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Single-photon detectors are “blind” after the detection of a photon, and thereafter display a
characteristic recovery in efficiency, during which the number of undetected photons depends on the
statistics of the incident light. We show how the efficiency-recovery, photon statistics and intensity
have an interdependent relationship which suppresses a detector’s ability to count photons and
measure correlations. We also demonstrate this effect with an experiment using n such detectors to
determine the nth order correlation function with pseudothermal light.

Many photonic quantum technologies depend on ef-
ficient detectors which are sensitive to the arrival of
a single quanta of light [1, 2]. Photons are an ideal
qubit, due to their many degrees of freedom, low deco-
herence and high speed [3, 4]. In recent decades single-
photon detectors have driven fundamental tests of quan-
tum mechanics, from the original Bell tests [5], through
to tests of non-locality [6] and local realism [7]. In ad-
dition, the continued development of these detectors is
driving advances in range-finding [8], advanced imaging
[9], quantum-secure communications [10], and photonic
quantum computing [11]. At the heart of these tech-
nologies, the concepts of measurement, correlation and
metrology are essential to verify and implement the op-
erations. Here we study how real single-photon detectors
count photons and quantify the fidelity with which they
measure intensity and correlation.

Single-photon detectors, such as Avalanche Photo
Diodes (APDs) based on silicon [12] or InGaAs [13], can
be purchased in convenient Peltier-cooled portable units
to measure photon arrival times within a few hundred
picoseconds in Geiger mode. After each photon detec-
tion, these devices must be reset by sweeping away carri-
ers generated in the avalanche, which is usually achieved
with an embedded electrical circuit. During this reset,
which typically takes tens of nanoseconds, the device is
unable to count photons, preventing measurement of a
light source’s statistics with a single detector. This is
known as the detector’s ‘dead time’. Immediately follow-
ing the dead time, there is an associated ‘reset time’ be-
fore the detection efficiency fully recovers [2]. Hereafter,
we call the full variation in efficiency after a detection
event the temporal efficiency-recovery (TER). More re-
cently, superconducting nanowire single-photon detectors
(SNSPDs) [14] have been developed that offer efficiencies
above 90% [15], timing accuracy of tens of picoseconds,
and sub-Hz dark count rates. These devices consist of a
meandering superconducting wire [16], which upon ab-
sorption of a single-photon is driven into a normal (re-
sistive) state, resulting in a measurable bias across the
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device. As with an APD, once the SNSPD is in this re-
sistive state it suffers a TER lasting tens of nanoseconds,
during which thermal energy must be removed to return
to its full efficiency.
It is an on-going challenge to develop single-photon and

multi-photon light sources with high brightness. Semi-
conductor quantum dot devices have been shown to give
rise to detection rates approaching 50MHz [17]. Both
quantum dots and spontaneous parametric down con-
version sources can now be used to execute certain al-
gorithms at speeds which challenge classical computers
[18–20]. At these high photon rates commercial single-
photon detectors saturate, impeding their ability to count
all detection events [21, 22].
In this work, we theoretically consider the TER-

induced saturation of single-photon detectors at high
rates with different photon statistics. We simulate the re-
sponse of these detectors using the concept of the waiting
time distribution, Ω (dt), which describes the distribution
of time intervals, (dt), between consecutive detections.
Using Ω (dt) we characterize the TER of a SNSPD show-
ing it is not an abrupt step, but a smooth time-varying
function [2]. Furthermore, we clarify how the TER and
source statistics must both be considered to quantify the
efficiency. Finally, we show how TER impacts measure-
ment of positive multi-photon correlation, such as a gen-
eralized version of the famous Hanbury-Brown and Twiss
experiment [23] to determine the nth order photon corre-
lation function. In this experiment a pseudothermal light
source is used, whose intensity can be changed whilst re-
taining the same photon statistics. These results show
that detector imperfections must be factored into the
analysis of photon correlation, whether it be in quantify-
ing the degree of entanglement, in quantum light source
metrology, or in optical read out of quantum photonic
technologies, which will be of increasing importance as
sources and detectors are developed to operate at higher
rates.
Consider a single-photon detector with a TER de-

scribed by a Heaviside function after a detection event,
during which the detector is completely “blind” and then
instantaneously recovers at time τ = td, where td is the
dead time. Therefore, all photons arriving after an initial
detection at time zero in Fig. 1(a) up until td, are not
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FIG. 1. Photon statistics of a light source determines how
the detected photon rate varies with increasing incident flux.
(a) Probability of second photon detection after an initial
click relative to a Poissonian source (green, solid), shown for
bunched thermal (red, dotted) and 2-level antibunched source
(blue, dashed) with characteristic timescales equal to the de-
tector response time td. (b) Simulation of unitless detected
photon rates (tdR

′) for the three sources, as a function of the
incident flux (tdR). A straight grey line shows the detection
rate in the absence of TER. Horizontal dashed line shows the
saturated rate.

registered. It follows that, regardless of source statistics,
a detector with this behaviour must have a saturated de-
tection rate no greater than t−1

d .
Fig. 1(a) also shows the relative probability of a sec-

ond photon being incident on the detector at time τ
after an initial detection event at time τ = 0, for two
archetypal light sources (in blue and red), compared to a
Poissonian source of the same intensity (in green). This
relative probability is equal to the second-order correla-
tion function, g(2) (τ) , measured in the Hanbury-Brown
and Twiss experiment from the distribution of photon
arrivals at two independent detectors [23]. Its form clas-
sifies three different signatures of photon statistics: Pois-
sonian, bunched and antibunched. In their simplest form
these are, respectively:

g(2) (τ) = 1, (1)

g(2) (τ) = 1 + exp

[
−ln|2| · τ2

T 2

]
, (2)

g(2) (τ) = 1− exp [− |τ |/T ] , (3)

where T is the characteristic timescale of the bunch-
ing/antibunching. To illustrate this, in Fig. 1(a) we set
T = td. Since the temporal distribution of photons from
each source differs, it follows that the number of photons
‘missed’ during the detector recovery also varies. For a
Poissonian light source the detection rate reduces to the
simple form

R′ = R/ (1 +R · td) , (4)

where R is the detectable event rate in the absence of
TER. For a bunched light source each detection event
initiates a TER during which the detector misses a larger
fraction of the incident photons, and the detection rate
R′ is therefore lower than the Poissonian case, even when
the source intensities are the same. Conversely, for an an-
tibunched source a smaller fraction of photons are missed

during the TER, so the detection rate R′ is higher than
the Poissonian case. A calculation of the variation in de-
tected photon rate for the three cases is shown in Fig.
1(b) with the rates presented in unitless form (normal-
ized to t−1

d ). For comparison a dashed horizontal line at
the saturation detection rate is included. Details of this
calculation can be found in the Supplementary Material.
The suppressed ability of a typical single-photon detec-

tor to register further photons within its TER leads to a
rate-dependent efficiency factor, in addition to its intrin-
sic internal quantum efficiency. We define an efficiency
factor, ϵ(R) = R′/R, which is the fraction of photons de-
tected relative to the photon rate from an otherwise iden-
tical detector without TER. Fig. 2(a) shows simulations
of ϵ (R) (see Supplementary Material for more details of
the model) for the case when td = 43ns which we show
later is typical for detectors used in our experiments. The
green solid line shows the case for a Poissonian state ex-
tracted from the model

ϵ (R) = (1 +R · td)−1 · ϵ (R) , (5)

which agrees with the expected form as in Equation 4,
and reaches a value of 0.5 at R = t−1

d , for the Pois-
sonian source. A red dotted line shows ϵ (R) for the
thermal source shown with timescale td, and the pink
dotted line shows predictions for a thermal source with a
HWHM td/4. Conversely, blue and pale-blue dashed lines
show the results for antibunched sources with timescale
td and td/4, respectively. We see that ϵ (R) converges on
the Poissonian case for sources with bunching and anti-
bunching at faster timescales. Several sources do have
timescales relevant to the ∼ 40ns TER of these com-
mercial SNSPDs: semiconductor quantum dots display
antibunching on the nanosecond timescale under non-
resonant excitation [17], but have been reported to dis-
play complex bunching behaviour on nanosecond to mil-
lisecond times due to charge trapping [24]. By contrast,
emission from the nitrogen vacancy center in diamond
displays antibunching and bunching on timescales of sev-
eral tens of nanoseconds [25].
We determine the TER of our commercial SNSPDs,

η (dt), from measurements that time-tag every photon
detection event from a Poissonian source attenuated to
a rate well below t−1

d , as follows. From the time-tagged
data file we calculate the time difference, dt, between
consecutive detection events only and subsequently the
distribution of these consecutive time differences, which
is the waiting time distribution, Ω (dt). Fig. 2(b) shows
that at times much greater than td the waiting time dis-
tribution Ω (dt) has an exponentially decaying trend with
exponent determined by the photon detection rate (black
line). Normalising out this exponential trend reveals the
response of the detector immediately after a photon de-
tection, η(dt) in Fig. 2(b) (red line). For the SNSPDs
under test (IDQuantique ID281) the TER has a smoothly
varying form that returns to 50% of its long term value
at 43 ns.
The TER in Fig. 2(b), η (dt), leads to a small devi-

ation in the saturation curve, relative to the predicted



3

FIG. 2. Understanding the rate-dependent efficiency of a real single-photon detector. (a) Detector efficiency factor ϵ(R) as a
function of the detectable event rate (R) in the absence of TER. Poissonian light source source (green, solid line). Bunched
thermal light source with temporal HWHM td (red, dotted) and td/4 (pink, dotted). Antibunched light sources with timescale
T = td (blue, dashed), td/4 (pale blue, dashed).(b) Experimental waiting time distribution (black) and temporal efficiency
recovery (TER), η (dt) (red). Insert shows the raw data used to determine the waiting time distribution. (c) Detector efficiency
factors for detectors with abrupt (solid lines) and experimental (dashed) TER response, for Poissonian (green), Bunched (red)
and antibunched (blue) photon statistics, as a function of the detection rate, R′.

response for a detector with a Heaviside TER. To sim-
ulate this we use a numerical model of the waiting time
distribution, using the experimentally determined η (dt)
(see Supplementary Material). The inverse of the mean-
waiting time, ⟨Ω (dt)⟩−1 is the detection rate, R′. Fig.
2(c) shows ϵ(R′) for the three sources described in Fig.
1(a), when the detector has a Heaviside TER (solid lines)
and with the real detector response (dashed lines). We
see the data has similar ϵ(R′) for the two TER responses
below t−1

d . However, the SNSPD has some finite effi-
ciency at times below td, which ensures that it is possi-
ble, albeit at low efficiency, to register detection events at
rates above t−1

d . It is at these highest detection rates the
true TER response has the greatest impact on the pho-
ton detection rate and correlation. However, as we will
show, the TER can distort the correlation two orders of
magnitude below the saturated rate.

We now show experimentally that the degree of cor-
relation is intensity dependent as a result of this TER-
induced saturation. Pseudothermal light was generated
from the speckle of light reflected from a rotating ground
glass diffuser and split equally between an array of com-
parable SNSPDs to measure the second, third and fourth-
order correlation functions, Fig. 3(a). Examples of
g(2) (τ) are shown in Fig. 3(b) at detected rates of ∼ 105

counts-per-second (cps) where g(2)(0) = 2.00 (blue),
∼ 106 cps where g(2)(0) = 1.79 (red) and ∼ 107 cps where
g(2)(0) = 1.18 (black) - showing a reduced bunching am-
plitude at higher photon rates. In these measurements
the photon statistics have not changed, only the incident
photon rate, and yet the correlation is suppressed at rates
more than two orders of magnitude below saturation.

In some applications it is insufficient to measure the
second-order correlation and higher-order correlations
are required to understand the internal dynamics of a
source [26] or to implement a quantum protocol, such as

teleportation [27]. Using the same apparatus we mea-
sured a series of higher-order correlations from the pseu-
dothermal source, such as the third-order correlation
shown in Fig. 3(c). At photon rates below 105 cps (more
than two orders of magnitude below the detectors’ sat-
urated rates) the amplitude of the correlation functions
g(n)(0, 0...) approach the expected values n! for a pseu-
dothermal source. However, at higher detection rates we
observe the amplitude of the second-, third- and fourth-
order correlations g(n)(0, 0...) are strongly dependent on
detection rate, as shown in Fig. 3(d-f), tending to unity
at saturation of the detector.
We now prove these observations are a direct result

of the rate-dependent efficiency of single-photon detec-
tors. The measurements in Fig. 3 arise from correla-
tions between the detected photon rates, R′, so to predict

g
(n)
exp(0, 0...) we can use a generalized nth-order function:

g(n)exp(0, 0...) =
⟨
∏n

i=1 R
′
i⟩∏n

i=1⟨R′
i⟩

=
⟨
∏n

i=1 ϵi(Ri) ·Ri⟩∏n
i=1⟨ϵi(Ri) ·Ri⟩

, (6)

where triangular brackets denote the mean and ϵi(Ri) is
the detection efficiency factor for the ith detector. It is
well known that the intensity (and thus rate, R) distri-
bution of thermal light, ξ (R), is:

ξ (R) ∝ 1

⟨R⟩
exp

[
−R

⟨R⟩

]
, (7)

which can be used to determine the mean values in Equa-
tion 6. Further information on the evaluation of Equation
6 is given in the Supplementary Material. We assume
the light is split equally between identical detectors to
generate the predicted curves in Fig. 3 (d)-(f) showing
g(n)(0, 0...) as a function of the photon detection rate, R′.
The experimental data follows the predicted correlation
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FIG. 3. The effect of TER on the higher order photon correlations of a pseudothermal source. (a) Apparatus used to measure
the higher order correlations. (b) Second order correlation function at detected photon rates of ∼ 105 cps (blue circles), ∼ 106

cps (red circles) and ∼ 107 cps (black circles). Each dataset is fitted with a Gaussian of width ∼418 ns and varying amplitude
(solid lines) (c) third-order correlation function at a detected photon rate of ∼ 1 × 104 cps. The lower row of panels shows
the maxima of the (d) second order correlation function, (e) third order correlation function and (f) fourth order correlation
function, for coincident detections as a function of detected photon rate, R′. Results of simulations shown as a solid line. Errors
are estimated from the square-root of the number of coincidence events.

functions which tend to n! at low R′ and to unity at high
R′. Deviations between the experimental data and the
predicted curve may be a result of using periodic speckle
to generate pseudothermal light that does not perfectly
follow Equation 7 (see Supplementary Material for fur-
ther discussion).

We determine η (dt) by averaging over many events at
R′ << t−1

d , and assume the smoothly varying TER is
identical for each event and R′. However, the nanowire
detector has an inhomogeneous width, which would lead
to an absorption and position dependent response, on
average reproducing η (dt). We leave experimental in-
vestigation of this effect to future work. However, our
experiment shows that the time-averaged TER is key to
understanding the rate-dependence of g(n)(0, 0...).

In the future, measurement systems can be designed to
ameliorate this issue by ensuring light incident on each
detector displays Poissonian statistics, even if the pho-
tons impinging on separate detectors are correlated, such
as by using non-degenerate entangled photon pair sources
and separating the signal and idler. Additionally, the de-
velopment of photon detectors with faster TER, using

active electronics to quench the SNSPD [28], will reduce
the magnitude of the effect. Another approach is the de-
velopment of arrayed multipixel single photon detectors
[29]. If we consider the measurement of n-fold correla-
tion using a m-fold splitter and m-detectors, we can sum
all n-fold correlations within the array. The coincidence
rate, C(n), scales as:

C(n) ∝ m!

n!
.

[
ϵ(R/m) ·R

m

]n
, (8)

for high photon rates and low numbers of detectors. Fig.
4 shows a simulation of the g(2)(0) value of thermal light
and C(n = 2) as a function of m, the number of ways the
light is split, for three different fluxes near saturation.
Increasing m reduces the photon rate on each detector,
improving the fidelity of the correlation to the real value.
The addition of more detectors reduces the coincidence
rate for a given detector-pair, but the summation across
all pairs gives an advantage in acquisition rate at high
m, albeit at a considerable cost to hardware complexity.
This should act as a strong motivation for the develop-
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ment of multi-pixel single-photon detectors.

FIG. 4. Measurement of second-order correlation with an
array of m-detectors. (a) g(2)(0) predicted from summation
of pair-wise correlations across m-detectors using a m-way
splitter, for 3 different incident photon rates. (b) Correspond-
ing rate at which the correlation accumulates per nanosecond
time bin.

In conclusion, our analysis is essential for the develop-
ment of high photon rate quantum technologies and will
have significant consequences when the degree of corre-
lation is used in protocols to certify randomness [30], se-

cure communications [31] or perform tests of quantum
fundamentals [32]. We have shown that photon rates
and correlations are underestimated by detectors oper-
ating within two orders of magnitude of their saturated
rate. Thus, to accurately measure a source with a detec-
tor close to its saturation rate, it is essential to carefully
calibrate (i) the TER of the detector, which is not sim-
ply parameterized by a single td value, (ii) the detector’s
internal quantum efficiency long after a detection event
and (iii) the statistics of the source. As quantum pho-
tonic technologies employing high photon rates continue
to be developed, it is important to properly account for
imperfections in detector performance.
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