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Summary

Algebra objects are categorical structures that appear in a wide range constructions and

classification problems throughout category theory and mathematical physics. However, they

can be difficult to find and describe explicitly so it is of great importance to develop methods

of detecting and classifying them. The aim of this work is to develop such methods in the

setting of fusion categories, which can be viewed as a categorical generalisation of a ring. We

explore two approaches to this problem.

We shall describe how different types of monoidal functors can be used to preserve

algebraic structures, and shall construct a specific functor with the aim to classify algebra

objects in the monoidal center of the category of group-graded vector spaces, ZpVectωGq. We

shall use an explicit description of this category in terms of Yetter-Drinfeld modules over

the group Hopf algebra, and explore which algebraic structures can be preserved using the

constructed functor. We shall classify a class of Frobenius algebras in terms of a choice of

cohomological data.

We also look at an alternate approach, which works not with an explicit category but with

a fusion ring that can be extracted from the data of a fusion category. The representation

theory of these rings will be studied using Non-negative Integer Matrix representations

(NIM-reps), and we will describe how NIM-reps can be constructed from algebra objects.

We shall look at this relationship in detail, providing a method of using NIM-reps to detect

potential algebra structures. We will demonstrate how this technique works by classifying

the NIM-reps of 3 families of fusion rings, providing a list of potential algebra objects and a

platform to develop this technique further.
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Notation

Here we shall fix some notation that shall be used throughout this thesis.

• k – an algebraically closed field of arbitrary characteristic,

• 1k – multiplicative identity of the field k,

• dimkpUq – the dimension of a k-vector space U over its base field,

• Z`– the semi-ring of positive integers with zero,

• G – a finite group,

• e– the group identity,

• teu – the trivial group,

• ObpCq – objects of a category C,

• HomCpX, Y q – collection of morphisms between objects X, Y P ObpCq.

v



Chapter 1

Introduction

The focus of this work is to develop methods of detecting and classifying algebra objects, which

are a generalisation of associative unital algebras over a field k to the more general setting

of category theory. These objects are useful in a wide range of mathematical areas, such as

abstract algebra and representation theory, and for providing new examples of categories.

They also appear in many constructions in topological and conformal fields theories (TFT,

CFT respectively). We shall primarily work with fusion categories, a particular type of

category endowed with a variety of structures such as a direct sum and tensor product, which

can be viewed as an abstraction of a ring.

Following the techniques used to study k-algebras, we can define modules of an algebra A

in some monoidal category C to be pairs pM,ρq consisting of an object in C and an action

morphism. By also taking all morphisms in C that are compatible with these module actions,

we can construct the category of A-modules, ModCpAq. If C is braided monoidal, a similar

category consisting of local modules, ModlocC pAq, can be constructed. These constructions

give us new categories which can possess desirable properties, depending on any additional

structure the algebra may have, for example:

Proposition ([EGNO15, Proposition 7.8.30]). Let A be a separable algebra in a fusion

category C. Then ModCpAq is a semisimple.

Theorem ([KO02, Theorem 4.5], [LW23, Theorem 4.12]). If C is a modular tensor category

and A is a rigid Frobenius algebra in C, then the category ModlocC pAq of local modules over A

in C is also modular.

As well as being a rich source of new categories, we can also use these constructions

to study the representation theory of fusion categories themselves. This is analogous to
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the ring theoretic setting, with a C-module category being another category equipped with

some functorial action on C. It has been shown in [EGNO15, Section 7.10], (see also

[Ost03a, Theorem 1], [BW85, Chapter 3]), that if C is a fusion category, then any C-module

category is equivalent to the category ModCpAq, where A is some suitably chosen algebra

object. This result is explicitly stated in Theorem 5.2.14, and is a major motivation for

the study of algebra objects as it gives us the tools to study these categories that are only

dependent on objects internal to the category itself.

Some further motivation for finding algebra objects lies in the aforementioned areas of

mathematical physics. A TFT, as described in [Ati88], consists of a symmetric monoidal

functor from a category of cobordisms to a symmetric monoidal category, such as the category

of vector spaces over k. The category of 2-dimensional oriented cobordisms, written as 2Cob,

has objects as 1 dimensional closed oriented manifolds and morphisms as 2-dimensional

oriented manifolds whose ”in-boundary” is the source object and whose ”out-boundary” is

the target object. This category is generated by a single object, the circle S1, with morphisms

being generated by six generating cobordisms (see Figure 1.1) that satisfy a number of

conditions, where composition is done by concatenation.

Figure 1.1: Generating cobordisms for 2Cob, read from left to right

If we take this to be the source category of a TFT, then the conditions on the cobordisms

give the image of S1 the structure of a Frobenius algebra. This leads to the following

classification:

Theorem ([Koc03]). There is an equivalence between the category of 2D TFTs and the

category of commutative Frobenius algebras in Vectk.

Results for algebraic structures and invariants in higher dimensional and extended TFTs

are plentiful, a selection of which can be found, for example, in [RT91,Hen96,DR21,DRGG`22,

BGR21,Meu23,SP11].

In rational CFT, modular fusion categories appear as categories of representations over

the underlying vertex operator algebras [Hua08]. Algebra objects can be used in a variety of

constructions in this setting - for example, possible extensions of a VOA are in a one-to-one
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correspondence with commutative algebras in its category of representations [CKM24,HKL15].

A second construction describes boundary conditions of a rational CFT using modules over

Frobenius algebras internal to the representation category associated to certain VOAs

[FFRS06,FRS02].

Hence these algebra objects are of great value, but finding them can be difficult in practice.

One of the main existing results comes in the setting of the pointed fusion categories VectωG.

They consist of G-graded vector spaces and grading-preserving linear maps, and have a

tensor product whose associativity is controlled by a 3-cocycle ω P C3pG,kˆq. Given a

subgroup N Ď G and a 2-cocycle κ P C2pN,kˆq, such that dκ “ ω|N , one may construct a

twisted group algebra pkrN s, κq. These algebras have the rich structure of a connected special

Frobenius algebra, and are all that is needed to describe a whole class of algebras in VectωG.

Theorem A ([Ost03b][Nat17]). Every connected separable algebra in VectωG is Morita

equivalent to some choice of twisted group algebra pkrN s, κq.

Other works classifying algebra objects and module categories include [MMP`23] for

group-theoretical fusion categories, [Gal12,MM12] for so-called near-group categories, and

recently [Kik23] for connected étale algebras in low-rank modular fusion categories. The work

done during this PhD contributes to these works by extending current results and exploring

new potential methods of finding algebras. Two papers have been published as a result of

this work: [HLRC23] and [HR24]. The structure of this thesis is as follows;

In Chapter 2, we review the basic constructions of category theory that will be used

in this thesis, moving from monoidal categories to fusion categories with the category of

G-graded vector spaces, VectωG, being used as a guiding example.

In Chapter 3, we provide an introduction to the main topic of this thesis, algebra objects.

This includes special types such as Frobenius and Hopf algebras. We shall construct their

categories of modules and describe how we can preserve the algebraic structures through

different types of functors. Important examples are discussed, and an explicit description

of the monoidal center of the category of G-graded vector spaces, ZpVectωGq, is given using

Yetter-Drinfeld modules.

In Chapter 4, we cover the results from [HLRC23], which is joint work with Robert

Laugwitz and Ana Ros Camacho. In this work we extend the classification of Theorem A to

the monoidal center ZpVectωGq. By lifting this classification, we are able to talk additionally

about commutative algebras. The case that k has characteristic 0 was covered in [DS17], and

our work extends this to a field of arbitrary characteristic.
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We first provide a definition of a lifted twisted group algebra, which allows us to view

pkrN s, κq as an algebra object in ZpVectωGq by adding a Yetter-Drinfeld action, governed by

a function ϵ : G ˆ N Ñ kˆ. This algebra is denoted by BpN, κ, ϵq and is a commutative

Frobenius algebra that provides a partial classification of algebra objects.

Proposition (See Proposition 4.2.6). Let B be a separable commutative algebra in ZpVectωGq

such that Be “ k, where k is the underlying field. Then B is isomorphic as an algebra in

ZpVectωGq to BpN, κ, ϵq for N “ tg P G | Bg ‰ 0u.

To improve this classification, it would be beneficial to remove the condition on the trivially-

graded component. This is done using a Frobenius monoidal functor, which is a functor

functor F : C Ñ D of monoidal categories that satisfies certain compatibility conditions, with

respect to the monoidal structures of C and D. These functors are particularly powerful as

they send Frobenius algebras in C to ones in D.

Theorem (See Propositions 4.3.5 and 4.3.6 ). There is a braided separable Frobenius monoidal

functor

I : ZpVect
ω|H
H q Ñ ZpVectωGq

that is compatible with the braiding structure.

Using this functor, we can transport the twisted group algebras BpN, κ, ϵq in ZpVect
ω|H
H q

to a commutative Frobenius algebra IpBpN, κ, ϵqq :“ ApH,N, κ, ϵq in ZpVectωGq. This allows

us to provide a full classification of connected, commutative separable algebras in ZpVectωGq,

completely lifting the results of [Ost03b],[Nat17] to the monoidal center.

Theorem (See Theorem 4.4.3). Let G be a finite group with ω P C3pG,kˆq, a subgroup H of

G and a tuple pN, κ, εq defining the twisted group algebra BpN, κ, ϵq in ZpVectωGq.

(a) If |N | ¨ |G : H| P kˆ, then the algebra ApH,N, κ, ϵq is a connected commutative special

Frobenius algebra.

(b) Every connected separable commutative algebra in ZpVectωGq is of the form ApH,N, κ, ϵq,

for some choice of data H,N, κ, ϵ.

In Chapter 5, we cover results from [HR24], based on work with Ana Ros Camacho. In

this project, we explored methods of detecting algebra objects without using an explicit

description of the category in question, as was the case with ZpVectωGq. This involves stripping

away much of the categorical data of a fusion category until we are are left with the underlying

ring.
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For a fusion category C, we can construct the Grothendieck ring GrpCq using isomorphism

classes of simple objects as a basis where the ring addition and multiplication are induced

from the categorical structure. These are a special type of ring called fusion rings, and

can be studied by considering Non-negative Integer Matrix representations (NIM-reps) over

them. They are of interest to us as every semisimple C-module category, and therefore every

separable algebra via ModCpAq, gives rise to a NIM-rep over GrpCq.

The converse direction is not true however, as there is no guarantee every NIM-rep can be

categorified to a C-module category. This means we need an extra condition to check whether

a NIM-rep could come from an algebra in C. We introduce this criterion in Section 5.2, and

say that the NIM-rep is admissible if it is satisfied.

In Section 5.3, we compute the NIM-reps for 3 families of fusion rings. First, we consider

the group rings RpGq, which are the underlying Grothendieck rings of VectωG. We verify that

their NIM-reps are parameterised by conjugacy classes of subgroups H Ď G [DFZ90,EK95],

and compute that all admissible algebras have the object structure of a group algebra, which

directly matches the classification in Theorem A.

The second type of fusion ring we look at are the near-group fusion rings KpG,αq, where

α P Z`. The basis of this ring is the group G plus one additional, non-invertible object X.

The multiplication of the group elements is simply given by the group operation, and with

the non-invertible object X by

Xg “ gX “ X, X2
“

ÿ

gPG

g ` αX.

Categories whose Grothendieck ring is of this form are called near-group categories, and

results on when such categorifications occur can be found in [TY98,Ost15,ENO10].

For some NIM-rep over KpG,αq, the action over the group part is exactly the same as

the group ring case, and is given by a family of subgroups tHiuiPI . We can write the action

of X in terms of a matrix X acting on the basis elements of the NIM-rep, which is subject to

the matrix equation

XBX “ α ¨ X ` |G| ¨ B´1,

where B “ diagpt|G : Hi|uiPIq. Solutions to this matrix equation that satisfy the additional

NIM-rep conditions are in general difficult to find, as there is no restriction on the order of

the matrices involved. The order of the matrices corresponds to the number of subgroups

tHiu governing the group part of the action. We provide a classification of NIM-reps when
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this is either 1 or 2 subgroups.

Proposition (See Proposition 5.3.9). NIM-reps over KpG,αq consisting of one group orbit are

parameterised completely by pairs pH, x1,1q, containing a subgroup H Ď G and a non-negative

integer x1,1 P Z2, such that α “ x1,1|G : H| ´
|H|

x1,1
, x1,1 divides |H|, and px1,1q

2|G : H| ě |H|.

Proposition (See Proposition 5.3.10). All indecomposable NIM-reps over KpG,αq consisting

of two group orbits are parameterised completely by tuples pH1, H2, x1,1, x2,2q, containing two

subgroups H1, H2 Ď G and two non-negative integers x1,1, x2,2 P Z2, such that α “ x1,1|G :

H1| ` x2,2|G : H2|, |G| divides |H1||H2|, and p
|H1||H2|

|G|
` x1,1x2,2q is a square number.

For the purpose of detecting admissible algebra structures in near-group categories, we do

not need to delve any further.

Proposition (See Proposition 5.3.14 and Corollary 5.3.15). A connected separable algebra in

KpG,αq has one of two following forms;

• For a NIM-rep parameterised by pH, c1,1q, the corresponding algebra is given by ‘hPHbh‘

c1,1X as an object.

• For a NIM-rep parameterised by pteu, G, 0, αq, the corresponding algebra object is simply

r1s, the form of the monoidal unit 1 algebra.

This result extends our understanding of algebra objects in near-group categories, building

upon work in [Gal12] and [MM12], but also highlights possible restrictions with this method.

There are seemingly no group algebra objects, other than the trivial case, appearing in near-

group categories, which is an unexpected result. This is likely to be a result of us removing

all morphism data away to get to the fusion ring, which we discuss in Remark 5.3.16.

The third fusion ring we look at comes from a modular tensor category pA1, lq, which can

be constructed out of a quantum group of type A1 at level l P Z`, following [NWZ22]. One

can take its full subcategory pA1, lq 1
2
, and we compute that there is only a single NIM-rep

over the fusion ring GrppA1, lq 1
2
q. This recovers results outlined in [EK95,Ost03a] for algebra

objects in pA1, lq 1
2
.

We discuss ways to continue both branches of this research in Chapter 6. Appendix A

contains an introduction to the cohomology of groups, which can be used to describe various

constructions appearing in Chapter 4. We also include a number of proofs missing throughout

this chapter. In Appendix B we collect some basic definitions and results relating to group

actions, which are used in Chapter 5.
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Chapter 2

Categories

Throughout this thesis, we will be working in the framework of tensor and fusion categories.

In this chapter, we shall introduce the necessary background of these areas, assuming only

basic prior knowledge of categories. The main references used are [EGNO15,Lan13,TV17]

2.1 Basics to Fusion Categories

To begin, we introduce the conditions required for a category to be abelian category, following

[Lan13].

Definition 2.1.1. A category C is called additive if

• For any objects X, Y in ObpCq, the morphism collection HomCpX, Y q is an abelian group,

and the composition of morphisms is bilinear with respect to the group operation,

• There is a zero object 0 P ObpCq,

• For any two objects X, Y P ObpCq, there is a distinguished object that is both a direct

sum and product, denoted by X ‘ Y .

Definition 2.1.2. Let C be an additive category. It is called abelian if

• Every morphism has a kernel and a cokernel,

• Every monomorphism occurs as the kernel of a morphism, and every epimorphism

occurs as the cokernel of a morphism.
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Definition 2.1.3. Let C be an abelian category. A non-zero object X P ObpCq is called

simple if its only subobjects are 0 and X. An object is called semisimple if it is isomorphic to

a direct sum of simple objects, and C is said to be semisimple if all objects have this property.

We can further say that an abelian category is k-linear if the morphisms groups are in

fact k-vector spaces, and composition of morphisms is k-linear.

Definition 2.1.4. A k-linear abelian category C is locally finite if, for any two objects

X, Y P ObpCq, HomCpX, Y q is a finite-dimensional k-vector space and every object has a

finite filtration by simple objects. Further, C is finite if, in addition, there are finitely many

isomorphism classes of simple objects.

Before we continue expanding our categorical structures, it is useful to define the following

notion.

Definition 2.1.5. Let C be a k-linear, locally finite abelian category. The Grothendieck

group GrpCq of C is the free abelian group generated by isomorphism classes Xi of simple

objects in C. To each object X P ObpCq, we canonically associate the class rXs P GrpCq given

by

rXs “
ÿ

i

rX : XisXi,

where rX : Xis is the multiplicity of Xi in a Jordan-Hölder series of X.

We now look at how to introduce products into a categorical setting, through the structure

of a monoidal category.

Definition 2.1.6. A monoidal category pC,b,1, α, l, rq is a tuple that consists of the following;

• A category C,

• A bifunctor b : C ˆ C Ñ C, called the tensor product,

• A distinguished unit object 1 P ObpCq,

• Three families of natural isomorphisms;

– Associators αX,Y,Z : pX b Y q b Z ÝÑ X b pY b Zq,

– Left unitors lX : 1 b X Ñ X,

– Right unitors rX : X b 1 Ñ X.
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This data must be such that, for all objects X, Y, Z,W P ObpCq, the following diagrams

(known as the pentagon and triangle axioms respectively) commute;

ppX b Y q b Zq b W

pX b pY b Zqq b W pX b Y q b pZ b W q

X b ppY b Zq b W q X b pY b pZ b W qq

αX,Y,ZbIdW αXbY,Z,W

αX,Y bZ,W αX,Y,ZbW

IdXbαY,Z,W

pX b 1q b Y X b p1 b Y q

X b Y

αX,1,Y

rXbIdY IdXblY

We are interested in functors between monoidal categories that respect the tensor products,

which we shall now detail.

Definition 2.1.7. Let pC,bC,1C, α, l, rq and pD,bD,1D, α
1, l1, r1q be monoidal categories. A

lax monoidal functor from C to D is a functor F : C Ñ D that is equipped with a pair pµ, ηq,

which consists of

• A family of natural morphisms µX,Y : F pXq bD F pY q Ñ F pX bC Y q in D,

• a morphism η : 1D Ñ F p1Cq in D,

such that the following diagrams commute;

pF pXq bD F pY qq bD F pZq F pXq bD pF pY q bD F pZqq

F pX bC Y q bD F pZq F pXq bD F pY bC Zq

F ppX bC Y q bC Zq F pX bC pY bC Zqq

α1
F pXq,F pY q,F pZq

µX,Y bIdF pZq IdF pXqbµY,Z

µXbCY,Z µX,Y bCZ

F pαX,Y,Zq

1D bD F pXq F p1Cq bD F pXq F pXq bD 1D F pXq bD F p1Cq

F pXq F p1C bC Xq F pXq F pX bC 1Cq

ηbIdF pXq

l1X
µ1C ,X

IdF pXqbη

r1
X

µX,1C

F plXq F prXq

9



We will often refer to the pair pµ, ηq as a lax monoidal structure on F .

Definition 2.1.8. We can similarly define an oplax monoidal structure pν, ϵq on a functor

F : C Ñ D, a family of natural morphisms νX,Y : F pX bC Y q Ñ F pXq bD F pY q, for all

objects X, Y P ObpCq, and a morphism ϵ : F p1Cq Ñ 1D that satisfies compatibility conditions

similar to those of the lax monoidal structure, with the arrows reversed.

If the morphisms in a lax monoidal structure pµ, ηq are isomorphisms, then we can

immediately define an oplax monoidal structure by taking the inverse morphisms pµ´1, η´1q.

Such a functor is known as a strong monoidal functor. However, this is not the only way to

have a monoidal functor with both lax and oplax structures.

Definition 2.1.9. A functor F : C Ñ D between two monoidal categories C,D is Frobenius

monoidal if it has both a lax monoidal structure pµ, ηq and oplax monoidal structure pν, ϵq

that are compatible in the sense that the following diagrams commute:

F pXq bD F pY bC Zq F pXq bD pF pY q bD F pZqq

F pX bC pY bC Zqq pF pXq bD F pY qq bD F pZq

F ppX bC Y q bC Zq F pX bC Y q bD F pZq

IdF pXqbνY,Z

µX,Y bCZ α1´1
F pXq,F pY q,F pZq

F pα´1
X,Y,Zq µX,Y bIdF pZq

νXbCY,Z

F pX bC Y q bD F pZq pF pXq bD F pY qq bD F pZq

F ppX bC Y q bC Zq F pXq bD pF pY q bD F pZqq

F pX bC pY bC Zqq F pXq bD F pY bC Zq

νX,Y bIdF pZq

µXbCY,Z α1
F pXq,F pY q,F pZq

F pαX,Y,Zq IdF pXqbµY,Z

νX,Y bCZ

If a Frobenius monoidal functor satisfies

µX,Y ˝ νX,Y “ IdF pX,Y q, (2.1.0.1)

for all X, Y P ObpCq, we say that it is separable.

For some notion of invertibility of objects, we define dual objects.
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Definition 2.1.10. Let C be a monoidal category, and X P ObpCq. A left dual of X is an

object X˚ P ObpCq that is equipped with two morphisms in C, evX : X˚ b X Ñ 1 and

coevX : 1 Ñ X b X˚ such that the compositions

X
l´1
X

ÝÝÑ 1 b X
coevXbIdX
ÝÝÝÝÝÝÝÑ pX b X˚

q b X
αX,X˚,X
ÝÝÝÝÝÑ X b pX˚

b Xq
IdXbevX
ÝÝÝÝÝÑ X b 1

rX
ÝÑ X

(2.1.0.2)

X˚
r´1
X˚

ÝÝÑ X˚
b 1

IdX˚ bcoevX
ÝÝÝÝÝÝÝÑ X˚

b pX b X˚
q

α´1
X˚,X,X˚

ÝÝÝÝÝÝÑ pX˚
b Xq b X˚ evXbIdX

ÝÝÝÝÝÑ 1 b X˚ lX˚

ÝÝÑ X˚

(2.1.0.3)

are the identity morphisms IdX , IdX˚ , respectively.

The notion of a right dual of X can be defined similarly, consisting of an object ˚X P ObpCq

and morphisms
„
evX : X b

˚X Ñ 1,
„

coevX : 1 Ñ
˚X b X, and satisfying similar conditions

to Equations 2.1.0.2 and 2.1.0.3.

If a left or right dual exists, then it is unique up to unique isomorphism [EGNO15,

Proposition 2.10.5]. An object in C is said to be rigid if it has both left and right duals. If

all objects are rigid, then we say that the monoidal category C is rigid.

Proposition 2.1.11 ([EGNO15] Proposition 2.10.8). Let C be a monoidal category, and take

X P ObpCq such that X has a left dual X˚. Then, for all Y, Z P ObpCq, there are natural

isomorphisms

HomCpX˚
b Y, Zq

„
ÝÑ HomCpY,X b Zq,

HomCpY b X,Zq
„
ÝÑ HomCpY, Z b X˚

q

Similarly, If X has a right dual ˚X, then there are natural isomorphisms

HomCpX b Y, Zq
„
ÝÑ HomCpY, ˚X b Y q

HomCpY b
˚X,Zq

„
ÝÑ HomCpY, Z b Xq

We now have a lot of categorical structures that can be unified.

Definition 2.1.12. Let C be a locally finite k-linear rigid monoidal abelian category. If the

tensor product bifunctor is bilinear on morphisms, and the monoidal unit 1 is a simple object,

we say that C is a tensor category. If, in addition, C is finite and semisimple, we say that C is

a fusion category.

11



Example 2.1.13. (Vect)

The category whose objects are finite dimensional k-vector spaces and morphisms are

k-linear maps is both abelian and monoidal with the standard direct sum ‘k and tensor

product bk of vector spaces. The associator and unitor morphisms are the obvious maps,

with k acting as the monoidal unit. Due to the finiteness condition, we can define the duals

of any vector space U P ObpVectq as U˚ “ ˚U “ HomkpU,kq. This category is semisimple as

any finite-dimensional vector space is isomorphic to a direct sum of copies of the base field k,
and k is clearly simple as a vector space over itself. Hence, Vect is a fusion category.

Before looking at more examples of fusion categories, we introduced an important coho-

mological structure. From now on, G will denote a finite group.

Definition 2.1.14. A normalised 3-cocycle on G is a function ω : G ˆ G ˆ G Ñ kˆ that

satisfies

ωpgh, k, lqωpg, h, klq “ ωpg, h, kqωpg, hk, lqωph, k, lq (2.1.0.4)

ωpg, h, eq “ ωpg, e, hq “ ωpe, g, hq “ 1 (2.1.0.5)

where e is the group identity, and for all g, h, k, l P G.

For more details on the basics of cohomology and how this formula is derived, see

Appendix A.

With this, we can construct an important example of fusion category that arises when we

consider G-graded vector spaces.

Example 2.1.15. (VectG,Vect
ω
G) A vector space U is G-graded if it can be decomposed as a

direct sum of vector spaces that is labelled by G, i.e

U “
à

gPG

Ug.

A morphism of G-graded vector spaces U, V is a k-linear map f : U Ñ V that respects the

G-grading, in the sense that fpUgq Ď Vg. We shall denote the category consisting of these

objects and morphisms as VectG. This category has a direct sum canonically induced by

the direct sum of vector spaces. The simple objects for this category are denoted by kg,

which is the vector space that is the zero vector space in all components apart from the g-th

component, which is the base field. It is easy to see this makes VectG semisimple.

12



A tensor product can be given to this category by defining the g-th component of U b V

as

pU b V qg “
à

hPG

Ugh´1 b Vh, for all g P G.

If we restrict this to the simple objects, the tensor product gives the relation

kg b kh – kgh.

This allows us to identify that a monoidal structure can be defined where 1 “ ke and with

αkg ,kh,kk “ Idkghk : kghk Ñ kghk, and lkg “ rkg “ Idkg : kg Ñ kg, with the compatibility

conditions being trivially satisfied.

Using the remaining piece of group data, this category is rigid with dual objects given on

simple objects by by k˚
g “ ˚kg “ kg´1 . Thus VectG is a fusion category.

We can make this more general. As the associator is a map kghk Ñ kghk it can be some

scalar multiple of the identity map, provided the scalar satisfies the pentagon axiom. We can

adjust the unitors similarly, provided they satisfy the triangle axiom.

If we take a 3-cocycle ω P H3pG,kˆq, as described in Equation (2.1.0.4), then we can

set the associator to be αkg ,kh,kk “ ωpg, h, kq´1Idkghk , and unitors lkg “ ωpe, e, gqidkg , rkg “

ωpg, e, eq´1Idkg , with the pentagon and triangle axioms being satisfied exactly by the data

from Definition 2.1.14. We denote this category by VectωG. The rest of the categorical structure

is the same as VectG, so VectωG is also a fusion category.

Remark 2.1.16. The unitors of VectωG satisfy lU “ rU “ IdU , for all U P ObpVectωGq, if and

only if ω is normalized, that is Equation (2.1.0.5). From now on, we shall always assume

that this is the case.

Further, we are using the opposite convention to [EGNO15] which takes αkg ,kh,kk “

ωpg, h, kqIdkghk . This changes nothing about the categorical structure, but will help with the

computations in Chapter 4.

Definition 2.1.17 (Follow up from Definition 2.1.5). Let C be a tensor category. Then

the Grothendieck group GrpCq can be given a natural multiplication induced by the tensor

product, defined by

rXis b rXjs :“ rXi b Xjs “
ÿ

kPI

rXi b Xj : XksXk.

This multiplication is associative, and gives GrpCq the structure of a ring. We shall call this

the Grothendieck ring of C.
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2.2 Braided Categories

In this section we introduce the structure of a braiding, which is a way to add commutativity

to the tensor product present in a monoidal category.

Definition 2.2.1. A braided monoidal category is a pair pC, cq consisting of

• A monoidal category C,

• A family of natural isomorphisms cX,Y : X b Y Ñ Y b X, called the braiding,

such that the following diagrams (the hexagon axioms) commute;

X b pY b Zq pY b Zq b X

pX b Y q b Z Y b pZ b Xq

pY b Xq b Z Y b pX b Zq

cX,Y bZ

αY,Z,XαX,Y,Z

cX,Y bIdZ
αY,X,Z

IdY bcX,Z

(2.2.0.1)

pX b Y q b Z Z b pX b Y q

X b pY b Zq pZ b Xq b Y

X b pZ b Y q pX b Zq b Y

cXbY,Z

α´1
Z,X,Yα´1

X,Y,Z

IdXbcY,Z
α´1
X,Z,Y

cX,ZbIdY

(2.2.0.2)

Example 2.2.2. The category Vect from Example 2.1.13 has a canonical braided structure

given by the flip map,

cU,V : U bk V Ñ V bk U,

u bk v ÞÑ v bk u.

Example 2.2.3. Consider VectωG from Example 2.1.15. If we restrict a braiding to the

simple objects, it becomes a morphism ckg ,kh : kgh Ñ khg. As the morphism must respect the

G-grading, the only way this can exist is if G is abelian.

Assuming that is the case, a braiding must be some scalar multiple the identity morphism,

ckg ,kh “ ψpg, hq
´1Idkgh ,
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with the hexagon axioms being equivalent to the identities

ωph, k, gqψpg, hkqωpg, h, kq “ ψpg, kqωph, g, kqψph, kq,

ωpk, g, hq
´1ψpgh, kqωpg, h, kq

´1
“ ψpg, kqωpg, k, hq

´1ψph, kq.

Viewing ψ : G ˆ G Ñ kˆ as a function, then the pair pω, ψq is known as an abelian cocycle.

From this example, we see that not every monoidal category can be endowed with a

braiding. Even the example of VectωG requires us to make the fairly strong restriction to

abelian groups. However, there is a way to construct a category with a braiding from any

monoidal category.

Definition 2.2.4. (Center Category Construction) Let C be a monoidal category. The center

category of C is the category ZpCq, whose objects are pairs pZ, γq, consisting of an object

Z P ObpCq and a family of natural isomorphisms,

γY : Y b Z Ñ Z b Y,

called the half-braiding, that satisfies the single hexagon axiom Equation (2.2.0.2), where c is

replaced with γ.

A morphism in ZpCq from pX, γq to pZ, γ1q is a morphism f : X Ñ Z in C such that, for

all Y P ObpCq, the square

Y b X X b Y

Y b Z Z b Y

γY

IdY bf fbIdY

γ1
Y

(2.2.0.3)

commutes.

Remark 2.2.5. This construction is also known as the Drinfeld center or the monoidal

center.

Proposition 2.2.6 ([EGNO15, Section 7.13]). The center category ZpCq is monoidal, with

tensor product given by

pX, γq b pZ, γ1
q :“ pX b Z, γ̄q,
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where γ̄ is defined by the commutative diagram

Y b pX b Zq pY b Xq b Z pX b Y q b Z

pX b Zq b Y X b pZ b Y q X b pY b Zq,

γ̄Y

α´1
Y,X,Z γY bIdZ

αX,Y,Z

α´1
X,Z,Y

IdXbγ1
Y

The monoidal unit is p1, l´1rq, with the same associator and unitors as C.

Now that we have monoidality, we can give this category a braiding.

Proposition 2.2.7 ([EGNO15, Proposition 8.5.1]). The center category ZpCq is a braided

monoidal category, with the braiding given by

cpX,γq,pZ,γ1q :“ γ1
X .

Example 2.2.8. (ZpVectωGq) Objects in this category consist of G-graded vector spaces that

are equipped with a collection of half-braiding isomorphisms ,γg : δg b V Ñ V b δg, one for

each simple object in VectωG. If we pick a degree d P G, then using the tensor product from

Example 2.1.15 we find that δg b Vd – Vg´1d and so we can induce linear isomorphisms

Vg´1dgÑ̃Vd b pδg b δg´1q – Vd.

Thus objects in this category consist of G-graded vector spaces that are equipped with

isomorphisms between their G-conjugated components.

We can also extend the notion of a braiding to functors between monoidal categories.

Definition 2.2.9. Given two braided monoidal categories pC, cq and pD, dq, a braided lax

monoidal functor is a functor F : C Ñ D with a lax monoidal structure pµ, ηq, such that the

following diagram commutes;

F pXq bD F pY q F pY q bD F pXq

F pX bC Y q F pY bC Xq

dF pXq,F pY q

µX,Y µY,X

F pcX,Y q
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Similarly, a braided oplax monoidal functor is a functor F : C Ñ D with an oplax structure

pν, ϵq, satisfying a similar compatibility condition.

Remark 2.2.10. If we instead have a strong monoidal functor with a given monoidal

structure, then it is braided lax monoidal with respect to this structure if and only if it is

braided oplax monoidal with the respect to the oplax structure given by the inverse coherence

morphisms. If this is the case, we can simply say that the functor is a braided monoidal

functor.
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Chapter 3

Algebra Objects in Category Theory

In this section, we will introduce the main object of interest to this thesis - algebra objects.

3.1 Basic definitions

Definition 3.1.1. Let C be a monoidal category. An algebra object in C is a triple pA,m, uq

consisting of

• An object A P ObpCq,

• A multiplication morphism m : A b A Ñ A in C,

• A unit morphism u : 1 Ñ A in C,

such that the following diagrams commute;

pA b Aq b A A b pA b Aq

A b A A b A

A

αA,A,A

mbIdA IdAbm

m m

(3.1.0.1)

1 b A A b A A b 1 A b A

A A

ubIdA

lA m

IdAbu

rA m
(3.1.0.2)
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These meaning of these axioms are that the algebra needs to be associative and unital,

with respect to the category it is living in. Indeed, the algebra objects in the category Vect

are exactly the standard associative unital k-algebras.

Example 3.1.2. There are some basic algebra objects that can be defined for any monoidal

category. The monoidal unit 1 has the structure of an algebra with m “ l1 “ r1 and u “ Id1.

Further, if X is a rigid object, then A “ X b X˚ is an algebra with m “ IdX b evX b IdX˚

and u “ coevX .

We shall now consider an important example of an algebra that can be constructed from

a finite group H.

Example 3.1.3 (Group Algebra in Vect). The vector space freely generated by H has the

structure of an algebra object in Vect, with multiplication and unit given by

mpg b hq “ gh, up1kq “ e,

for all g, h P H, with e P H being the group identity.

Example 3.1.4 (Twisted Group Algebra in VectωG). Let H be a subgroup of G. Then we

can alternately view the group algebra as the object

krHs “
à

hPH

kh,

in VectωG. When restricted to simple objects, the multiplication morphism is given by

m :“ κpg, hq
´1Idkgh : kgh Ñ kgh,

where κ : H ˆ H Ñ kˆ is a function that must satisfy the following condition as a result of

the associativity condition;

ωpg, h, kq “ κpgh, kqκpg, hqκpg, hkq
´1κph, kq

´1.

In terms of cohomology, see Appendix A, this is equivalent to asking that κ P C2pH,kˆq be

a 2-cocycle such that dκ “ ω|H . The unit morphism is the canonical embedding of ke into

krHs. Taking ω, κ to be trivial, we recover the standard group algebra as an object in VectG.

We shall denote this algebra by pkrHs, κq

We can also define the dual notion, a coalgebra object.

19



Definition 3.1.5. A coalgebra object is a triple pC,∆, εq consisting of an object C P ObpCq,

a comultiplication morphism ∆ : C Ñ C b C and a counit morphism ε : C Ñ 1 that satisfy

coassociativity and counitality axioms similar to Equations 3.1.0.1 and 3.1.0.2, with the

arrows reversed.

Definition 3.1.6. Let pA,mA, uAq, pB,mB, uBq be algebra objects in C. A morphism of

algebras is a morphism f : A Ñ B in C that satisfies

f ˝ mA “ mb ˝ pf b fq.

Where there is no ambiguity, we shall refer to the algebra pA,m, uq simply as A.

Analogously to the classical case, we can study algebra objects through their representation

theory, looking at how they act on other objects within the category. This leads to the

following definition.

Definition 3.1.7. Let A be an algebra object in a monoidal category C. A right A-module

in C is a pair pM,ρq, consisting of

• An object M P ObpCq,

• An action morphisms ρ :M b A Ñ M in C,

such that following diagrams commute;

pM b Aq b A M b pA b Aq

M b A M b A

M

αM,A,A

ρbIdA IdMbm

ρ ρ

(3.1.0.3)

M b 1 M b A

M

rM

IdMbu

ρ
(3.1.0.4)

Remark 3.1.8. Other types of modules can be defined, for example a left A-module, which

has the algebra acting from the left-hand side instead. Additionally, an A-bimodule is an

object M that is both a left and right A-module, such that the left and right actions, ρl and
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ρr respectively, commute in the sense that

ρr ˝ pρl b IdAq “ ρl ˝ pIdA b ρrq ˝ αAbMbA.

In this thesis, we shall predominantly use right A-modules, and shall simply refer to these as

A-modules when no distinction is needed.

Example 3.1.9. Given an A-module pM,ρq and an object X P ObpCq, the tensor product

X b M can also be given the structure of an A-module, with the action morphism being the

composition

ρ1 : pX b Mq b A
αX,M,A
ÝÝÝÝÑ X b pM b Aq

IdXbρ
ÝÝÝÝÑ X b M.

Definition 3.1.10. We can also study the representation theory of a coalgbra C using (right)

C-comodules, which are objects N P ObpCq paired with a coaction morphism δ : N Ñ N bA,

satisfying similar diagrams to that of a module, with the arrows reversed.

Definition 3.1.11. A morphism of right A-modules pM,ρMq and pN, ρNq is a morphism

f :M Ñ N in C that satisfies

f ˝ ρM “ ρN ˝ pf b IdAq.

Morphisms of left A-modules and A-bimodules can be defined similarly.

Example 3.1.12. Every algebra can be viewed as a right (and indeed left) module over

itself, with the action morphism given by the algebra multiplication.

Example 3.1.13. The object A b A has the structure of a right A-module, with action

morphism given by

ρrAbA “ pIdA b mAqαA,A,A.

Similarly, it has a left A-module structure with

ρlAbA “ pmA b IdAqα´1
A,A,A.

In this sense, Ab A can be viewed as a A-bimodule with the bimodule commutativity given

by the associativity of A.

3.2 Frobenius Algebras

We shall now look at some types of objects that have both an algebra and coalgebra structure.
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Definition 3.2.1. A Frobenius algebra object in C is a tuple pA,m, u,∆, εq, where

• pA,m, uq is an algebra object in C,

• pA,∆, εq is a coalgebra object in C,

such that the comultiplication morphism ∆ : A Ñ A b A is a morphism of A-bimodules,

where A b A has the A-bimodule structure described in Example 3.1.13.

The compatability condition between the algebra and coalgebra structure in a Frobenius

algebra can be viewed explicitly as asking for the following diagram to commute;

pA b Aq b A A b A A b pA b Aq

A

A b pA b Aq A b A pA b Aq b A

αA,A,A

∆bIdA IdAb∆

m

α´1
A,A,A

∆

IdAbm mbIdA

(3.2.0.1)

We shall make use of this condition as the main definition of a Frobenius algebra, however

there are a variety of equivalent definitions. For example, we can make use of the unit and

counit morphisms to construct the following compositions,

A b A
m
ÝÑ A

ε
ÝÑ 1, 1

u
ÝÑ A

∆
ÝÑ A b A.

We can check that these form a non-degenerate pairing, i.e they satisfy the rigidity conditions

from Equations 2.1.0.2 and 2.1.0.3 which in particular means that A – A˚ – ˚A, so A is

self-dual in C .

Conversely, if we have an algebra A in C that is self-dual with an associative non-degenerate

pairing evA : A b A Ñ 1 in the sense that evApm b IdAq “ evApIdA b mqαA,A,A, then we can

define a coalgebra structure through

∆ : A – A b 1
IdAbcoevA
ÝÝÝÝÝÝÑ A b pA b Aq

α´1
A,A,A

ÝÝÝÝÑ pA b Aq b A
mbIdA
ÝÝÝÝÑ A b A (3.2.0.2)

ε : A – A b 1
IdAbu
ÝÝÝÑ A b A

evA
ÝÝÑ 1 (3.2.0.3)

A detailed proof of this can be found in [CD20], and gives us the following lemma.

Lemma 3.2.2. Let A be an algebra in C. It is Frobenius if and only if it is equipped with an

associative non-degenerate pairing A b A Ñ 1.
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Example 3.2.3. The twisted group algebra pkrHs, κq in VectωG can be endowed with a

coalgebra structure, with

∆pkhq “
à

kPH

κpk, k´1hqkk b kk´1h , εpkhq “ δh,e

for all h P H. The comultiplication condition is satisfied as dκ “ ω|H .

In addition, this coalgebra structure gives pkrHs, κq the structure of a Frobenius algebra.

To check that the left-hand square in Equation (3.2.0.1) commutes, we require the following

compositions to be equal;

κpg´1h, kqωpg, g´1h, kq
´1κpg, g´1hq

´1
“ κpg, g´1hkq

´1κph, kq,

for all g, h, k P H, which is exactly the condition that dκ “ ω|H . The second condition follows

analogously.

There are a variety of adjectives which we can attach to the algebra objects seen so far.

These allow us to impose different categorical structures on the modules of such algebras, but

we shall explore this idea in the next section. For now, we define the following properties;

Definition 3.2.4. • Let A be an algebra object in a k-linear abelian monoidal category

C.

- A is indecomposable if it is not isomorphic to a direct sum of non-trivial algebras

in C.

- A is connected if dimkHomC p1, Aq “ 1

- A is separable if there exists a morphism ∆1 : A Ñ A b A that is a morphism of

A-bimodules, and satisfies m∆1 “ IdA.

• Suppose C is braided. Then an algebra A in C is commutative if mcA,A “ m.

• A Frobenius algebra pA,m, u,∆, εq in C is special if m∆ “ βAIdA and εu “ β1 Id1 for

non-zero βA, β1 P kˆ.

Remark 3.2.5. - If an algebra is connected, then it is also indecomposable as there is

only a single choice of unit morphism, up to a scalar.

- There are alternate, equivalent definitions of separability, such as asking A to admit a

morphism θ : A Ñ 1 where θ ˝ u “ Id1 and θ ˝ m is non-degenerate.
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- We can also notice that the condition for an algebra to be separable is exactly asking for

∆1 : A Ñ A b A to be a morphism of A-bimodules, as in the definition of a Frobenius

algebra. In fact, if an algebra is special Frobenius, we can always construct a separable

algebra with a coproduct that has been scaled as ∆̃ “ β´1
A ∆.

Proposition 3.2.6 ([MMP`23], Proposition 5.9). The twisted group algebra pkrHs, κq as

described in Example 3.2.3 is a connected Frobenius algebra in VectωG. When |H| P kˆ, this

algebra is special Frobenius.

Proof. This algebra is connected in VectωG, as morphisms must respect the G-grading and so

any morphism u : 1 Ñ krHs is simply a map from ke Ñ ke. This morphism space is clearly

one-dimensional.

For the special condition, we can directly calculate that

m∆ “ |H|IdA, εu “ Id1.

We will now look at how we can preserve the algebraic structures discussed so far using

the various types of monoidal functors defined in Definitions 2.1.7 - 2.1.9, and Definition 2.2.9.

Proposition 3.2.7. Let C,D be k-linear abelian monoidal categories.

a) Suppose F : C Ñ D is a lax/oplax/Frobenius monoidal functor, and A an alge-

bra/coalgebra/Frobenius algebra in C. Then F pAq is an algebra/coalgebra/Frobenius

algebra in D.

b) Suppose F : C Ñ D is a separable Frobenius monoidal functor such that ϵ ˝ η ‰ 0, and

the monoidal unit 1D in D is simple. If A is a special Frobenius algebra in C then F pAq

is a special Frobenius algebra in D.

c) Suppose C,D are further assumed to be braided, and F : C Ñ D a braided lax monoidal

functor. If A is a commutative algebra in C, then F pAq is commutative in D.

Proof. Part a) Using the lax monoidal structure pµ, ηq on F : C Ñ D, the object F pAq can

be given multiplication and unit morphisms by the following compositions respectively;

mF pAq : F pAq bD F pAq
µA,A
ÝÝÝÑ F pA bC Aq

F pmAq
ÝÝÝÝÑ F pAq,

uF pAq : 1D
η
ÝÑ F p1Cq

F puAq
ÝÝÝÑ F pAq.
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The algebra compatibility conditions from Definition 3.1.1 can then be easily verified using

the lax monoidal compatibility conditions in Definition 2.1.7.

The statement for coalgebras is proven analagously. If we have a coalgebra C and an

oplax monoidal structure pν, ϵq on F : C Ñ D, then F pCq has comultiplication and counit

given by

∆F pCq : F pCq
F p∆Cq
ÝÝÝÝÑ F pC bC Cq

νC,C
ÝÝÝÑ F pCq bD F pCq,

εF pCq : F pCq
F pεCq
ÝÝÝÑ F p1Cq

ϵ
ÝÑ 1D.

where the defining conditions of a oplax monoidal functor make this into a coalgebra. The

Frobenius monoidal functor conditions can be easily verified to coincide with the Frobenius

algebra condition for the algebra and coalgebra structures given above.

Part b) For the second statement, as 1D is simple, we have that ϵ ˝ η “ β1Id1D for some

non-zero β1 P kˆ. The conditions for F pAq to be a special Frobenius algebra can then be

calculated directly;

mF pAq ˝ ∆F pAq “ F pmAq ˝ µA,A ˝ νA,A ˝ F p∆Aq “ F pmA ˝ ∆Aq “ βAF pIdAq “ βAIdF pAq,

εF pAq ˝ uF pAq “ ϵ ˝ F pεA ˝ uAq ˝ η “ β1Cϵ ˝ η “ pβ1Cβ
1
qId1,

and so F pAq is special Frobenius.

Part c) Using the multiplication of F pAq given above, the condition that this is a commu-

tative algebra from Definition 3.2.4 is equivalent to asking that the perimeter of the following

diagram commutes;

F pAq bD F pAq F pA bC Aq F pAq

F pAq bD F pAq F pA bC Aq

µA,A

dA,A

F pmAq

F pcA,Aq

µA,A

F pmAq

This is satisfied as the square on the left commutes by the braided lax monoidal condition from

Definition 2.2.9, and the triangle commutes by functorality and by A being commutative.
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3.3 Categories of Modules

We shall now use algebra objects and their modules to construct new categories. This is one

reason why we study algebras in category theory as they are a great source of other examples

of categories. For this section, we assume that all categories are abelian and k-linear.
Given an algebra object in a monoidal category C, we define the category ModCpAq

to consist of all A-modules and A-module morphisms in C. This allows us to view the

representation theory of an algebra object as a categorical construction itself.

Remark 3.3.1. Here we are taking right A-modules, but the categories of left A-module

and A-bimodules can be constructed in an analogous way.

Proposition 3.3.2 ([EGNO15, Section 7.8]). Let A be an algebra object in a k-linear finite

abelian category C. Then ModCpAq is also a k-linear finite abelian category .

If we wished to make ModCpAq a fusion category we would need it to be semisimple and

monoidal, amongst other things. For this to be possible, we need to make some additional

assumptions on both our algebra object and the category it lives in.

Proposition 3.3.3. Let A be a connected algebra in a monoidal category C. Then A is

simple when viewed as an object in ModCpAq.

Proof. Take objects X P ObpCq, andM P ObpModCpAqq. By [EGNO15, Lemma 7.8.12], there

is a natural isomorphism

HomModCpAqpX b A,Mq – HomCpX,Mq, (3.3.0.1)

where X b A is the A-module from Example 3.1.9, and on the right-hand side M is viewed

as an object of C. If we specify that X “ 1 and M “ A viewed as a module over itself, then

this isomorphism becomes

HomModCpAqpA,Aq – HomCp1, Aq – k,

as A is connected, and so A is simple in ModCpAq.

Suppose that C is an abelian braided monoidal category. Then any right A-module pM,ρrq

can be given the structure of a left A-module, with the left A-action given by the composition.

ρl : A b M
cA,M
ÝÝÝÑ M b A

ρr
ÝÑ M
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Given two right A-modules pM,ρrMq, pN, ρrNq, we define their tensor product over A as the

coequaliser of the diagram

M b A b N
ρrMbIdN

--

IdMbρlN

11M b N //M bA N, (3.3.0.2)

Proposition 3.3.4 ([Par95, Proposition 1.4], [KO02, Theorem 1.5]). Suppose A is a commu-

tative algebra in a braided monoidal category C. Then ModCpAq is a monoidal category with

monoidal unit A.

The last important remaining condition is that of semisimplicity. This requires us to

restrict the underlying category even further.

Proposition 3.3.5 ([EGNO15, Proposition 7.8.30]). Let A be a separable algebra in a fusion

category C. Then ModCpAq is semisimple.

Thus we have seen that commutative connected separable (or any combination of the

three adjectives) algebras provide a wealth of structure on their categories of modules. It is

these types of algebras which we shall focus on.

However, there is one structure currently missing - a braiding. This can be introduced by

looking at a special type of module.

Definition 3.3.6. Let A be an algebra in a braided monoidal category C. An A-module

pM,ρq is said to be local if the module action is invariant under a double braiding, that is

ρ “ ρ ˝ cA,M ˝ cM,A. (3.3.0.3)

We shall write ModlocC pAq for the category of local modules. This can be viewed as a full

monoidal subcategory of ModCpAq.

Proposition 3.3.7 ([Par95, Theorem 2.5]). (Pareigis) Let A be a commutative algebra in

a braided monoidal category C. Then the braiding of C descends directly on to the category

ModlocC pAq, making it braided monoidal.

Local modules are also very useful when working in the context of modular categories. It

has been proven that when A is a particular type of commutative algebra in a modular tensor

category C, the category ModlocC pAq is also modular [KO02,LW23]. This has applications in

rational CFT. By [HKL15, Theorem 3.2], extensions of a VOA correspond to commutative
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algebras in its category of modules. This goes further, as it is also shown that the repre-

sentation category of these extensions is equivalent to the category of local modules for the

corresponding algebra [HKL15, Theorem 3.4]. Further properties of categories arising from

local modules are discussed in [FRS04],[FFRS06].

3.4 Hopf Algebras

Let C be a braided monoidal category. We can then give the object Ab A the structure of

an algebra, with multiplication and unit morphisms

mAbA “ pmA b mAq ˝ pIdA b cA,A b IdAq, uAbA “ uA b uA,

where we have omitted the associator and unitor maps.

This allows us to define a second structure that combines an algebra and coalgebra

structure, by slightly modifying the definition of a Frobenius algebra.

Definition 3.4.1. A bialgebra in a braided monoidal category C is a tuple pA,m, u,∆, εq

such that

• pA,m, uq is an algebra object in C,

• pA,∆, εq is a coalgebra object in C, such that ∆ : A Ñ AbA is a morphism of algebras

in C.

A special type of bialgebra is the structure of a Hopf algebra.

Definition 3.4.2 (Hopf Algebras). A Hopf algebra in Vect is a bialgebra pH,m, u,∆, εq that

is equipped with a map S : H Ñ H, called the antipode, such that the diagram

H b H H H b H

1

H b H H H b H

IdHbS

ε

∆ ∆

SbIdH

u

m m

commutes.
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Notation 3.4.3. To simplify the equations involved when working with Hopf algebras in

Vect, we can use a notation convention known as Sweedler notation;

mpx b yq “ xy, ∆pxq “
ÿ

i

x
piq
1 b x

piq
2 “ x1 b x2, up1kq “ 1H.

Using this, the antipode condition can be rewritten as

x1Spx2q “ εpxq ¨ 1H “ Spx1qx2

An interesting question is when do the notions of Frobenius and Hopf algebras coincide.

Definition 3.4.4. A left integral of H is a non-zero morphism ς : 1 Ñ H in C such that

m ˝ pIdH b ςq “ ς ˝ ε.

A right cointegral of H is a non-zero morphism χ : H Ñ 1 in C such that

pχ b IdHq ˝ ∆ “ u ˝ χ,

Proposition 3.4.5 ([CD20, Lemmas 3.8,3.9]). Let H be a Hopf algebra in C that has a left

integral and a right cointegral. Then H can be given the structure of a Frobenius algebra.

Sketch of proof: Using this data, we can construct an associative non-degenerate pairing

associated to H is given by the compositions

f :“ H b H m
ÝÑ H χ

ÝÑ 1, g :“ 1
ς

ÝÑ H ∆
ÝÑ H b H SbIdH

ÝÝÝÝÑ H b H.

Then, by Lemma 3.2.2, this gives H the structure of a Frobenius algebra.

In general, the coproduct of the Frobenius algebra given by this pairing will not be the

same as the Hopf algebra structure. This can be seen by considering the group algebra in

Vect.

Example 3.4.6. The group algebra krGs from Example 3.1.3 can be given the structure of

a Hopf algebra, with

∆pgq “ g b g , εpgq “ 1 , Spgq “ g´1.

It also admits a left integral ςp1kq “
ř

gPG g and right cointegral χpgq “ δg,e, and so by the

previous result we should be able to recover a Frobenius algebra structure on H. If we use the
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non-degenerate pairing from Proposition 3.4.5 to form the Frobenius coproduct and counit

from Equations 3.2.0.2 and 3.2.0.3, we find that

∆Frobphq “
ÿ

gPG

hg´1
b g, εFrobphq “ δh,e.

Up to some relabelling of indices, this is exactly the Frobenius structure from Example 3.2.3,

and is clearly different to the Hopf coalgebra structure.

If we restrict to the category of vector spaces, any finite-dimensional Hopf algebra satisfies

these conditions.

Theorem 3.4.7. [LS69] Every finite-dimensional Hopf k-algebra is a Frobenius k-algebra.

3.5 Yetter-Drinfeld Modules

For a general Hopf algebra, its category of modules is braided if and only if the Hopf algebra

is quasi-triangular [Kas95,Sch20]. This is a fairly restrictive condition and, similarly to when

we introduced the center category, can be circumvented by constructing a new category. This

is done by defining a particular type of module that incorporates all of the Hopf algebra

structure morphisms.

Definition 3.5.1. Let H be a Hopf algebra in a braided monoidal category C. A (left-left)

Yetter-Drinfeld module is a triple such that

• pU, ρq is a left H-module,

• pU, δq is a left H-comodule,

such that

H b U U H b U

Hb4 b U Hb4 b U Hb4 b U

ρ

∆2b δ

δ

IdH b c̃H,H,H b IdU IdHbHbS b IdHbU

m2b ρ

commutes, where ∆2 b δ “ pIdH b ∆ b IdHbUqp∆ b δq, m2 b ρ “ pm b ρqpIdH b m b

IdHbUq, andc̃H,H,H “ pIdH b cH,HqpcH,H b IdHqpIdH b cH,Hq and the associators have been

suppressed.
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A morphism of Yetter-Drinfeld modules U, V over H is a morphism f : U Ñ V in C that

is both a morphism of H-modules and H-comodules.

Remark 3.5.2. When working in Vect, we can write the left action and coaction maps in

Sweedler notation as

ρUph b vq “ h ¨ v, δpvq “ vp´1q b vp0q.

The Yetter-Drinfeld condition can then be written as

δph ¨ vq “ h1vp´1qSph2q b hp3q ¨ vp0q (3.5.0.1)

We shall denote the category of (left-left) Yetter-Drinfeld modules by H
HYD. We can

similarly define (left-right),(right-left) and (right-right) Yetter-Drinfeld modules over H, where

the first component describes the type of H-module and the second the type of H-comodule.

The resulting categories are denoted by HYDH,HYD
H,YDH

H respectively. However, these four

categories are all equivalent, see [BCPO19], so we can pick whichever description is most

convenient. For the rest of this thesis, we shall work with the (left-left) description, so shall

just refer to these as Yetter-Drinfeld modules.

The category of Yetter-Drinfeld modules inherits the properties of k-linear abelian finite

directly from C, analagously to the standard module case. Also similarly to ModCpAq, as we

are necesarily in a braided category, we can construct a tensor product of Yetter-Drinfeld

modules. However, we can also extend this to a braided structure, with the coalgebra structure

taking the place of the local structure.

Proposition 3.5.3 ([HS20, Theorem 3.4.13][Sch20, Propositions 4.4.6,4.4.7]). Let H be a

Hopf algebra in a braided monoidal category C. Then

• The category H
HYD of Yetter-Drinfeld modules is monoidal, with the underlying tensor

product of C on objects, and the H-action and coaction of pU bV q given by the following

compositions:

ρUbV : H b U b V
∆bIdUbV
ÝÝÝÝÝÝÑ H b H b U b V

IdHbcH,UbIdV
ÝÝÝÝÝÝÝÝÝÑ H b U b H b V

ρUbρV
ÝÝÝÝÑ U b V,

δUbV : U b V
δUbδV
ÝÝÝÝÑ H b U b H b V

IdHbcU,HbV
ÝÝÝÝÝÝÝÝÑ H b H b U b V

mbIdUbV
ÝÝÝÝÝÝÑ H b U b V.

The unit object is the same as the underlying category, 1, with the unitors acting as its

H-action and coaction morphisms. The rest of the structure is inherited directly from

C.
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• The category H
HYD can be given a braided structure, with

c1
U,V : U b V

δUbIdV
ÝÝÝÝÑ H b U b V

IdHbcU,V
ÝÝÝÝÝÝÑ H b V b U

ρV bIdU
ÝÝÝÝÑ V b U (3.5.0.2)

Example 3.5.4 (
krGs

krGs
YD). Let G be a finite group, and recall the group Hopf algebra krGs

from Example 3.4.6. Suppose we have a Yetter-Drinfeld module U over krGs. The kG -

coaction allows us to define a G-grading on U , see [Sch20, Example 2.2.8], so we can write

U “
À

gPG Ug, with δpudq “ d b ud, for a homogenous element ud P Ud.

The Yetter-Drinfeld condition now becomes equivalent to

δph ¨ udq “ hdh´1
b h ¨ ud,

which states that the action of h on a component ud P Ud will take it to an element in the

space graded by the conjugate of d by h , i.e h ¨ d P Uhdh´1 .

The tensor product of two two Yetter-Drinfeld modules simply becomes the tensor product

of G-graded vector spaces from Example 2.1.15, with the krGs-action being given by

ρUbV ph b pud b vf qq “ h ¨ ud b h ¨ vf .

for ud P Ud, vf P Vf . The braiding is given by

cU,V pud b vf q “ d ¨ vf b ud.

Corollary 3.5.5. The category
krGs

krGs
YD can be given the structure of a braided fusion category.

Proof. Follows from combining Proposition 3.5.3 and the preceding discussion with [Sch20,

Example 4.5.2 and Proposition 4.5.5].

It is apparent that there are a number of similarities between this category and the center

category of ZpVectGq. Both categories can be described in terms of G-graded vector spaces

with the same monoidal structure, and the Yetter-Drinfeld condition appears to induce a

morphism from Vd Ñ Vgdg´1 , which is exactly the structure required in the monoidal center,

see Example 2.2.8. These similarities are due to the following equivalence.

Proposition 3.5.6. The categories
krGs

krGs
YD and ZpVectGq are equivalent as braided monoidal

categories.
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Proof. First, we define a functor

F :
krGs

krGs
YD Ñ ZpVectGq (3.5.0.3)

pU, ρq ÞÑ pU, γq,

f : pU, ρq Ñ pV, ρ1
q ÞÑ f : pU, γq Ñ pV, γ1

q

where the G-graded vector space U is mapped to itself, and its half braiding is given by

γX : X b U Ñ U b X, γXpxd b uq “ d ¨ u b xd,

for all X P ObpZpVectGqq, xd P Xd. Morphisms are sent to themselves as maps of the

unchanged underlying vector spaces.

For this to be a morphism of G-graded vector spaces, we require that γXpxd b uf q has

degree df , or equivalently that dfd´1 “ degpd ¨ uf q. This implies that d ¨ uf P Udfd´1 which is

simply the Yetter-Drinfeld condition, as discussed in Example 3.5.4. That the half-braiding

satisfies Equation (2.2.0.2) follows immediately as ρ is a krGs-action.

The functor F sends a morphism in HomkrGs

krGs
YD

pU, V q is sent to the same map on the

underlying vector space in HomZpVectGqpU, V q. For a morphism f : pU, γq Ñ pV, γ1q to be a

morphism in ZpVectGq, we must satisfy Equation (2.2.0.3), which is equivalent in our case to

fpd ¨ vq b xd “ d ¨ fpvq b xd,

which clearly holds if and only if f is a morphism of Yetter-Drinfeld modules. Hence we have

a well-defined functor that is full and faithful.

For essential surjectivity, consider a generic object pV, γq P ObpZpVectGqq. If we define

the map

ρ : krGs b V
γkrGs

ÝÝÝÑ V b krGs
ε

ÝÑ V b 1 – V,

then this is a krGs-action that satisfies the Yetter-Drinfeld condition, similarly to earlier,

because γ is a morphism in ZpVectGq. Using the counit of krGs, we recover that the image

of ρ under F is exactly the initial half-braiding.

The functor F is clearly monoidal as both categories have the same underlying monoidal

structure (tensor product, unit object, associator and unitors), with the lax and oplax

structures both being given by identity morphisms. The braided monoidal condition from

Definition 2.2.9 is similarly immediately satisfied, as the braiding cF pU,ρq,F pV,ρ1qpud b vf q “
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γUpud b vf q “ d ¨ vf b ud, which is exactly the braiding in
krGs

krGs
YD.

Remark 3.5.7. For any general Hopf algebra H, the is an equivalence of tensor categories

between H
HYD and the center of the category of representations of H, denoted by ZpReppHqq

(See [EGNO15, Proposition 7.15.3], [Maj00, Example 9.1.8]). As ReppkrGsq – VectG, Propo-

sition 3.5.6 is an extension of this result to include compatibility with the braiding.

3.6 Module Categories

As well as using modules to study algebras, there is a way to study categories themselves in

a similar manner.

Definition 3.6.1. Let C be a monoidal category. A left module category over C is a tuple

pM,b, s, λq, consisting of

• A category M,

• A bifunctor b : C ˆ M Ñ M, called the module action,

• Two families of natural isomorphisms

– Module associators sX,Y,M : pX b Y q b M Ñ X b pY b Mq,

– Left module unitor λM : 1 b M Ñ 1,

such that the following diagrams commute;

ppX b Y q b Zq b M

pX b pY b Zqq b M pX b Y q b pZ b Mq

X b ppY b Zq b Mq X b pY b pZ b Mqq

αX,Y,ZbIdM sXbY,Z,M

sX,Y bZ,M sX,Y,ZbM

IdXbsY,Z,M

pX b 1q b M X b p1 b Mq

X b M

sX,1,M

rxbIdM IdXbρM

for any objects X, Y, Z P ObpCq,M P ObpMq
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Definition 3.6.2. A C-module category M is said to be indecomposable if it cannot be

written as direct sum of non-zero C-module categories.

Similarly to the case of algebras, any monoidal category is a left module category over

itself, with the original tensor product, associator and left unitor filling the roles of the

module category structure.

Example 3.6.3. Let A be an algebra object in C. The category ModCpAq has a natural

structure of a C-module category, with the module product given by

b : C ˆ ModCpAq Ñ ModCpAq

X ˆ pM,ρq ÞÑ pX b M,ρ1
q,

where pX b M,ρ1q is the A-module described in Example 3.1.9. The module associator and

left module unitor are given by their monoidal counterparts. This is indecomposable as a

C-module category when the algebra A is indecomposable in C.

Definition 3.6.4. Let M and N be two C-module categories, with module associators s

and s1 respectively. A C-module functor is a functor F : M Ñ N that is equipped with a

family of natural isomorphisms

ΛX,M : F pX b Mq Ñ X b F pMq,

such that the following diagrams commute;

F ppX b Y q b Mq

F pX b pY b Mqq pX b Y q b F pMq

X b F pY b Mq X b pY b F pMqq.

F psX,Y,M q ΛXbY,M

ΛX,Y bM s1
X,Y,F pMq

IdXbΛX,M

F p1 b Mq 1 b F pMq

F pMq

Λ1,M

F pλM q λF pMq

for any objects X, Y P ObpCq,M P ObpMq.
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Definition 3.6.5. Two algebras A,B in C are Morita equivalent if and only if ModCpAq and

ModCpBq are equivalent as C-module categories.

Generally, all of the information that is required to describe how a particular algebra

object acts is encoded in its category of modules, so classifying algebra objects up to Morita

equivalence is sufficient for classification results.

We shall finish this section by looking at some equivalences on the morphism spaces of

module categories.

Proposition 3.6.6 ([EGNO15, Proposition 7.1.6]). Let C be a rigid monoidal category, and

let M be a C-module category. Then there is a natural isomorphism

HomMpX˚
b M,Nq

„
ÝÑ HomMpM,X b Nq.

The next two propositions come from [EGNO15, Section 7.9]

Proposition 3.6.7. Let C be a finite tensor category, and M be a C-module category. Take

objects X P ObpCq,M,N P ObpMq. Then there exists an object HompM,Nq P ObpCq and a

natural isomorphism

HomMpX b M,Nq
„
ÝÑ HomCpX,HompM,Nqq.

The object HompM,Nq is called the internal Hom from M to N . As well as allowing us

to describe the morphisms of a module category in terms of the category acting on it, it also

gives us a family of algebra objects.

Proposition 3.6.8. The object HompM,Mq has the structure of an algebra object in C for

all choices of M P ObpMq.

Example 3.6.9. If we take M “ ModCpAq for some algebra A in C, then the isomorphism

in Equation (3.3.0.1) defines the internal hom for this category to be HompA,Mq “ M . In

particular, the internal hom algebra HompA,Aq “ A is simply the original algebra.
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Chapter 4

Algebras in ZpVectωGq

We shall now begin looking at how we can find algebra objects in fusion categories. In this

chapter, we shall tackle the problem using direct, hands-on methods by classifying algebra

objects in a given category.

Recall the twisted group algebra pkrHs, κq in VectωG from Example 3.1.4. As this algebra

is connected and separable, its category of modules MpH, κq :“ ModVectωGppkrHs, κqq is

an indecomposable semisimple module category over VectωG by Proposition 3.3.5. These

particular module categories acts as equivalence class representatives for all such VectωG-

module categories.

Theorem 4.0.1 ([Ost03b], [Nat17]). • Every indecomposable semisimple VectωG-module

category is equivalent as a VectωG-module category to one of the form MpH, κq, where

ω|H is trivial .

• We have that MpH, κq and MpH 1, κ1q are equivalent as VectωG-module categories if and

only if H and H 1 are conjugate as subgroups of G, and the 2-cocycle κ1´1κxγx|H 1ˆH 1

is trivial in H2pH 1,kˆq, where κxph1, h2q “ κpxh1x
´1, xh2x

´1q, and γxph1, h2q :“

γpxqph1, h2q, where γ is some map that shall be introduced later (see Equation (4.1.0.3)).

Corollary 4.0.2. Every connected separable algebra in VectωG is Morita equivalent to a twisted

group algebra pkrHs, κq.

This collection of results are extremely powerful as they allows us to classify all connected

separable algebras in VectωG in terms of objects that admit a Frobenius algebra structure.

Moreover, we can describe when such objects are equivalent in terms of a cohomological

condition.
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Introduced in [ENO05], a group-theoretical fusion category is a category of the form

BimodVectωGppkrHs, κqq, for some choice of twisted group algebra where ω|H is trivial. They

are a generalisation of VectωG, as taking the twisted group algebra to be the monoidal unit

algebra 1, viewed as pkrteus, 1q, returns the original category. As such, we can ask whether

the classification of Theorem 4.0.1 can be extended to this more general setting in any

way. This question has been answered in [MMP`23]. There, a Frobenius monoidal functor

Φ : C Ñ BimodCpAq was constructed for any special Frobenius algebra A in a monoidal

category C. Applying this to the case of twisted group algebras in VectωG, we get a family

of Frobenius algebras ΦppkrHs, κqq in the group-theoretical fusion categories, called twisted

Hecke algebras. It is then shown that these new algebras are indecomposable and separable,

and act as Morita equivalence class representatives for all such algebras in BimodCpAq.

There are other ways to extend VectωG, and we have already come across one. The monoidal

center ZpVectωGq contains VectωG as a subcategory, so we can similarly ask how we can extend

Theorem 4.0.1 to this case. This was done in the case that k has characteristic 0 in [DS17].

In this chapter, we shall discuss work first appearing in [HLRC23] that extends this result to

the case that k has arbitrary characteristic.

To do this, we need a good working description of VectωG. We shall use a modified version

of the equivalence in Proposition 3.5.6, using twisted Yetter-Drinfeld modules to ensure we can

work with non-trivial choices of ω. Then, in the spirit of the group-theoretical case, we shall

construct a Frobenius monoidal functor that allows us to use the Frobenius algebra structure

of the twisted group algebras in an attempt to extend the classification of indecomposable

separable algebras.

4.1 Category of twisted Yetter-Drinfeld Modules

To generalise the equivalence from Proposition 3.5.6, we define a twisted Yetter-Drinfeld

module over the Hopf algebra krGs ,following [Maj98, Proposition 3.2], to be a vector space

U that has a G-grading (i.e. a krGs-coaction), and a krGs-action that satisfies the twisted

action condition

h ¨ pk ¨ udq “ τph, kqpdqhk ¨ ud. (4.1.0.1)

for all h, k P G, ud P Ud, where the coefficient τph, kqpdq is given by

τph, kqpdq :“
ωph, k, dqωphkdphkq´1, h, kq

ωph, kdk´1, kq
. (4.1.0.2)
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This construction follows Morphisms of these objects are the same as those in the non-

twisted case, and thus we denote the category of twisted Yetter-Drinfeld modules over krGs

by
krGs

krGs
YDω.

Notation 4.1.1. For brevity, from now on we shall simply write YD instead of Yetter-Drinfeld.

This category is finite k-linear abelian in the same way as
krGs

krGs
YD, and much of the other

structure making
krGs

krGs
YD a fusion category, from Corollary 3.5.5, can be used for the twisted

version. The only additional condition is that the twisted action condition is satisfied.

Lemma 4.1.2. The category of twisted YD modules can be given the structure of a monoidal

category by using the same monoidal structure of VectωG, and defining the twisted krGs-action

on the tensor product U b V to be

h ¨ pud b vf q “ γphqpd, fqph ¨ ud b h ¨ vf q,

for h P G and ud P Ud, vf P Vf , and where

γphqpd, fq :“
ωph, d, fqωphdh´1, hfh´1, hq

ωphdh´1, h, fq
. (4.1.0.3)

.

Proof. On the underlying vector spaces, the tensor product is the same as the untwisted case,

being the tensor product of G-graded vector spaces. The additional structure required is the

defined twisted krGs-action, which we need to show satisfies Equation (4.1.0.1). This means

we must verify that

h ¨ pk ¨ pvd b uf qq “ τ ph, kq pdfqhk ¨ pud b vf q .

Expanding out both sides, we find that

h ¨ pk ¨ pud b vf qq “ γpkqpd, fqh ¨ pk ¨ ud b k ¨ vf q

“ γpkqpd, fqγphqpkdk´1, kfk´1
qph ¨ pk ¨ udq b h ¨ pk ¨ vf qq

“ γpkqpd, fqγphqpkdk´1, kfk´1
qτph, kqpdqτph, kqpfqphk ¨ ud b hk ¨ vf q,

τph, kqpdfqhk ¨ pud b vf q “ τph, kqpdfqγphkqpd, fqphk ¨ ud b hk ¨ vf q.

Thus, we require that the following equality holds;

γ pkq pd, fq γ phq
`

kdk´1, kfk´1
˘

τ ph, kq pdq τ ph, kq pfq “ τ ph, kq pdfq γ phkq pd, fq . (4.1.0.4)
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Showing this requires us to use the definitions of τ and γ, and to make extensive use of the

3-cocycle condition from Equation (2.1.0.4). This holds, and the full calculation is given in

Proposition A.2.1.

We now have a well-defined tensor product in
krGs

krGs
YDω. As for the rest of the monoidal

structure, we take the monoidal unit, associator and unitors as those of VectωG. The only

extra condition we need to verify is that the associator and unitors are morphisms of twisted

YD modules.

As we have assumed that ω is normalised, by Remark 2.1.16, the unitors are simply identity

morphisms and are clearly compatible with the twisted krGs-action. For the associator given

by αkg ,kh,kk “ ωpg, h, kq´1Idkghk , we need to check that

α ph ¨ prkg b kg1s b kg2qq “ h ¨ pα prkg b kg1s b kg2qq ,

for all h, g, g1, g2 P G. This is equivalent to the equality

ω´1
phgh´1, hg1h´1, hg2h´1

qγphqpgg1, g2
qγphqpg, g1

q “ γphqpg, g1g2
qγphqpg1, g2

qω´1
pg, g1, g2

q.

(4.1.0.5)

which is shown to hold in Proposition A.2.2. Thus
krGs

krGs
YDω is a monoidal category.

Lemma 4.1.3. For two twisted YD modules U, V P Obp
krGs

krGs
YDω

q, there is a braiding given by

cU,V : U b V Ñ V b U

ud b vf ÞÑ d ¨ vf b ud,

giving
krGs

krGs
YDω the structure of a braided monoidal category.

Proof. Once again, this is the same braiding structure as the untwisted case. However, due

to the non-trivial associator, we have to verify that the hexagon axioms in Equations 2.2.0.1

and 2.2.0.2 still hold. They are equivalent to the identities

ωpdfd´1, d, hq
´1

“ ωpdfd´1, dhd´1, dq
´1γpdqpf, hqωpd, f, hq

´1,

ωpd, fhf´1, fq “ ωpd, f, hqωpdfhf´1d´1, d, fqτpd, fqphq
´1,

respectively. These hold by directly substituting in the definitions of τ and γ from Equa-

tion (4.1.0.2) and Equation (4.1.0.3).
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Now we need to check that cU,V is a morphisms of twisted YD-modules, meaning

cU,V pg ¨ pud b vf qq “ g ¨ pcU,V pud b vf qq,

which is equivalent to the identity

γpgqpd, fqτpgdg´1, gqpfq “ γpgqpdfd´1, dqτpg, dqpfq, (4.1.0.6)

This is proven in Proposition A.2.3.

Similarly to Proposition 3.5.3 and Corollary 3.5.5, the remaining structure for
krGs

krGs
YDω to

be a fusion category is inherited directly from the underlying category. Hence
krGs

krGs
YDω is a

braided fusion category.

Proposition 4.1.4. The categories kG
kGYD

ω and ZpVectωGq are equivalent as braided monoidal

categories.

Proof. This proof is analagous to the untwisted case from Proposition 3.5.6. We use the same

functor from Equation (3.5.0.3), and the only additional condition that we need to check is

that the proposed half-braiding still satisfies the half-braiding condition Equation (2.2.0.2)

with non-trivial associator.

This condition is now equivalent to

τph, kqpdqωph, kdk´1, kq “ ωph, k, dqωphkdk´1h´1, h, kq,

which is exactly the definition of τ from Equation (4.1.0.2). All other conditions remain

unchanged, thus the proof is concluded.

4.2 Twisted group algebras

Now that we have an explicit description of ZpVectωGq –
krGs

krGs
YDω, we need to come up with a

candidate family of algebras that will serve as equivalence class representatives, similarly to

the twisted group algebras for VectωG. We will do this by attempting to lift the twisted group

algebras to the monoidal center.

We begin by introducing a collection of cohomological data.
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Notation 4.2.1. Let N Ÿ G be a normal subgroup of G and κ : N ˆ N Ñ kˆ be a map

satisfying

ωpn,m, kq “ κpn,mqκpm, kq
´1κpnm, kqκpn,mkq

´1, κpn, 1q “ κp1, nq “ 1, (4.2.0.1)

for all n,m, k P N . In addition, let

ϵ : G ˆ N Ñ kˆ, pg, nq ÞÑ ϵgpnq

be a map satisfying, for all g, k P G and n,m P N , that

τpg, kqpnq “
ϵgpknk´1qϵkpnq

ϵgkpnq
, (4.2.0.2)

γpgqpn,mq “
ϵgpnmq

ϵgpnqϵgpmq
¨
κpgng´1, gmg´1q

κpn,mq
, (4.2.0.3)

κpnmn´1, nq “ ϵnpmqκpn,mq. (4.2.0.4)

If we combine Equation (4.2.0.2) and Equation (4.2.0.3) with the fact that κ is normalised,

we find that ϵ is also normalised in the sense that

ϵhp1q “ 1, and ϵ1pnq “ 1.

Remark 4.2.2. Recall that the twisted group algebra (Example 3.1.4) in VectωG required the

data of a 2-cocycle whose differential was equal to a particular 3-cocycle. The above data

mirrors this setup.

We can view the maps ϵpg, nq :“ ϵgpnq and κ as a normalized element ϵ ‘ κ in the

truncated total complex rF 2
TotpG,N,kˆq, where G acts on N by conjugation. For details of

this construction, see Appendix A.3. Further, the element defined by T pωq “ ω ‘ γ ‘ τ is a

3-cocycle in rF 3
TotpG,G, κ

ˆq, shown in Example A.3.2.

Then, by calculating the differential d2
Totpϵ‘κq, see Example A.3.3, we find that Equations

(4.2.0.1)–(4.2.0.3) are equivalent to

d2
Totpϵ ‘ κq “ T pωq|pG,Nq,

where the 3-cocycle on the right-hand side has been restricted to rF 3
TotpG,N,kˆq.

This data now allows us to lift the twisted group algebra pkrGs, κq to the monoidal center,
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by adding a compatible krGs-action in the following way.

Proposition 4.2.3 (Algebras BpN, κ, ϵq). Assume we have a tuple pG,N, ω, κ, ϵq as described

in Notation 4.2.1. Consider the k-vector space BpN, κ, ϵq with k-basis ten | n P Nu, and

define

(i) g ¨ en “ ϵgpnqegng´1, for g P G;

(ii) δpenq “ n b en, that is, en is homogeneous of degree n P G;

(iii) multiplication mB given by mBpen b emq “ κpn,mq´1enm for all n,m P N ;

(iv) unit up1kq “ ee.

Then BpN, κ, ϵq is an algebra object in ZpVectωGq. Further, this algebra is connected and

commutative.

Proof. First, we check that B is a twisted YD module. There is a G-grading, so we have a

krGs-coaction. For the proposed action to be a twisted krGs-action, we need

g ¨ pk ¨ enq “ ϵkpnqg ¨ eknk´1 “ ϵgpknk´1
qϵkpnqegknk´1g´1 ,

τpg, kqpnqgk ¨ en “ τpg, kqpnqϵgkpnqegknk´1g´1 ,

to be equal, and so this is equivalent to

ϵgpknk´1
qϵkpnq “ τpg, kqpnqϵgkpnq,

which is exactly Equation (4.2.0.2).

The Yetter-Drinfeld condition Equation (3.5.0.1) is satisfied as

δpg ¨ enq “ ϵgpnqδpegng´1q “ ϵgpnqgng´1
b egng´1 “ gng´1

b g.en.

So B is indeed an object in
krGs

krGs
YDω.

The proposed multiplication and unit morphisms of B are the same as those for the twisted

group algebra in VectωG, from Example 3.1.4, so we already know that they are associative

and unital by Equation (4.2.0.1). Hence we just need to verify that they are morphisms in
krGs

krGs
YDω.
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For the multiplication to be a morphism of YD modules, we need

g ¨ mBpen b emq “ mBpg ¨ pen b emqq.

Computing these, we get that

g ¨ mBpen b emq “κpn,mq
´1g ¨ enm “ κpn,mq

´1ϵgpnmqegnmg´1 ,

mBpg ¨ pen b emqq “ γpgqpn,mqmBpg ¨ en b g ¨ emq

“ γpgqpn,mqϵgpnqϵgpmqmBpegng´1 b egmg´1q

“ γpgqpn,mqϵgpnqϵgpmqκpgng´1, gmg´1
q

´1
qegnmg´1 ,

and so they are equal by Equation (4.2.0.3). Hence B is an algebra object in
krGs

krGs
YDω.

For the adjectives, this algebra is clearly connected as the trivially-graded component

is necessarily 1-dimensional, and so as morphisms in
krGs

krGs
YDω respect the G-grading, the

morphism space HomkrGs

krGs
YDωp1, Bq is also 1-dimensional.

To see commutativity, we compute that

mBcB,Bpen b emq “ mBpn.em b enq “ ϵnpmqmBpenmn´1benq “ κ´1
pnmn´1, nqϵnpmqpenmq,

and thus the condition mB ˝ cB,B “ mB is exactly satisfied by Equation (4.2.0.4).

By adding a Yetter-Drinfeld structure, we have successfully lifted the twisted group

algebras from Example 3.1.4 to the monoidal center, which are dependent on a choice of

subgroup (normal this time) and a 2-cocycle with specified differential (in the total complex).

Additionally, by making a further imposition, we have incorporated the braided structure of

this case to make these algebras commutative.

To complete this generalisation, we would like to also bring forward the Frobenius structure

of the twisted group algebras.

Proposition 4.2.4. The algebras B “ BpN, κ, ϵq are Frobenius algebras in
krGs

krGs
YDω with

coalgebra structure given by

∆Bpenq “
ÿ

mPN

κpm,m´1nq em b em´1n, εBpenq “ δn,e, for all n P N.

Additionally, if |N | P kˆ, then B is a special Frobenius algebra.

Proof. This coalgebra structure is the same as for the twisted group algebra in VectωG from
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Example 3.2.3, so we simply need to check that these comultiplication and counit morphisms

are morphisms of twisted YD modules.

We compute that

g ¨ ∆Bpenq “
ÿ

mPN

κpm,m´1nqg ¨ pem b em´1nq

“
ÿ

mPN

κpm,m´1nqγpgqpm,m´1nq g ¨ em b g ¨ em´1n

“
ÿ

mPN

κpm,m´1nqγpgqpm,m´1nqϵgpmqϵgpm´1nq egmg´1 b egm´1ng´1 ,

∆Bpg ¨ enq “ϵgpnq∆Bpegng´1q “
ÿ

mPN

ϵgpnqκpm,m´1gng´1
qem b em´1gng´1 .

As N is a normal subgroup, in the second sum we can make the index substitution of

m ÞÑ gmg´1. This allows us to compare the two expressions, which are equal if and only if

γpgqpm,m´1nqκpm,m´1nqϵgpmqϵgpm´1nq “ ϵgpnqκpgmg´1, gm´1ng´1
q,

which holds by Equation (4.2.0.3)

If we calculate the compositions from the definition of special Frobenius, we get that

mB∆Bpenq “
ÿ

kPn

en “ |N |en, εBuBp1q “ 1.

Thus we see that B is special Frobenius if and only if |N | P kˆ.

Remark 4.2.5. Recall by Remark 3.2.5 that any special Frobenius algebra gives rise to a

separable algebra by scaling the coproduct. In the case that |N | P kˆ, this is done by instead

equipping BpN, κ, ϵq with the coproduct ∆1
B “ |N |´1∆B. This is exactly the coproduct that

appears on the twisted group algebra in [MMP`23].

As a result, we have now successfully lifted the twisted group algebras pkrGs, κq in VectωG
to algebras BpN, κ, ϵq in ZpVectωGq, preserving the connected separable Frobenius algebra

structures. Additionally, we have gained commutativity to utilise the additional structure

gained from moving to the monoidal center. We now wish to follow Theorem 4.0.1 and use

these algebras to classify some collection of algebra objects in ZpVectωGq.

Proposition 4.2.6. Let B be a separable commutative algebra in ZpVectωGq such that Be “ k.
Then B is isomorphic as an algebra in ZpVectωGq to BpN, κ, ϵq for N “ tg P G | Bg ‰ 0u.
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Proof. Using the alternative definition of separability from Remark 3.2.5, we have that the

morphism

B b B
m
ÝÑ B Ñ 1 – ke

is non-degenerate in ZpVectωGq. Hence, to respect the grading, this restricts to a non-degenerate

morphism

Bg b B´1
g Ñ 1,

hence any element b P Bg, where Bg is non-zero, is a unit. In particular, this means that

ab P Bgh is non-zero if and only if a ‰ 0 P Bg, b ‰ 0 P Bh. Thus, the following subset

N “ SupppGq :“ tg P G|Bg ‰ 0u

is a subgroup of G. In fact, by the twisted YD condition we have that g ¨ b P Bgng´1 , for all

g P G, b P Bn, we get that N is a normal subgroup of G.

If we then consider elements a, c P Bg, b P Bg´1 such that a, c, ab, bc are non-zero, we

have by associativity that pabqc “ ωpg, g´1, gqapbcq, so a, c are proportional. This means that

dimkBg ď 1 for all g P G, and we can choose a k-basis tenunPN for B.

Also as as dimkBg ď 1, the multiplication and krGs-actions of B are determined by scalars

κpn,mq, ϵgpnq P kˆ respectively, satisfying

enem “ κpn,mq
´1enm, @n,m P N.

g ¨ en “ ϵgpnqegng´1 , @g P G, n P N.

This gives us the triple pN, κ, ϵq, and it follows from B being an algebra in ZpVectωGq that

the conditions in Notation 4.2.1 are satisfied (as seen in the proof of Proposition 4.2.3).

So now we have a family of algebras in
krGs

krGs
YDω that are represented by the algebras

BpN, κ, ϵq. However, we currently have the fairly strong condition that the trivially-graded

component of these algebras is trivial. We shall now explore how we can extend the collection

of algebras in this classification by means of a Frobenius monoidal functor.

4.3 Constructing a Frobenius Monoidal Functor

To further utilise the lifted twisted group algebras BpN, κ, ϵq, we will construct a functor

that allows us to transport the Frobenius algebra structures.
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Let H Ď G be a subgroup of G. Then ω|H P C3pH,kˆq. We shall make a slight abuse of

notation and write
krHs

krHs
YDω :“

krHs

krHs
YDω|H .

Consider a functor

I :
krHs

krHs
YDω

Ñ
krGs

krGs
YDω.

On objects, for any U P Obp
krHs

krHs
YDω

q, the underlying target vector space is given by

U ÞÑ IpUq :“ kG b U,

and we impose upon it the relation

gh b ud “ τpg, hqpdq
´1g b h ¨ ud, (4.3.0.1)

for g P G, h, d P H.

On morphisms, for f P HomkrHs

krHs
YDωpU, V q, the functor acts as f ÞÑ Ipfq :“ IdkrGs b f . For

this to be a well-defined functor, we need to endow IpUq with the structure of a twisted YD

module. This is done with a krGs-action given by

ρIpUq : krGs b IpUq Ñ IpUq

g b pk b udq ÞÑ g Ź pk b udq :“ τpg, kqpdqgk b ud, (4.3.0.2)

and krGs-coaction given by

δIpUq : IpUq Ñ krGs b IpUq

pg b vdq ÞÑ gdg´1
b pg b vdq. (4.3.0.3)

Lemma 4.3.1. I pUq has the structure of a twisted YD module over krGs.

Proof. First, we have to check that Equation (4.3.0.2) is a valid krGs-coaction. For com-

patibility with the comultiplication of krGs, we require the following two equations to be

equal,

p∆ b Idq δ pg b udq “ p∆ b Idq
`

gdg´1
b g b ud

˘

“ gdg´1
b gdg´1

b g b ud,

pId b δq δ pg b udq “ gdg´1
b pg b udq “ gdg´1

b gdg´1
b g b ud.

which is immediate. Compatibility with the counit is also immediate.

For the proposed map to be a twisted action, we need Equation (4.1.0.1) to hold, which
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for the proposed krGs-action is equivalent to

τph, kqpdqτpg, hkqpdq “ τpg, hqpkdk´1
qτpgh, kqpdq.

This holds and is proven in Proposition A.2.4. Unit compatibility is immediate as ω is

normalised.

The final thing to check is the YD compatibility condition from Definition 3.5.1. For this,

we require that for any g, k P G, d P H, the following two compositions are equal;

g b pk b udq ÞÑ g b gbg b kdk´1
b pk b udq ÞÑ g b kdk´1

b g´1
b g b pk b udq ÞÑ

ÞÑ gkdk´1g´1
b g Ź pk b udq “ τpg, kqpdqgkdk´1g´1

b pgk b udq,

g b pk b udq ÞÑ g Ź pk b udq “ τpg, kqpdqpgk b udq ÞÑ τpg, kqpdqgkdk´1g´1
b pgk b udq,

which is clearly the case.

As discussed earlier, we wish to use this functor to transport our found Frobenius algebras

between categories. As such, we need to check that the functor I is compatible with the

monoidal structures involved. We begin by looking at a lax structure for I.

For this, we require natural morphisms IpUq bIpV q Ñ IpU bV q hence we should consider

vectors of the form pg b udq b pk b vf q. If gH “ kH, then we can use the relation in

Equation (4.3.0.1) to rewrite this vector as

pg b udq b pk b vf q “ pg b udq b pgpg´1kq b vf q “ τpg, g´1kqpfq
´1

pg b udq b pg b pg´1kq ¨ vf q.

As such, in this case it is sufficient to consider vectors of the form pg b udq b pg b vf q.

From this observation, we make the choice to only consider vectors of this form, by

defining the natural transformation µU,V : IpUq b IpV q Ñ IpU b V q as sending a vector

pg b udq b pk b vf q to zero unless g´1k P H. If gH “ kH, then

µU,V ppg b udq b pg b vf qq “ γpgqpd, fq
´1g b pud b vf q. (4.3.0.4)

For the unit morphism of the lax monoidal structure, we define a morphism

η : 1 Ñ Ip1q, 1k ÞÑ
ÿ

i

gi b 1k, (4.3.0.5)

where tgiuiPI is a set of representatives for the left cosets of H in G, i.e. G “
š

i

giH.
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Remark 4.3.2. We can combine these steps to alternatively write this natural transformation

µ as

µU,V : IpUq b IpV q ÝÑ IpU b V q,

pg b udq b pk b vf q ÞÑ

$

&

%

ζpg, d, k, fqg b pud b g´1k ¨ vf q, if gH “ kH,

0, else,

where

ζpg, d, k, fq “

´

τpg, g´1kqpfqγpgqpd, g´1kfk´1gq

¯´1

.

Lemma 4.3.3. The pair pµ, ηq as defined in Equations 4.3.0.4 and 4.3.0.5 equips the functor

I with a lax monoidal structure.

Proof. Firstly, the natural morphism µU,V is a morphism of YD modules as the condition

µU,V pk Ź ppg b udq b pg b vf qqq “ k Ź pµU,V ppg b udq b pg b vf qqq

is equivalent to the equality

τpk, gqpdfqγpgqpd, fq
´1

“ γpkgqpdfq
´1τpk, gqpdqτpk, gqpfqγpkqpgdg´1, gfg´1

q,

which is exactly Equation (4.1.0.4). For the unit morphism, this is immediate as the unit

object 1 has trivial YD action.

Per our discussion prior to Remark 4.3.2, it suffices to check that the lax monoidal

condition in Definition 2.1.7 holds on vectors of the form ppg b udq b pg b vf qq b pg b whq. If

we compute the relevant composition of maps on these vectors, we get that

IpαU,V,W qµUbV,W pµU,V b IdIpW qqpppg b udq b pg b vf qq b pg b whqq

“ γpgqpd, fq
´1γpgqpdf, hq

´1ωpd, f, hq
´1g b pud b pvf b whqq,

µU,V bW pIdIpUq b µV,WαIpUq,IpV q,IpW qpppg b udq b pg b vf qq b pg b whqq

“ ωpgdg´1, gfg´1, ghg´1
qγpgqpf, hq

´1γpgqpd, fhq
´1g b pud b pvf b whqq.

These equations are equal due to Equation (4.1.0.5).

The unitality conditions hold immediately as γpgqpd, eq “ 1 “ γpgqpe, dq.

We shall now consider an op-lax monoidal structure on I. Let us define the natural
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transformation;

νU,V : I pU b V q Ñ I pV q b I pV q ,

g b pud b vf q ÞÑ γ pgq pd, fq pg b udq b pg b vf q , (4.3.0.6)

for any d, f P H, and V, U P Ob pZpVectωHqq. We also define the morphism

ϵ : Ip1q Ñ 1, ϵpg b 1kq “ 1k. (4.3.0.7)

Lemma 4.3.4. The pair pν, ϵq defined by Equations 4.3.0.6 and 4.3.0.7 equips the functor I

with an op-lax monoidal structure.

Proof. As always, we need to check that the defined maps are morphisms of YD modules.

For the morphism ϵ, this follows from ω being normalised and 1 having trivial YD action, as

ϵpk Ź pg b 1kqq “ τpk, gqpeqϵpkg b 1kq “ 1k “ k Ź 1k “ k Ź ϵpg b 1kq.

For the natural transformation ν, we calculate that

νU,V pk Ź pg b pud b vf qqq “ k Ź pνU,V pg b pud b vf qqq

is equivalent to the identity

τpk, gqpdfqγpkgqpd, fq “ τpk, gqpdqτpk, gqpfqγpgqpd, fqγpkqpgdg´1, gfg´1
q

This is the same condition as in Equation (4.1.0.4), so νU,V is a morphism of Y D modules.

The op-lax monoidal condition can be verified in exactly the same way as the proof of the

lax monoidal structure, and we also get that this is equivalent to both Equation (4.1.0.5)

being true and γpgqpd, eq “ 1 “ γpgqpe, dq.

So, by Proposition 3.2.7, we now have a functor that preserves algebra and coalgebra

structures. The only thing left to verify is that Frobenius algebra structures are preserved

under I, which will enable us to transport the twisted group algebras BpN, κ, εq.

Proposition 4.3.5. The functor I :
krHs

krHs
YDω

Ñ
krGs

krGs
YDω is a Frobenius monoidal functor.

Proof. The claim that I is a Frobenius monoidal functor follows from checking the diagrams

in Definition 2.1.9. For the first condition, we note that both compositions use the lax
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monoidal structure µ and so it is clear that we can simply consider vectors of the form

pgbudq b pgb pvf bwhqq, as otherwise we will end up with 0. We compute that this condition

is equivalent to the identity

ωpgdg´1, gfg´1, ghg´1
qγpgqpf, hqγpgqpd, fq

´1
“ γpgqpd, fhq

´1γpgqpdf, hqωpd, f, hq

which is simply Equation (4.1.0.5) rearranged. The second diagram holds similarly.

Hence, I preserves Frobenius algebras, which in particular preserves the lifted twisted

group algebras BpN, κ, ϵq P ObpZpVectωGqq. These algebras have other properties, such as

commutativity and special Frobenius, which we would also like to preserve.

Proposition 4.3.6. The functor I is a braided separable Frobenius monoidal functor, and

ϵ ˝ η ‰ 0 if and only if |G : H| P kˆ.

Proof. The condition in Equation (2.1.0.1) is satisfied as

µU,V νU,V pg b pud b vf qq “γpgqpd, fqµU,V ppg b udq b pg b vf qq

“ γpgqpd, fqγpgqpd, fq
´1

pg b pud b vf qq “ pg b pud b vf qq,

so I is a separable Frobenius monoidal functor. The condition on the unit and counit

morphisms are also easily verified, as

ϵ ˝ ηp1kq “ ϵ

ˆ

ÿ

i

gi b 1k

˙

“ |G : H| ¨ 1k.

To show that it is compatible with the braiding, we need to verify I is both braided lax

monoidal and braided oplax monoidal.

First, we check that the lax monoidal structure pµ, ηq is compatible with the braiding as

in Definition 2.2.9.

By our earlier discussion, IpcU,V qµU,V will be zero on all vectors that are not some linear

combination of vectors of the form pg b udq b pg b vf q. To see that this is also true for

µV,UcIpUq,IpV q, we compute

µV,UcIpUq,IpV qppg b udq b pk b vf qq “ τpgdg´1, kqpfqµV,Uppgdg´1k b vf qq b pg b udqq

Now this term is non-zero only when dg´1k´1 P H, which is equivalent to requiring g´1k P H,

as d P H. Hence we can restrict to vectors of the proposed form. When we do so, we compute
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that

µV,UcIpUq,IpV qppg b udq b pg b vf qq “ µV,Uppgdg´1
Ź pg b vf qq b pg b udqq

“ τpgdg´1, gqpfqµV,Uppgd b vf q b pg b udqq

“ τpgdg´1, gqpfqτpg, dqpfq
´1µV,Uppg b d ¨ vf q b pg b udqq

“ τpgdg´1, gqpfqτpg, dqpfq
´1γpgqpdfd´1, dq

´1g b pd ¨ vf b udq,

IpcU,V qµU,V ppg b udq b pg b vf qq “ γpgqpd, fq
´1IpcU,V qpg b pud b vf qq

“ γpgqpd, fq
´1g b pd ¨ vf b udq.

By expanding out both coefficients using the definitions of τ and γ from Equations 4.1.0.2

and 4.1.0.3, we see that these are equal.

The braided oplax monoidal condition follows similarly. The result of this computation

gives

γpgqpdfd´1, dq “ τpg, dqpfq
´1τpgdg´1, gqpfqγpgqpd, fq,

which is the same identity, just rearranged.

As a result of this, by Proposition 3.2.7, the functor I preserves a whole variety of algebraic

structures.

Corollary 4.3.7. • If A is an algebra/coalgebra/Frobenius algebra in
krHs

krHs
YDω, then IpAq

is an algebra/coalgebra/Frobenius algebra in
krGs

krGs
YDω.

• If A is a commutative algebra in
krHs

krHs
YDω, then IpAq is commutative in

krGs

krGs
YDω.

• If A is a special Frobenius algebra in
krHs

krHs
YDω and |G : H| P kˆ, thenIpAq is special

Frobenius in
krGs

krGs
YDω.

So we have now achieved our goal of constructing a functor that will enable us to

preserve the structures on the twisted group algebras BpN, κ, ϵq in
krHs

krHs
YDω. Before we apply

the functor I to this case, let’s first consider how the trivial algebra object 1, which is a

commutative Frobenius algebra, behaves under I.

Example 4.3.8. Let us define AH :“ Ip1q to be the image of the monoidal unit of
krHs

krHs
YDω

under the functor I. Explicitly, AH is spanned as a k-vector space by tg b 1k|g P Gu, with
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the relation Equation (4.3.0.1) becoming simply that g b 1k “ k b 1k if and only if g´1k P H.

From now on, we shall denote these basis vectors as υgH :“ g b 1k.

As 1 has trivial YD module structure, using Equation (4.3.0.2) and Equation (4.3.0.3),

we get that AH is a YD module with

k ¨ υgH “ δkgH , δpυgHq “ 1 b υgH .

So AH is completely contained in its trivially-graded component.

Using Proposition 3.2.7, AH is an algebra in
krGs

krGs
YDω with multiplication and unit given

by

mAH
pυgH b υkHq “

$

&

%

υgH , if g´1k P H,

0, otherwise,
uAH

p1kq “
ÿ

i

δgiH “: 1AH
,

where tgiu is a set of H-coset representatives.

Similarly, AH is a coalgebra with comultiplication and counit

∆AH
pυgHq “ υgH b υgH , εAH

pυgHq “ 1k.

These structures make AH a commutative Frobenius algebra in
krGs

krGs
YDω.

Lemma 4.3.9. Assume |G : H| P kˆ. Then the algebra AH is a connected special Frobenius

algebra in
krGs

krGs
YDω.

Proof. The algebra is connected as AH is concentrated in G-degree e, it is a G-module

and HomkrGs

krGs
YDωp1, AHq Ď pAHqG. The latter space of G-invariant elements in AH is one-

dimensional since AH is given by functions on a transitive G-set.

The special Frobenius condition follows immediately from Corollary 4.3.7. We can also

see this by computing explicitly that

mAH
∆AH

pυgHq “ υgHυgH “ υgH , εAH
p1AH

q “ |G : H|.

As well as being a nice example of how the functor I works, the algebra AH also allows

us to impose more structure on the image of this functor.

Lemma 4.3.10. For any object V in Obp
krHs

krHs
YDω

q, IpV q is a local AH-module.
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Proof. We propose that the right action aIpUq : IpUq b AH Ñ IpUq is given by

pg b udq ¨ υkH “

$

&

%

g b ud, if k´1g P H,

0, otherwise.

For this action to have compatibility with the multiplication of AH , we check that the two

compositions

aIpUqpaIpUq b IdAH
qpppg b udq b υkHq b υfHq “

$

&

%

g b ud if g´1k, g´1f P H

0 else
,

aIpUqpIdIpUq b mAH
qαIpUq,AH ,AH

pppg b udq b υkHq b υfHq “

$

&

%

g b ud if k´1f, g´1k P H

0 else ,

are equal, which is clear as H is a group.

The unitality condition is easily satisfied;

pg b udq ¨ 1AH
“

ÿ

i

pg b udq ¨ υgiH “ g b ud.

So IpUq is a right AH-module. To check the locality condition from Equation (3.3.0.3),

we compute that

aIpUqcAH ,IpUqcIpUq,AH
ppg b udq b υkHq “ aIpUqcAH ,IpUqpυgdg´1kH b pg b udqq

“ aIpUqpg b udq b υgdg´1kH “

$

&

%

g b ud, if k´1gd´1 P H,

0, else.

As d P H, this is just the result of applying the right action aIpV q only.

From this, we can actually restrict I to a functor

I :
krHs

krHs
YDω

Ñ ModlockrGs

krGs
YDωpAHq.

As AH is a commutative algebra in a braided monoidal category, its category of local modules

is braided monoidal by Proposition 3.3.7. We now check whether this induced functor is

compatible with these monoidal and braiding structures.

By Proposition 3.3.4, the tensor product of X, Y P ModlockrGs

krGs
YDωpAHq is given by the relative
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tensor product X bAH
Y , with the left action induced by braiding in the following way;

alX :“ arXcAH ,X .

If we then compute IpUq bAH
IpV q, we find that the vector pg b udq b pk b vf q is zero if and

only if gH ‰ kH, and so as vector space we have that

IpUq bAH
IpV q “ pIpUq b IpV qq{S, where S “ spanktpg b udq b pk b vf q|g´1k R Hu.

For this to be a valid quotient in ModlockrGs

krGs
YDωpAHq, we need to verify that S is a subobject of

IpUq b IpV q.

Lemma 4.3.11. The subspace S “ spanktpg b udq b pk b vf q|g´1k R H , ud P Ud, vf P Vfu is

a subobject of IpUq b IpV q in ModlockrGs

krGs
YDωpAHq.

Proof. Firstly, S has a G-grading as

δppg b udq b pl b vf qq “ gdg´1lf l´1
b

`

pg b udq b pl b vf q
˘

gives a G-homogeneous spanning set. Secondly, S is closed under the twisted kG-action as

h Ź ppg b udq b pk b vf qq “ γphqpgdg´1, kfk´1
qτph, gqpdqτph, kqpfqphg b udq b phk b vf q

is in S because phkq´1phgq R H if and only if k´1g R H.

Finally, S is closed under the right action of AH since

ppg b udq b pk b vf qq ¨ υhH “

$

&

%

pg b udq b pk b vf q, if hH “ kH,

0, else,

is clearly in S. Hence S is a subobject of IpUq b IpV q.

Corollary 4.3.12. As objects in ModlockrGs

krGs
YDωpAHq, IpUq bAH

IpV q – IpUq b IpV q{S.

Proposition 4.3.13. The functor I induces a separable Frobenius monoidal functor I :
krHs

krHs
YDω

Ñ ModlockrGs

krGs
YDωpAHq.

Proof. Due to our description of IpUq bAH
IpV q we can naturally extend the op-lax monoidal

structure pν, ϵq to

ν̄U,V : IpU b V q
νU,V
ÝÝÑ IpUq b IpV q ÝÑ IpUq bAH

IpV q,
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g b pud b vf q ÞÑ γpgqpd, fqpg b udq b pg b vf q,

on the induced functor.

The lax-monoidal structure is induced similarly. If we use the form of µU,V given in

Remark 4.3.2, we see that S is in the kernel of µU,V and so we can induce a quotient morphism

µ̄U,V : IpUq bAH
IpV q Ñ IpU b V q

pg b udq b pk b vf q ÞÑ ζpg, d, k, fqg b pud b g´1k ¨ vf q

in ModlockrGs

krGs
YDωpAHq. All of the conditions for this to be a separable Frobenius monoidal functor

are satisfied directly.

Proposition 4.3.14. The monoidal functor I :
krHs

krHs
YDω

Ñ ModlockrGs

krGs
YDωpAHq is braided lax

monoidal.

Proof. To see that I is a braided lax monoidal functor, consider the diagram

IpUq b IpV q //

cIpUq,IpV q

��

IpUq bAH
IpV q

ν̄U,V //

c1
U,V

��

IpU b V q

IpcU,V q

��
IpV q b IpUq // IpV q bAH

IpUq
ν̄V,U // IpV b Uq,

where the unlabeled morphisms are the coequalisers defined in Equation (3.3.0.2). The

left-most square commutes by definition of the braiding in ModlockrGs

krGs
YDωpAHq, and the perimeter

commutes by naturality. Hence the right-most square commutes, which is exactly the

condition for the functor I to be braided lax monoidal.

The following result was proved in [DS17, Theorem 3.7], and here we give a proof utilising

the functor I we have developed.

Theorem 4.3.15. The functor I defines an equivalence of braided monoidal categories between
krHs

krHs
YDω and ModlockrGs

krGs
YDωpAHq.

Proof. Recall that on morphisms, the functor I is given by the map

HomkrHs

krHs
YDωpU, V q Ñ HomModlockrGs

krGs
YDω

pAHqpkG b U,kG b V q

56



f ÞÑ Ipfq “ IdkG b f

This map is injective, which can be seen by the restriction of morphisms to the subspace

e b V of IpV q, meaning Ipfq “ Ipgq only when then morphisms agree on the V component,

which is just f “ g. Hence I is faithful.

To prove that I is full, suppose q : kGbAH
U Ñ kGbAH

V is a morphism inModlockrGs

krGs
YDωpAHq.

Then, for all g, k P G, u P U , we have

qpg b uq ¨ υkH “ qppg b uq ¨ υkHq “

$

&

%

qpg b uq, if k´1g P H,

0, otherwise.

We choose a set of coset representatives tgiu for H in G such that g1 “ e. For a local module

L P ModlockrGs

krGs
YDωpAHq, the action of the idempotent elements υgiH define a family of idempotent

endomorphisms

ιg : L Ñ L, l ÞÑ l ¨ υgH ιg P EndZpVectωGqpLq. (4.3.0.8)

If we then set Li “ Impιgiq, we get a direct sum decomposition L “
À

i L
i.

If we apply this to the module IpV q, it is clear that IpV qi “ gi b V and consists of all

elements that are non-zero under the action of υgiH . If we consider qpgi b uq, then by the

above

qpgi b uq ¨ υgjH “

$

&

%

qpgi b uq if i “ j

0 else.
(4.3.0.9)

So qpgi b uq is contained in the subspace gi b V of IpV q. Hence, there exists a vector vi P V

such that qpgi b uq “ gi b vi . But, as q is a morphism in ModlockrGs

krGs
YDωpAHq, it commutes with

the twisted kG-action, which gives us that

gi b vi “ qpgi b uq “ qpgi ¨ pe b uqq “ gi ¨ qpe b uq “ gi b v1. (4.3.0.10)

This clearly implies that vi “ v1 for all i, which allows us to define a k-linear map

q̄ : U Ñ V, u ÞÑ v1, (4.3.0.11)

which satisfies Ipq̄q “ q, as

qpg b uq “ g b q̄puq, (4.3.0.12)

and which can be easily checked that q̄ is a morphism of YD modules over kH.
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The last thing to check is essential surjectivity. For this, consider a general local module

L P ModlockrGs

krGs
YDωpAHq, with idempotent decomposition as described above.

We now observe that l P Li if and only if gjg
´1
i ¨ l P Lj. In particular, l P L1 if and only

if gi ¨ l P Li. Further, restricting the twisted action of L makes L1 into a submodule. The

assumption that L is a local module implies that if ld P L1 has degree |l| “ d, then l “ l ¨ υdH .

We can write d “ gih, with h P H, and find that l P Li. However, as the subspaces Li

intersect trivially it follows that d P H. Thus, L1 correspond to an object in
krHs

krHs
YDω.

Using the twisted right G-action on L, we define a map

π : kG b L1 ÝÑ L, g b l ÞÑ g ¨ l.

The map π is surjective. Indeed, L1 is given by all elements of the form l ¨ υH , with l P L.

Now,

gi

ˆ

pg´1
i lq

γpgiqpgi, |l|q
¨ υH

˙

“
τpgiqpgi|l|g

´1
i , 1q

γpgiqpgi, |l|q
pgipg

´1
i lqq ¨ pgiυHqq “

γpgiqpgi, |l|q

γpgiqpgi, |l|q
l ¨ υgiH “ l ¨ υgiH .

Thus, l ¨ υgiH is in the image of π and hence, for any l P L, l “
ř

i l ¨ υgiH P Impπq. It follows

that

πpgh b vdq “ pghql “ τpg, hqpdq
´1gphlq “ τpg, hqpdq

´1g b hvd.

So by Equation (4.3.0.1), π descends to a quotient map π : IpL1q Ñ L which is still surjective.

The right twisted action by g P G gives an isomorphism of vector spaces and hence dimpLiq “

dimpL1q for all i. This shows that

dimL “ |G : H|dimkL
1

“ dimkIpL1
q.

Thus, π is injective and hence gives an isomorphism IpL1q – L.

4.4 Frobenius algebras in ZpVectωGq

Now that we have completed our construction and exploration of the monoidal functor

I :
krHs

krHs
YDω

Ñ ModlockrGs

krGs
YDω , it is time to return to the twisted group algebras BpN, κ, ϵq.

Definition 4.4.1 (ApH,N, κ, ϵq). We define A :“ ApH,N, κ, ϵq to be the commutative

Frobenius algebra IpBq, for the algebra B “ BpN, κ, ϵq from Proposition 4.2.3 in
krHs

krHs
YDω.
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While we now by Corollary 4.3.7 that this is a commutative Frobenius algebra, we can

explicitly describe the structure.

We have that BpN, κ, ϵq has a basis given by ten|n P Nu, so under the functor I these

take on the form ag,n :“ g b en, for some g P G. These elements clearly form a basis for the

underlying space of A, but we need to account for the relations in Equation (4.3.0.1);

gh b en “ τpg, hqpnq
´1g b h ¨ en “ τpg, hqpnq

´1ϵhpnqg b ehnh´1 ,

so A is subject to the relations

agh,n “ τpg, hqpnq
´1ϵhpnqag,hnh´1 , @g P G, h P H,n P N.

By Equations 4.3.0.2 and 4.3.0.3, we get that the krGs-coaction of these elements is

δpag,nq “ gng´1 b ag,n, and the krGs- action is given by

k ¨ ag,n “ τpk, gqpnqakg,n.

This completes the description of ApH,N, κ, ϵq as a twisted YD-module in ModlockrGs

krGs
YDωpAHq.

For the algebra structure, we need to make use of Proposition 3.2.7 where the multiplication

of A is the composition

mA : A b A “ IpBq b IpBq
µB,B
ÝÝÝÑ IpB b Bq

IpmBq
ÝÝÝÝÑ IpBq “ A,

which on our basis elements is given by

pg b enqpk b emq “

$

&

%

γpgqpn,mq´1κpn,mq´1pg b penmqq if g´1k P H

0 else.

The unit uA : 1
eta
ÝÝÑ Ip1q

IpuBq
ÝÝÝÑ IpBq “ A results in 1A :“ uAp1kq “

ř

iPI agi,1.

The coalgebra structure is derived similarly, this time using the oplax monoidal structure

of I. Once we do this and put it together, we get the following lemma.

Lemma 4.4.2. The explicit structure of A “ ApH,N, κ, ϵq as a Frobenius algebra in
krGs

krGs
YDω

is as follows;
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(a) A is the k-vector space spanned by tag,n | g P G, n P Nu, subject to the relations

agh,n “ τpg, hqpnq
´1ϵhpnqag,hnh´1 , @h P H.

(b) The twisted YD module structure is given by

(i) left kG-coaction given by δpag,nq “ gng´1 b ag,n;

(ii) twisted G-action given by k ¨ ag,n “ τpk, gqpnqakg,n, for k P G.

(c) The Frobenius algebras structure is given by the

(iii) multiplication mA given by

ag,nag,m “ γpgqpn,mq
´1κpn,mq

´1ag,nm,

for g P G and n,m P N , and ag,nak,m “ 0 if gH ‰ kH;

(iv) unit uA given by 1A “
ř

iPI

agi,1;

(v) coproduct ∆A given by

∆Apag,nq “
ÿ

mPN

γpgqpm,m´1nqκpm,m´1nq ag,m b ag,m´1n,

(vi) counit εA given by εApag,nq “ δn,1.

Now, we have an explicit description of a transfer of the twisted group algebras under the

functor I. We can now use the algebras ApH,N, κ, ϵq to provide a version of Theorem 4.0.1

that extends to the monoidal center ZpVectωGq –
krGs

krGs
YDω.

Theorem 4.4.3. Let G be a finite group with ω P C3pG,kˆq, H a subgroup of G and a tuple

pN, κ, εq as in Notation 4.2.1.

(a) If |N | ¨ |G : H| P kˆ, then the algebra A “ ApH,N, κ, ϵq from Definition 4.4.1 is a

connected commutative special Frobenius algebra in ZpVectωGq.

(b) Every connected separable commutative algebra in ZpVectωGq is of the form ApH,N, κ, ϵq,

for some choice of data H,N, γ, ϵ.

Proof. Part (a) We already have that A “ ApH,N, κ, ϵq is a commutative Frobenius algebra

by combining Propositions 4.2.3 and 4.2.4 with Corollary 4.3.7.
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A is connected since HomkrGs

krGs
YDωp1, Aq “ pA1q

G, the space of G-invariant elements in the

kG-module A1. This space is 1-dimensional as A1 “ kpG{Hq and G acts by left translation.

By Proposition 4.2.4, the algebra BpN, κ, ϵq is special Frobenius when |N | P kˆ. This

is preserved by I if and only if |G : H| P kˆ by Corollary 4.3.7. Thus we are left with the

required condition.

Part (b) Assume that we have a connected separable commutative algebra A in
krGs

krGs
YDω.

If we consider the subobject of trivial degree Ae, the restriction of the multiplication on

A to Ae makes it an algebra. Restriction of the krGs-action makes Ae a krGs-module,

with untwisted action. Thus we can view Ae as an algebra object in ModVectpkrGsq. The

conditions of connected, separable commutative restrict to Ae. Then, by [KO02, Theorem

2.2], Ae – kpG{Hq “ AH for some H Ď G.

Now, if we restrict the multiplication of A b A Ñ A in the right component only, we

get that A is a right local Ae “ AH- module. Thus, by the equivalence in Theorem 4.3.15,

A – IpBq for a connected separable commutative algebra B in
krGs

krGs
YDω. Now, dimkBe “ 1 as

dimkAe ě pdimkBeqpdimkAHq “ pdimkBeqpdimkAeq,

and so B is isomorphic, as an algebra in
krHs

krHs
YDω to an algebra of the form BpN, κ, ϵq by

Proposition 4.2.6.

What remains is to consider when two of the representative algebras are isomorphic to

each other.

Proposition 4.4.4. Fix H and ω P C3pH,kˆq and let pN, κ, ϵq and pN 1, κ1, ϵ1q be tuples

satisfying the conditions of Notation 4.2.1. Then B “ BpN, κ, ϵq and B1 “ BpN 1, κ1, ϵ1q

are isomorphic as algebras in
krHs

krHs
YDω if and only if N “ N 1 and ϵ1ϵ´1 ‘ κ1κ´1 is zero in

rH2
TotpH,N,kˆq.

Proof. Suppose we have an isomorphism of algebras in
krHs

krHs
YDω, given by ϕ : B Ñ B1. Thus

dimB “ dimB1 and hence |N | “ |N 1|. Additionally, ϕ must be a morphism of twisted YD

modules over krHs and so is an isomophism of G-graded vector spaces. This implies that

N “ N 1 and ϕpenq “ σpnqen, for some scalar σpnq P kˆ.

We also have, as ϕ is a morphism of algebras, that

ϕpenemq “ ϕpκpn,mq
´1enmq “ κpn,mq

´1σpnmqenm “ σpnqσpmqκ1
pn,mq

´1enm.
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Thus, ϕ is a morphism of algebras if and only if

κ1pn,mq

κpn,mq
“
σpnqσpmq

σpnmq
,

which is that κ1κ´1 “ B0,1pσq.

Further, ϕ is a morphism of twisted YD modules. Thus,

ϕph ¨ enq “ ϵhpnqσphnh´1
qehnh´1 “ ϵ1

hpnqσpnqehnh´1 “ h ¨ ϕpenq.

Thus, ϕ is a morphism of twisted YD modules if and only if

ϵ1
hpnq

ϵhpnq
“
σphnh´1q

σpnq
.

This condition gives that ϵ´1ϵ1 “ d0,1
pσq. Combining these results, and using the differential

of the total complex, we see that

pϵ1
‘ κ1

q ¨ pϵ ‘ κq
´1

“
ϵ1

ϵ
‘
κ1

κ

equals d1
Totpσq and hence is zero in rH2

TotpH,N,kˆq as claimed.

Remark 4.4.5. With this we have succeeded in extending Theorem 4.0.1 to the monoidal

center in a very natural way, showing that a version of the twisted group algebras act as

representatives for all commutative connected separable algebras in ZpVectωGq. However, this

is a slightly more restrictive result than Theorem 4.0.1, as we have only proven the conditions

for the twisted group algebras to be isomorphic as opposed to Morita equivalent.

Let us consider how the equivalence condition of Theorem 4.0.1 might look for twisted

group algebra by considering algebras BpN, κ, ϵq and BpN 1, κ1, ϵ1q. Firstly, the condition that

N and N 1 are conjugate as subgroups of H is equivalent to the condition that N “ N 1, as

they are normal subgroups of H. Secondly, both algebras have a single piece of cohomological

data in the complex rF 2
TotpH,N, kˆq. Thus, we can straightforwardly write the condition on

these cocycles to be that

pϵ1
‘ κ1

q
x
pϵ ‘ κq

´1γ̄x

is trivial in rH2
TotpH,N,kˆq, where x is some group element, possibly in H˙N , and where γ̄x is

some element in this complex whose second component is the γx defined in Equation (4.1.0.3).

This would preserve all the conditions in Theorem 4.0.1, and is consistent with the results
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found in Proposition 4.4.4. Indeed, if we were to take the conjugating element x as the

identity element and we assume that γ̄x is trivial in this case, similarly to the original γx, then

we recover the required conditions of Proposition 4.4.4. This provides compelling evidence

that this result should hold and motivates the following conjecture.

Conjecture 4.4.6. The algebras BpN, κ, ϵq and BpN 1, κ1, ϵ1q in
krHs

krHs
YDω are Morita equivalent

if and only if N “ N 1 and pϵ1 ‘ κ1qxpϵ ‘ κq´1γ̄x is trivial in rH2
TotpH,N,kˆq.

This conjecture should be provable using a similar approach to the non-center case found

in [Nat17], but finding a suitable form for the remaining part of γ̄x has proven to be tricky. I

hope to complete this result in future works, to fully complete the extension of Theorem 4.0.1

to the braided case.
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Chapter 5

Detecting Algebra Objects via

NIM-reps

We have so far seen a method of classifying algebra objects when we have a lot of structure in

the relevant fusion category. In particular, we used the Yetter-Drinfeld module description of

ZpVectωGq to utilise many of the nice properties of the group Hopf algebra. However, this relies

on a great deal of work already done and it can be difficult to get such a nice description for

more complicated categories. Hence, it is beneficial to explore alternative ways of detecting

algebras. In this section, we shall explore how this can be done for fusion categories using

the construction of Non-negative Integer Matrix representations (NIM-reps) .

5.1 Fusion Rings

We start this section by introducing the basic definitions needed for this construction.

Definition 5.1.1. A Z`-ring is a pair pR,Bq consisting of

• A ring R that is free as a Z-module,

• A fixed basis B “ tbiuiPI , where I is an indexing set, such that for all bi, bj P B, we

have that

bibj “
ÿ

kPI

ckijbk

where ckij P Z`,

• The ring identity 1R is a non-negative linear combination of the basis elements. If the

identity is in the basis, we say that pR,Bq is unital.
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Notation 5.1.2. In general, we shall refer to a Z` ring as pR,Bq, but whenever clear from

context we may refer to it simply as R.

Looking at this definition, we can intuitively see a connection to a semisimple tensor

category, which in fact gives us our first example.

Example 5.1.3. Let C be a semisimple locally finite k-linear abelian monoidal category

with biexact tensor product (i.e a tensor category where we do not assume the existence of

duals, and where 1 is not assumed to be simple). Then the Grothendieck ring GrpCq from

Definition 2.1.17 is a Z`-ring, with the basis given by isomorphism classes of simple objects

and the structure coefficients being the Jordan-Hölder multiplicities.

If we assume that the unit object 1 is simple, then GrpCq is a unital Z`-ring.

Our goal is to work with fusion categories, so we need some extra conditions on our

Z`-ring to capture the remaining structure.

Let I0 Ă I be the subset of the index set containing all basis element bi, i P I0, that appear

in the decomposition of the ring identity 1R. Then we can define a group homomorphism

ϑ : R Ñ Z by:

ϑpbiq “

$

&

%

1 i P I0,

0 i R I0.

If we have a unital Z`-ring, and take b1 “ 1R, then ϑpbiq “ δ1,i.

Definition 5.1.4. A Z`-ring pR,Bq is called a based ring if there exists an involution

pq˚ : I Ñ I, i ÞÑ i˚ of the indexing set I such that the induced map

a “
ÿ

iPI

aibi ÞÑ a˚
“

ÿ

iPI

aibi˚ , (5.1.0.1)

where ai P Z, is an anti-involution of the ring R and

ϑ pbibjq “

$

&

%

1 i “ j˚,

0 i ‰ j˚.
(5.1.0.2)

Proposition 5.1.5 (Proposition 3.1.6, [EGNO15]). In any based ring, the number ck
˚

i,j is

invariant under cyclic permutations of i,j,k.

Additionally, in the unital case, it is easy to see that ϑpbibjq “ c1i,j, and so if we view the

involution as some notion of duality, then the condition in Equation (5.1.0.2) says that the
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only way for the unit 1R to map into a product of basis elements bibj is if they are dual to

each other. This is similar to the condition that a category is rigid, and further motivates

the following definition;

Definition 5.1.6. A fusion ring is a unital, based ring of finite rank.

For a fusion ring, we can restructure the conditions on the involution into a clearer form.

Proposition 5.1.7. (Rigidity property) A fusion ring pR,Bq can be equipped with a symmetric

bilinear form p´,´q : R ˆ R Ñ Z that satisfies the condition pbibj, bkq “ pbj, bi˚bkq.

Proof. Let p´,´q be the symmetric bilinear form defined by the condition

pbi, bjq “ δi,j.

Then we can rewrite Equation (5.1.0.2) as ϑpbibjq “ pbi, bj˚q “ p1, bibjq. Then, by associativity,

we have that p1, pbibjqbkq “ p1, bipbjbkqq and so

ppbibjq
˚, bkq “ pbj˚bi˚ , bkq “ pbi˚ , bjbkq

where the first equality uses that the induced map 5.1.0.1 is an anti-involution. We then get

the result by relabelling the indices.

As alluded to by the naming, we can now link fusion rings to fusion categories.

Example 5.1.8 (Follow up from Example 5.1.3). Let C be a fusion category. Then the unital

Z`-ring GrpCq is a fusion ring. It has finite rank as C is finite, and the involution on the basis

is induced by taking duals,

rXs
˚

“ rX˚
s (5.1.0.3)

for all X P ObpCq. The symmetric bilinear form corresponds to

prXs, rY sq “ dimk pHomC pX, Y qq , (5.1.0.4)

by Schur’s Lemma, with the rigidity property of Proposition 5.1.7 following from Proposi-

tion 2.1.11.

The classification of fusion rings is a substantial open problem, and is currently only

explicitly known for small rank, and even then with a range of further conditions imposed.

For details, see [Ost15], [LPR22],[VS23]. However, there are (at least) two families of fusion

rings that can be constructed from a group.

66



Example 5.1.9 (Group rings). Let ZG be the integer span of G, which is a ring with

multiplication given by the group operation. Then the group fusion ring RpGq :“ pZG,Gq is

a fusion ring with involution g˚ “ g´1.

Example 5.1.10 ((Near-Group rings)[Ost15,Sie03]). As well as G, we fix an integer α P Z`.

The near-group fusion ring is the fusion ring constructed by taking the integer span of the

set GY tXu where the multiplication of the group elements is the group operation, and with

the element X is:

Xg “ gX “ X, X2
“

ÿ

gPG

g ` αX.

The group elements have involution given by the group inverse, and the element X is self-dual,

i.e X˚ “ X. This is a fusion ring and shall be denoted by by KpG,αq. A fusion category

whose Grothendieck ring is a near-group fusion ring is called a near-group fusion category

Remark 5.1.11. To be able to use fusion rings to study fusion categories, we need to be

aware of problems that can occur with their categorification. If we consider the group ring

RpGq, then it can be seen that this is exactly the Grothendieck ring of the category VectωG
from Example 2.1.15. However, the Grothendieck ring doesn’t see the choice of associator,

only that one exists, and so RpGq is the Grothendieck ring for all possible choice of ω. This

loss of categorical data restricts the ability of using fusion rings to see categorical structures

such as algebra objects in their entirety.

In the other direction, there are fusion rings that admit no categorification to a fusion

category. The near-group fusion ring Kpteu, αq built from the trivial group gives an infinite

family of fusion rings, however it has been shown in [Ost02] that a categorification only exists

when α “ 0 or 1. Thus any structures detected on these fusion rings for α ě 2 don’t actually

correspond to a categorical structure. It is important to keep in mind that anything we

may find with this approach has to be checked further for categorification obstructions. For

near-group fusion rings, the particular case that α “ 0 is called a Tambara-Yamagami fusion

ring, and it is known that these fusion rings admit a categorification if and only if G is abelian

[TY98]. Results for more general cases can be found in [Ost15, Appendix A], for example.

Example 5.1.12 (Ising fusion ring, KpZ2, 0q). Let B “ t1, X, Y u, and R be the integer

span ZB with addition defined linearly and multiplication given by the fusion rules

X2
“ 1 ` Y, Y 2

“ 1 XY “ Y X “ X.

pZB,Bq is a fusion ring with the self-dual involution X˚ “ X, Y ˚ “ Y.
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The Ising fusion ring is of particular note as it is the only Tambara-fusion ring that can

be given the structure of a modular tensor category, which follows from [Tho12, Theorem

IV.5.2] .

5.2 Non-negative Integer Matrix Representations

In this section, we introduce the main tool that we will use to detect algebra objects from

fusion rings, namely NIM-reps, following [BPPZ00,BPRZ21,Gan02,Gan05,Gan06]. First, we

need the notion of a module over a Z`-ring.

Definition 5.2.1. Let pR,Bq be a Z`-ring. A Z`-module is a pair pT,Mq consisting of

• An R-module T , with action given by Ź: R ˆ T Ñ T ,

• A fixed Z-basis M “ tmlulPL, where L is an indexing set, such that, for any ml P M ,

bi P B, we have that

bi Ź ml “
ÿ

kPL

aki,lmk,

where aki,l P Z`.

For this to be compatible with the additional structure of a fusion ring, we need to have

a condition that works with the involution structure.

Definition 5.2.2. Let pR,Bq be a fusion ring. A non-negative integer matrix representation

(NIM-rep) of pR,Bq is a Z`-module pT,Mq that satisfies the following condition;

• (Rigidity condition): Let pT,Mq have the symmetric bilinear form p´,´q : T ˆ T Ñ Z
defined by

pml,mkq “ δl,k

for any l, k P L. Then we must have, for any i P I, l, k P L

pbi Ź ml,mkq “ pml, bi˚ Ź mkq. (5.2.0.1)

We note here that this is extremely similar to Proposition 5.1.7. However, in this definition

rigidity is a condition and not a property.

Remark 5.2.3. For a NIM-rep, the symmetric bilinear form of pt,mlq, for t P T,ml P M ,

counts the multiplicity of ml in the basis decomposition of t. This then gives us that pt, tq “ 1

if and only if t P M .
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Notation 5.2.4. Contrary to the case of a fusion ring, when working with a NIM-rep we

may refer to a NIM-rep simply as M instead of pT,Mq.

Example 5.2.5 (Follow-up from Definition 5.1.8). If we take a semi-simple module category

M over C, then the Grothendieck group GrpMq is a NIM-representation of GrpCq, with the

isomorphism classes of simple objects acting as the basis. The NIM-rep action of GrpMq

on GrpCq is induced from the module category action of M on C, and the rigidity condition

follows immediately by Proposition 3.6.6.

We shall later calculate the NIM-reps for three types of fusion categories, but a first

example of one is immediate as a fusion ring can always be taken as a NIM-rep of itself, with

the module action being the ring multiplication. In this case, the rigidity property found in

proposition 5.1.7 satisfies the required rigidity condition in Equation (5.2.0.1).

Remark 5.2.6. Suppose we have a NIM-rep pT,Mq over a fusion ring pR,Bq that satisfies

bi Ź mj “ 0R for some bi P B,mj P M . The rigidity condition then imposes thatmj “ 0R P M .

However, the only way 0R appears in the NIM-rep basis is if t0Ru “ M , (i.e this NIM-rep is

the zero NIM-rep). We shall remove this NIM-rep from future considerations.

Definition 5.2.7 ([BD12]). Let pT,Mq, pT 1,M 1q be two NIM-reps over a fusion ring pR,Bq.

A NIM-rep morphism is a function ψ : M Ñ M 1 inducing a Z-linear map between the modules.

If ψ is a bijection, and the induced map is an isomorphism of R-modules, then we say

that the NIM-reps are isomorphic.

We can also define the notion of a direct sum between NIM-reps, in the obvious way;

The direct sum of two NIM-reps pT,Mq, pT 1,M 1q over a fusion ring pR,Bq is the R-module

T ‘ T 1 with distinguished basis M ‘ M 1. Now that we have this idea, we can talk about

indecomposable NIM-reps.

Definition 5.2.8 ([EGNO15] Section 3.4, [Ost03a] Lemma 2.1.). A NIM-rep is indecomposable

if it is not isomorphic to a non-trivial direct sum of NIM-reps.

Remark 5.2.9. There is also the notion of an irreducible NIM-rep, meaning one which has

no non-trivial sub-NIM-reps. However, this is equivalent to the notion of indecomposability.

When working with NIM-reps, we can visually express their structure in the form of a

multi-digraph. For basic definitions in graph theory, see [GYZ13].

Definition 5.2.10. Let M be a NIM-rep over pR,Bq. The corresponding NIM-graph is

constructed in the following way:
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• Put a labelled node for every NIM-basis element ml P M ,

• A directed arrow, labelled by bi P B, with source ml and target mk for every copy of

mk in bi Ź ml.

In particular, every node in a NIM-graph will have a self-loop labelled by the ring identity

1R, which we omit for simplicity.

Example 5.2.11. If we consider the Ising fusion ring from Example 5.1.12 as a NIM-rep

over itself, the corresponding NIM-graph is given by;

m1 mX

mY

X

Y X

Y

As well as being a convenient way to express the structure of a NIM-rep, we can also

extract properties of the NIM-rep directly from the NIM-graph.

Lemma 5.2.12. A NIM-rep is indecomposable if and only if the corresponding NIM-graph is

connected.

To begin relating algebra objects in C to NIM-reps, we first note the following result;

Lemma 5.2.13. Any indecomposable separable algebra A in a fusion category C gives rise to

an indecomposable NIM-rep over GrpCq.

Proof. By Proposition 3.3.5 and Example 3.6.3, the C-module category ModCpAq is inde-

composable and semisimple. This then gives an a indecomposable NIM-rep over GrpCq as

outlined in Example 5.2.5.

To explore this correspondence further, we state the following theorem using results from

[EGNO15, Section 7.10]:

Theorem 5.2.14. Let C be a fusion category, M an indecomposable semisimple C-module

category, and N P ObpMq such that rN s generates GrpMq as a based Z`-module over GrpCq.

Then there is an equivalence M » ModCpAq of C-module categories, where A “ HompN,Nq.
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Every category of modules ModCpAq coming from a indecomposable separable algebra

satisfies the conditions of this theorem, with N “ A, as HompA,Aq “ A from Example 3.6.9.

Thus, if were able to find all such C-module categories, we would have the category of

modules for all indecomposable separable algebras, which would be one step closer to a

Morita equivalence classification. This is a difficult classification problem, but we will focus

on attempting it by using NIM-reps. To do this, let’s translate the conditions in this theorem

into the language of NIM-reps;

Lemma 5.2.15. Suppose we are in the setup of Theorem 5.2.14. Then the element rN s of

the NIM-rep GrpMq satisfies the condition that, for all basis elements rNis, there exists a

basis element rXis in GrpCq such that rXis Ź rN s “ rNis.

Proof. As rN s generates GrpMq as a Z`-module, we have that for all rM s P GrpMq, there

exists some rXs P GrpCq such that rXs Ź rN s “ rM s. If we restrict to the basis given by

simple objects rNis, this becomes

rXs Ź rN s “
ÿ

j

rX : XjsrXjs Ź rN s “ rNis,

where we have also expanded out rXs in terms of basis elements. Then, using the symmetric

bilinear form, we see that this is only possible when there is only one j which gives exactly

rXjs Ź rN s “ rNis.

If the module category is of the form ModCpAq, then by taking A to be connected we get

that A is simple on ModCpAq by Proposition 3.3.3 . Thus the distinguished element rAs in

GrpModCpAqq will be simple, leading to the following definition.

Definition 5.2.16. We shall call a NIM-rep pT,Mq over the fusion ring pR,Bq admissible if

there exists an element m0 P M such that, for every other element mi P M , there exists an

element bj P B that satisfies bj Ź m0 “ mi.

Remark 5.2.17. We now have a condition to search for, as a NIM-rep coming from a

connected separable algebra will always be admissible. It is only a necessary condition,

however, as there is no guarantee that an admissible NIM-rep can be realised as GrpModCpAqq

for some algebra A. Thus, we can use NIM-reps as a means of detecting separable algebras,

but not yet to completely classify them.

In the case that we have an admissible NIM-rep, we are able to recover a portion of the

data that makes up the corresponding algebra object.
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Proposition 5.2.18. Let pT,Mq be an admissible NIM-rep over the fusion ring GrpCq. If

it is the underlying NIM-rep of an indecomposable semisimple C-module category, as in the

setup of Theorem 5.2.14, then the decomposition of the algebra A “ HompN,Nq is given

by
À

iPI aibi, where ai is the number of self-loops of m0 labelled by bi in the NIM-graph of

pT,Mq.

Proof. Using the isomorphism from [EGNO15, Equation 7.21] applied to the algebra A, we

have that

HomCpX,Aq – HomMpX Ź N,Nq.

By Schur’s Lemma, if we restrict X to the simple objects of C, then X appears in the

decomposition of A if and only if N is in the decomposition of X Ź N . But by restricting to

the NIM-reps picture, and the identification of m0 with N , we see that this occurs exactly

when X labels a self-loop on m0. This gives the result.

As a consequence, by classifying all admissible NIM-reps over GrpCq, we can produce a

list of all choices for the object structure of an indecomposable separable algebra in C. These
can then be checked individually for possible multiplication and unit morphisms. This has to

be done separately, as the loss of categorical data that occurs when moving to the fusion

ring and NIM-reps picture means we cannot detect these structures from the corresponding

NIM-reps. This is in addition to checking for any other categorification obstructions as

discussed in Remark 5.1.11.

Example 5.2.19. To demonstrate how this method works, consider the Ising fusion ring as

a NIM-rep over itself. By looking at the NIM-graph from Example 5.2.11, we see that this is

admissible by setting m0 “ m1, as X Ź m1 “ mX and Y Ź m1 “ mY .

The distinguished basis object m0 only has a self-loop labeled by the ring identity 1. As

discussed in Remark 5.1.11, this fusion ring admits a categorification, and so the algebra

object that corresponds to this NIM-rep is A “ 1, the monoidal unit.

5.3 Computing NIM-Reps and admissible algebras

We will now compute the NIM-reps for three families of fusion categories, and use them to

provide a list of all possible connected separable algebra object structures within them.
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5.3.1 Group Fusion Rings

To begin, we will consider the group fusion rings RpGq from Example 5.1.9, which as

previously mentioned are the underlying fusion rings of VectωG. These results have been

computed previously in [DFZ90,EK95], but we present them here to demonstrate our method

of finding potential algebra object structures. This section shall make use of notions and

results to do with group actions, which can be found in Appendix B.

Proposition 5.3.1. Let pT,Mq be a NIM-rep over the fusion ring RpGq. Then the NIM-rep

action restricts to a group action on M .

Proof. This can be seen as

pg Ź ml, g Ź mlq “ pml, g
´1

Ź pg Ź mlqq “ pml,mlq “ 1

and so g Ź ml is in the basis of M . Thus the NIM-action restricts to a group action

G ˆ M Ñ M .

Proposition 5.3.2. A NIM-rep M over RpGq is indecomposable if and only if the induced

group action is transitive.

Proof. If a NIM-rep M over RpGq is not indecomposable, then its corresponding group action

will always be partitioned into G-orbits by restricting the action to the NIM-reps that sum

to give M . Thus the group action is transitive only if the NIM-rep is indecomposable.

Conversely, if the group action is not transitive, then we can write it as the sum of some

finite combination of G-actions Źi: G ˆ Mi Ñ Mi. It is easy to see that each Mi is a Z-basis
for another NIM-rep over RpGq. Hence the NIM-rep is indecomposable only if the group

action is transitive.

We can use this to explicitly descibe the structure of NIM-reps of RpGq. Using properties

of transitive group orbits, see Proposition B.0.4, the basis elements of an indecomposable

NIM-rep M will be parameterised by the left cosets of some subgroup H Ď G. Let tgiui be a

set of coset representatives, then the induced G-action will be given by, for some k P G,

k Ź mgi “ mgj , where kgi P gjH.

We shall denote this NIM-rep by MpHq.

Classifying NIM-reps over RpGq now comes down to classifying transitive G-actions, which

allows us to state the following result.
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Proposition 5.3.3. Two NIM-reps MpHq,MpKq over RpGq are isomorphic if and only if

H,K are conjugate subgroups of G.

Proof. This follows immediately by combining Proposition 5.3.2 and Proposition B.0.5.

We now have all possible NIM-reps over the group ring RpGq, so we can establish which

are admissible. It turns out in this fairly simple case that there are no obstructions to

admissibility.

Proposition 5.3.4 (Admissible NIM-reps for group rings). All indecomposable NIM-reps

over a group fusion rings RpGq are admissible.

Proof. Let MpHq be a NIM-rep over RpGq, and let tgiui be a set of left coset representatives,

such that g0 “ e, parameterising the NIM-basis elements of MpHq. If we set m0 “ mg0 “ me,

then the condition in Definition 5.2.16 is satisfied as gi Ź me “ mgi . In fact, we could choose

any other basis element mgi to be m0, as gjg
´1
i Ź mgi “ mgj . Hence MpHq is admissible.

Remark 5.3.5. The algebra object associated to an admissible NIM-rep MpHq over RpGq

is given by the elements that act trivially in MpHq, which are exactly the elements in H.

Thus, any connected separable algebra in VectωG is of the form
À

hPH bh. This agrees with the

classification of algebras in VectωG in [Nat17,Ost03b].

Example 5.3.6 (NIM-reps of RpZ2 ˆ Z2q). The Klein-four group has presentation

Z2 ˆ Z2 “ ta, b, c|a2 “ b2 “ c2 “ abc “ eu

There are 3 isomorphism classes of subgroups in Z2 ˆ Z2;

• Z2ˆZ2 as a subgroup of itself – ThenMpZ2ˆZ2q has a single basis element corresponding

to the group identity e. The NIM-rep graph is given by

me

a

b c

• Z2 – There are 3 conjugacy classes of subgroups in this case; H1 “ te, au, H2 “

te, bu, H3 “ te, cu. The NIM-reps MpH1q,MpH2q,MpH3q have two basis elements

parameterised by coset representatives te, bu, te, cu, te, au respectively.
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me mb, me mc, me ma

a

b
c

a b

a

c

b c

b

a

c

• The trivial subgroup H “ teu – The basis elements of MpHq are simply parameterised

by elements of Z2 ˆ Z2.

me ma

mb mc

a

b bc

a

Example 5.3.7 (NIM-reps of RpD3q). Consider the dihedral group D3, with presentation

D3 “ tx, a | x2 “ a3 “ e, xa “ a´1xu

There are four conjugacy classes of subgroups of D3, giving four isomorphism classes of

NIM-reps;

• D3 as a subgroup of itself. This NIM-graph simply consists of a single basis element,

with each group ring element acting trivially.

me

x

a

xa2xa

a2

• The isomorphism class of Z3, given by H “ te, a, a2u.

me mx

a

a2

x

xa

xa2

a

a2

• The isomorphism class of Z2 is given by 3 conjugate subgroups,H “ te, xu, te, xau, te, xa2u.

This gives one NIM-graph, up to isomorphism of NIM-reps. We shall label our graph

using the subgroup H “ te, xu;
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me ma

ma2

x
xa2
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a2

xa
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a
x

a2

a
xa

xa2

• The trivial subgroup H “ teu. The basis elements are parameterised by the elements

of D3;

ma

me ma2

mx mxa2

mxa

a
a2

x

xa2 xaa

a2

x

xa

xa2

a

xa2

xa

a2

x

a2

a

a2

aa
a2

5.3.2 Near-Group Fusion Rings

We shall now apply the same techniques to the near-group fusion rings KpG,αq from

Example 5.1.10.

As the fusion ring KpG,αq is the union of a group G and a non-invertible element X, the

action of this fusion ring on a NIM-rep M can be split into the action of a group G on M ,

which corresponds to a group action by the previous section, and the action of X on M .

Unlike the group ring case, the group action coming from KpG,αq on M is not necessarily

transitive. This can be seen by considering the example of the Ising fusion ring as a NIM-rep

over itself.
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If we consider the Ising NIM-graph, see Example 5.2.11, then we see that there are two

group orbits involved; The NIM-basis elements tme,mY u with trivial stabiliser group, and

tmXu with Z2 as the stabiliser group. It is clear that the reason we have two group orbits

in the same indecomposable NIM-rep is the action of the non-invertible element X, which

connects them.

In general, the NIM-rep basis M can be partitioned into G-orbits which are connected

through X. This partition is given by

M “

p
ď

i“1

tmi
lu1ďlď|G:Hi|, (5.3.2.1)

where the i-label counts the p distinct G-orbits, each governed by a stabiliser subgroup tHiu.

This suffices to describe the action of G on M , so we now need to focus only on the action of

X. Additionally, we know that a NIM-rep is indecomposable if and only if its NIM-graph is

connected, which only happens if every orbit is connected to at least one other by X. If there

are p orbits, where p ě 3, this implies that there are at least p´ 2 orbits that are connected

to two or more other group orbits.

Next, lets consider how X acts on elements in the same group orbit.

Proposition 5.3.8. Let M be an indecomposable NIM-rep over KpG,αq, and fix a group

orbit label i in the partition of M . Then X Ź mi
l1

“ X Ź mi
l2
for all 1 ď l1, l2 ď |G : Hi|.

Proof. As mi
l1
and mi

l2
are in the same G-orbit, we can write

mi
l1

“ g Ź mi
l2
,

for some g P G. Then we compute that

X Ź mi
l1

“ X Ź pg Ź mi
l2

q “ pXgq Ź mi
l2

“ X Ź mi
l2
,

using the near group fusion rules from Example 5.1.10.

So we see that the action of X is constant within group orbits. As such, we can simplify

our notation, and define

xi,j :“ pX Ź mi
l,m

j
kq “ pX Ź mj

k,m
i
lq “ xj,i

which is constant for all l, k, by Proposition 5.3.8, and the symmetry comes from X being

self-dual.
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Using this alongside the partition of M , we can now express the action of X as

X Ź mi
l “

p
ÿ

j“1

xi,j

|G:Hj |
ÿ

k“1

mj
k. (5.3.2.2)

By acting on both sides with X, we compute that

X2
Ź mi

l “

p
ÿ

j“1

xi,j

|G:Hj |
ÿ

k“1

X Ź mj
k

ùñ
ÿ

gPG

g Ź mi
l ` αX Ź mi

l “

p
ÿ

j“1

xi,j|G : Hj|X Ź mj
k

ùñ |Hi|

|G:Hi|
ÿ

k“1

mi
k ` αX Ź mi

l “

p
ÿ

j“1

xi,j|G : Hj|X Ź mj
l . (5.3.2.3)

Using the symmetric bilinear form of M , we can count the multiplicities on group orbit

by applying it to Equation (5.3.2.3).

- If we apply the form for the fixed orbit i, p´,mi
lq, we get

|Hi| ` αxi,i “

p
ÿ

j“1

x2i,j|G : Hj|, (5.3.2.4)

- If there is more than one orbit, we can apply the form for some orbit q ‰ i, p´,mq
l q

resulting in

αxi,q “

p
ÿ

j“1

xi,jxj,q|G : Hj|. (5.3.2.5)

The way of finding NIM-reps over a near-group fusion ring is thus to find sets tHiu, txi,ju

that solve these equations. This problem can become quite large as the number of group

orbits increases, so it would be beneficial to find a way neater way to display these equations.

Let us define the following matrices;

X :“ pxi,jqi,j, B “ diagp|G : Hi|iq.

The matrix X encodes all the data required to describe the action of X. Converting
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Equation (5.3.2.3) to matrix form, we get the matrix equation

XBX “ α ¨ X ` |G| ¨ B´1. (5.3.2.6)

which fully encodes the action of X on M .

As the matrix B is invertible, we obtain a quadratic matrix equation in the variable XB;

pXBq
2

“ α ¨ pXBq ` |G| ¨ I,

where I is the identity matrix. The coefficient matrices are diagonal and so commute with

each other, meaning we can solve this equation using the quadratic equation, resulting in

XB “
1

2
α ¨ I ˘

c

p
α2

4
` |G|q ¨ I “

1

2
α ¨ I ˘

c

p
α2

4
` |G|q ¨ Y, (5.3.2.7)

where Y is a square root of the identity matrix I.

Some of the conditions of a NIM-rep can reduce the problem. Firstly, all of the elements

in XB are non-negative, and so all of the non-diagonal elements of Y must have the same

sign, such that it is the same as the choice made for the ˘ in front of the square root. If Y is

a square root of the identity matrix, then so is ´Y, so for this reason we can always take

the positive sign along with Y. Further, the elements of XB are always integers and so the

non-diagonal elements of Y must be divisible by pα2

4
` |G|q´1{2.

To begin, we consider the case that the NIM-rep M contains a single group orbit.

Proposition 5.3.9. NIM-reps over KpG,αq consisting of one group orbit are parameterised

by pairs pH, x1,1q, consisting of

• A subgroup H Ď G,

• A non-negative integer x1,1 P Z2,

such that α “ x1,1|G : H| ´
|H|

x1,1
, x1,1 divides |H|, and px1,1q

2|G : H| ě |H|.

Proof. As there is only a single group orbit in M , we need a single stabiliser subgroup H Ď G.

The action of X is given by a non-negative integer x1,1 P Z`. In fact, we can take x1,1 to

be strictly positive, as otherwise we have the situation that X Ź m1
l “ 0, which is the zero

NIM-rep that we have discounted in Remark 5.2.6

The matrices in Equation (5.3.2.7) are one-dimensional and so the only positive square

root of I “ 1 is clearly Y “ 1. If we input our data into Equation (5.3.2.7), we get the
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equation

x1,1|G : H| “
1

2
α `

c

α2

4
` |G|

If we rearrange this and then square both sides, we get

α2

4
` |G| “ px1,1q

2
|G : H|

2
´ αx1,1|G : H| `

α2

4
.

Solving this equation for α gives us the condition that

α “ x1,1|G : H| ´
|H|

x1,1
,

and the remaining conditions are a result of α needing to be a non-negative integer.

The two orbit case results in a 2-by-2 matrix equation, and there is also a complete

classification of square roots of the identity matrix in this case.

Proposition 5.3.10. All indecomposable NIM-reps over KpG,αq consisting of two group

orbits are parameterised by tuples pH1, H2, x1,1, x2,2q, consisting of

• Two subgroups H1, H2 Ď G,

• Two non-negative integers x1,1, x2,2 P Z2.

such that α “ x1,1|G : H1| ` x2,2|G : H2|, |G| divides |H1||H2|, and p
|H1||H2|

|G|
` x1,1x2,2q is a

square number.

Proof. We take H1, H2 Ď G as the subgroups that are stabilisers of the two group orbits inM .

The 2-by-2 matrixX is symmetric, so we require three non-negative integers x1,1, x1,2, x2,2 P Z`

to describe the action of X.

Square roots of the 2-by-2 identity matrix come in two forms;

- Diagonal matrices whose diagonal elements are from the set t´1, 1u,

- Matrices of the form Y “

˜

y1,1 y1,2

y2,1 ´y1,1

¸

, where y21,1 ` y1,2y2,1 “ 1 and y1,2, y2,1 ‰ 0.

If we were to pick a square root of the first form, we would immediately get that x1,2 “ 0 as

all the matrices on the right-hand side of Equation (5.3.2.7) are diagonal. But this contradicts

the indecomposability of the NIM-rep, as there is no longer any way to travel between the
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two group orbits. Thus we can only have a square root of the second form. By inputting this

into Equation (5.3.2.7), we get the following system of equations:

x1,1|G : H1| “
1

2
α `

c

α2

4
` |G|y1,1,

x2,2|G : H2| “
1

2
α ´

c

α2

4
` |G|y1,1,

x1,2|G : H2| “

c

α2

4
` |G|y1,2,

x1,2|G : H1| “

c

α2

4
` |G|y2,1.

By adding the first two equations together, we get that α “ x1,1|G : H1| `x2,2|G : H2|. By

multiplying the first two equations together and the last two equations together, we obtain

x1,1x2,2|G : H1||G : H2| “
α2

4
´

˜

α2

4
` |G|

¸

py1,1q
2,

px1,2q
2
|G : H1||G : H2| “

˜

α2

4
` |G|

¸

y1,2y2,1.

Using the defining relation of Y, we can combine these two equations together to get that

ppx1,2q
2

´ x1,1x2,2q|G : H1||G : H2| “

˜

α2

4
` |G|

¸

py21,1 ` y1,1y2,2q ´
α2

4
“ |G|

ùñ px1,2q
2

“
|H1||H2|

|G|
` x1,1x2,2.

We see that x1,2 can be given in terms of the rest of the input data, with the remaining

conditions coming from x1,2 being a positive integer.

The explicit structure of the action of X on a two orbit indecomposable NIM-rep is given

by

X Ź m1
i “ x1,1

|G:H1|
ÿ

k“1

m1
k `

d

|H1||H2|

|G|
` x1,1x2,2

|G:H2|
ÿ

k“1

m2
k,

X Ź m2
i “

d

|H1||H2|

|G|
` x1,1x2,2

|G:H1|
ÿ

k“1

m1
k ` x2,2

|G:H2|
ÿ

k“1

m2
k.
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To proceed further in this way, we would need an explicit classification of square roots of

the identity matrix of order 3 or more, which to date is an open problem. To illustrate that

this is not possible, consider the following example.

A Hadamard matrix of order n is an n-by-n matrix containing only ´1 and `1 that

satisfies HnHn “ nIn and has rows that are mutually orthogonal. The matrix defined by

Y :“ 1?
n
Hn is thus a square root of the identity matrix. It is still unknown whether there

exists a Hadamard matrix of order 4k for every positive integer k, [Pal33], [MS22].

For our purposes, a Hadamard matrix doesn’t provide a NIM-rep unless n “ 1, as Hn

contains exactly npn ´ 1q{2 elements that are ´1. This contradicts the fact that all non-

diagonal elements of Y , of which there are npn´ 1q, must be non-negative for it to provide a

solution to Equation (5.3.2.7). The only value that this construction is valid for is n “ 1,

which is just the known square root `1, which we have already considered. However, it is

sufficient to demonstrate that we can’t provide such a complete classification further on.

We can still construct examples of NIM-reps containing 3 or more G-orbits.

Example 5.3.11. (NIM-rep over KpZq, q ´ 1q, q prime) Consider the p-by-p matrix that has

´1
2
α as its diagonal elements, and 1 for all off-diagonal elements;

Zp “

¨

˚

˚

˚

˚

˚

˝

´1
2
α 1 . . . 1

1
. . . . . .

...
...

. . . . . . 1

1 . . . 1 ´1
2
α

˛

‹

‹

‹

‹

‹

‚

If we square this matrix, we get that

pZ2
pqi,i “

α2

4
` p ´ 1, pZ2

pqi,j “ p ´ 2 ´ α, i ‰ j.

Thus, for Z2
p to be a square root of pα2

4
` |G|q ¨ Ip we require that

α “ p ´ 2, making pZ2
pqi,j “ 0,

and then

|G| “ p ´ 1, making pZ2
pqi,i “

α2

4
` |G|.

So Zp has the potential to provide a NIM-rep over KpG, p ´ 2q, where |G| “ p ´ 1 for some
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p P N. Whether a valid solution to Equation (5.3.2.7) exists depends on the choice of group

and p, but we consider the special case that p “ q ` 1, where q is a prime number.

In this case, we must have that G “ Zq, so we are seeking to check whether Zpq`1q provides

a NIM-rep over KpZq, q ´ 1q. This NIM-rep consists of q ` 1 group orbits, so we need q ` 1

subgroups Hi Ď Zq.

Inputting Zp into Equation (5.3.2.7), we get that

CB “
1

2
α ` Zp “

¨

˚

˚

˚

˚

˚

˝

0 1 . . . 1

1
. . . . . .

...
...

. . . . . . 1

1 . . . 1 0

˛

‹

‹

‹

‹

‹

‚

.

We must have that xi,i “ 0 for all 1 ď i ď q ` 1. Further, for all 1 ď i, j ď q ` 1, i ‰ j, we

have that

xi,j|G : Hi| “ 1.

As the only subgroups of Zq are the trivial subgroup and the Zq itself, the only choice

that leads to an integer value of xi,j is if Hi – Zq for all i and xi,j “ 1. Hence, we have a

NIM-rep over KpZq, q ´ 1q that consists of q ` 1 basis elements, all which are acted on by Zq

trivially.

The action of X is given by

X Ź mi
“

q`1
ÿ

j“1
j‰i

mj,

so each group orbit is connected to all orbits but itself by a single copy of X. For example,

when q “ 3 the NIM-graph of this NIM-rep over KpZ3, 2q is given by,

m1 m2

m4 m3

X

XX

Z3

XX

Z3

X

Z3 Z3

For other examples, it comes down to finding proposed square roots and computing them
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directly. However, it turns out that for the case of the Tambara-Yamagami fusion rings, (the

case α “ 0), we already have everything needed to completely classify their NIM-reps.

Corollary 5.3.12. All indecomposable NIM-reps over the Tambara-Yamagami fusion ring

KpG, 0q consist of at most two group orbits.

Proof. As α “ 0, the matrix XBX in Equation (5.3.2.6) must be diagonal. Element-wise,

this means that

pXBXqi,j “

p
ÿ

k“1

xi,kxk,j|G : Hi| “ 0,

for all i ‰ j. For this to hold, we must have that every two distinct group orbits are not

connected to a common third group orbit. But by the indecomposability of the NIM-rep,

this is not possible when there are 3 or more orbits.

So our classification of NIM-reps containing 1 or 2 group orbits is sufficient to construct

all NIM-reps over a Tambara-Yamagami fusion ring.

Example 5.3.13 (NIM-reps over the Ising fusion ring, KpZ2, 0q). Recall the Ising fusion

ring Example 5.1.12, which can be viewed as the Tambara-Yamagami fusion ring KpZ2, 0q.

• NIM-reps with 1 G-orbit.

By Proposition 5.3.9, a pair pH, x1,1q gives a 1-orbit NIM-rep if x1,1|Z2 : H| “
|H|

x1,1
, as

α “ 0. There are two choices of subgroup in Z2:

– The trivial subgroup H “ teu; Here we must have 2x1,1 “ 1
x1,1

, which has no

integer solutions.

– The group Z2; This must satisfy x1,1 “ 2
x1,1

, which again has no integer solutions.

From this, we conclude that there are no 1-orbit NIM-reps of KpZ2, 0q.

• NIM-reps with 2 G-orbits.

By Proposition 5.3.10, a tuple pH1, H2, x1,1, x2,2q gives a NIM-rep if α “ 0 “ x1,1|G :

H1| ` x2,2|G : H2|, which occurs only when x1,1 “ x2,2 “ 0.

As a consequence, we have that px1,2q2 “
|H1||H2|

|G|
. There are three possible pairs of

subgroups for which |G| divides |H1||H2|;

– pH1 “ Z2, H2 “ Z2q; Here, we get that px1,2q
2 “ 2 which is not a square number,

hence doesn’t give a valid solution.
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– pH1 “ teu, H2 “ Z2q; We get that px1,2q
2 “ 1 which is valid. Hence pteu,Z2, 0, 0q

gives a NIM-rep over KpZ2, 0q. We note that the pair pH1 “ Z2, H2 “ teuq gives

an isomorphic NIM-rep.

Thus there is only a single NIM-rep, up to isomorphism, over the Ising fusion ring,

parameterised by pteu,Z2, 0, 0q. This is exactly the Ising fusion ring as a NIM-rep over

itself.

Beyond this, the classification of NIM-reps over near-group fusion rings is currently a

procedural, case-by-case problem. However, if we turn our attention back to finding admissible

algebras we have all the tools required.

Proposition 5.3.14. An indecomposable NIM-rep over KpG,αq is admissible only if it

consists of either one group orbit, parameterised by pH, x1,1q, or two group orbits, parameterised

by pteu, G, 0, x2,2q.

Proof. Suppose we have a 1-orbit NIM-rep parameterised by pH, x1,1q. Then it is admissible

in an analagous way as the group ring case, Lemma 5.2.15, as we can take the NIM-basis

element as me, which is connected to all other basis elements by the action of G.

Now suppose that we have a NIM-rep consisting of 2 or more group orbits. For this to be

admissible, we must have a distinguished basis element m0 that connects to all other basis

elements. Let us set H1 as the stabiliser group of the orbit containing m0. Consider a basis

element n P M that lies in a different group orbit to m0, with stabiliser group H2. We can

only reach it by the action of X, with X Ź m0 “ n. This gives us that x1,1 “ 0, x1,2 “ 1.

If we then act with X again, we get that

X Ź n “ X2
Ź m0 “ |H1|

ÿ

iPG¨m0

mi ` αX Ź m0 “ |H1|
ÿ

iPG¨m0

mi ` αn,

where the sum runs over elements in the same G-orbit as m0. In particular, we see that n

is only connected to one other group orbit, meaning that M contains two group orbits by

indecomposability.

Further, we can read off that x2,2 “ α, and as X Ź n “ gX Ź n for all g P G, we must

have that n is the only element in its G-orbit. Hence the stabiliser group is given by H2 “ G.

Along with x1,2 “ 1, this implies that H1 “ teu.Hence, a two orbit NIM-rep is admissible

only if it is of the form pteu, G, 0, αq.

The converse direction for both cases is immediate, by construction.
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Corollary 5.3.15. From this, we get two forms of algebra objects in KpG,αq coming from

admissible NIM-reps;

• For a NIM-rep parameterised by pH, x1,1q, the potential algebra structure is given as an

object by ‘hPHbh ‘ x1,1X.

• For a NIM-rep parameterised by pteu, G, 0, αq, the potential algebra object is simply r1s,

the form of the monoidal unit 1 algebra.

Remark 5.3.16. While this process gives gives us the structure of indecomposable semisimple

module categories, we don’t currently have a complete picture of what happens with the

algebras.

For example, we can view VectZ2 as a fusion subcategory of the Ising category CpZ2, 0q,

meaning we are able to view the group algebras krteus,krZ2s as algebra objects in CpZ2, 0q.

Both are connected separable in VectZ2 , yet by Example 5.3.13 we only have a single NIM-rep

over the fusion ring KpZ2, 0q. So in the transfer to the near-group case something occurs

which our method cannot see, almost certainly due to the fact we can make no statements

about the morphisms involved. We can observe by Corollary 5.3.15 that in all cases of

near-group categories we lose the group algebra structures. This is something which will form

the basis of further refining this method.

Example 5.3.17 (NIM-reps of KpZ2 ˆ Z2, αq). As discussed, every choice of α has one

admissible 2-orbit NIM-rep that corresponds to the trivial algebra object. Hence we just

need to classify the 1-orbit NIM-reps. There are three isomorphism classes of subgroups of

Z2 ˆ Z2.

• The trivial subgroup H “ teu; As x1,1 needs to divide |H|, we have that x1,1 “ 1. Then

α “ 3, meaning we have a NIM-rep over KpG, 3q.

• The subgroup H “ Z2; We can have either x1,1 “ 1, meaning α “ 0, or x1,1 “ 2 which

gives α “ 3. We note that we will still get 3 different NIM-reps, depending on our

choice of conjugacy class of Z2.

• The group Z2 ˆ Z2; For x1,1 “ 1, we have α “ ´3 which is invalid. The other choices

of x1,1 “ 2 and x1,1 “ 4 give α “ 0 and α “ 3 respectively.

Thus, the only non-trivial algebras in KpZ2 ˆ Z2, αq are given by NIM-reps

- pZ2, 1q and pZ2 ˆ Z2, 2q over KpZ2 ˆ Z2, 0q,

- pteu, 1q, pZ2, 2q and pZ2 ˆ Z2, 4q over KpZ2 ˆ Z2, 3q
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5.3.3 pA1, lq 1
2
Fusion Rings

We will now consider a modular tensor category, which can be constructed out of a quantum

group of type A1 at level l P Z`, following [NWZ22]. In this section, we shall compute the

NIM-reps over its corresponding fusion ring.

Definition 5.3.18. The Grothendieck ring GrppA1, lqq has basis tViuiPr0,ls, with the fusion

coefficients of ViVj “
řl

k“0 c
k
i,jVk given by:

cki,j “

$

&

%

1, if |i ´ j| ď k ď minpi ` j, 2k ´ i ´ jq and k ” i ` j mod 2,

0, else.
(5.3.3.1)

This is a commutative ring.

We can take a full modular subcategory pA1, lqpt by taking the simple objects IrrppA1, lqptq “

tV0, Vlu, [NWZ22]. The fusion rules of this subcategory are simply V 2
l “ V0, which are Z2.

Hence the Grothendieck ring GrpIrrppA1, lqptqq “ RpZ2q is a group ring, which we have studied

previously.

When l is a positive odd integer, we can define a second modular subcategory pA1, lq 1
2
by

taking the full subcategory with simple objects

IrrppA1, lq 1
2
q “

#

V2i | 0 ď i ď
l ´ 1

2

+

.

Lemma 5.3.19 ([NWZ22] Section 4). Let l be a positive odd integer. Then there is an

equivalence of modular tensor categories pA1, lq » pA1, lq 1
2

b pA1, lqpt

Now, for any NIM-rep over GrppA1, lqq, we naturally get a NIM-rep over both RpZ2q

and GrppA1, lq 1
2
q by restricting to the each subcategory along the natural embedding. The

NIM-reps over the fusion ring GrppA1, lqq were classified in [EK95] and are in one-to-one

correspondence with simply laced Dynkin diagrams with Coxeter number h “ l ` 2, and in

the case that l is an odd integer, we have the NIM-rep as GrppA1, lqq viewed as a NIM-rep

over itself only. Restriction to RpZ2q and GrppA1, lq 1
2
q gives the self NIM-rep also. However,

we know by Proposition 5.3.1 there are two NIM-reps over RpZ2q, so there is not a lifting

to GrppA1, lqq for every NIM-rep on its subcategories. This leads to the natural question of

whether there are any NIM-reps of GrppA1, lq 1
2
q that don’t come from the larger category.

When l “ 1, we are left with the trivial ring which can be viewed as the group ring Rpteuq.

Hence we shall assume l ě 3.
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Definition 5.3.20. For an object Vi P GrppA1, lqq, we define the length of Vi to be

lengthpViq :“
l

ÿ

k“0

cki,i.

Remark 5.3.21. The length outputs the number of objects in the decomposition of V 2
i .In

the fusion ring GrppA1, lq 1
2
q, it is simple to check using the fusion rules that Vi ‰ Vj if and

only if lengthpViq ‰ lengthpVjq.

By arranging objects in sequence of increasing length, we obtain the sequence

V0, Vl´1, V2, Vl´3, ..., Vpl˘1q{2,

where the sign of the end object depends on whether l “ ¯1 mod 4.

Remark 5.3.22. If we have objects Vi, Vj P GrppA1, lq 1
2
q such that lengthpViq ą lengthpVjq,

then it is easily seen pV 2
i Ź mp,mpq ě pV 2

j Ź mp,mpq. As Vi is self-dual, If Vi Ź mp P M ,

then

1 “ pVi Ź mp, Vi Ź mpq “ pV 2
i Ź mp,mpq ě pV 2

j Ź mp,mpq “ 1,

implying that Vj Ź mp is in M also.

Now, if we assume that M is admissible and has a basis of order d, we immediately get

that the objects that satisfy Vj Ź m0 P M are exactly those of lengthpVjq ď d.

Unlike the case of group an near-group fusion categories, the ring GrppA1, lq 1
2
q has no

invertible elements. As such, we can make the following statement.

Lemma 5.3.23. Let M be an admissible NIM-rep over GrppA1, lq 1
2
q, and Vi ‰ Vj P

GrppA1, lq 1
2
q such that Vi Ź m0, Vj Ź m0 P M . Then Vi Ź m0 ‰ Vj Ź m0.

Proof. If we assume that Vi Ź m0 “ Vj Ź m0, then as the fusion ring is commutative, we

have that

V 2
i Ź m0 “ ViVj Ź m0 “ VjVi Ź m0 “ V 2

j Ź m0.

But by Remark 5.3.21, as Vi and Vj are distinct, we must have that lengthpViq ‰ lengthpVjq,

meaning one of them contains more objects in their decomposition than the other. Then, the

only way that V 2
i Ź m0 “ V 2

j Ź m0 is if some Vk in the decomposition of V 2
i or V 2

j (whichever

has larger length), satisfies Vk Ź m0 “ 0. But this then leads to the zero NIM-rep, which we

have discounted.

88



As we have assumed l ě 3, every fusion ring we are considering contains the object Vl´1,

so we shall focus on exploring how this acts on a NIM-rep.

Proposition 5.3.24. In any NIM-repM over the fusion ring GrppA1, lq 1
2
q, pVl´1 Ź mp,mqq ď

1 for all mp,mq P M .

Proof. Let us assume that pVl´1 Ź mp,mqq “ aql´1,p ě 2. Then we can use the fusion rules in

Equation (5.3.3.1) to obtain

mp ` V2 Ź mp “ V 2
l´1 Ź mp “ aql´1,pVl´1 Ź mq `

ÿ

kPL
k‰q

akl´1,pVl´1 Ź mk

Applying the form p´,mpq, and using the rigidity condition of the NIM-rep, we find that

pV2 Ź mp,mpq ě aql´1,ppVl´1 Ź mq,mpq ´ 1 ě 3 (5.3.3.2)

The fusion rules in Equation (5.3.3.1) give that when l ě 3,

V2jV2 “ V2j´2 ` V2j ` V2j`2, when 1 ď j ď
l ´ 3

2
,

and

V2Vl´1 “ Vl´3 ` Vl´1

We set hi,p :“
ř

kPL a
k
i,p, which counts the number of NIM-basis elements in the decompo-

sition of Vi Ź mp.

Applying the fusion rules to V2jV2 Ź mp “
ř

kPL a
k
2,pV2j Ź mk, we obtain

V2j´2 Ź mp ` V2j`2 Ź mp “ pap2,p ´ 1qV2j Ź mp `
ÿ

kPL
k‰p

ak2,pV2j Ź mk, 1 ď j ď
l ´ 3

2

Vl´3 Ź mp “ pap2,p ´ 1qVl´1 Ź mp `
ÿ

kPL
k‰p

ak2,pVl´1 Ź mk

By noting that hi,p ą 1 for all choices of i, p, and ap2,p ě 3 by Equation (5.3.3.2), when we

count the NIM-basis elements on each side we obtain the following inequalities;

h2j´2,p ` h2j`2,p ě 2h2j,p ` h2,p ´ 3, 1 ď j ď
l ´ 3

2
,

hl´3,p ě hl´1,p ` h2,p ´ 3
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By taking the inequality for each 1 ď j ď l´1
2

and summing them together, we obtain

1 ` h2,p ` 2h4,p ` ... ` 2hl´3,p ` hl´1,p ě 2h2,p ` 2h4,p ` ... ` 2hl´1,p `
l ´ 1

2
ph2,p ´ 3q

ùñ
3l ´ 1

2
ě
l ` 1

2
h2,p ` hl´1,p ě

l ` 1

2
h2,p ` 2

ùñ
3l ´ 5

l ` 1
ě h2,p

where the last inequality in the second line follows due to our initial assumption. However,

the last inequality cannot be satisfied as the fraction on the left-hand side is strictly less

than 3 for all values of l, which contradicts pV2 Ź mp,mpq “ ap2,p ě 3. Hence we have a

contradiction, and so, pVl´1 ˚ mp,mqq ď 1, for all mp,mq P M .

Lemma 5.3.25. In any NIM-rep M over GrppA1, lq 1
2
q, pV 2

l´1 Ź mp,mpq ď 3 for all mp,mq P

M .

Proof. If we assume that pV 2
l´1 Ź mp,mpq ą 4, then by Proposition 5.3.24, we have that

hl´1,p “ pV 2
l´1 Ź mp,mpq ą 4. By the fusion rules in Equation (5.3.3.1), we have that

pV2 Ź mp,mpq ě 3. We are in a very similar setup to the proof of Proposition 5.3.24, which

if we follow through results in the inequality

3l ´ 9

l ` 1
ě h2,p.

This fraction is also strictly less than 3, so we obtain the desired contradiction.

Proposition 5.3.26. Let M be an admissible NIM-rep over GrppA1, lq 1
2
q. Then there exists

no mk P M such that pV 2
l´1 Ź mk,mkq “ 3.

Proof. Assume there exists some mk P M such that pV 2
k´1 Ź mk,mkq “ 3. By Lemma 5.3.25,

we can write

Vk´1 Ź mk “ mx ` my ` mz,

where mx,my,mz P M are distinct NIM-basis elements. The fusion rule of V 2
l´1 gives us that

pV2 Ź mk,mkq “ 2.

As the NIM-rep is admissible and mx,my,my are distinct NIM-basis elements, the cardi-

nality of the NIM-basis M is at least 3, so by Remark 5.3.22 we know that V2 Ź m0, Vl´1 Ź

m0 P M . We also know that there exists a Vj P pA1, lq 1
2
such that Vj Ź m0 “ mk. Using the
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fusion rules, we find that

Vl´1 Ź mk “ Vl´1Vj Ź m0 “ Vl´1´j Ź m0 ` Vl`1´j Ź m0.

Acting with Vl´1 again on both sides and then using the form p´,mkq, we have

mk ` V2 Ź mk “ V 2
k´1 Ź m0 “ Vj Ź m0 ` 2Vj`2 Ź m0 ` Vj`4 Ź m0

ùñ V2 Ź mk “ 2Vj`2 Ź m0 ` Vj`4 Ź m0. (5.3.3.3)

A second way to calculate V2 Ź mk is as follows:

V2 Ź mk “ V2Vj Ź m0 “ Vj´2 Ź m0 ` Vj Ź m0 ` Vj`2 Ź m0. (5.3.3.4)

By applying the form p´,mkq to both Equation (5.3.3.3) and Equation (5.3.3.4), we have

that

2 “ 2pVj`2 Ź m0,mkq ` pVj`4 Ź m0,mkq, (5.3.3.5)

1 “ pVj´2 Ź m0,mkq ` pVj`2 Ź m0,mkq. (5.3.3.6)

By the fusion rules Equation (5.3.3.1) and Remark 5.3.22, it is clear that we can only satisfy

Equation (5.3.3.5) when j ď l˘1
2
, where the sign is determined by l ” ¯1 mod 4. But then

we immediately have that pVj´2 Ź mk,m1q “ 0 by Remark 5.3.22, so the above equations

give us that

pVj`2 Ź m0,mkq “ 1, and pVj`4 Ź m0,mkq “ 0. (5.3.3.7)

If we calculate the fusion rules, we see that the only term that appears in the expansion

of pVj`2Vj Ź m0,m0q and not in that of pVj`4Vj Ź m0,m0q is pV2 Ź m0,m0q. But as

V2 Ź m0 P M and V2 is non-invertible, this term must always be 0. Hence we can never

satisfy Equation (5.3.3.7), giving a contradiction. Thus we must have pV 2
l´1 Ź m0,m0q ď 2

for all mk P M .

Proposition 5.3.27. Up to isomorphism, there is only one admissible NIM-rep over

GrppA1, lq 1
2
q.

Proof. Suppose we have an admissible NIM-rep M over GrppA1, lq 1
2
q where M has cardinality

d. Then there exists a Vj P GrppA1, lq 1
2
q where lengthpVjq “ d and Vj Ź m0 P M . Acting
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with Vl´1 we get that

Vl´1Vj Ź m0 “ Vl´1´j Ź m0 ` Vl`1´j Ź m0.

Using the fusion rules from Equation (5.3.3.1) and Definition 5.3.20, if j ă l˘1
2
, (where the

sign depends on k ” ¯1 mod 4), then lengthpVl`1´jq “ d ` 1 and so Vl´1´j Ź m0 R M , by

Remark 5.3.22. Similarly, if j ą l˘1
2
, then Vl`1´j Ź m0 R M . In both cases, this leads to

pV 2
l´1Vj Ź m0, Vj Ź m0q ě pVl´1´j Ź m0, Vl´1´j Ź m0q ` pVl`1´j Ź m0, Vl`1´j Ź m0q “ 3.

This contradicts Vj Ź m0 P M by Proposition 5.3.26, and so we must have that j “ l˘1
2
. All

other objects Vi have length less than Vj, and so every mk P M is of the form Vi Ź m0 P M .

This gives that the full NIM-rep structure is simply generated by the fusion rules.

Thus the NIM-rep that comes from restricting down from GrppA1, lqq is indeed the only

NIM-rep over GrppA1, lq 1
2
q. This corresponds to the monoidal unit 1.
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Chapter 6

Future Directions

We shall now briefly highlight ways in which the work presented in this thesis may be

extended.

Regarding the results in Chapter 4, we used a Frobenius monoidal functor to classify

Frobenius algebras in the category of (twisted) Yetter-Drinfeld modules over the group Hopf

algebra. However, we can define H
HYD for any Hopf algebra H, so a natural next step is to

see how much of our process we can generalise. First, we would need some sort of braided

monoidal functor between two categories of YD modules, taking the place of the functor I

from Section 4.3.

Proposition 6.0.1. [FLP24, Corollary H] Let φ : K Ñ H be a morphism of Hopf algebras in

Vect. Then we induce a braided lax monoidal functor

Ind : H
HYD Ñ

K
KYD.

Further, if H is finitely generated projective as a left K-module, we get a braided lax monoidal

functor

CoInd : K
KYD Ñ

H
HYD.

These functors give a place to start, but it is still yet to be seen whether they admit a

Frobenius monoidal structure. Even if not, we still aim to explore what sort of algebraic

properties could be preserved and potentially used as classification representatives, akin to

the twisted group algebras that we used previously.

Regarding the results from Chapter 5, if we recall the discussion from Remark 5.3.16, we

do not currently recover a full picture of the potential algebra structures purely from the

NIM-reps. To add to this, if we consider the classification in Theorem 4.0.1 of connected
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separable algebras in VectωG , there are occasions when two group algebras pkrHs, κq, pkrHs, κ1q

formed from the same subgroup but differing 2-cocycles result in non-equivalent module

categories. This is a distinction which cannot be made using NIM-reps, once again because

we do not see the morphisms at this level. So to advance this work we need to find a way to

introduce some more of the categorical data to our construction. As we have both morphisms

of fusion rings and morphisms of the NIM-reps they are acting on, this could potentially be

done using a bicategory or double category as defined in [Ben98].

Secondly, we can still continue to classify NIM-reps for other families of fusion rings to build

up our catalogue of examples which we can test with. Possible options include perfect tensor

categories, which appear in the classification of low-rank modular tensor categories [CGP24],

such as categories of modules over certain quantum groups [EP21,NWZ22] . This will be

useful in building more examples of the method, but as all elements in the corresponding

fusion rings will be non-invertible (as opposed to the single non-invertible element for the

near-group case) it is likely we will be left with a family of matrix equations to solve, which

may prove difficult to find exact solutions to.

Overall, the search for algebra objects in fusion categories is an extremely active area that

has lots of potential for future advancements that this preliminary work can contribute to.
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Appendix A

Cohomology

Here, we collect the basic definitions and constructions from group cohomology used through-

out this thesis, following [Ben98, Section 3.4], [Bro94, Chapter III], [Wei94]. We note that

these references typically use the convention of left modules, whereas we use right modules.

A.1 Cohomology of groups

Let R be a ring.

Definition A.1.1. A chain complex M‚ is a sequence of R-modules, connected together by

R-module homomorphisms,

. . .
dn`1
ÝÝÝÑ Mn

dn
ÝÑ Mn´1

dn´1
ÝÝÝÑ Mn´2

dn´2
ÝÝÝÑ . . . , (A.1.0.1)

such that the composition dn´1 ˝ dn “ 0, for all n P Z. The maps dn are called differentials.

We denote by CnpM‚q :“ Kerpdnq the space of n-cycles, and by BnpM‚q :“ Impdn`1q the

space of n-boundaries. The n-th homology group is the quotient

HnpM‚q :“ CnpM‚q{BnpM‚q. (A.1.0.2)

In a dual manner, we can define a cochain complex M‚ as a sequence of R-modules and

module homomorphisms,

. . .
dn´1

ÝÝÝÑ Mn dn
ÝÑ Mn`1 dn`1

ÝÝÝÑ Mn`2 dn`2

ÝÝÝÑ . . . , (A.1.0.3)

where the composition of differentials dn ˝ dn´1 “ 0. The spaces of n-cocycles CnpM‚q
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and n-coboundaries BnpM‚q are defined similarly, with the n-th cohomolgy group being the

quotient

Hn
pM‚

q :“ Cn
pM‚

q{Bn
pM‚

q. (A.1.0.4)

Given a group G, we can study its homological properties by constructing the standard

complex (also known as the bar resolution). If we take ZGnbZZG which is a right ZG-module

via right multiplication, and freely generated by n-tuples pg1, ..., gnq, then we can form the

complex

. . .ZGn
bZ ZG

Bn
ÝÑ ZGn´1

bZ ZG
Bn´1
ÝÝÝÑ . . . . . .ZG1

bZ ZG
B1
ÝÑ ZG.

The differentials are the ZG-module homomorphism defined by

Bnpg1, . . . , gnq “ p´1q
n
pg2, . . . , gnq `

n´1
ÿ

i“1

p´1q
n´i

pg1, . . . , gigi`1, . . . , gnq ` pg1, . . . , gn´1qgn.

We can also use this standard complex to study the cohomology of groups. Given a right

ZG-module A, we construct the cocomplex F ‚pG,Aq, where the modules of this cocomplex

are the abelian groups of Z-module of maps Gn Ñ A, F npG,Aq :“ FunpGn, Aq,

A
d0
ÝÑ F 1

pG,Aq
d1
ÝÑ F 2

pG,Aq . . . . . . F n´1
pG,Aq

dn´1

ÝÝÝÑ F n
pG,Aq . . . .

To get the differentials, we can use the the isomorphism

HomZGpZGn
bZ ZG,Aq – FunpGn, Aq “ F n

pG,Aq,

to define dn as composition with Bn`1, under this isomorphism.

Explicitly, the differential dn is given on a map f : Gn Ñ A by

dn fpg0, . . . , gnq “ p´1q
n`1fpg1, . . . , gnq`

n´1
ÿ

i“0

p´1q
n´ifpg0, . . . , gigi`1, . . . , gnq`fpg0, . . . , gn´1q¨gn,

(A.1.0.5)

where ¨ denotes the action of G on A. We shall call this the standard cocomplex. In practice,

we often use the G-module A “ kˆ, with trivial G-action. In this case, we use multiplicative

notation.

Example A.1.2. Consider the cocomplex F ‚pG,kˆq. The differential of a a function
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ω P F 3pG,kˆq is given by

dn ωpg0, g1, g2, g3q “ ωpg1, g2, g3qωpg0g1, g2, g3q
´1ωpg0, g1g2, g3qωpg0, g1, g2g3q

´1ωpg0, g1, g2q,

(A.1.0.6)

where we have used the multiplicative notation. If we take ω to be a 3-cocycle, that is that

its differential is 0, then we recover the 3-cocycle condition given in Equation (2.1.0.4).

A.2 Cocycle Calculations

Here we collect the computations of various cohomological identites used throughougt Chap-

ter 4. These relate to a normalised 3-cocycle ω (defined in Equation (2.1.0.4)), τ and γ

(Equations 4.1.0.2 and 4.1.0.3 respectively).

Proposition A.2.1. The maps τph, kqpdq and γphqpd, fq are related by the following identity:

γ pkq pd, fq γ phq
`

kdk´1, kfk´1
˘

τ ph, kq pdq τ ph, kq pfq “ τ ph, kq pdfq γ phkq pd, fq .

Proof. To prove this holds, we shall make extensive use of the 3-cocycle condition, Equa-

tion (2.1.0.4). We first use this with the following intputs to get a series of equalities;

– g1 “ h, g2 “ k, g3 “ d, g4 “ f ,

ωph, k, dqωpk, d, fq “
ωphk, d, fqωph, k, dfq

ωph, kd, fq

– g1 “ h, g2 “ kdk´1, g3 “ kfk´1, g4 “ k,

ωph, kdk´1, kfk´1
qωpkdk´1, kfk´1, kq “

ωphkdk´1, kfk´1, kqωph, kdk´1, kfq

ωph, kdfk´1, kq

– g1 “ hkdk´1h´1, g2 “ h, g3 “ k, g4 “ f ,

ωphkdk´1h´1, h, kqωph, k, fq “
ωphkdk´1, k, fqωphkdk´1h´1, h, kfqq

ωphkdk´1h´1, hk, fq

– g1 “ hkdk´1h´1, g2 “ hkfk´1h´1, g3 “ h, g4 “ k,

ωphkdk´1h´1, hkfk´1h´1, hqωphkfk´1h´1, h, kq “
ωphkdfk´1h´1, h, kqωphkdk´1h´1, hkfk´1h´1, hkq

ωphkdk´1h´1, hkfk´1, kq
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If we then expand out the left hand side of Equation (4.1.0.4) , and substitute in the

above equalities, we are left with

ωphkdk´1, kfk´1, kqωphkdk´1h´1, h, kfq

ωphkdk´1h´1, h, kfk´1qωphkdk´1h´1, hkfk´1, kqωph, kfk´1, kq
ˆ

ˆ
ωph, kdk´1, kfqωphkdk´1, k, fq

ωpkdk´1, k, fqωph, kd, fqωph, kdk´1, kq
τph, kqpdfqγphkqpd, fq

But the remaining coefficients vanish by using the 3-cocycle equation with inputs;

– g1 “ hkdk´1h´1, g2 “ h, g3 “ kfk´1, g4 “ k,

ωphkdk´1, kfk´1, kqωphkdk´1h´1, h, kfq

ωphkdk´1h´1, h, kfk´1qωphkdk´1h´1, hkfk´1, kqωph, kfk´1, kq
“ 1 (A.2.0.1)

– g1 “ h, g2 “ kdk´1, g3 “ k, g4 “ f ,

ωph, kdk´1, kfqωphkdk´1, k, fq

ωpkdk´1, k, fqωph, kd, fqωph, kdk´1, kq
“ 1 (A.2.0.2)

So the equality holds.

Proposition A.2.2. The map γphqpg, g1q is related to the 3-cocycle ωpg, g1, g2q by the following

identity:

ω´1
phgh´1, hg1h´1, hg2h´1

qγphqpgg1, g2
qγphqpg, g1

q “ γphqpg, g1g2
qγphqpg1, g2

qω´1
pg, g1, g2

q.

Proof. We use the 3-cocycle condition in Equation (2.1.0.4) with the following inputs;

– g1 “ h, g2 “ g, g3 “ g1, g4 “ g2,

– g1 “ hgh´1, g2 “ hg1h´1, g3 “ hg2h´1, g4 “ h,

– g1 “ hgh´1, g2 “ h, g3 “ g1, g4 “ g2,

– g1 “ hgh´1, g2 “ hg1h´1, g3 “ h, g4 “ g2,

Proposition A.2.3. The maps taupg, dqpfq and γpgqpd, fq are also related by the following

identity:

γpgqpd, fqτpgdg´1, gqpfq “ γpgqpdfd´1, dqτpg, dqpfq,

Proof. We use the 3-cocycle condition with the following inputs;

– g1 “ gdfd´1g´1, g2 “ g, g3 “ dg´1, g4 “ g,

– g1 “ g, g2 “ dfd´1, g3 “ dg´1, g4 “ g,

–g1 “ g, g2 “ dg´1, g3 “ gfg´1, g4 “ g,

– g1 “ g, g2 “ dg´1, g3 “ g, g4 “ f,
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Proposition A.2.4. The map τph, kqpdq satisfies the following identity:

τph, kqpdqτpg, hkqpdq “ τpg, hqpkdk´1
qτpgh, kqpdq.

Proof. We use the 3-cocycle condition with the following inputs;

– g1 “ g, g2 “ h, g3 “ k, g4 “ d,

– g1 “ g, g2 “ h, g3 “ kdk´1, g4 “ k,

– g1 “ g, g2 “ hkdk´1h´1, g3 “ h, g4 “ k,

– g1 “ ghkdk´1h´1g´1, g2 “ g, g3 “ h, g4 “ k,

A.3 Cohomology of crossed product of groups

Following [DS17, Appendix A], we describe how the cohomology of a crossed product of

groups can be described using a double complex.

Definition A.3.1. Let H, G be groups, along with together with a left action of H on G by

group automorphisms, H ÞÑ AutpGq, h ÞÑ pg ÞÑ hgq. Then the crossed product, G¸H, is the

set G ˆ H with group multiplication given by

pg1, h1q ¨ pg2, h2q “ pg1
h1g2, h1h2q.

Let A be a right ZG-module. Then F npG,Aq “ FunpGn, Aq becomes a right H-module

when equipped with the action

pf ¨ hqpg1, . . . , gnq “ fp
hg1, . . . ,

hgnq.

This allows us to define a standard cocomplex F ‚pH,F npG,Aqq for each n P Z.
If we define

F n,m
pH,G,Aq “ FunpHn,FunpGm, Aqq “ F n

pH,Fm
pG,Aqq,

then we have two families of module homomorphisms

dn,m : F n,m
pH,G,Aq Ñ F n`1,m

pH,G,Aq, B
n,m : F n,m

pH,G,Aq Ñ F n,m`1
pH,G,Aq,

where the first is given directly by the standard comomplex F ‚pH,F npG,Aqq and the second

99



is induced by the standard cocomplex F ‚pG,Aq in the sense that

pB
n,m

pfqqph1, . . . , hnq “ dn
pfph1, . . . , hnqq.

The differentials commute, dn,m`1
Bn,m “ Bn`1,m dn,m, and so we are left with the system

...
...

...

. . . F n,mpH,G,Aq F n`1,mpH,G,Aq F n`2,mpH,G,Aq . . .

. . . F n,m`1pH,G,Aq F n`1,m`1pH,G,Aq F n`2,m`1pH,G,Aq . . .

. . . F n,m`2pH,G,Aq F n`1,m`2pH,G,Aq F n`2,m`2pH,G,Aq . . .

...
...

...

Bn,m´1 Bn`1,m´1 Bn`2,m´1

dn´1,m dn,m

Bn,m

dn`1,m

Bn`1,m

dn`2,m

Bn`2,m

dn´1,m`1 dn,m`1

Bn,m`1

dn`1,m`1

Bn`1,m`1

dn`2,m`1

Bn`2,m`1

dn´1,m`2 dn,m`2

Bn,m`2

dn`1,m`2

Bn`1,m`2

dn`2,m`2

Bn`2,m`2

where all rows and columns are complexes, and all squares commute. This is an example of a

double complex, [Wei94].

To view this system as a single complex, one can consider the associated truncated double

complex rF ‚
TotpH,G,Aq, with

rF n
TotpH,G,Aq “

n´1
à

i“0

F i,n´i
pH,G,Aq,

dn
Totpfq :“ di,n´i

pfq ` p´1q
i
B
i,n´1

pfq, for f P F i,n´i
pH,G,Aq with i ă n.

We can view an element f P rF i,n´ipH,G,Aq Ď F n
TotpH,G,Aq as a function f : H iˆGn´i Ñ A.

This complex allows us to interpret several of the functions appearing in Chapter 4 as

cohomological elements.

Example A.3.2. Let the group G act on itself via conjugation, while G acts on kˆ trivially,

using multiplicative notation. Then we can form the cocomplex rF ‚
TotpG,G,kˆq. If we recall

the functions τ : pG ˆ Gq ˆ G Ñ kˆ, γ : G ˆ pG ˆ Gq Ñ kˆ from Equations 4.1.0.2 and

4.1.0.3, we can view the triple

T pωq “ ω ‘ γ ‘ τ P F 0,3
‘ F 1,2

‘ F 2,1
“ rF 3

TotpG,G,kˆ
q,
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with γph1, g1, g2q :“ γph1qpg1, g2q and τph1, h2, g1q :“ τph1, h2qpg1q, as a cochain in the trun-

cated double cocomplex. If we calculate the differential of this element, using multiplicative

notation and collecting terms in the same spaces, we get that

d3
TotpT pωqq “ B

0,3
pωq ‘

d0,3
pωq

B1,2pγq
‘ d1,2

pγqB
2,1

pτq ‘ d2,1
pτq. (A.3.0.1)

Asking that T pωq be a 3-cocycle is thus equivalent to the following conditions;

d1,2
pγqB

2,1
pτq “ 1 “

γ ph2q pg1, g2q γ ph1q
`

h2g1h
´1
2 , h2g2h

´1
2

˘

τ ph1, h2q pg1q τ ph1, h2q pg2q

τ ph1, h2q pg1g2q γ ph1h2q pg1, g2q
,

B
0,3

pωq “ 1 “
ω pg1g2, g3, g4qω pg1, g2, g3g4q

ω pg1, g2, g3qω pg1, g2g3, g4qω pg2, g3, g4q
,

d0,3
pωq

B1,2pγq
“ 1 “

γphqpg1g2, g3qγphqpg1, g2qωpg1, g2, g3q

ωphg1h´1, hg2h´1, hg2h´1qγphqpg1, g2g3qγphqpg2, g3q
,

d2,1
pτq “ 1 “

τph2, h3qpgqτph1, h2h3qpgq

τph1h2, h3qpgqτph1, h2qph3gh
´1
3 q

.

These are, respectively, that ω is a 3-cocycle, as described by Equation (2.1.0.4), and that

Propositions A.2.1 A.2.2, and A.2.4 hold.

Example A.3.3. Let N ŸH be a normal subgroup and let H act on N by conjugation. The

2-boundaries in the complex rF ‚
TotpH,N,kˆq can be parameterised by pairs

ϵ ‘ κ P F 1,1
‘ F 0,2

“ F 2
TotpH,N,kˆ

q.

The differential of this element is given by

d2
Totpϵ ‘ κq “ d1,1

pϵq ‘
d0,2

pκq

B1,1pϵq
‘ B

0,2
pκq.

Explicitly, the formulas for each component are given by

d1,1 ϵph1, h2, n1q “
ϵph1, h2n1h

´1
2 qϵph2, n1q

ϵph1h2, n1q
,

B
1,1ϵph1, n1, n2q “

ϵph1, n1qϵph1, n2q

ϵph1, n1n2q
, d0,2 κph1, n1, n2q “

κph1n1h
´1
1 , h1n2h

´1
1 q

κpn1, n2q
,

B
0,2κpn1, n2, n3q “

κpn1, n1qκpn1n2, n3q

κpn1, n2n3qκpn2, n3q
.
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Appendix B

Group actions

Here we collect some standard definitions and well-known results on group actions, following

[Cam99], that are used in Chapter 5.

Definition B.0.1. Let G be a group and S a set.

A G-action on S is a binary operation ˚ : G ˆ S Ñ S such that, for all s P S,

e ˚ s “ s, and pg ¨ hq ˚ s “ g ˚ ph ˚ sq,

where e P G is the group identity element.We shall call a set endowed with such an action a

G-set.

Example B.0.2. (Set of left cosets) Let G be a group, and H some subgroup. We can form

the set of left cosets G{H “ tgH|g P Gu, which has a G-action defined by k ˚ gH “ kgH,

where k, g P G.

So in this way, the action of a group can be thought of as a particular choice of the

symmetries of a set.

Definition B.0.3. Let S, T be two sets with G-actions ˚S and ˚T respectively. They are

isomorphic as G-sets if there exists a bijection f : S Ñ T such that

g ˚T fpsq “ fpg ˚S sq for all s P S.

For a given element s in a G-set S, we can define a distinguished subset of S; The orbit

of G through S is the subset defined by

Orbpsq “ tg ˚ s|g P Gu,
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and contains all elements that can be reached from s using the group action. If there exists

an s P S such that Orbpsq “ S, then we say that the G-action is transitive.

If we have two elements s, t P S, then the subsets Orbpsq and Orbptq are either equal

or disjoint. Moreover, we can form an equivalence relation by setting s „ t if and only if

Orbpsq “ Orbptq. This allows us to partition the set S into a collection of transitive G-sets,

S “
ğ

sPS{„

Orbpsq. (B.0.0.1)

So to understand the structure of a G-set, we can focus on the G-action orbits.

To do this, for a given s P S, we can look at the the stabiliser of s, which is defined as

Stabpsq “ tg P G|g ˚ s “ su.

This is a subgroup of G, and contains the elements of g that act trivially on s. This subgroup

allows us to relate the G-sets of Orbpsq and the left coset G-set G{Stabpsq from Example B.0.2.

Proposition B.0.4. Let S be a G-set, and take s P S. There is an isomorphism of G-sets

between Orbpsq and the G-set of left cosets G{Stabpsq.

Proof. For x P Orbpsq, there is some element h P G such that h ˚ s “ x. The map

fpxq “ tg P G|g ˚ s “ x “ h ˚ su “ h´1Stabpsq is a bijection between Orbpsq and G{Stabpsq.

This is an isomorphism of G-sets as

k ˚ fpxq “ k ˚ h´1Stabpsq “ kh´1Stabpsq “ fpkh´1
˚ sq “ fpk ˚ xq.

If we combine this result with Equation (B.0.0.1), then we can study any G-set S using

the left-coset G-sets G{Stabpsq. As Stabpsq is simply some subgroup of G, we have a

complete understanding of G-sets by consider the left-coset G-set from Example B.0.2. This

is understanding is completed using the following result.

Proposition B.0.5. Two left coset G-sets G{H,G{K are isomorphic as G-sets if and only

if H and K are conjugate subgroups of G.

Proof. First, suppose that K “ g´1Hg for some g P G. Then the map f : G{H Ñ G{K

defined by fpkHq “ kgK is an isomorphism of G-sets, with inverse map given by f´1plKq “

lg´1H.
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Conversely, suppose we have an isomorphism of G-sets f : G{H Ñ G{K. In particular,

this gives fpHq “ gK for some g P G. Then, for some h P H, we have that

gK “ fpHq “ fphHq “ h ˚ fpHq “ hgK. (B.0.0.2)

Thus we have that g´1Hg Ď K.

If we now consider some k P K, we have that

fpg´1Hq “ K “ kK “ k ˚ fpg´1Hq “ fpkg´1Hq. (B.0.0.3)

As f is a bijection, this gives that g´1KG Ď H, and so H and K are conjugate subgroups.
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