
in property (1.3) below. While this setup is ideal for our analysis, it’s worth noting that SHEs
on bounded domains have also been extensively studied; see, e.g., [Sow92].

Examining SPDEs in the sublinear regime is also driven by the need for more realistic
biological population models. As noted by König in the Appendix of [Kön16], the parabolic
Anderson model (PAM) (i.e., σ(u) = λu) used in population dynamics results in unrealistic
branching and killing rates, due to the absence of birth or death control. Sublinear growth for
σ(·), on the other hand, offers a potential solution, allowing for models that better represent
biological population dynamics.

Both the PAM and the SHE with additive noise, or simply the additive SHE, (i.e., σ ≡ 1, or
more generally, the case when σ is bounded) have been extensively studied in the literature.
They represent two extreme cases where rich properties have been previously derived. For
instance, when d = 1, the noise is space-time white noise, and the initial condition µ is
constant, Conus et al. [CJKS13] showed that

sup
|x|≤R

u(t, x)≍ [logR]1/2 SHE with bounded σ (Theorem 1.2 ibid.);

log sup
|x|≤R

u(t, x)≍ [logR]2/3 PAM (Theorem 1.3 ibid.).
(1.3)
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Here and in this paper, we use the notation f(x) ≲ g(x) to denote that there exists a non-
random constant C > 0 such that limsupx→∞ f(x)/g(x)≤ C; the notation f(x)≳ g(x) is
defined analogously. We also write f(x)≍ g(x) if both f(x)≲ g(x) and f(x)≳ g(x). The
distinct behaviors exhibited in (1.3) naturally raise questions regarding the dynamics when
σ is neither bounded nor linear, but rather demonstrates sublinear growth, thereby providing
a potential interpolation between these two extreme scenarios. Addressing sublinear growth
requires a novel approach, which is the primary contribution of this paper.

Sublinear examples of σ(u) (for u > 0) typically include

σ(u) =
u

(r+ u)1−α
, α ∈ [0,1) and r ≥ 0;(1.4)

σ(u) = uα
[
log
(
e+ u2

)]−β
, with


α= 0 and β < 0 Case (i),
α ∈ (0,1) and β ∈R Case (ii),
α= 1 and β > 0 Case (iii);

(1.5)

and

σ(u) = u exp
(
−β
(
log
(
log
(
e+ u2

)))κ) with κ > 0 and β > 0.(1.6)

Here, e is the Euler constant. In particular, letting r = 1 and α= 0 in (1.4), we reduce to the
case of bounded σ in (1.2). The next important example is a special case of (1.4) when r = 0:

σ(u) = uα, α ∈ (0,1).(1.7)

It should be noted that SHEs with the diffusion coefficient given in (1.7) are closely related
to superprocesses; see, e.g., [Daw93, Eth00, Per02]. Among the three cases in (1.5), cases (i)
and (iii) are also interesting, as they are logarithmic perturbations of the additive SHE and
the PAM, respectively. When κ = 1, σ in (1.6) reduces to case (iii) of (1.5). One would
expect properties, such as the moment growth rates and spatial asymptotics, to transition from
those of the additive SHE to those of the PAM. For example, for (1.4), one would expect a
polynomial growth in t of moments, while the case (1.6) should lead to some exponential
growth, but with a sublinear dependence on t in the exponent. Note that examples in (1.4)–
(1.6) are all for the case when u≥ 0. For signed solutions, one needs to replace u by |u|.

Let us proceed to set up the problem. The noise Ẇ in SHE (1.1) is a centered Gaussian
noise white in time and homogeneously colored in space. Its covariance structure is given by

E
[
Ẇ (t, x)Ẇ (s, y)

]
= δ0(t− s)f(x− y).(1.8)

Here, δ0 denotes the Dirac delta measure at 0 and f is the correlation (generalized) function
on Rd, which satisfies the following hypothesis:

HYPOTHESIS 1.1. The correlation f is a tempered nonnegative definite measure on Rd

that is not identically zero, such that the following Dalang’s condition [Dal99] is satisfied:∫
Rd

f̂(dξ)

1 + |ξ|2
<∞,(1.9)

where f̂(ξ) =
∫
Rd f(dx) e

−ix·ξ is the Fourier transform of f .

By using the Fourier transform and the Plancherel theorem, it is easy to verify that
Dalang’s condition (1.9) is equivalent to the next condition:

h(t) :=

∫ t

0
ds

∫∫
R2d

dyf(dy′) ps(y)ps(y− y′) =
1

2

∫ 2t

0
ds

∫
Rd

f(dy′) ps(y
′)<∞,(1.10)
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for all t > 0, where pt(x) := (2π)−d/2 exp
(
−|x|2/(2t)

)
refers to the heat kernel. The func-

tion h plays an essential role in our main result—Theorem 1.6 below, while the nonnegativity
of f in Hypothesis 1.1 ensures that h(·) is an increasing function on R+.

To facilitate the analysis, we introduce the following hypothesis on σ, which covers all
examples given in (1.4)–(1.6) with all u replaced |u|:

HYPOTHESIS 1.2. The diffusion coefficient σ :R→R satisfies the following properties:

(i) σ is a locally bounded function.

(ii) lim
x→±∞

σ(x)

x
= 0;

(iii) There exists M0 ≥ 0, such that |σ| is concave separately on (−∞,−M0] and [M0,∞).

REMARK 1.3. In Hypothesis 1.2, we do not impose any regularity conditions on σ be-
yond boundedness on [−M0,M0]. The absolutely continuity of σ outside this interval is due
to its concavity (see Lemma 3.1). Thus, existence and uniqueness of solutions to (1.1) are
not always guaranteed under Hypothesis 1.2. For a globally Lipschitz σ, such as in (1.4)–
(1.6), the existence and uniqueness of solutions with rough initial conditions are well-
established (see [CD15c, CK19]). In contrast, without the Lipschitz condition, as in (1.7),
our main result, Theorem 1.6 below, provides a priori moment estimates that enable po-
tential solutions using an approximation method. This method involves approximating the
non-Lipschitz σ with a sequence of globally Lipschitz functions to construct random field
solutions. Under mild conditions, these solutions exhibit jointly Hölder continuity, and thus
has a convergent subsequence yielding a solution to (1.1) via the Kolmogorov-Chentsov cri-
terion (see [Kal02, Corollary 16.9]). The approximating approach has been successfully ap-
plied in [MPS06, Appendix] for constructing solutions to SHEs with non-Lipschitz coeffi-
cients. However, establishing well-posedness for SHEs with non-Lipschitz coefficients re-
mains challenging, with limited results; see e.g., [Myt98, MPS06, MP11] for the sublinear
case; [DKZ19, Sal22, CH23] for the superlinear case; [MMP14, Che15b] on non-uniqueness.
As our focus is not on existence and uniqueness, we do not explore this further.

The initial condition µ in (1.1) also plays an active role in shaping the properties of any
solution, for which we make the following assumption:

HYPOTHESIS 1.4. µ is a signed Borel measure1 on Rd such that

(i) For any (t, x) ∈R+ ×Rd, it holds that, in the sense of Lebesgue integral,

J0(t, x) :=

∫
Rd

µ(dy) pt(x− y) ∈ (−∞,∞), or equivalently,

J+(t, x) :=

∫
Rd

|µ|(dy) pt(x− y)<∞,

(1.11)

where µ= µ+ − µ− is the Hahn decomposition of µ and |µ|= µ+ + µ−;
(ii) Moreover, if d≥ 2, then for any (t, x) ∈R+ ×Rd,

J1(t, x) :=

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)pt−s(x− y+ y′)J 2
0 (s, y)<∞.(1.12)

1We follow the convention that when µ is absolutely continuous with the Lebesgue measure, it is identified as
its Lebesgue density.
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As usual, any solution to (1.1) is understood as a mild solution to the corresponding inte-
gral equation:

u(t, x) = J0(t, x) +

∫ t

0

∫
Rd

pt−s(x− y)σ (u(s, y))W (ds,dy), t > 0, x ∈Rd,(1.13)

where the stochastic integral is understood in the sense of Dalang–Walsh [Wal86, Dal99].

1.1. Main results. The following notation is used in our main results.

DEFINITION 1.5. Suppose that σ fulfills Hypothesis 1.2. Let σ2 :R+ 7→R+ be given by

σ2(x) := σ+
2 (x) + σ−

2 (x) with σ±
2 (x) :=

∣∣σ (±√
x
)∣∣2 .(1.14)

Define F : [M2,∞)→R+ ∪ {∞} as

F (x) :=
x

4σ2(x)
, x≥M2,(1.15)

with the conventions that
x

0
:=∞ if x > 0; and F (0) := lim

x↓0

x

4σ2(x)
∈R+ ∪ {∞}, if M = 0 and σ2(0) = 0,

where M >M0 such that σ2 is concave on [M,∞) (see as in part (iii) of Lemma 3.3). We
use F−1 to denote the (right) inverse of F restricted on [2M2,∞) as follows,

F−1(x) := inf
{
y ∈ [2M2,+∞) : F (y)≥ x

}
.(1.16)

Now we are ready to state our main result as follows:

THEOREM 1.6. Under Hypotheses 1.1, 1.2, and 1.4, let u(t, x) be a solution to
SHE (1.1). Then, for all (t, x, p) ∈R+ ×Rd × [2,∞), it holds that

∥u(t, x)∥2p ≤2J 2
0 (t, x) + 2(2π)d

(
h(t)−1J1(t, x) + 4K2

Mp h(t) + F−1(2p h(t))
)
,(1.17)

where the function F (·) and its inverse F−1(·), both determined by σ, are defined
in (1.15) and (1.16) above, respectively. In (1.17), J0(·,◦), J1(·,◦) and h(·) are defined
in (1.11), (1.12) and (1.10), respectively; and

KM := sup
x∈(−M,M)

|σ(x)|,(1.18)

with M the same as in (1.16). In particular, the following statements hold:

(i) If d= 1, one can replace 4h(t)−1J1(t, x) in (1.17) by 27/2πJ 2
+(t/2, x) (see (1.11));

(ii) If |σ(·)| is concave separately on R+ and R−, then taking M =KM = 0 in (1.17),

∥u(t, x)∥2p ≤2J 2
0 (t, x) + 2(2π)d

(
h(t)−1J1(t, x) + F−1(2p h(t))

)
;(1.19)

(iii) If σ(·) is not identically 0 on (−∞,−M0]∪ [M0,∞), then there exists a constant C > 0
such that for all (t, x, p) ∈ [1,∞)×Rd × [2,∞),2

∥u(t, x)∥2p ≤2J 2
0 (t, x) +C

(
h(t)−1J1(t, x) + F−1

(
Cp h(t)

))
.(1.20)

Moreover, if the initial condition is bounded, i.e., µ(dx) = u0(x)dx with u0 ∈ L∞(Rd),
the moment bound in (1.20) can be simplified as follows:

∥u(t, x)∥2p ≤C∗F
−1
(
C∗ph(t)

)
for some C∗ > 0.(1.21)

2Here t can be relaxed to t > 0, but the constant C in (1.20) will depend on t when t is close to 0
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The general moment bounds in the above theorem demonstrate how different components
of the SPDE affect the moment growth of the solution, which is a concrete manifestation of
the statement in Zeldovich et al [ZMRS87] (see also [ZRS90, Section 8.9]) that the behavior
of nonlinear solutions depends radically on the time behavior of the potential and on the
form of the nonlinearity. Theorem 1.6 is proved in Section 3.2.

REMARK 1.7. If the diffusion coefficient σ does not satisfy Hypothesis 1.2, the moment
bounds in the above Theorem 1.6 can still be applied to derive nontrivial moment upper
bounds under the following conditions:

1. the initial condition µ is nonnegative;
2. there exists an even dominating diffusion coefficient σ′ such that σ′(0) = 0, σ′ satisfies

Hypothesis 1.2, and the following cone condition holds: 0≤ σ(x)≤ σ′(x) for all x≥ 0.

In this case, thanks to the stochastic (moment) comparison principle (see, e.g., [CK20]
and [JKM17]), the moment bounds in (1.17) holds, with F−1 being obtained via σ′. This
is true also for Theorems 1.8, 1.10, and 1.11 below.

1.2. Applications: tail probabilities, Hölder regularity and spatial asymptotics. The mo-
ment bounds can be applied to derive the tail probability, sample-path Hölder regularity, and
sample-path asymptotics in the spatial variable of solutions to (1.1). Specifically, the sample-
path spatial asymptotics have been previously studied by Conus et al. [CJKS13, CJK13] in
two extreme cases, when σ is linear and bounded. Our result in Theorem 1.11 below serves
as an initial attempt to bridge the gap between these two extreme cases by allowing σ to have
sublinear growth. Here, we have to admit that only the asymptotic upper bounds have been
obtained, while the more challenging lower bounds will be left for future investigation.

THEOREM 1.8 (Tail probability). Assume that both Hypotheses 1.1 and 1.2 hold. Let
u(t, x) be a solution to SHE (1.1) with the initial condition µ(dx) = u0(x)dx with u0 ∈
L∞ (Rd

)
. Then for all t≥ 1, x ∈Rd and z ≥ Lt,

P (|u(t, x)| ≥ z)≤ exp
(
−(C∗h(t))

−1F
(
z2
/(

C∗e
2
)))

,(1.22)

where C∗ > 0 is the same as in (1.21), F (·) and F−1(·) are defined Definition 1.5,

Lt := e
√

2C∗M2 +C∗F−1
(
2C∗h(t)

)
,(1.23)

and the constant M in (1.23) is the same as those in Theorem 1.6.

Theorem 1.8 is proved in Section 3.3. To state the next two results, we need the following
Dalang-Sanz-Solé-Sarrà condition ([Dal99, SSS00]) for the spatial correlation function f :

HYPOTHESIS 1.9. The correlation function f : Rd → R is a nonnegative-definite tem-
pered measure that is not identically zero such that,∫

Rd

f̂(dξ)

(1 + |ξ|2)1−η
<∞, for some η ∈ (0,1).(1.24)

THEOREM 1.10 (Hölder regularity). Under parts (i) and (ii) of Hypothesis 1.2, part (i)
of Hypothesis 1.4, and Hypothesis 1.9, let u(t, x) be a solution to (1.1). Then u has a version
which is a.s. η1–Hölder continuous in time and η2–Hölder continuous in space on (0,∞)×
Rd for all η1 ∈ (0, η/2) and η2 ∈ (0, η), where η is given in (1.24).
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Theorem 1.10 is proved in Section 3.4.

THEOREM 1.11 (Spatial asymptotics). Assume that both Hypotheses 1.2 and 1.9 hold.
Suppose that σ(·) is not identically zero on (−∞,−M0]∪ [M0,∞). Let u(t, x) be a solution
to SHE (1.1) with the constant initial condition µ(dx) = u0(x)dx with u0 ∈ L∞ (Rd

)
. Then,

there exists a positive constant C such that for all t > 1,

sup
|x|≤R

|u(t, x)|≲
√

F−1
(
C h(t) logR

)
, a.s., as R→∞,

where F−1(·) is defined in (1.16).

Theorem 1.11 is proved in Section 3.5.

1.3. One-dimensional stochastic wave equation. The method for proving Theorem 1.6
for SHE is quite robust and it can can be easily adapted to other SPDEs. In this part, we will
make this extension for the one-dimensional stochastic wave equation (SWE) from the linear
growth regime as studied in [DM09, CD15a, BC16, HW21, CGS22] to the sublinear growth
regime. Consider the following SWE

∂2

∂t2
u(t, x) =∆u(t, x) + σ(u(t, x))Ẇ (t, x), (t, x) ∈R+ ×R,

u(0, ·) = µ0,
∂

∂t
u(t, x)

∣∣∣∣
t=0

= µ1,

(1.25)

where Ẇ is a centered Gaussian nosie with covariance given by (1.8). Similar to the SHE,
solutions to (1.25) are formulated in the following mild form:

u(t, x) = J0(t, x) +

∫ t

0

∫
R
G(t− s,x− y)σ(u(s, y))W (ds,dy),

where G(t, x) := 1
21I[−t,t](x) refers to the wave kernel on R and

J0(t, x) :=
1

2
[µ0(x+ t) + µ0(x− t)] +

∫
R
µ1(dy)G(t, x− y).(1.26)

THEOREM 1.12. Let u(t, x) be a solution to the SWE (1.25) with initial position µ0 ∈
L2
loc(R) and initial velocity µ1 which is a locally finite Borel measure on R. Under Hypothe-

sis 1.1 (with d= 1) and Hypothesis 1.2, it holds for all (t, x, p) ∈R+ ×R× [2,∞), that

∥u(t, x)∥2p ≤ 2J 2
0 (t, x) +K1

(
h(t)−1J1(t, x) +K2p h(t) + F−1(2p h(t))

)
,(1.27)

where J0 and F−1 are given in (1.26) and (1.16), respectively,

h(t) :=

∫ t

0
ds

∫∫
R2

dyf(dy′)G(s, y)G(s, y− y′) and(1.28)

J1(t, x) :=

∫ t

0
ds

∫∫
R2

dyf(dy′)G (t− s,x− y)G
(
t− s,x− y+ y′

)
J 2
0 (s, y).(1.29)

In (1.27), K1 and K2 are some positive constants not depending on t and p. In particular,

(i) if |σ(·)| is concave separately on R+ and R−, then one can take K2 = 0 in (1.27);
(ii) there exist some constants C > 0 such that the moment bound (1.20) holds, where J0, J1,

and h(t) are given in (1.26), (1.29), and (1.28), respectively. Moreover, if µ0 is bounded
and |µ1|(R)<∞, then in (1.20) can be simplified to (1.21) with h(t) given in (1.28);



8

(iii) assuming Hypothesis 1.9, µ0 ≡ 1 and µ1 ≡ 0, any solution u(t, x) to (1.25) has a ver-
sion which is a.s. η1–Hölder continuous in time and η2–Hölder continuous in space on
(0,∞)×R for all η1, η2 ∈ (0, η), where η is given in (1.24);

(iv) assuming that µ0 ≡ 1 and |µ1| ≡ 0, with the same C∗ as in part (ii) and Lt given in
(1.23) but with h(t) replaced by (1.28), then for all (t, x) ∈ [T,∞)×Rd and z ≥ Lt,

P (|u(t, x)| ≥ z)≤ exp
(
−(C∗h(t))

−1F
(
z2
/(

C∗e
2
)))

,

and under Hypothesis 1.9, with some universal constant C ′ > 0,

sup
|x|≤R

u(t, x)≲

√
F−1

(
C ′ h(t) logR

)
, a.s., as R→∞.

Theorem 1.12 is proved in Section 3.6.

Outline The paper is organized as follows. Section 2 expands on our main results, with their
proofs provided in Section 3. Section 3.1 introduces several technical lemmas, with proofs in
Section 3.7. Theorems 1.6, 1.8, 1.10, 1.11, and 1.12 are proved in Sections 3.2, 3.3, 3.4, 3.5,
and 3.6, respectively. Finally, Section 4 presents examples illustrating our main results.

2. Remarks and proof strategy. In the following, we will first highlight, in Section 2.1,
our mathematical innovation—solving a generalized Bihari–LaSalle inequality. Then from
Sections 2.2–2.5, we will make some comments/discussions on our assumptions and results.

2.1. Solving a generalized form of the Bihari–LaSalle integral inequality. The core con-
tribution of this paper’s methodology lies in solving the following integral inequality for
∥u(t, x)∥p (p≥ 2) with σ having sublinear growth rate at infinity:

∥u(t, x)∥2p ≤J 2
0 (t, x) +

∫ t

0
ds

∫∫
R2d

dyf(dy′)G(t− s,x− y)G(t− s,x− y+ y′)

×∥σ (u(s, y))∥p
∥∥σ (u(s, y− y′)

)∥∥
p
.

(2.1)

When σ is of linear growth, (2.1) can be reduced to

∥u(t, x)∥2p ≤J 2
0 (t, x) +C

∫ t

0
ds

∫∫
R2d

dyf(dy′)G(t− s,x− y)

×G(t− s,x− y+ y′)
(
1 + ∥u(s, y)∥p

)(
1 +

∥∥u(s, y− y′)
∥∥
p

)
.

This is a generalized version of the renewal inequality and thus one should expect some
Grönwall-type estimates. Dalang [Dal99] has provided a solution for the case when the initial
condition is bounded. In this situation, by taking the supremum in the spatial variable on both
sides, one obtains the following integral inequality of single variable:

Y (t)≤K +

∫ t

0
(K ′ + Y (s))g(t− s)ds, t≥ 0, where Y (t) := sup

x∈Rd

∥u(t, x)∥2p.(2.2)

It is worthy noting that the above integral inequality differs from the standard Grönwall in-
equality where the time variable takes a convolution form. However, this approach is not
suitable for studying the equation with a rough initial condition (see Section 2.2 below) since
the supremum norm in (2.2) does not always exist. One has to keep the spatial integral in (2.1)
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and a genuine PDF-type inequality has to be solved. This difficulty has been recently resolved
by the first author and Huang [CH19] with an additional assumption σ(0) = 0. They obtained

∥u(t, x)∥p ≤J0(t, x)Hf,d(t), for all t > 0 and x ∈Rd.

Here, the function Hf,d(t) depends on the correlation function f and the spatial dimension
d. In most cases, Hf,d(t) exhibits an exponential growth in t, as is typically expected, though
this is not always true; see [CK19] for more details. More recently, the above moment bounds
have been extended to the case when σ(0) ̸= 0 together with a Lipschitz drift term in the
equation; see [CFHS23, part (1) of Theorem 2.5].

The previously mentioned methods capture the correct moment growth in t in case σ(x)≍
|x|. In contrast, when σ satisfies a sublinear growth condition, as examined in this paper,
these approaches fail to produce the moment upper bounds with the right growth rate in t.
To achieve more precise moment upper bounds, a robust and novel approach to solve the
integral inequality (2.1) is needed. Indeed, when there is only one time variable, there is the
well-known Bihari–LaSalle inequality [Bih56, LaS49], which has been applied for nonlinear
stochastic differential equations (SDEs), such as in [FZ05].

LEMMA 2.1. Let Y (·) and F (·) be positive continuous functions on [a, b]. Let k ≥ 0,
M ≥ 0, and let ω(·)≥ 0 be a nondescending continuous function on R+. Then the inequality

Y (x)≤ k+M

∫ x

a
F (t)ω(Y (t))dt, for all x ∈ [a, b],(2.3)

implies the inequality

Y (x)≤Ω−1

(
Ω(k) +M

∫ x

a
F (t)dt

)
, for all x ∈ [a, b],(2.4)

where Ω(u) :=

∫ u

u0

dt

ω(t)
with u0 > 0 and u≥ 0.

Comparing (2.3) and (2.1), one needs to generalize the above lemma involving a space-
time convolution. Directly transplanting the arguments in [Dal99, CH19, CFHS23] from the
Grönwall to the Bihari–LaSalle framework seems ineffective due to the intricate nonlinear
nature of ω in (2.3). Instead, we solving (2.1) by, first, deriving inequality (3.19) of the form

X(t, x)≤ kσ2(X(t, x)) + b, with X(t, x) =

∫ t

0
ds

∫
Rd

dy p2t−s(x− y)∥u(s, y)∥2p ,(2.5)

where σ2(·) is a sublinear function on R+, k and b are some constants depending on p and
t. Since σ2 is sublinear, any nonnegative solution to inequality (2.5) has to lie in a compact
interval, e.g., [0, x0]. In other words, as X satisfies (2.5), we get X ≤ x0; see Lemma 3.7.

To illustrate the idea of solving inequality (2.5), consider the case when σ(u) = ua, u≥ 0,
with a ∈ [0,1) fixed. In this case, σ2(u) = σ(u) and the inequality in (2.5) becomes

x≤ kxa + b, for x≥ 0 with a ∈ (0,1), b > 0 and k > 0 being fixed.(2.6)

By the concavity of the function xa, the corresponding equation x = kxa + b has a unique
positive solution, which is denoted by x∗. Hence, inequality (2.6) holds provided that x ∈
[0, x∗], i.e., x∗ is an upper bound estimate for x. Moreover, one can apply Newton’s method
for one step, properly started, to obtain an upper bound for x∗.

x∗ ≤ k1/(1−a) + b/(1− a).(2.7)

To handle more general cases, a more meticulous approach is required, which yields a
bound akin to (2.7) for solutions to (2.5). Overall, this constitutes the general strategy behind
the proof of Theorem 1.6, and our moment bounds (1.19) should be compared to (2.4).
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2.2. Assumptions on initial conditions. Here are some comments on the assumptions
made for the initial conditions in Hypothesis 1.4: (i) Following [CD15b], we call the initial
condition satisfying inequality (1.11) the rough initial condition for SHE (1.1). In particu-
lar, the Dirac delta measure is a special case; see also [CJKS14]. Note that the Dirac delta
measure plays an important role in studying the asymptotic properties of the PAM on R;
see [ACQ11, Cor12]. As an easy exercise, condition (1.11) is equivalent to

−∞<

∫
Rd

e−a|x|2µ(dx)<∞, for all a > 0.

(ii) Condition (1.12) is only a technical assumption. We believe that this assumption can
be removed. This will be left for future investigation. If J0(s, y)

2 in (1.12) is replaced by
J0(s, y)J0(s, y

′), then due to [CK19, Lemma 2.7], the integral is finite under Dalang’s con-
dition (1.9) for all rough initial conditions. This extra condition comes from the application of
the inequality J0(s, y)J0(s, y

′)≤ 1
2

(
J 2
0 (s, y) +J 2

0 (s, y
′)
)

in the proof of Theorem 1.6. (iii)
In case d= 1, condition (1.12) is automatically satisfied by Lemma 3.8 below. On the other
hand, for d≥ 2, condition (1.12) excludes the Dirac delta initial condition. This can be seen
by setting f(·)≡ 1 (the space-independent noise), then the integral in (1.12) with delta initial
condition reduces to

∫ t
0 s

−d/2ds=∞. Instead, condition (1.12) holds when µ(dx) = |x|−ℓdx
for any ℓ ∈ (0,1). This is due to the bound in (3.10) and the fact that for such initial data,
J0(t, x)≲ t−ℓ/2; see [CE24]. Roughly speaking, the Dirac delta measure corresponds to the
case when ℓ= d. Removing part (ii) of Hypothesis 1.4 will be left for future investigation.

2.3. Generality versus sharpness. The moment bounds obtained in Theorem 1.6 strike
a balance between their level of generality and their sharpness. Obtaining sharp moment
asymptotics in general can be extremely challenging and is typically only possible in some
specific settings. For instance, in the case when d = 1, Ẇ is the space-time white noise,
and σ(u) =

√
u (the super-Brownian motion) with u(0, x) ≡ 1, the second author and his

collaborators [HWXZ23] recently found the following exact moment asymptotics:

E [u(t, x)p]≍Kpp!
(
1 + t(p−1)/2

)
, as t→∞,

for any positive integer p and x ∈R; while Theorem 1.6 suggests:

E [u(t, x)p]≤Kpp!
(
1 + tp/2

)
.

The difference between above two inequality highlights that Theorem 1.6 is not sharp. While
this appears to be the only known case of non-sharpness, we believe it is likely more gen-
eral. Nonetheless, the method used in the proof of Theorem 1.6 are robust and can be easily
extended to more general settings and a broad class of SPDEs, including one-dimensional
SWEs. Moreover, despite being sub-optimal, Theorem 1.6 is sufficient to describe in a quan-
titative way for the “smoothing intermittency” phenomenon from Zeldovich et al. [ZRS90].

2.4. Spatial asymptotics and tail estimates. Theorem 1.11 provides an almost sure
asymptotic upper bound for solutions to (1.1) in space. The proof of this theorem closely
follows the approach presented in [CJKS13], which relies on tail estimates (Theorem 1.8)
and the Borel–Cantelli lemma. While the moment bounds may not be particularly sharp, we
find that the tail estimates are indeed sharp, at least in the case of super Brownian motion;
see Proposition 4.4 with α = 1/2 and [HWXZ23, Proposition 1.4]. As a result, we believe
Theorem 1.11 provides a sharp bound for super-Brownian motion, specifically, fix t > 0,

sup
|x|≤R

u(t, x)≍
√
t log(R), almost surely, as R→∞.
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2.5. Interaction with initial conditions. Due to the multiplicative nature of the diffusion
term, the initial condition interacts with the noise, actively shaping solutions to (1.1). For the
PAM, this interaction leads to the following moment bound (see [CH19, Theorem 1.7]):

∥u(t, x)∥2p ≤CJ 2
0 (t, x)Υ(t), for all t > 0, x ∈Rd, and p≥ 2,(2.8)

where Υ(·) represents the contribution of the driving noise. The multiplicative interaction
of the initial conditions and the noise in (2.8) naturally gives rise to the propagation of tall
peaks in some space-time cone {|x| ≤ κt}, which was earlier observed in physical contexts,
cf. [ZRS90, Section 8.10] and later rigorously studied by Conus and Khoshnevisan [CK12].
Since then, additional researches (cf. [CD15b, CK19, HLN17]) has expanded upon this cone
property. In essence, the cone property asserts the pretense of a space-time cone sized κ
within which the moments of the PAM grow exponentially fast, contrasting with rapid expo-
nentially decay outside this cone. The size κ is termed the intermittency front.

However, in this paper, we obtain an additive interaction of the initial data and the noise as
in Theorem 1.6. This additive interaction arises from the way we solve the inequality (2.6), or
from the application of Lemma 3.7 in general, where the coefficient b corresponds to the ini-
tial condition. By sending b to zero in (2.6), the linear equation x= kxα + b shifts from hav-
ing a single nonnegative solution to having two nonnegative solutions, one of which is zero.
Accordingly, assuming b= 0, the inequality x≤ kxα can only assures that x ∈ [0, k1/(1−α) ],
but additional information is needed to determine the exact value of x. In the context of
SPDEs, such additional information may be related to the (non-)uniqueness of solutions. In
fact, when σ(u) = |u|α with α ∈ (0,3/4) and Ẇ is the one-dimensional space-time white
noise, Mueller et al [MMP14] constructed nontrivial solutions starting from zero initial data.
Hence, the propagation of high peaks will be more subtle and will be left for future research.

If σ is globally Lipschitz, the moment comparison theorem may be applied, and thus the
moment bounds for the “dominant PAM” can serve as an upper bound for the propagation of
solutions to (1.1). When σ is not globally Lipschitz, solutions to (1.1), assuming σ(u) = uα

with α ∈ (0,1), is compactly supported if the initial data is a finite measure (cf. [DIP89,
MP92]). Additionally, given that precise analysis on front propagation (a related but distinct
property) for Fisher-KPP equations has been presented in [MMQ11, MMR21], it should
be possible to study propagation of tall peaks, even for non-Lipschitz cases with necessary
restrictions on initial datum. We hope that this question can be resolved in the future.

3. Proof of the theorems.

3.1. Technical lemmas. In this subsection, we provide some technical lemmas that will
be used in the proof of Theorem 1.6. The proofs of these lemmas are postponed to Section 3.7.

LEMMA 3.1. Let σ be a function satisfying Hypothesis 1.2. Then there exist two func-
tions g+ : [M0,∞)→R and g− : (−∞,−M0]→R that satisfy the following properties:

(i) g+ is nonnegative, non-increasing, right-continuous, and it satisfies that

lim
x→∞

g+(x) = 0 and |σ(x)| − |σ(M0)|=
∫ x

M0

g+(y)dy for all x≥M0;

(ii) Similarly, g− is nonnegative, non-decreasing, left-continuous, and it satisfies that

lim
x→−∞

g−(x) = 0 and |σ(x)| − |σ(−M0)|=
∫ −M0

x
g−(y)dy for all x≤−M0.
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Let θp : R → R+ denote the power function θp(x) = |x|p for p ∈ R. When σ(u) = |u|α
with u≥ 0 and α ∈ (0,1], we claim that

∥σ(u)∥2p ≤ σ
(
∥u∥2p

)
for all p > 0.

Indeed, it is clear that

∥σ(u)∥2p =
(
θ 2

p
◦E ◦ θp ◦ |σ|

)
(u) =

(
θ 2

p
◦E ◦ θp ◦ θα

)
(u) =

(
θ 2

p
◦E ◦ θα ◦ θp

)
(u)

≤
(
θ 2

p
◦ θα ◦E ◦ θp

)
(u) =

(
θα ◦ θ 2

p
◦E ◦ θp

)
(u) = σ

(
∥u∥2p

)
,

where the inequality is due to the concavity of σ = θα and we used twice the commutative
property: σ ◦ θp = θα ◦ θp = θp ◦ θα = θp ◦ σ. Yet for a general σ fulfilling Hypothesis 1.2,
we need to introduce σp for this purpose, that generalizes σ2 in (1.14) to arbitrary p > 0.

DEFINITION 3.2. For any function σ : R→ R and any positive number p, let the func-
tions σ+

p , σ−
p and σp :R+ →R+ be defined as follows: for all x ∈R+,

σp(x) := σ+
p (x) + σ−

p (x) with σ±
p (x) :=

∣∣∣σ(± x1/p
)∣∣∣p .(3.1)

The next lemma shows that σp(·) and σ±
p (·) inherit the properties from σ(·).

LEMMA 3.3. Suppose that σ(·) is a function satisfying Hypothesis 1.2. For any p > 0,
let σp(·), σ+

p (·) and σ−
p (·) be given in Definition 3.2. Then, the following properties hold:

(i) For any x≥Mp
0 , with g±(·) given in Lemma 3.1

ρ+p (x)− ρ+p (M
p
0 ) =

∫ x

Mp
0

g+p (y)dy, and ρ−p (x)− ρ−p (M
p
0 ) =

∫ x

Mp
0

g−p (y)dy,

where

g+p (x) :=
∣∣∣ρ(+x1/p

)∣∣∣p−1
g+
(
+x1/p

)
x−(p−1)/p, and(3.2)

g−p (x) :=
∣∣∣ρ(−x1/p

)∣∣∣p−1
g−
(
−x1/p

)
x−(p−1)/p.(3.3)

(ii) Both σ+
p and σ−

p are non-decreasing on [Mp
0 ,∞);

(iii) There exists M ≥ M0, independent of p, such that all functions σp, σ+
p , and σ−

p are
concave on [Mp,∞);

(iv) If M0 = 0 in part (iii) of Hypothesis 1.2, then σ+
p , σ−

p and σp are all concave on R+.

LEMMA 3.4. For any U ∈ Lp(Ω) and p > 0, it holds that

E
[
σ+
p (|U |p)1I[+M,+∞)(U)

]
≤σ+

p

(
Mp + ∥U∥pp

)
and(3.4)

E
[
σ−
p (|U |p)1I(−∞,−M ](U)

]
≤σ−

p

(
Mp + ∥U∥pp

)
,(3.5)

where the constant M is given in part (iii) of Lemma 3.3.

LEMMA 3.5. Suppose that σ satisfies Hypotheses 1.2. Let M be the associated constant
given in part (iii) of Lemma 3.3. Then for all p≥ 2 and any U ∈ Lp(Ω), it holds that

∥σ(U)∥2p ≤K2
M + σ2

(
M2 + ∥U∥2p

)
,(3.6)

where KM is defined in (1.18). In particular, if M0 = 0, one can take M =KM = 0 in (3.6).
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REMARK 3.6. Here are some remarks on the functions F and F−1:

(i) As stated in Definition 1.5, we allow F (x) =∞ in case x > 0 and σ2(x) = 0, see e.g.,
σ(x) = 1 for |x|< 1 and σ(x) = |x− 1|α for |x| ≥ 1. If σ ≡ 0 on [M0,∞), then F ≡∞
on [M0,∞) as well. This implies that F−1 ≡ 2M2 on R+. As a result, F−1(2ph(t)) as
in (1.17) is uniformly bounded in t, this coincides with the SHE with additive noise.

(ii) Under part (ii) of Hypothesis 1.2, the set in (1.16) is nonempty for any x > 0, and thus
F−1(·) is a real-valued function.

(iii) From the definitions, and noticing that F is continuous on [M2,∞), it is easy to see that

F ◦ F−1(x)≥ x, x≥ 0, and(3.7)

F−1 ◦ F (x)≤ x, x≥ 2M2.(3.8)

LEMMA 3.7. Suppose that the function σ(·) satisfies Hypothesis 1.2. Let σ2(·) be defined
as in (3.1) with p = 2. Then, thanks to part (iii) of Lemma 3.3, σ2 is concave on [Mp,∞)
with some M >M0. For any k, b > 0, suppose x≥ 0 such that x≤ kσ2(x) + b. Then,

x≤ 2F−1(k) + 2b <∞.(3.9)

LEMMA 3.8. Under Hypothesis 1.1 and part (i) of Hypothesis 1.4, for all (t, x) ∈R+ ×
R, J1(t, x) defined in (1.12) satisfies that

J1(t, x)≤
∫ t

0
ds k(t− s)

∫
Rd

dy pt−s(x− y)J 2
0 (s, y), where(3.10)

k(t) :=

∫
Rd

f(dz) pt(z) = h′(t/2)<∞.(3.11)

In particular, when d= 1, it holds that

J1(t, x)≤ 23/2π h(t)J+ (t/2, x)2 <∞.(3.12)

3.2. Proof of moment growth formulas—Theorem 1.6. The proof consists of four steps:

Step 1. In this step, we derive the following inequality thanks to Hypothesis 1.2:

∥u(t, x)∥2p ≤ 2J 2
0 (t, x)+8K2

Mph(t) + 8p

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)

× pt−s(x− y+ y′)σ2

(
M2 + ∥u(s, y)∥2p

)
.

(3.13)

Indeed, by the Burkholder-Davis-Gundy and Minkowski’s inequalities to the mild form (1.13),

∥u(t, x)∥2p ≤2J 2
0 (t, x) + 8p

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)pt−s(x− y+ y′)

×
∥∥σ(u(s, y))σ(u(s, y− y′))

∥∥
p/2

.

Then an application of the Cauchy-Schwarz inequality for the Lp/2(Ω)–norm yields that

∥u(t, x)∥2p ≤ 2J 2
0 (t, x)+8p

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)∥σ(u(s, y))∥p(3.14)

× pt−s(x− y+ y′)
∥∥σ(u(s, y− y′))

∥∥
p
.
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Taking account of the fact that ab≤ 1
2(a

2+ b2) for all a, b ∈R, we can further deduce that

∥u(t, x)∥2p ≤ 2J 2
0 (t, x) + 8p

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)pt−s(x− y− y′)

× ∥σ(u(s, y))∥2p .

Next, applying Lemma 3.5, we get

∥σ(u(s, y))∥2p ≤K2
M + σ2

(
M2 + ∥u(s, y)∥2p

)
.(3.15)

Plugging (3.15) into the previous inequality proves (3.13).

Step 2. In this step, we will solve the nonlinear integral inequality (3.13). Fix t > 0 and
x ∈ Rd. Using the function h(t) in (1.10) as a normalization constant and thanks to the
concavity of σ2, we can apply Jensen’s inequality to the triple integrals in (3.13) to write that

∥u(t, x)∥2p ≤ 2J 2
0 (t, x) + 8K2

Mph(t) + 8ph(t)σ2 (X) ,(3.16)

where X :=M2 + h(t)−1Y with

Y :=

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)pt−s(x− y+ y′)∥u(s, y)∥2p .

It reduces to find an upper bound for X . By using (3.13), we deduce that Y ≤ 2J1(t, x) +
8K2

Mph(t)2 + I with

I := 8p

∫ t

0
dr

∫∫
R2d

dzf(dz′) σ2
(
M2 + ∥u(r, z)∥2p

)∫ t

r
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)

×pt−s(x− y+ y′)ps−r(y− z)ps−r(y− y′ − z + z′).

Using the following formula,

pt−s(a)ps(b) = ps(t−s)/t

(
b− s

t
(a+ b)

)
pt(a+ b), for all 0< s< t and a, b ∈R,(3.17)

and [CK19, Lemma 2.6 and inequalities (2.21)–(2.23)], it is not hard to deduce that∫ t

r
ds

∫∫
R2d

dyf(dy′)pt−s(x− y)pt−s(x− y+ y′)ps−r(y− z)

× ps−r(y− y′ − z − z′)≤ (2π)−d pt−r(x− z)pt−r(x− z + z′)h(t).

(3.18)

Thus,

I ≤8ph(t)

(2π)d

∫ t

0
dr

∫∫
R2d

dzf(dz′) pt−r(x− z)pt−r(x− z + z′)σ2

(
M2 + ∥u(r, z)∥2p

)
≤8 (2π)−d ph2(t)σ2(X),

due to the concavity of σ2(·) (see Lemma 3.3), (1.10), and Jensen’s inequality. Therefore,

Y ≤ 2J1(t, x) + 8K2
Mph(t)2 + 8(2π)−d ph2(t)σ2(X),

or equivalently,

X ≤M2 + 2h(t)−1J1(t, x) + 8K2
Mph(t)︸ ︷︷ ︸

:= b(p, t, x)

+8(2π)−d ph(t)︸ ︷︷ ︸
:= k(p, t)

σ2(X).(3.19)
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By Lemma 3.7, we have that X ≤ 2F−1(k(p, t)) + 2b(p, t, x). Finally, thanks to the mono-
tonicity of σ2(·) when x ≥M2; see Lemma 3.3, plugging the above moment bounds back
to (3.16) proves the moment following bounds

∥u(t, x)∥2p ≤2J 2
0 (t, x) + 8K2

Mph(t) + 8ph(t)σ2
(
2b(p, t, x) + 2F−1

(
k(p, t)

))
.(3.20)

Step 3. In this step, we will simplify the expression in (3.20) and prove inequality (1.17).
Recall the definition of F−1 in (1.16), one can show that for any x≥ 2F−1(k),

σ2(x)

x
=

σ2(x)− σ2(2F
−1(k)) + σ2(2F

−1(k))

x− 2F−1(k) + 2F−1(k)
≤ 1

2k
,

because

σ2
(
2F−1(k)

)
2F−1(k)

≤ 1

4k
≤ 1

2k
and

σ2(x)− σ2
(
2F−1(k)

)
x− 2F−1(k)

≤ g2
(
2F−1(k)

)
≤ 1

2k
,

where the last inequality is proved in (3.34) below. As a result, concerning the fact that
F−1(k)≥ 2M2 for all k > 0, and 8(2π)−d ≤ 2 for all d≥ 1, we can write

8ph(t) σ2

(
2b(p, t, x) + 2F−1

(
k(p, t)

))
≤ 4ph(t)

k(p, t)

(
b(p, t, x) + F−1

(
k(p, t)

))
≤2(2π)d

(
h(t)−1J1(t, x) + 4K2

Mp h(t) + F−1(2p h(t))
)
.

Plugging the above upper bound back to (3.20) proves (1.17).

Step 4. The special case when d= 1 is an application of Lemma 3.8 and the case when σ2(·)
is concave separately on R+ and R− is due to Lemma 3.5. This proves both parts (i) and (ii).
As for part (iii), if M = 0, inequality (1.20) follows from part (ii). Otherwise, if M > 0,
then (1.20) holds provided that one can verify that there exists C > 0 such that for all t≥ 1,

4K2
Mp h(t) + F−1 (2p h(t))≤CF−1(Cph(t)).(3.21)

Indeed, the assumption of part (iii) ensures that σ2(x) ≥ c > 0 with some uniform constant
c > 0 if x > M is large enough, which implies that F−1(k) ≥ ck for large k (see (1.15)).
Hence, inequality (3.21) holds by noticing that h is a non-decreasing function such that
h(t)> 0 for all t > 0 under Hypothesis 1.1. This proves (1.20).

Finally, if µ(·) is bounded, then J0(t, x) is bounded on R+ × Rd, and the same is true
for h(t)−1J1(t, x) (see Lemma 3.8). Then, inequality (1.21) is a consequence of the fact
that F−1(k) is bounded below by a positive constant for all k large enough because σ is not
identically zero on (−∞,−M0]∪ [M0,∞). This completes the proof of Theorem 1.6. □

3.3. Proof of tail probability—Theorem 1.8. We first prove a lemma that extends [CJKS13,
Lemma 3.4], generalizing the exponent α(·) from a power function to a more general form.

LEMMA 3.9. Let X be a random variable such that for some function α : [2,∞)→R,

E [|X|p]≤ exp(α(p))<∞, for all p≥ 2.(3.22)

Then, for all z > 0, it holds that

P(|X| ≥ z)≤ exp
(
− α∗(log(z))

)
,(3.23)

where α∗(·) is the Legendre-type transform of α(·) on [2,∞), namely,

α∗(x) := sup

{
xp− α(p) : p ∈ [2,∞)

}
∈R∪ {∞}, for all x ∈R.(3.24)
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PROOF. The lemma follows from Chebyshev’s inequality: for any z > 0 and p≥ 2,

P (|X| ≥ z) = P (|X|p ≥ zp)≤ z−p exp (α(p)) = exp(− [p log(z)− α(p)]) .

Then, (3.23) follows from the minimization of the above expression with respect to p.

PROOF OF THEOREM 1.8. For all t≥ 1 and p≥ 2, we apply Lemma 3.9 with the moment
bounds given in (1.21) of Theorem 1.6 to see that

P(u(t, x)≥ z)≤ exp (−H∗(log(z))) ,(3.25)

where H∗ : R→R is the Legendre-type transform (see (3.24)) of H : [2,∞)→R given by

H(p) :=
p

2
log
(
C∗F

−1(C∗ph(t))
)
, for all p≥ 2,(3.26)

with the constant C∗ given in (1.21). Next, notice that if

y ≥max
{
2−1 log

(
2C∗M

2
)
+ 1,2−1 log

(
C∗F

−1
(
2C∗h(t)

))
+ 1
}
,(3.27)

then, we have e2(y−1)/C∗ ≥ 2M2, and (thanks to (3.7))

p∗(y) := (C∗h(t))
−1F

(
e2(y−1)/C∗

)
≥ 2.

Therefore,

H(p∗(y)) =(2C∗h(t))
−1F

(
e2(y−1)/C∗

)
log
(
C∗F

−1 ◦ F
(
e2(y−1)/C∗

))
≤ (2C∗h(t))

−1F
(
e2(y−1)/C∗

)
log
(
e2(y−1)

)
= p∗(y)(y− 1),

where we have used (3.8) for the inequality. This yields that

H∗(y)≥ yp∗(y)−H(p∗(y)) = yp∗(y)− p∗(y)(y− 1) =
F
(
e2(y−1)/C∗

)
(C∗h(t))

.(3.28)

Therefore, (1.22) is justified by plugging (3.28) in (3.25) with y replaced by log z. Similarly,
the expression of Lt in (1.23) can be obtained by replacing y by log z in (3.27).

3.4. Proof of Hölder regularity—Theorem 1.10. The proof follows the same arguments
as those in [CH19, Theorem 1.8] with the moment bounds obtained in Lemma 3.10 below. □

LEMMA 3.10. Assume Hypothesis 1.1, parts (i) and (ii) of Hypothesis 1.2, and part (i) of
Hypothesis 1.4. Let u(t, x) be a solution SHE (1.1). Then, for all (t, x, p) ∈R+×Rd× [2,∞)

∥u(t, x)∥p ≤
(
µ′ ∗ pt

)
(x)

[
H
(
t ; 32pK2

)]1/2
,(3.29)

where µ′ :=
√
2 + 2|µ| and H(t;λ) is non-decreasing in t with a parameter λ > 0.

Referring to the precise definition of H(t;λ), one can consult [CH19, Formula (2.4)]. It
should be noted that H(0;λ)> 0, which means the function H(t;λ) does not introduce any
singularity at t= 0. In general, H(t;λ) exhibits an exponential growth rate in t; see [CK19,
Lemma 2.5]. Certainly, the moment bounds (3.29) are considerably less accurate compared to
those as in (1.17), especially for large p or t. This is a worthy trade-off for removing part (ii)
of Hypothesis 1.4 in Lemma 3.10, which is sufficient for deducing the Hölder continuity of
solutions in Theorem 1.10. To achieve more precise tail estimates in Theorem 1.8, additional
improved estimates for the moment increments, as in Lemma 3.11 below, are required.
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PROOF OF LEMMA 3.10. Parts (i) and (ii) of Hypothesis 1.2 imply that |σ(x)| ≤Kσ(1+
|x|) with a universal constant Kσ > 0 for all x ∈ R. Hence, from (3.14), we see that for all
(t, x, p) ∈R+ ×Rd × [2,∞),

∥u(t, x)∥2p ≤ 2J 2
0 (t, x) + 8pK2

σ

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)
(
1 + ∥u(s, y)∥p

)
×pt−s(x− y+ y′)

(
1 +

∥∥u(s, y− y′)
∥∥
p

)
.

By setting g(t, x) := 1+ ∥u(t, x)∥p and denoting the above triple integral by I(t, x), we have

g(t, x)2 ≤ 2 + 2∥u(t, x)∥2p ≤
(√

2 + 2J+(t, x)
)2

+ 16pK2
σI(t, x).

Therefore, for µ′ =
√
2Kσ + |µ|, g(t, x) satisfies the following integral inequality:

g(t, x)2 ≤
[(
µ′ ∗ pt

)
(x)
]2

+ 16pK2
σ

∫ t

0
ds

∫∫
R2d

dyf(dy′) pt−s(x− y)g(s, y)

×pt−s(x− y+ y′)g(s, y− y′) .

It is easy to see that µ′ also satisifes part (i) of Hypothesis 1.4. Then, an application of [CH19,
Lemma 2.2] with the above µ′ and λ= 16pK2

σ implies the moment bound (3.29). The prop-
erty of H(t;λ) can be found in [CK19, Lemma 2.5].

3.5. Proof of spatial asymptotics—Theorem 1.11. The proof of Theorem 1.11 is based
on a tail estimate for solutions to SHE (1.1) given in Theorem 1.8. We also need moment
increments in the space variable, in case of the constant initial condition, with a sharper
constant than the one implicitly appearing in Theorem 1.10.

LEMMA 3.11. Assume Hypotheses 1.2 and 1.9. Let u(t, x) be a solution to SHE (1.1)
with a bounded initial condition (i.e., µ(dx) = u0(x)dx with u0 ∈ L∞(Rd)). Let C∗ > 0 be
the constant in (1.21). Then, the following statements are satisfied.

(i) For all x, y ∈Rd, t≥ 1, and p≥ 2, there exists a constant C > 0 such that

∥u(t, x)− u(t, y)∥2p ≤CF−1 (C∗ph(t)) |x− y|2η;

(ii) For any x ∈Rd, with Bx denoting the unit ball centered at x, it holds that∥∥∥∥∥ sup
y1,y2∈Bx

|u(t, y1)− u(t, y2)|

∥∥∥∥∥
2

p

≤C ′F−1 (C∗ph(t)) ,

where C ′ > 0 is another universal constant.

PROOF. Following the same lines as in the proof of [CH19, Theorem 1.8], one has

∥u(t, x)− u(t, y)∥2p ≤ 4p

∫ t

0

∫∫
R2d

dzf(dz′) ∥σ(u(s, z))∥p ∥σ(u(s, z))∥p

× |pt−s(x− z)− pt−s(y− z)||pt−s(x− z + z′)− pt−s(y− z + z′)|.

Thanks to (3.6) and part (iii) of Theorem 1.6, one can write

sup
s∈[0,t]

sup
z∈Rd

∥σ(u(s, z))∥2p ≤K2
M + σ2

(
M2 +C∗F

−1(C∗ph(t))
)
,



18

for all t≥ 1, where C∗ > 0 is the same as in (1.21). If F−1(C∗ph(t))< 2M2, one can apply
part (ii) of Lemma 3.3 to see that

I := σ2
(
M2 +C∗F

−1(C∗ph(t))
)
≤ σ2

(
(1 + 2C∗)M

2
)
.

Otherwise, with g2(·) := g+2 (·) + g−2 (·) defined as in (3.2) and (3.3), respectively, we have,

I = σ2(M
2) +

∫ M2+C∗F−1(C∗ph(t))

M2

g2(x)dx

≤ σ2(M
2) +

C∗F
−1(C∗ph(t))

F−1(C∗ph(t))−M2

∫ F−1(C∗ph(t))

M2

g2(x)dx

≤ (2C∗ + 1)σ2
(
F−1(C∗ph(t))

)
.

Combining the above two cases, we have that

I ≤K1 +C1σ2
(
F−1(C∗ph(t))

)
=K1 +C1

F−1(C∗ph(t))

F ◦ F−1(Cph(t))
≤K1 +C1

F−1(C∗ph(t))

C∗ph(t)
.

with some universal positive constants C1 and K1. Additionally, following the same idea as
in the proof of (3.21), and noting h(·) is a non-decreasing function with h(t)> 0 for t > 0,
we can further simplify above inequality as I ≤ C2p

−1F−1 (C∗ph(t)) , where C2 > 0 is a
universal constant. Hence,

∥u(t, x)− u(t, y)∥2p ≤ 4C2F
−1
(
C∗ph(t)

)∫ t

0
ds

∫∫
R2d

dzf(dz′) |pt−s(x− z)− pt−s(y− z)|

×
∣∣pt−s(x− z + z′)− pt−s(y− z + z′)

∣∣ .
The rest proof of part (i) is the same as Step 1 in the proof of [CH19, Theorem 1.8]. Part (ii)
follows from a classical argument for Kolmogorov’s continuity criterion. Thus, we omit it and
refer interested readers to, e.g., [DKM+09, Theorem 4.3 on page 10] for more references.

PROOF OF THEOREM 1.11. Let C1 and C2 be two positive constants, the values of which

will be determined later. Set Q(R) :=C1

√
F−1

(
C2h(t) log(R)

)
, R > 0. It is clear that for

any R> 0 fixed, Q(R) is increasing in both C1 and C2. Following the idea as in [CJKS13],
to apply the Borel–Cantelli lemma, we need to estimate

T1(R) := P
{

max
x∈{y∈Zd : |y|≤R}

|u(t, x)| ≥Q(R)

}
and

T2(R) := P

{
max

x∈{y∈Zd : |y|≤R}
sup
y∈Bx

|u(t, y)− u(t, x)| ≥Q(R)

}
,

which come from the following inequality:

P

{
sup
|x|≤R

|u(t, x)| ≥ 2Q(R)

}
≤ T1(R) + T2(R),

for all positive integer R such that Q(R)≥ Lt; see Theorem 1.8.
Let C∗ be the constant in (1.21). Set C1 =

√
C∗e and C2 = (2+ 2d)C∗. By Theorem 1.8,

T1(R)≤
∑

x∈{y∈Zd : |y|≤R}

P{|u(t, x)| ≥Q(R)}

≤(2R)d exp
(
−(C∗h(t))

−1F
(
Q(R)2

/(
C∗e

2
)))

=R−2.
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The estimate for T2 is quite similar. By using the same argument as in Theorem 1.8 and
taking account of part (ii) of Lemma 3.11, one can show that with some L′

t > 0 and the same
constants C∗ and C ′ as in part (ii) of Lemma 3.11, for all z ≥ L′

t,

P

(
sup

y1,y2∈Bx

|u(t, y1)− u(t, y2)| ≥ z

)
≤ exp

(
−(C∗h(t))

−1F
(
z2
/
(C ′e2)

))
.

Then, with C1 =
√
C ′e and C2 = (2+2d)C∗, we have T1(R)≤R−2 as well. Therefore, with

appropriate C1,C2 > 0 and Lt > 0 the same as in (1.23), the next inequality holds,
∞∑

R=1

P

{
sup
|x|≤R

|u(t, x)| ≥ 2Q(R)

}
≤

⌊Lt∨L′
t⌋∑

R=1

P

{
sup
|x|≤R

|u(t, x)| ≥ 2Q(R)

}

+

∞∑
R=⌊Lt∨L′

t⌋+1

(T1(R) + T2(R))<∞.

An application of the first Borel–Cantelli lemma completes the proof of Theorem 1.11.

3.6. Proof of the one-dimensional SWE—Theorem 1.12. The validity of Theorem 1.12
relies on the following lemmas.

LEMMA 3.12. The wave kernel function G(·,◦) satisfies the following properties:

(i) For all t, s ∈R+ and x, y ∈R,

G(t, x− y)G(s, y) = 2G(t, x− y)G(s, y)G(t+ s,x)≤G(s, y)G(t+ s,x);(3.30)

(ii) For all t > 0 and x ∈R,

tG(t, x)≤G(2t, x)(2t− |x|) = 2(G(t, ·) ∗G(t, ·)) (x)≤ 2tG(2t, x);(3.31)

(iii) If the correlation function f :R→R+ satisfies Hypothesis 1.1, then for all t > 0,

sup
(s,x)∈[0,t]×R

∫
R
f(dz)G (s,x+ z)≤ 2k(2t)<∞,(3.32)

where k(t) is defined as in (3.11) with pt(x) replaced by G(t, x);

LEMMA 3.13. Under the same setting as Theorem 1.12, J1(t, x) defined in (1.29) is
finite for all (t, x) ∈R+ ×R. In particular, for every (t, x) ∈R+ ×R,

J1(t, x)≤ 4tk(2t)

(
t

∫
R
G(t, x− y)µ2

0(y)dy+ 2

(
t

∫
R
|µ1|(dy)G(t, x− y)

)2
)

<∞,

where k(t) is defined in (3.11) with pt(x) replaced by G(t, x).

PROOF OF THEOREM 1.12. Having Lemmas 3.12 and 3.13, the poof of Theorem 1.12
is straightforward. Here, we only provide the proof for part (i), which follows a similar ap-
proach to that of Theorem 1.6, with one notable difference arising from the absence of the
corresponding formula (3.17) for the heat equation case. However, we can leverage (3.30) to
overcome this obstacle and conclude∫ t

r
ds

∫∫
R2

dyf(dy′)G(t− s,x− y)G(t− s,x′ − y+ y′)G(s− r, y)G(s− r, y− y′)

≤G(t− r,x)G(t− r,x′)

∫ t−r

0
ds

∫∫
R2

dyf(dy′)G(s, y)G(s, y− y′)

=G(t− r,x)G(t− r,x′)h(t− r)≤G(t− r,x)G(t− r,x′)h(t).
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The last sequence of inequalities play the same role as those in (3.18). Following the same
idea as in the proof of Theorem 1.6, we can show that

X ≤M2 + 2h(t)−1J1(t, x) + 8K2
Mph(t) + 8ph(t)σ2(X),

where KM is given in (1.18) and

X :=M2 + h(t)−1

∫ t

0
ds

∫∫
R2

dyf(dy′)G(t− s,x− y)G(t− s,x− y+ y′)∥u(s, y)∥2p .

The remaining proof follows the same line of reasoning as presented in Theorem 1.6, 1.8
and 1.11, if one can show the Hölder continuity for solution(s) to (1.25) under the improved
Dalang condition. In the following, we only outline the proof for spatial continuity, and the
time continuity can be verified similarly. Assuming µ0 ≡ 1 and µ1 ≡ 0, we can write

∥u(t, x)− u(t, y)∥2p ≤C

∫ t

0
ds

∫∫
R2

dzf(dz′)|G(t− s,x− z)−G(t− s, y− z)|

× |G(t− s,x− z + z′)−G(t− s, y− z + z′)| ∥σ(u(s, z))∥p
∥∥σ(u(s, z − z′))

∥∥
p

≤C

∫ t

0
ds

∫∫
R2

dzf(dz′)|G(t− s,x− z)−G(t− s, y− z)|

× |G(t− s,x− z + z′)−G(t− s, y− z + z′)|
[
1 + F−1

(
C∗ph(s)

)]2
.

Then, by using the same arguments as in [DSS05, Theorem 5], one finds that u is Hölder
continuous in space with and exponent α< η and constant of the form CF−1(C∗ph(t)).

Now, it remains to prove Lemmas 3.12 and 3.13.

PROOF OF LEMMA 3.12. Part (i) is due to the identity: for any s, t ∈R+ and x, y ∈R,

1I[−t,t](x− y)1I[−s,s](y) = 1I[−t,t](x− y)1I[−s,s](y)1I[−(s+t),t+s](x).

Part (ii) can be obtained by direct computation. As for part (iii), by the nonnegativity of f
and non-decreasing property of t→G(t, x) with x ∈R fixed, we see that

sup
(s,x)∈[0,t]×R

∫
R
f(dz)G (s,x+ z)≤ sup

x∈R

∫
R
f(dz)G (t, x+ z)

Next, thanks to the first inequality in (3.31), for any (t, x) ∈R+ ×R, we have that∫
R
f(dz)G (t, x+ z)≤ t−1

∫
R
f(dz)G(2t, x+ z)(2t− |x+ z|)

=
2

t

∫∫
R2

dyf(dz)G(t, x+ y)G(t, y− z) =
1

πt

∫
R
eix
∣∣∣∣sin(tξ)ξ

∣∣∣∣2 f̂(dξ)
≤ 1

πt

∫
R

∣∣∣∣sin(tξ)ξ

∣∣∣∣2 f̂(dξ) = 2

t

∫∫
R2

dyf(dy′)G(t, y)G(t, y− y′).

Then by the second inequality in (3.31), we see that
∫
R f(dz)G (t, x+ z)≤ 2k(2t). Notice

that thanks to Dalang’s condition (1.9), 1
πt

∫
R

∣∣∣ sin(tξ)ξ

∣∣∣2 f̂(dξ)≤ Ct

∫
R

f̂(dξ)
1+|ξ|2 <∞ for all t >

0. This proves part (iii). The proof of Lemma 3.12 is complete.
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PROOF OF LEMMA 3.13. We decompose J0(t, x) in (1.26) into two parts:

J0,1(t, x) :=
1

2
[µ0(x+ t) + µ0(x− t)] and J0,2(t, x) :=

∫
R
µ1(dy)G(t, x− y).

Then, using (3.32), we have

J1,1(t, x) :=

∫ t

0
ds

∫∫
R2

dyf(dy′)G (t− s,x− y)G
(
t− s,x− y+ y′

)
J0,1(s, y)

2

≤2k(2t)

∫ t

0
ds

∫
R
dy G (t− s,x− y)J0,1(s, y)

2 =: 2k(2t)Θ1(t).

Notice that

Θ1(t)≤
∫ t

0
ds

∫
R
dyG (t− s,x− y)

(
µ2
0(y+ s) + µ2

0(y− s)
)

=

∫
R
dz µ2

0(z)

∫ t

0
ds [G (t− s,x− z + s) +G (t− s,x− z − s)] .

Because s − |x − z| ≤ |x − z ± s| ≤ t − s, we see that the above ds-integral is bounded
t1I{|x−z|≤t} = 2tG(t, x− z). Hence, the condition µ0 ∈ L2

loc (R) implies that

J1,1(t, x)≤ 2tk(2t)

∫ x+t

x−t
µ2
0(z)dz = 4t k(2t)

∫
R
dzG(t, x− z)µ2

0(z)<∞.

It remains to show that

J1,2(t, x) :=

∫ t

0
ds

∫
R2

dyf(dy′)G (t− s,x− y)G
(
t− s,x− y+ y′

)
J0,2(s, y)

2 <∞.

Thanks to (3.32), we see that

J1,2(t, x)≤ 2k(2t)

∫ t

0
ds

∫
R
dyG (t− s,x− y)J0,2(s, y)

2 =: 2k(2t)Θ2(t).

By the Minkowski inequality with respect to the dy-integral, we can write

Θ2(t) =2

∫
R
[G(t− s,x− y)J0,2(s, y)]

2 dy

≤2

[∫
R

(∫
R
G(t− s,x− y)G(s, y− z)2dy

)1/2

|µ1|(dz)

]2
.

Due to (3.30), we see that
∫
RG(t− s,x− y)G(s, y − z)2dy ≤ s

41I[−t,t](x− z). Therefore,

Θ2(t)≤ s
2

(∫ x+t
x−t |µ1|(dz)

)2
and

J1,2(t, x)≤ 2t2 k(2t)

(∫ x+t

x−t
|µ1|(dz)

)2

= 8t2 k(2t)

(∫
R
|µ1|(dz)G(t, x− z)

)2

<∞.

This completes the proof of Lemma 3.13.

3.7. Proofs of technical lemmas.

PROOF OF LEMMA 3.1. Since |σ| is concave on [M0,∞), we can find a non-increasing
and right-continuous function g+ on [M0,∞) such that |σ(x)| − |σ(M0)| =

∫ x
M0

g+(y)dy

holds for all x ∈ [M0,∞); cf. [NP18, Theorems 1.4.2 and 1.5.2]. The properties of g+ follows
from simple exercises in calculus. The case for g− can be proved similarly.
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PROOF OF LEMMA 3.3. The representations in both (3.2) and (3.3) are direct conse-
quences of the definitions of σ±

p in (3.1) and Lemma 3.1. Part (ii) is an immediate conse-
quence of part (i). Now we prove part (iii). It suffices to show the case for σ+

p (·) since the
case for σ−

p (·) can be proved in the same way and the case for σp follows from those two
cases. Let g+ be given in (3.2). We need to show that g+p is non-increasing on [Mp,∞) with
some M ≥ M0. We know that g+ is non-increasing on (M0,∞), it suffices to show that
φ(x) = |σ(x)|

x is non-increasing for x large enough. To show this property, we write

|σ(x)|=
∫ x

M0

g+(y)dy+ |σ(M0)|.

Thus for almost every x ∈ (M0,∞),

φ′(x) =x−2

[
g+(x) (x−M0)−

∫ x

M0

g+(y)dy+ g+(x)M0 − |σ(M0)|
]

≤g+(x)M0 − |σ(M0)|,

where the last inequality follows from the fact that g+ is non-increasing on (M0,∞). Since
limx↑∞ g+(x) = 0 (see Lemma 3.1), we conclude that g+(x)M0 − |σ(M0)|< 0 for x large
enough. In other words, there exists M ≥ M0, such that φ is non-increasing on [M,∞).
Therefore, σ+

p is concave on [Mp,∞). For the same reason, we can show that σ−
p , and thus

σp, are also concave on [Mp,∞) with a possibly different M ≥M0. This proves part (ii).
Finally, when M0 = 0, then g+(x)M0−|σ(M0)|=−|σ(0)| ≤ 0 for all x≥ 0. Hence, part (iv)
follows. This completes the proof of Lemma 3.3.

PROOF OF LEMMA 3.4. In the following, we will prove (3.4) only. The proof of (3.5)
is similar. Let p > 0 and U ∈ Lp(Ω). Set α := P(U ≥M). It is clear that when α = 0, the
inequality (3.4) is trivially true. So, we may assume that α > 0. Since σ+

p (·) is concave on
[Mp,∞) (see Lemma 3.3), we can apply Jensen’s inequality to see that

E
[
σ+
p (|U |p)1I[M,∞)(U)

]
≤ ασ+

p

(
1

α
E
[
|U |p1I[M,∞)(U)

])
≤ ασ+

p

(
1

α
E [|U |p]

)
,

where the last inequality is due to the monotonicity of σ+
p (·); see Lemma 3.3. Denote x =

E[|U |p]. Since x/α≥Mp, by the monotonicity and the concavity of σ+
p (·),

σ+
p (α

−1x)≤ σ+
p (M

p + α−1x)≤σ+
p (M

p) + α−1
(
σ+
p (M

p + x)− σ+
p (M

p)
)

≤α−1σ+
p (M

p + x).

This implies that

E
[
σ+
p (|U |p)1I[M,∞)(U)

]
≤σ+

p (Mp +E [|U |p]) = σ+
p

(
Mp + ∥U∥pp

)
,

which completes the proof of Lemma 3.4.

PROOF OF LEMMA 3.5. Fix an arbitrary p≥ 2. By the subadditivity of θ2/p(·),

∥σ(U)∥2p ≤
(
E
[
|σ(U)|p1{|U |≤M}

])2/p
+
(
E
[
|σ(U)|p1{u≥M}

])2/p
+
(
E
[
|σ(U)|p1{u≤−M}

])2/p
≤K2

M +
(
θ2/p ◦E≥ ◦ θp ◦ |σ|

)
(U) +

(
θ2/p ◦E≤ ◦ θp ◦ |σ|

)
(U)

=K2
M +

(
θ2/p ◦E≥ ◦ σ+

p ◦ θp
)
(U) +

(
θ2/p ◦E≤ ◦ σ−

p ◦ θp
)
(U),
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where E≥ is the expectation given {U ≥M}, i.e., E≥ (ϕ(U)) = E
(
ϕ(U)1{U≥M}

)
for any

measurable function ϕ; and E≤ is defined similarly. Set y :=Mp + ∥U∥pp. By Lemma 3.4,

∥σ(U)∥2p ≤K2
M +

(
θ2/p ◦ σ+

p

)
(y) +

(
θ2/p ◦ σ−

p

)
(y)

=K2
M +

(
σ+
2 ◦ θ2/p

)
(y) +

(
σ−
2 ◦ θ2/p

)
(y)

≤K2
M + σ+

2

(
M2 + ∥U∥2p

)
+ σ−

2

(
M2 + ∥U∥2p

)
,

where the last step is due to the subadditivity of θ2/p(·) and the monotonicity of σ±
2 (·).

PROOF OF LEMMA 3.7. The finiteness of F−1(k) + b is a consequence of part (ii) of
Hypothesis 1.2. Thus it suffices to show the first inequality in (3.9). To this end, we first
prove it by verifying x≤ γ0(k) + 2b, with

γ0(k) := inf

{
x ∈ (M2,∞) :

σ2(x)

x
≤ 1

k
and g2(x)≤

1

2k

}
.

Here, g2(·) := g+2 (·) + g−2 (·) with g+2 (·) and g−2 (·) defined in (3.2) and (3.3), respectively.
Note that γ0(k)≥M2 and σ2(·) is concave on [M2,∞). Thus, if x≥ γ0(k) + 2b, we have

kσ2(x) + b=kσ2(γ0(k)) + k

∫ x

γ0(k)
g2(y)dy+ b≤ γ0(k) +

1

2
(x− γ0(k)) + b

≤γ0(k) +
1

2
(x− γ0(k)) +

1

2
(x− γ0(k)) = x.

In the next step, we can show that

γ0(k)≤ 2F−1(k), for all k > 0.(3.33)

First if M = 0, then

2

F (x)
=

x

2σ2(x)
≤ x

σ2(x)
= x

(∫ x

0
dyg2(y)

)−1

≤ 1

g2(x)
,

by the non-increasing property of g2(·), and (3.33) follows immediately from the definition
of F−1; see (1.16). On the other hand, if M > 0, for any x≥ 2F−1(k)≥ 3F−1(k)/2,

g2(x)≤
σ2(x)− σ2(M

2)

x−M2
≤ σ2(3F

−1(k)/2)− σ2(M
2)

3F−1(k)/2−M2
.

Notice that F−1(k)≥ 2M2 implies 3F−1(k)/2−M2 ≥ F−1(k) and

σ2(3F
−1(k)/2)− σ2(M

2)≤ 3F−1(k)/2−M2

F−1(k)−M2

∫ F−1(k)

M2

dyg2(y)≤ 2σ2
(
F−1(k)

)
.

Combining above inequalities and (3.7), we get

g2(x)≤
2σ2

(
F−1(k)

)
F−1(k)

=
1

2F ◦ F−1(k)
≤ 1

2k
.(3.34)

This implies that (3.33), and thus completes the proof of Lemma 3.7.

PROOF OF LEMMA 3.8. Without loss generality, we assume that µ is nonnegative. Oth-
erwise, one simply replaces µ by |µ|. Since f is a nonnegative-definite tempered measure,
and the heat kernel is rapidly decreasing at infinity, by the Plancherel theorem, we can write

sup
x∈Rd

∫
Rd

f(dy) pt(x− y) = sup
x∈Rd

(2π)−d

∫
Rd

dξ e−ix·ξ− t|ξ|2

2 f̂(ξ) = k(t),
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from which one proves (3.10). As for (3.12), we proceed with a general d ≥ 1 and make
the restriction to d = 1 when some integrability issue comes up. By the Cauchy-Schwarz
inequality with respect to the dy integral, we see that∫

Rd

dy pt−s(x− y)J 2
0 (s, y)≤

[∫
Rd

|µ|(dz)
(∫

Rd

dy pt−s(x− y)ps(y− z)2
)1/2

]2
.

Because p2t (x) = (4πt)−d/2pt/2(x)≤ (2πt)−d/2pt(x) for all (t, x) ∈R+ ×Rd, we can write

(2πs)d/2
∫
Rd

dy pt−s(x− y)ps(y− z)2 ≤
∫
Rd

dy pt−s(x− y)ps(y− z) = pt(x− z),

which implies that

J1(t, x)≤(2t)d/2
∫ t

0
ds s−d/2k(t− s)

(∫
Rd

|µ|(dz)pt/2(x− z)

)2

=(2t)d/2J+ (t/2, x)2
∫ t

0
ds s−d/2 k(t− s).

Notice that the integral against the time argument in the last expression is finite for all t > 0,
if and only if d= 1. Moreover, in case d= 1, we can deduce that∫ t

0
ds s−1/2k(t− s)≤ (2π)−1/2

∫ t

0
ds s−1/2(t− s)−1/2

∫
R
f(dz) e−

x2

2t = πt1/2k(t).

Therefore, J1(t, x)≤
√
2π t k(t)J+ (t/2, x)2 <∞. Finally, notice that k(t) is a nonincreas-

ing function of t. From (1.10), 2h(t)≥ 2h(t/2) =
∫ t
0 dsk(s)≥

∫ t
0 dsk(t) = tk(t). Plugging

this inequality to the above inequality for J1 verifies (3.12).

4. Examples. In this section, we present some examples for the moment bounds with
various sublinear diffusion coefficient σ in examples (1.4)–(1.6). The proofs are direct appli-
cations of Theorems 1.6, 1.8, 1.11, and 1.12, and are omitted for conciseness.

4.1. F and F−1 for various σ. In this subsection, we present explicit expressions for
F (·) and its inverse F−1(·), both depending solely on σ, as summarized in Figure 4.1.

PROPOSITION 4.1. Let σ(u) = |u|
(r+|u|)1−α for u ∈ R, with r ≥ 0 and α ∈ [0,1). Then, σ

satisfies Hypothesis 1.2 with M0 = 0; and F and F−1 take the following forms:

F (u) =
1

8

(
r+ u1/2

)2(1−α)
, for all u≥ 0, and

F−1(x) =
(
(8x)1/(2(1−α)) − r

)2
1I{x≥8−1r2(1−α)}.

In particular, F−1(x)≤ (8x)1/(1−α) for all x≥ 0.

The diffusion term σ in the following examples does not exhibit the global concavity,
which motivates us to propose the asymptotic concave condition in Hypothesis 1.2.
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β

β
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0

0

1/4

0

α
=

1
α
∈

(0
,1
)

α
=

0

κ
<

1
κ
=

1
1
<

κ

u

σ(u)

bounded

super linear

ue−β(log log(e+u2))κ

u

(r+ u)1−α

[
log

(
e+ u2

)]−β

σ(u) =

exp

(
exp

([
1
2β log(8x)

]1/κ))

exp
(
(8x)1/(2β)

)

exp

(
exp

([
1
2β log(8x)

]1/κ))

(8x)1/(2(1−α))

(8x) [logx]2β

F−1(x)≍

Fig 4.1: Summary of the asymptotics of F−1 for σ in Propositions 4.1, 4.2 and 4.3.

PROPOSITION 4.2. Suppose that σ(u) = |u|α
[
log
(
e+ u2

)]−β
, with α,β in one of the

cases in (1.5). Then, σ satisfies Hypothesis 1.2 with M0 > 0. Moreover,

F (u) =
1

8
u1−α [log(e+ u)]2β , u > 0; and

F−1(x)≍ (8x)1/(1−α)

[
log (e+ x)

1− α

]2β/(1−α)

, x→∞, Cases (i) and (ii),

F−1(x) =
(
exp

(
23/(2β)x1/(2β)

)
− e
)
1I{x>8−1}, Case (iii).

In particular, in Cases (i) and (ii), F−1(x)≲
[
x (logx)−2β

]1/(1−α)
as x→∞.

PROPOSITION 4.3. The diffusion coefficient σ(u) = |u| exp
(
−β
(
log log

(
e+ u2

))κ)
with κ > 0 and β > 0 satisfies Hypothesis 1.2 with some M0 > 0. Moreover, in this case,

F (u) =
1

8
exp (2β (log log(e+ u))κ) , for all u > 0, and

F−1(x) =
(
exp

{
exp

((
(2β)−1 log(8x)

)1/κ)}− e
)
1I{x>1/8}.

4.2. Moment growth, tail probability and spatial asymptotics for SHE. In this part, we
showcase the moment growth, tail probability, and spatial asymptotics for solutions for SHEs
as applications of Theorems 1.6, 1.8, and 1.11. For conciseness, we focus the case when σ is
defined in Proposition 4.1. The results for other scenarios are summarized in Figure 4.2.
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PROPOSITION 4.4. Let σ be given in Proposition 4.1, and let u be a solution to SHE (1.1)
under the same setting as Theorem 1.6, but with the diffusion coefficient σ given in Proposi-
tion 4.1. Then, for all (p, t, x) ∈ [2,∞)×R+ ×Rd, it holds that

∥u(t, x)∥2p ≤C
[
J 2
0 (t, x) + ph(t) + (ph(t))1/(1−α) + h(t)−1J1(t, x)

]
.

Furthermore, we have the following three cases:

(i) If d= 1 and f = δ, then

∥u(t, x)∥2p ≤C

(
J 2
0 (t, x) + p

√
t+
(
p
√
t
)1/(1−α)

+J 2
+(t/2, x)

)
.(4.1)

Moreover, if µ(dx) = u0(x)dx with u0 ∈ L∞(R), then ∥u(t, x)∥2p ≤C
(
p
√
t
)1/(1−α), t≥ 1.

(ii) If d= 1 and f(x) = |x|−β with β ∈ (0,1), then

∥u(t, x)∥2p ≤C

(
J 2
0 (t, x) + p t1−β/2 +

(
p t1−β/2

)1/(1−α)
+J 2

+(t/2, x)

)
.

If µ(dx) = u0(x)dx with u0 ∈ L∞(Rd), then ∥u(t, x)∥2p ≤C
(
p t1−β/2

)1/(1−α)
, t≥ 1.

(iii) If f = |x|−β with β ∈ (0,2∧ d), then for all d≥ 1 it holds that

∥u(t, x)∥2p ≤C

(
J 2
0 (t, x) + p t1−β/2 +

(
p t1−β/2

)1/(1−α)
+ t−1+β/2J1(t, x)

)
.(4.2)

Moreover, (a) if µ(x) = |x|−ℓ with ℓ ∈ (0,2∧ d), then we have

∥u(t, x)∥2p ≤C

(
t−ℓ +

(
p t1−β/2

)1/(1−α)
+ p t1−β/2

)
;(4.3)

(b) if µ(x) = eℓ|x| with ℓ ∈R, then with universal constants C1 and C2 > 0,

∥u(t, x)∥2p ≤C

(
eC1ℓ2t+C2ℓ|x| + p t1−β/2 +

(
p t1−β/2

)1/(1−α)
)
.(4.4)

4.3. Results for SWEs. Let u be a solution to SWE (1.25) with space-time white noise.
Assume the diffusion coefficient σ given in Proposition 4.1. Then Theorem 1.12 implies that

∥u(t, x)∥2p ≤C
(
J 2
0 (t, x) + t−2J1(t, x) + p t2 +

(
p t2
)1/(1−α)

)
.(4.5)

Furthermore, with the initial condition µ0 ≡ 1 and µ1 ≡ 0,

logP (|u(t, x)| ≥ z)≲−t−2z2(1−α), as z →∞ and

sup
|x|≤R

u(t, x)≲
(
t2 logR

)1/(2(1−α))
, a.s., as R→∞.
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√
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Fig 4.2: Summary of moments bounds and spatial asymptotics of various σ’s given in Propo-
sitions 4.1–4.3 in case of d= 1, space-time white noise, and bounded initial conditions.
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