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A B S T R A C T

Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total 
vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common 
in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, 
which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce 
seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because 
of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including 
Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern ge-
netic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of 
seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative 
functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins 
which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the 
improvement of Brassica oilseed species, as major sources of global vegetable oil.

1. Introduction

Brassica oilseed species (BOS) have been cultivated for thousands of 
years with detailed records of the crops in India from 1500 years ago. 
Demand increased rapidly in the 20th century due to improvements in 

seed varieties and agricultural and processing methods [1]. Rapeseed is 
now the third most important oil crop (after palm and soybean) and 
produces about 15 % of the total vegetable oils. It is a major oil crop for 
the European Community, Canada, China and India (Table 1) [2].

Three BOS, or more specifically rapeseed species, dominate crop 
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growth-regulating factor 2-like; GPAT, sn-glycerol-3-phosphate acyltransferase; GWA, genome-wide association; G3P, sn-3 glycerol 3-phosphate; G3PDH, sn-3 
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pathway; PA, phosphatidic acid; PAP, phosphatidic acid phosphatase; PC, phosphatidylcholine; PDAT, phospholipid:diacylglycerol acyltransferase; PDCK, pyruvate 
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production in oil producing countries. Brassica rapa is the most cold- 
hardy and, therefore, is grown to some extent in Western Canada. On 
the other hand, B. juncea is better adapted to dryer climates and is 
common in China and Northern India. B. napus is the most common 
species grown in Europe, Canada and China and can be obtained in 
spring and winter varieties. The latter is favored because of its good 
yields provided climate conditions are suitable [1]. B. napus is an allo-
tetrapoid crop, resulting from interspecies breeding of varieties of 
B. oleracea and B. rapa [3,4].

The earlier varieties of rapeseed usually contained high amounts of 
erucic acid (22:1Δ13cis, hereafter 22:1), reported to damage animal 
cardiac muscle, which precluded its widespread use in food or feeds [5]. 
They also contained glucosinolates (3-butenyl-, 4-pentenyl-, 2-hydroxy- 
3-butenyl- and 3-hydroxy-4-pentenyl glucosinolate) which causes 
limited palatability and nutritional content for livestock and poultry.

Although high erucic acid rapeseed (HEAR) oil has industrial uses as 
a lubricant, nutritional requirements led to the breeding of B. napus (and 
other) varieties which were low in both erucic acid and glucosinolates, 
first in Canada in 1974 [6,7] and later in Europe. These were known as 
‘double low’ varieties and later given the trade name ‘canola’ by which 
they are called in North America. The term ‘canola’ is used to describe 
varieties with <2 % erucic acid in their oil and < 30μmoles glucosino-
lates per g of meal. In European and other countries canola falls into the 
low erucic acid rapeseed (LEAR) category whereas HEAR produces oil 
with high erucic acid content. Both Europe and the U.S.A. stipulate that 
edible oils must have <2 % erucic acid.

Typical LEAR (including canola) varieties contain palmitic (16:0; 4 
%), stearic (18:0; 2 %), oleic (18:1Δ9cis, hereafter 18:1; 62 %), linoleic 
(18:29cis,12cis, hereafter 18:2; 22 %) and α-linolenic (18:39cis,12cis,15cis, 
hereafter α-18:3; 10 %) acids (Table 2) [1]. On the other hand, HEAR 
varieties contain only about 15 % oleic acid which had been elongated to 
eicosenoic (10 %) and erucic (45 %) acids (Table 2). As in most other oil 
crops, the accumulating lipid is almost exclusively triacylglycerol (TAG) 
formed by the four reaction steps of the Kennedy pathway [8,9]. The 
major TAG molecular species found in LEAR oils are OOO (22 %), LOO 
(22 %), LnOO (10 %), LLO (9 %), LnLO (8 %), LOP (6 %) and POO (5 %), 
where P, L, Ln and O refer to 16:0, 18:2, α-18:3 and 18:1, respectively. 
The distribution of TAG molecular species in different varieties of 
rapeseed are given in [1] and their spatial distribution within LEAR 
seeds, as revealed by MALDI-MS (matrix-assisted laser/desorption 
ionisation-mass spectrometry imaging), are shown in [10]. The 

distribution of fatty acids (FAs) on the glycerol backbone of TAG is 
similar to other oil crops with saturated FAs enriched at the sn-1 and sn-3 
positions while the polyunsaturated fatty acids (PUFAs, including 18:2 
and α-18:3) are concentrated at the sn-2 position [11]. For LEAR vari-
eties, typical lipid contents are 45 % dry weight [10] of which TAG 
represents about 95 % of the total acyl lipids [12]. Typical crop yields 
are given in [1].

Depending on the country concerned, the use of rapeseed oil varies 
somewhat, although the LEAR varieties are used mainly for food. Sub-
stantial amounts have been used as biofuel in Europe [2], although this 
has declined recently since it is determined by government policy. In 
addition, genetically-engineered lines are available and these have been 
grown extensively in North America [2]. The production and utilization 
of such lines has been summarized in Weselake et al. [13]. These include 
transgenics with increased levels of 18:0 [14] or total saturates [15,16], 
increased medium-chain acids [17–19] or reduced saturated FAs [20]. 
Although LEAR/Canola varieties of rapeseed contain large amounts 
(about 60 %) of oleic acid, this can be increased further at the expense of 
PUFAs [21,22] (Table 2). Further manipulations, including methods to 
increase seed oil content (SOC) in B. napus and comparisons with other 
crops are covered in Weselake et al. [13].

The major breeding targets for oilseed rape are yield, quality and 
resistance. Increasing SOC in rapeseed is a component of yield and 
quality and is a major goal of breeding and biotechnological programs 
[7,23–25]. This review focuses on the use of biotechnological strategies 
for increasing SOC. It begins by presenting information on oil biosyn-
thesis in rapeseed in order to provide a metabolic context for the various 
genetic interventions that will be discussed later. Great improvements in 
increasing SOC and yield have come through conventional breeding, 
with more recent molecular approaches being introduced. Therefore, a 
section dealing with genetic and omics approaches to identifying po-
tential targets for manipulation of SOC is included. Thereafter, an 
overview of Metabolic Control Analysis (MCA) as a tool to help identify 
metabolic engineering strategies is covered. This is followed by specific 
attention to diacylglycerol acyltransferase (DGAT) and further enzymes 
in TAG assembly. Other possible targets in carbon metabolism and lipid 
transport are then surveyed. Overall, we believe that the review pro-
vides an informative survey of how BOS have been manipulated and 
suggest further ways for the future.

2. Triacylglycerol biosynthesis

The majority of TAG biosynthesis in developing seeds of rapeseed 
occurs in the zygotic embryo during seed development and involves 
several enzymes and other functional proteins operating in the plastid 
and endoplasmic reticulum (ER). Several review articles have described 
the metabolic pathways involved (e.g. [26–32]).

FAs, which are eventually incorporated into various membranes and 
TAG, are synthesized through the sequential action of acetyl-CoA 
carboxylase (ACCase) and the fatty acid synthase (FAS) complex of the 
plastid to the level of 16:0 and 18:0 while attached to the acyl-carrier 
protein (ACP) component of the FAS complex. A soluble stearoyl-ACP 
desaturase catalyses the conversion of 18:0 to 18:1 while the fatty acyl 
chain is still attached to ACP. In an investigation using microspore- 
derived cultures of B. napus L. cv Jet Neuf, Andre et al. [33] have 
demonstrated that a reduced requirement for de novo FAs leads to 
accumulation of 18:1-ACP, which directly inhibits plastidial ACCase, 
thereby resulting in a reduction in FA biosynthesis. Thioesterases ca-
talyse the release of 16:0 and 18:1 which can then move across the inner 
plastidial membrane through the involvement of fatty acid transporter 1 
[34,35]. The released FAs are then esterified to CoA to form their 
respective acyl-CoAs on the outside of the plastid. A recent study has 
suggested that long-chain acyl-CoA synthetase (LACS) 2 is involved in 
catalysing the production of acyl-CoA [36]. The glycerol backbone for 
TAG assembly in the ER is provided by sn-3 glycerol 3-phosphate (G3P) 
[8,9]. G3P is produced from dihydroxyacetone phosphate (DHAP) via 

Table 1 
Rapeseed by country (million metric tons).

1985 1995 2009 2018

EU 5.8 (30 %) 10.7 (31 %) 20.9 (34 %) 19.5 (26 %)
Canada 3.5 (18 %) 6.4 (19 %) 11.8 (19 %) 20.3 (27 %)
China 5.6 (29 %) 9.8 (29 %) 13.5 (22 %) 13.3 (18 %)
India 3.1 (16 %) 5.8 (17 %) 7.2 (12 %) 8.4 (11 %)
Total 19.2 34.2 61.6 75.2

Data taken from data in Wikipedia (https://en.wikipedia.org/wiki/R 
apeseed——accessed 5th Sept. 2023).

Table 2 
Fatty acid composition of different B. napus oils.

Fatty acid LEAR HEAR LLCAN HOCAN LTCAN

16:0 3.6 4.0 3.9 3.4 2.7
18:0 1.5 1.0 1.3 2.5 1.6
18:1 61.6 14.8 61.4 77.8 32.8
18:2 21.7 14.1 28.1 9.8 0.8
18:3 9.6 9.1 2.1 2.6 0.5
20:1 1.4 10.0 1.5 1.6 0.8
22:1 0.2 45.1 0.1 0.1 0.5

LLCAN = low linolenic rapeseed oil; HOCAN = high oleic rapeseed oil; LTCAN 
= rapeseed oil enriched in medium chain fatty acids (38.8 % lauric, 4.1 % 
myristic). Adapted from [11].
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the catalytic action of sn-3 glycerol 3-phosphate dehydrogenase 
(G3PDH) [37]. DHAP is produced via glycolysis.

A generalized view of TAG assembly in the ER of developing seeds of 
oleaginous plants producing TAG containing PUFAs is depicted in Fig. 1. 
The main pathway for TAG biosynthesis is historically referred to as the 
G3P pathway or Kennedy pathway [8,9]. This process involves a 
sequential acylation of the glycerol backbone, starting with G3P, cata-
lysed by three membrane-bound acyl-CoA-dependent acyltransferases. 
In addition, phosphatidic acid phosphatase (PAP) catalyses the libera-
tion of inorganic phosphate from phosphatidic acid (PA) to form 1, 2- 
diacyl-sn-glycerol (DAG) prior to the final acylation. The acylation of 
G3P to form lysophosphatidic acid (LPA) is catalysed by sn-glycerol-3- 
phosphate acyltransferase (GPAT) whereas the further acylation of LPA 
to form PA is catalysed by lysophosphatidic acid acyltransferase 
(LPAAT). In developing seeds of Arabidopsis thaliana (hereafter Arabi-
dopsis), type-9 GPAT has been shown to be active within the Kennedy 
pathway [38,39]. The acylation of DAG to form TAG is catalysed by 
DGAT, which in rapeseed, is a key enzyme involved in controlling the 
flow of carbon into seed oil [25,40–44]. Analysis of the lipidome con-
ducted during seed development in B. napus has suggested that the 
selectivity properties of the DGAT isoforms involved may influence the 
fatty acyl composition of TAG [45].

Although LEAR is enriched in oleic acid, substantial levels of PUFAs 
are also present in the seed oil [7]. Production of the PUFA component of 
TAG involves a complex metabolic interplay between the Kennedy 
pathway and further membrane metabolism (Fig. 1). PA and DAG, 
produced in the Kennedy pathway, are involved in the formation of 
anionic and zwitterionic phospholipids, respectively [32,46]. The pro-
duction of PUFAs, which may eventually end up in TAG, are formed at 
the level of phosphatidylcholine (PC) via the catalytic actions of 
membrane-bound fatty acid desaturase (FAD) 2 and FAD3. These 
desaturases sequentially catalyse the production of PC enriched in 18:2 
and α-18:3. PC with 18:1 at the middle position typically serving as the 

substrate of FAD2.
DAG synthesized in the Kennedy pathway can be converted to PC by 

the catalytic action of CDP-:1, 2-diacyl-sn-glycerol cholinephospho-
transferase (CPT) [32]. Phosphatidylcholine:diacylglycerol chol-
inephosphotransferase (PDCT) can also utilise DAG produced in the 
Kennedy pathway by converting it to PC by catalytic transfer of a 
phosphocholine headgroup from PC enriched in PUFAs [47]. The 
resulting PUFA-enriched DAG can thus be used by the Kennedy pathway 
in the formation of PUFA-enriched TAG. Recently, PDCT isoforms in 
canola-type B. napus have been shown to be responsible for less than 20 
% of the PUFAs found in seed TAG, compared to 40 % in Arabidopsis 
[48]. Bai et al. [48] and Li et al. [49] have suggested that care must be 
taken in extrapolating results from the model plant Arabidopsis to the 
oilseed crop, B. napus.

In the forward reaction, lysophosphatidylcholine acyltransferase 
(LPCAT) catalyses the acyl-CoA-dependent acylation of lysophosphati-
dylcholine (LPC) to form PC [28]. In Arabidopsis, LPCAT1 and LPCAT2 
have been shown to be involved in the remodeling of phospholipids 
derived from the Kennedy pathway [50]. Based on studies with various 
oleaginous plants, the combined forward and reverse reactions of 
LPCAT, however, have been shown to release PUFAs from PC into the 
acyl-CoA pool thereby providing additional opportunities for the 
incorporation of PUFAs into PC [44,51–53]. A 10-kDa soluble acyl-CoA- 
binding protein, present in developing seeds of B. napus, has been shown 
to enhance acyl-exchange between acyl-CoA and PC [53].

Another enzyme, known as phospholipid:diacylglycerol acyl-
transferase (PDAT), catalyses the non-acyl-CoA-dependent acylation of 
DAG to also produce TAG [54,55]. In this case, nitrogenous phospho-
lipids (PC and phosphatidylethanolamine) serve as acyl donors instead 
of acyl-CoA. DGAT1 and PDAT have been shown to overlap in function 
during seed development in Arabidopsis [56]. Arabidopsis DGAT1, 
however, has been shown to be more important in seed oil accumulation 
[57]. Moreover, in vitro enzyme measurements implied that DGAT was 

Fig. 1. Generalized overview of the triacylglycerol (TAG) biosynthesis in developing seeds of oleaginous plants producing TAG containing polyunsaturated fatty 
acids (PUFAs). 
The Kennedy pathway [8,9] is shown in relation to some possible acyl-trafficking reactions along with phospholipid:diacylglycerol acyltransferase (PDAT) action. 
Possible specialized pools of 1, 2-diacyl-sn-glycerol (DAG), including DAG synthesized de novo in the Kennedy pathway and PC-modified DAG [286], are not 
specifically depicted. Phosphatidylethanolamine can also serve as an acyl donor for the PDAT-catalysed reaction. Other abbreviations: CPT, CDP-choline:1,2-diacyl- 
sn-glycerol cholinephosphotransferase; FA, fatty acid; FAD, fatty acid desaturase; GPAT, acyl-CoA:sn-glycerol-3-phosphate acyltransferase; G3P, sn-glycerol-3- 
phosphate; LACS, long-chain acyl-CoA synthetase; LPA, lysophosphatidic acid; LPAAT, acyl-CoA:lysophosphatidic acid acyltansferase; LPC, lysophosphatidylcho-
line; LPCAT, acyl-CoA:lysophosphatidylcholine acyltransferase; NE, non-esterified; PA, phosphatidic acid; PAP, phosphatidic acid phosphatase; PC, phosphatidyl-
choline; PDCT, phosphatidylcholine:diacylglycerol; cholinephosphotransferase; Pi, inorganic phosphate; PL, phospholipid; PLA2, phospholipase A2; SDP1, sucrose- 
dependent 1. This figure is a slightly modified version of Fig. 9 from [40] and is based on information from: [28–30,40,46,61–63,65,66].
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more important than PDAT in B. napus [58] which was confirmed by a 
detailed analysis of the molecular species of lipid classes during oil 
accumulation [45]. Recently, over-expression of PDAT in B. napus was 
shown to alter the cellular distribution of molecular species of PC and 
TAG along with decreasing the level of unsaturation of these lipid classes 
[59,60]. The increase in PDAT activity during seed development may 
have allowed reduced time for desaturation of PC catalysed by FAD2 and 
FAD3.

In addition to the substrate selectivities of the Kennedy pathway 
enzymes, combined with PDCT, LCAT and PDAT action, the acyl 
composition of seed TAG may be further influenced by other enzyme 
activities such as those of phospholipases and LACS [26,28,29]. In 
particular, the process of ‘acyl editing’ (or re-modeling) should be 
mentioned. The metabolism involved in plant acyl editing has been 
described well [26] and is particularly important for plants accumu-
lating polyunsaturated or modified (e.g. hydroxylated) fatty acids. 
Although oilseed rape accumulates an oil enriched in oleate, the related 
model plant Arabidopsis has been studied extensively with regard to 
acyl editing [26] and the process is discussed further in Section 5.

Recent evidence has been presented in support of the remodeling of 
TAG in developing seeds of Physaria fendleri [61,62]. Although there is 
no evidence for this type of remodeling in B. napus, the oilseed has been 
shown to lose some of its accumulated TAG due to sucrose-dependent 1 
(SDP1) TAG lipase action occurring during the desiccation phase of seed 
development [63,64]. Recently, hydrolases containing a distinct GDSL 
motif have also been shown to contribute to the reduction in SOC of 
B. napus observed at later stages of seed maturation [65,66]. Other 
catabolic processes may also contribute to the decrease in SOC at later 
stages of development [67].

During seed maturation in oleaginous plants, TAG accumulates in the 
form of cytoplasmic oil bodies (OBs) which are formed by pinching off 
from the ER where TAG biosynthesis occurs [68–70]. The OBs are 
encapsulated by a monolayer of phospholipid with proteins embedded 
in the surface, serving to stabilize the supramolecular structures in the 
mature seed. Oleosins are the most abundant of the OB proteins. Jolivet 
et al. [69] have analysed temporal changes in OB size, lipid composition 
changes and OB-associated proteins during seed development in 
B. napus L. cv Jet Neuf. Up to 50 days after pollination (DAP), OBs were 
> 4 μm in diameter but were smaller in mature seed (about 1.2 μm). OBs 
at earlier stages of seed development also had a different FA and oleosin 
composition compared to OBs appearing at later stages.

Omics-based investigations, involving analysis of the transcriptome, 
proteome and metabolome (and more specifically the lipidome) during 
seed development in B. napus have also contributed to our knowledge of 
enzymes and functional proteins involved in TAG accumulation in B. 
napus [45,71–78]. Some omics-based investigations have involved 
comparisons of global gene expression between B. napus and those of 
other oilseed crops revealing some commonalties in the expression 
patterns of certain genes [79–81]. Schwender et al. [76,82] have indi-
cated, however, that analysis of only transcript abundance is not reliable 
for inferring metabolic fluxes in developing embryos of B. napus. Inter-
estingly, Tan et al. [77] have reported that metabolite and gene 
expression profiles in developing seeds of B. napus are closely correlated, 
especially for metabolites and expressed genes associated with FA and 
TAG biosynthesis. Lu et al. [75] have conducted a spatial analysis of the 
lipidome and transcriptome in developing seeds of high- and low-oil 
B. napus which revealed a tissue-specific heterogeneity of lipid meta-
bolism. Later in this review, the role of comparative functional omics 
will be discussed in relation to identifying functional proteins influ-
encing TAG accumulation in B. napus.

Omics-based research has also shown the involvement of a complex 
interplay of transcription factors (TFs) affecting the expression of genes 
encoding lipid biosynthetic enzymes in in the seeds of developing 
oleaginous plants, including B. napus [25,40,83–87]. For example, 
Zhang et al. [88] recently demonstrated that the TF BnaZFP1 interacts 
with the promoter region of the gene encoding B. napus type-1 DGAT to 

positively control 18:1 levels. Isoforms of the DGAT1 and DGAT2 fam-
ilies involved in TAG biosynthesis in B. napus will be discussed later. 
Regulatory single nucleotide polymorphisms (SNPs) occurring between 
high- and low-oil content cultivars of B. napus have been shown to have 
the potential to alter phenotype by affecting the DNA-binding properties 
of TFs by altering the sequence of TF binding sites in promoter regions of 
target genes [74].

Non-coding RNAs are also known to be regulatory elements involved 
in plant growth and development. MicroRNAs are short non-coding 
RNAs which range in length between 20 and 24 nucleotides [89] 
whereas long non-coding RNAs are larger than 200 nucleotides [90]. 
Recent studies have suggested that both microRNAs and long non- 
coding RNAs participate in the regulatory network of lipid accumula-
tion during seed development in B. napus [91,92]. For example, 
microRNA-mediated regulation of TFs may be involved in transitioning 
developing seeds from embryogenesis to maturation [72]. In addition, Li 
et al. [93] recently identified two long non-coding RNAs, designated 
MSTRG.22563 and MSTRG.86004, which may affect SOC in B. napus. 
MSTRG.22563 might affect respiration and the TCA cycle, whereas 
MSTRG.86004 had a role in prolonging seed development.

Feeding studies with radiolabeled metabolite precursors have been 
used to probe storage lipid biosynthesis in developing seeds of B. napus 
(e.g. [43,94,95]). In addition, stable isotope experiments with 13C have 
been used to study metabolic fluxes in developing zygotic embryos of 
B. napus [96–98]. In developing seeds of B. napus, starch accumulation 
occurs early in zygotic embryo development and eventually gives way to 
increased TAG accumulation, essentially indicating a developmental 
dependent shift in carbon partitioning [99]. Using nine selected germ-
plasm accessions, Schwender et al. [76] have examined genotypic dif-
ferences in carbon partitioning in in vitro cultured developing embryos 
of B. napus. Biomass composition along with numerous fluxes, metab-
olites and enzyme activities were assessed. Enzyme activity/flux and 
metabolite/flux correlations suggested that plastidic pyruvate kinase 
exerts flux control and that the metabolic switch from starch to lipid 
accumulation observed during seed development probably involves 
allosteric feedback regulation of phosphofructokinase and ADP-glucose 
pyrophosphorylase. Additional implications of the study of Schwender 
et al. [76] are presented in Section 4. In bottom-up approaches involving 
the assessment of a plethora of individual biochemical reactions, 
computational methods have been used to integrate data from stable 
isotope experiments with omics data to generate biochemical networks 
for developing embryos of B. napus with assigned fluxes [100–106]. 
Under in vivo conditions, NMR-based analysis has shown that metabolic 
fluxes are locally regulated and linked to the architecture of the seed 
[107].

Metabolic control analysis (MCA), using a top-down approach to 
analyse metabolic control, has been particularly useful in the estimation 
of flux control coefficients for various steps leading to TAG in developing 
seeds of B. napus [43,58,108,109]. In top-down control analysis (TDCA), 
flux control coefficients are usually assigned to blocks of reactions rather 
than individual biochemical reactions (see Section 4).

Photosynthesis in developing leaves, siliques and seeds has been 
shown to provide precursors for FA biosynthesis and TAG accumulation 
in the zygotic embryos of maturing seeds of B. napus [110–114]. 
Although ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) 
has been shown to be active in fixing carbon dioxide by the usual 
carboxylation reaction in developing zygotic embryos of B. napus, the 
enzyme did not operate as part of the Calvin cycle, but instead was part 
of a previously undescribed metabolic route [115]. This newly identified 
metabolic process involving Rubisco action provides 20 % more acetyl- 
CoA for FA biosynthesis, with a 40 % reduction in the loss of carbon as 
carbon dioxide. Overall, this metabolic route occurring in the zygotic 
embryo resulted in enhanced efficiency of carbon use during TAG 
accumulation. In addition, increases in light intensity have been shown 
to result in increased growth, efficiency of carbon storage and TAG 
biosynthesis in developing B. napus embryos due to increased provision 
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of reductant and/or ATP [116]. The oxidative pentose phosphate 
pathway (OPPP) is one of the sources of reductant support for FA 
biosynthesis [117]. Within Section 7.2, a molecular genetic strategy for 
increasing SOC in Arabidopsis is discussed, which is based on increasing 
the production of NADPH. Furthermore, numerous studies have indi-
cated that silique wall photosynthesis provides for a substantial 
maternal effect on TAG accumulation in the zygotic embryo 
[111,118–123]. Liu et al. [120] have demonstrated that the developing 
silique wall, seed coat (ovule) and embryo all contribute positively to 
increased seed oil accumulation.

It is important to note that the liquid endosperm represents the main 
component of a maturing seed of B. napus seed at earlier stages of 
development and a substantial portion of carbon resources fueling 
zygotic embryo development arrive via the liquid endosperm [124,125]. 
The liquid endosperm is eventually utilised by the zygotic embryo, with 
the embryo taking over the space formerly occupied by the liquid 
endosperm [107,125]. In the Brassicaceae family, including B. napus, at 
maturation, the endosperm is reduced to a single layer of cells sur-
rounding the embryo which contains lipid enriched in ω7 FAs [10,126]. 
During seed development, the concentration of hexose sugars in the 
liquid endosperm has been shown to decrease while sucrose concen-
tration increases [124]. Both the endosperm transcriptome and prote-
ome have been examined in B. napus during seed development 
[125,127]. Increasing our knowledge of the biochemical interplay be-
tween the liquid endosperm and zygotic embryo could lead to innova-
tive strategies for enhancing embryo development and associated lipid 
accumulation [127]. Indeed, as indicated above, the liquid endosperm 
plays an important role in its biochemical interplay with the developing 
zygotic embryo. Thus, metabolic engineering interventions involving 

the liquid endosperm may affect SOC.

3. Genetic- and omics-based approaches for identifying 
functional proteins associated with increased seed oil content

3.1. Genetic-based approaches

Creating novel varieties with higher SOC using hybrid breeding ap-
proaches have achieved significant successes in the past few decades; 
however, this process takes a huge amount of labour and time. In 
addition, when selecting hybrid offspring with high SOC, the desired 
agronomic traits are often associated with negative traits leading to 
decreased agronomic performances [128,129], and are susceptible to 
environmental factors [130,131]. To prevent adverse effects, accelerate 
progress and gain in-depth knowledge of germplasm at genetic levels, it 
is critical to isolate individual quantitative trait loci (QTL) to dissect the 
mechanism behind the complex traits.

A QTL is a region of DNA located on a chromosome that contributes 
to quantitative traits [132]. In a natural population, differences in 
complex traits are usually controlled by multiple QTL. These QTL can be 
enriched in different kinds of metabolic pathways which are directly and 
indirectly associated with the specific trait. As a quantitative trait, SOC 
has been proven to negatively correlate with seed protein content 
[72,133,134] and seed coat content [135–137], which suggests that 
numerous enzymes and/or transcriptional factors regulate it. Therefore, 
it is essential to examine key QTL and explore the mechanisms that lead 
to SOC variation among populations in order to guide crop breeding.

With ever-advancing high-throughput sequencing and bioinformat-
ics, plenty of QTL affecting SOC in Brassica species have been identified 

Table 3 
Some representative QTL/QTGs associated with seed oil content (SOC) in Brassica oilseed species identified in mapping studies.

Species Method(s) Population Population 
size

Major QTL/QTGs Comment Ref

B. napus

Linkage mapping DH 151 qOC.A10

• A total of 30 QTL were identified
• Compared with low-SOC parent, a near-isogenic line 

targeting qOC.A10 increased in SOC by 1.3 %–6.9 % 
without adverse effects on other agronomic traits

[144]

B. napus

GWA mapping, 
metabolomics and 
transcriptomics

Natural 
population 388

BnA04.SHP1, BnaA05.CPC, 
BnaA03.TT4, BnaC02.TT4 and 
BnaAC05.UK

• 240 candidates were selected based on multi-omics 
data

• All these major QTGs are negatively correlated to SOC
• The SOC of the two BnaTT4 knockout lines increased 

by 4.8 % and 5.6 %, respectively, and showed a 
yellow-seeded phenotype

• The SOC of two BnaC05.UK knockout lines increased 
by 2.6 % and 3.1 %, respectively

[174]

B. napus GWA mapping, linkage 
mapping and 
transcriptomics

Natural 
population and 
RIL

158 and 204 BnaA07.STR18, BnA07. NRT1 
and BnaA07g12880D

• Nine QTL were identified
• The qA07.SOC was the major QTL related to SOC
• Three important QTGs were predicted within this 

interval

[214]

B. napus

GWA mapping and 
transcriptomics

Natural 
population 382

BnA09.TT8, BnaC09.TT8 and 
BnaC07.CCRL

• Three major QTL related to seed coat content were 
identified

• Disruption of BnaTT8s and BnaCCRLs resulting in 
increased in SOC by 4.9–6.0 % and 3.0–4.2 % with 
lower seed coat and lignin content

[137]

B. napus
Linkage mapping and 
transcriptomics RIL 186 N/A

• 26 QTL were identified in multi-environments, 
including 13 novel QTL

• 21 differentially expressed genes were recognized and 
11 were associated with high SOC

[397]

B. napus
Linkage mapping and 
BSA

DH 300 uqA9–12

• 77 unique QTL were identified by colocalisation of 
seed lignin, cellulose, hemicellulose and oil content

• Eight unique SOC-QTL were detected by BSA, seven of 
these QTL were also found in the linkage mapping

[156]

B. juncea

Linkage mapping DH 112 O-B3

• Six and five QTL were significant for SOC and seed 
protein content

• Three of them are tightly linked to each other
• The O–B3 were considered to unlink with other 

protein-related QTL

[133]

Abbreviations: BSA, bulk-segregant analysis; CCRL, cinnamoyl-CoA reductase-like; CPC, CAPRICE; DH, doubled haploid; GWS, genome-wide association; NRT1, ni-
trate transporters 1; QTGs, quantitative trait genes; QTL, quantitative trait locus; RIL, recombinant inbred line; SHP1, SHATTERPROOF 1; STR18, SULFUR-
TRANSFERASE 18; TT, transparenta testa.
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throughout the genome (Table 3). Various types of molecular markers 
were used for genetic mapping and combined with omics data to narrow 
down QTL to quantitative trait genes (QTGs) and/or quantitative trait 
variants (QTVs) [138]. However, due to the high diversity of plant ge-
nomes, loci with minor contributions to SOC are difficult to localise. 
Moreover, identified QTL are rarely validated using experimental ap-
proaches [139].

The analysis of QTL can be generally divided into three approaches: 
linkage mapping, association mapping and bulk-segregant analysis 
(BSA) [140]. They vary in terms of mapping populations, sample size, 
population structure and statistical models [141,142]. Although BSA is 
considered to reduce scale and expense, and is a powerful tool, linkage 
mapping is the most popular one for identifying QTL. This method in-
volves family-based analysis and can be used to confirm the linkage 
between particular traits and QTL. Through linkage mapping, the posi-
tion and effect of each QTL can be determined. In other words, when 
genetic markers are linked to specific traits, significant variations in 
phenotypes can be observed among individuals with different genotypes 
[143]. In linkage mapping, genetic populations are needed to collect 
data, which may come from biparental, three-way or even multi- 
parental cross and/or backcross. The commonly used sample pop-
ulations are F2, F2-derived F3 (F2:3; the population derived from self- 
crossing of the F2 individuals with the aim to retain the individual's 
genetic constitution), backcross (BC), recombinant inbred lines (RILs), 
near-isogenic lines (NILs) and doubled haploids (DHs); among them 
RILs, NILs and DHs are immortal mapping populations.

Based on previous studies, QTL identification using linkage mapping 
alone can select many candidate loci (Table 3). However, only a few 
researchers selected one or two major loci to verify their performance in 
plants. Zhang et al. [144] constructed a DH population based on two 
backbone parent cultivars B. napus ZY50 (with high-SOC) and B. napus 
19514 A (with low-SOC), and evaluated their SOC and other agronomic 
traits under eight environments. Of the 30 QTL identified in this study, 
qOC.A10 could be detected in six environments. To validate the effect of 
this locus on SOC in B. napus, a series of NILs were generated via 
backcross with B. napus 19514 A. The results based on the NIL pop-
ulations showed that qOC.A10 explained 22.8 % of the genotypic vari-
ations and could be used to increase the SOC in B. napus 19514 A 
without adverse effect on other agronomic traits. Because of the low cost 
of next-generation sequencing technology, it has become possible to 
establish commercial genotyping platforms for B. napus that can be used 
for linkage mapping and/or association mapping, such as high-density 
SNP Illumina Infinium arrays [145,146] and target capture sequencing 
SNP genotyping platform [147]. These platforms have been widely used 
to investigate complex quantitative traits in BOS including SOC 
[148–151]. In many linkage mapping studies, researchers frequently use 
SNP arrays to exploit novel QTL, because they are cost-effective, highly 
accurate, reproducible and convenient for data analysis [152,153]. A 
recent example of using SNP arrays to detect SOC-related QTL is based 
on DH population generated by crossing N53–2 (yellow-seeded with 
high oil content) and Ken-C8 (black-seeded with relatively low oil 
content). Through the multi-environment trials, a total of ten QTL were 
identified including one major QTL cqSC-A09. Combined with the 
bulked segregant RNA-Seq results, this QTL can explain over 41 % of the 
phenotypic variance. The candidate genes localised in the A09 interval 
can be enriched in lipid metabolism, flavonoid biosynthesis and phe-
nylpropanoid biosynthesis pathways [136]. The detailed characteristics 
of yellow-seeded versus black-seeded lines are discussed in Section 3.2.

Compared with conventional linkage mapping, which requires 
collection of data from all individuals of the segregated population, BSA 
is a powerful tool to screen for QTL of individuals with extreme oppo-
site/representative phenotypes (for a review, see [154]). This approach 
involves constructing two pools containing individuals with extreme 
phenotypes, and genotyping of the parents and the pools, through 
screening for molecular markers between parents and the pools to 
accomplish the QTL mapping for target traits (for a review, see [155]). 

In this way, it has effectively overcome the limitation that many crops do 
not have NILs or they are difficult to create. In B. napus, this method was 
usually used to confirm and narrow down the interval of SOC-QTL 
selected from linkage mapping based on the overlap of these two ap-
proaches. Chao et al. [134] found 67 QTL for SOC in N53–2×Ken-C8 
populations, and 38 associated genomic regions (AGRs) overlapped with 
or narrowed down the SOC-QTL identified in the linkage mapping based 
on BSA data. In another study that utilised the same population, BSA 
results confirmed that seven out of the eight novel QTL found regulated 
SOC [156].

Although the linkage mapping and BSA have provided a significant 
boost to QTL identification in BOS, the discovery of QTGs and/or QTVs 
in the last decade has owed greatly to the innovation and application of 
genome-wide association (GWA) mapping. This mapping strategy is 
based on linkage disequilibrium, usually using SNPs as molecular 
markers, and aims to analyse the entire target genome to identify 
causative loci/genes associated with the phenotypes [141]. Similar to 
linkage mapping, many bi-parental and multi-parental populations can 
be used for GWA mapping and they are considered to address some 
drawbacks of wild populations such as undesirable traits or genetic in-
compatibility. However, previous studies have relied mostly on natural 
populations because of the abundance of trait variation and genetic di-
versity (for a review, see [157]). In addition to the benefits mentioned 
above, the advantages of GWA mapping include: saving time and effort 
as there is no need to generate populations by crossing, a high-density 
map can be constructed, and allowing for validation by focusing only 
on marker positions (for a review, see [158]).

In BOS, GWA mapping helped the discovery of many QTGs which 
positively or negatively affect SOC [149,159,160]. In a study of dis-
secting seed-quality traits of B. napus, whole-genome resequencing data 
obtained from 238 cultivars and inbred lines under multiple environ-
ments were used for GWA mapping. A total of 17 loci were identified and 
37 genes involved in acyl lipid metabolism were annotated for SOC. 
Eight of these were identified in previous studies, encoding a dienoyl- 
CoA reductase, a Sac domain containing phosphoinositide phosphatase 
[161], CTP: phosphoethanolamine cytidylyltransferase, ketoacyl-CoA 
synthase [162], phosphatidate phosphatase [163], a MYB transcrip-
tion factor, glycerophosphoryl diester phosphodiesterase and the CER1 
aldehyde decarboxylase [149]. Moreover, four novel candidates, 
BnaA10g23290D (BnaA10.GDPD6, which encodes the glycer-
ophosphodiester phosphodiesterase), BnaCO4g45690D (BnaC4. GPAT), 
BnaCO4g45790D (BnaC4.LTP2) and BnaCO445800D (Bna.LTP1) were 
found to be highly correlated with variations in SOC [164]. For SOC- 
related QTGs identification in other BOS, such as B. rapa, GWA map-
ping is also a powerful tool. Kaur et al. [165] utilised diversity array 
technology for genotyping 195 inbred lines and their derivatives. 
Through association mapping five genes, GLYCO-
SYLPHOSPHATIDYLINOSITOL-ANCHORED LIPID TRANSFER PROTEIN 
5, GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED LIPID TRANSFER 
PROTEIN 33, FRUCTOKINASE 7, SHRUNKEN SEED 1, and LACS8, which 
directly or indirectly regulated SOC, were detected. Although genes 
within the interval of identified SOC-related QTL are attracting a great 
part of the interest, there are a number of SNPs localised in the non- 
coding region that are also associated with oil content. A GWA study 
on SOC collected data from 290 core germplasm and identified 
BnaC07g30920D, a PATATIN-LIKE LIPASE gene, and also found that any 
one of six SNPs upstream of this gene could cause a 4.7–6.2 % reduction 
in oil content. Through in silico analysis, it was determined that these 
SNPs were localised in the CAAT-box [166] within the promoter region 
and may, therefore, affect the expression of this gene. The CAAT-box is a 
common cis-element, usually localised 60-100 bp upstream of the 
transcription start site, which acts as a recognition site for various 
transcription factors, such as CBF (CAAT-binding factor) [167]. A mu-
tation within the CAAT-box can lead to significant changes in the 
strength of the promoter, which can affect the expression levels of the 
downstream gene. One representative example which may provide some 
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clues to explain the correlation between the CAAT-box and SOC is 
LEAFY COTYLEDON1 (LEC1). LEC1, a key regulator of embryonic 
development and FA biosynthesis [168], encodes a protein with a HAP3 
subunit of CBF which can interact with the CAAT motif to precisely 
regulate the gene expression involved in lipid metabolism [169,170].

In order to overcome the issues caused by using a single mapping 
approach, some studies have combined linkage mapping with GWA 
mapping to detect SOC-related QTL [171,172]. Sun et al. [171] con-
structed two F2 populations by using 6F313 and 61,616 (with high SOC) 
with 51,070 (with low SOC) for both linkage and GWA mapping. Based 
on the data from 227 accessions in multiple environments, 40 and 29 
QTL were identified by linkage and association mapping, respectively. 
Seven QTL were in common between the two methods, and they 
explained 10 to 25 % phenotypic variation of SOC.

Besides genomic information, other molecules such as transcripts 
and metabolites can also be used to link SOC to QTGs/QTVs in Brassica 
species. Traditional GWA studies involve analysis of common variants to 
identify phenotype-associated loci, but most of the identified loci are 
located in non-coding regions, and it is difficult to elucidate how they 
affect the phenotype. Therefore, more biological datasets from multi- 
omics studies are needed to understand complex quantitative traits 
[138]. There are a great number of studies combining transcriptomics 
and metabolomics with GWA mapping to uncover SOC-related QTGs 
(Table 3). One representative example for using GWA and 
transcriptome-wide association (TWA) on SOC is based on 505 B. napus 
inbred lines in eight environments. Overall, 692 genes and four gene 
modules that significantly associated with SOC were identified. These 
genes are mainly related to lipid metabolism, flavonoid biosynthesis, 
transcript factors and transporters. Among them, PUTATIVE METHYL-
TRANFERASE6, which has two homologs, has been verified via genetic 
manipulation. When knocked out by the CRISPR-Cas technique, SOC 
showed 1.1–1.2 % and 2.6–3.0 % absolute increase in the single and 
double knockout lines, respectively. Moreover, there are many genes 
down-regulated in BnaPMT6 over-expression lines that are positively 
correlated with SOC [173]. Li et al. [174] examined metabolites via 
GWA and TWA studies to study SOC in 388 B. napus accessions. They 
found 131 marker metabolites associated with SOC and constructed a 
triple relationship network to investigate the relationship between SOC 
and these compounds. Through this network analysis, 240 genes were 
selected and considered to be involved in regulation of SOC. Further-
more, three genes BnaA03.TT4, BnaC02.TT4, and BnaC05.UK (a 
PHENYLALANINE AMMONIA-LYASE-LIKE gene), were validated to 
negatively affect SOC by generating loss-of-function lines. Due to the 
complexity of the Brassicaceae species genomes and the challenges 
associated with constructing populations, utilising the established 
associative transcriptomics platform for SOC related traits study is 
regarded as a highly feasible approach as well [175].

3.2. Omics-based approaches

The analysis of global gene expression in B. napus lines differing in 
SOC has proven to be a useful approach for identifying functional pro-
teins which might be associated with seed oil biosynthesis. 
[75,176–179]. The general idea here is that transcripts and/or proteins 
exhibiting substantially altered levels in high SOC lines, when compared 
to low SOC lines, may represent potential gene targets for manipulation 
to enhance SOC in various cultivars of BOS. In an investigation involving 
two NILs of B. napus differing in SOC by 10 %, Li et al. [177] used 
subtractive suppression hybridization to identify 30 up-regulated genes 
in the high oil line. Among the highly expressed genes in the high SOC 
line were those related to chloroplast function, suggesting that photo-
synthesis was enhanced in this line. In addition, sucrose synthase pro-
duction was increased in the high SOC line: this enzyme plays a role in 
supplying carbon for TAG biosynthesis in developing seeds of B. napus 
[112]. The gene encoding plastidial pyruvate kinase also showed 
enhanced expression in the high SOC line [177]. Plastidial pyruvate 

kinase has a role in supporting FA biosynthesis in developing seeds 
[180]. This latter observation on enhanced expression was corroborated 
further via enzyme activity measurements on the high versus low oil 
lines [177]. The expression of the gene encoding 6-phosphogluconate 
dehydrogenase was also increased in the high SOC line. This enzyme 
operates within the OPPP which, as previously mentioned in Section 2, 
provides reductant to support FA biosynthesis [117]. In contrast, among 
the differentially expressed genes (DEGs) identified in [177], the gene 
encoding mitochondrial pyruvate dehydrogenase complex kinase 
(PDCK) showed decreased expression. PDCK catalyses the phosphory-
lation of the mitochondrial pyruvate dehydrogenase complex which 
controls entry of carbohydrates into the TCA cycle. Marillia et al. first 
demonstrated in Arabidopsis that both constitutive and seed-specific 
partial silencing led to increased SOC [181]. Several other genes iden-
tified in this study encode products related to lipid metabolism, 
including a lipid transfer protein, fatty acid elongase, oleosin, phos-
pholipase, acyl CoA oxidase, thioesterase and an ABC transporter [177].

In another study, differential gene expression analysis comparing 
two B. napus lines (zy036 and 51,070), differing in SOC, resulted in the 
identification of the B. napus GROWTH-REGULATING FACTOR 2-LIKE 
gene (BnaGRF2) in the high SOC line (zy036) [178]. BnaGRF2 encodes a 
protein that is thought to function as a TF, and the genes encoding this 
protein, BnaGRF2a and BnaGRF2b, were identified in the A and C ge-
nomes, respectively. Constitutive and seed-specific over-expression of 
cDNA encoding BnaGRF2a in Arabidopsis resulted in relative SOC in-
creases of >40 %, when compared to the wild type (WT), and was 
associated with upregulation of genes involved in cell proliferation, 
photosynthesis and oil synthesis, thus potentially influencing seed 
weight and overall oil content [178]. Furthermore, the genes, BnaGRF2a 
and BnaGRF2b were identified in the A and C genomes, respectively. 
Constitutive and seed-specific over-expression of cDNA encoding 
BnaGRF2a in Arabidopsis resulted in relative SOC increases of >40 %, 
when compared to the wild type (WT) and was associated with upre-
gulation of genes involved in cell proliferation, photosynthesis and oil 
production. Comparative gene expression analysis of the B. napus NILs, 
YC13–559 and YC3–554, representing high- and low-SOC lines respec-
tively, has revealed the up-regulation of several lipid biosynthesis- 
related genes encoding enzymes including ACCase, DGAT and LACS 
[179].

Comparative proteomics-based approaches have also been applied to 
high- versus low-SOC lines of B. napus [78,182]. Gan et al. [182] per-
formed ultrastructural analysis combined with proteomic and compar-
ative genomic analyses to investigate differences between a high- (55 % 
SOC) and low-SOC line (37 % SOC). OBs were much closer to each other 
in the high-SOC line. Proteins representing OB proteins, other oil 
formation-related proteins and proteins involved in dehydration were 
among 119 differentially accumulated proteins. Zhou et al. [202]. used a 
quantitative proteomic approach involving two B. napus lines differing 
in SOC which showed the differential accumulation of 342 proteins. Late 
embryogenesis abundant protein 57 (BnaLEA57) increased in abun-
dance in the high-SOC line when compared to the low-SOC line. Over- 
expression of BnaLEA57 in Arabidopsis resulted in increased SOC [78].

Breeding of rapeseed in China has resulted in the genetic conversion 
of HEAR cultivars with relatively low SOC to LEAR cultivars with high 
SOC over a period of about two decades [183]. In this regard, Hu et al. 
[183] have compared the transcriptomes of cultivar Zhongyou 821, with 
high erucic acid content and low SOC, to that of its low-erucic acid 
descendant Zhongshuang 9. Selective pressure for zero 22:1, low glu-
cosinolate content, high 18:1, high SOC and high yield resulted in 
increased expression of genes encoding FAD3, ACCase, fatty acid elon-
gation 1, caleosin, glyceraldehyde-3-phosphate dehydrogenase and 
phosphoenolpyruvate carboxylase.

Other comparative studies have focused on analysing the expression 
of specific gene families in high- versus low-SOC lines of B. napus 
[184,185]. Xiao et al. [185] used genome-wide identification coupled 
with comparative expression analysis to examine LACS genes in a high- 
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(P1-HO) versus a low-SOC (P2-LO) line. BnaLACS proteins were ar-
ranged into four groups based on phylogenetic analysis. Eighteen Bna-
LACS genes were highly expressed during seed maturation. Comparative 
analysis of gene expression between the two lines revealed that two of 
the BnaLACS genes, BnaLACS1–10 and BnaLACS4–1, may play a key role 
in lipid biosynthesis in B. napus. Recently, genome-wide identification of 
OB proteins has revealed up to 88 genes encoding OB proteins in 
B. napus [186]. Jia et al. [184] conducted a genome-wide analysis of 
B. napus to identify 53 OLEOSIN genes. Comparative expression analysis 
between two lines differing in SOC revealed that BnaOLEOSIN genes 
were directly linked to genes encoding lipid metabolic enzymes, TFs, 
lipid transport proteins and carbohydrate metabolic enzymes, all 
contributing to the molecular network underlying seed oil 
accumulation.

Yellow-seeded lines of B. napus have a thinner seed coat and lower 
husk content which is associated with increased SOC [187]. Yellow- 
seeded lines were briefly mentioned in the previous Section 3.1 in 
relation to genetic-based approaches for increasing SOC. When pro-
cessed, yellow-seeded lines result in nutritionally improved meal 
[187–189]. Yellow-seeded lines of B. napus appear yellow because of 
mutations in TRANSPARENT TESTA (TT) genes which lead to a trans-
parent seed coat (testa) revealing the yellow-colored zygotic embryo 
[190]. Yellow-seed lines have been associated with increased SOC and 
the processed seed results a nutritionally improved meal [188,189]. 
Several of the TT genes have been shown to be involved in the regulation 
of flavonoid biosynthesis leading to accumulation of proanthocyanidins 
(condensed tannins) in the seed coat thereby imparting a darker color to 
seeds of regular dark-seeded lines [190–193]. For example, BnaTT16 
isoforms have been shown to be involved with the transcriptional 
regulation of ANTHOCYANIDIN REDUCTASE and DIHYDROFLAVONOL 
REDUCTASE along with five other genes involved in proanthocyanidin 
synthesis [192]. In most cases, defects in seed coat pigments do not 
result in detrimental physiological effects [93,190]. RNA interference- 
mediated down-regulation of TT16 in canola-type B. napus, however, 
resulted in impaired embryo and seed development with alterations in 
the expression of genes related to lipid metabolism [194]. Hong et al. 
[195] have compared the transcriptomes between yellow- and brown- 
seeded NILs. In the yellow-seeded line, 3128 up-regulated and1,835 
down-regulated genes were identified during seed maturation. Genes 
involved in encoding proteins associated with phenylpropanoid and 
flavonoid biosynthetic pathways were identified among the down- 
regulated genes. In another comparative study, Jiang et al. [188] also 
identified an enrichment in DEGs encoding proteins related to flavonoid 
and lignin synthesis in a yellow-seeded line compared to a black-seeded 
line. In yet another study, gene expression analysis between a yellow- 
and black seeded lines revealed 23 co-expression modules involving 
differentially spliced genes, which included genes encoding proteins 
associated with flavonoid biosynthesis such as TT5, TT8 and TT12 [189]. 
Recently, gene editing via CRISPR/Cas 9 was used to introduce targeted 
mutations into various BnaTT gene forms [196,197]. Zhai et al. [197] 
introduced targeted mutations into BnaA09.TT8 and BnaC09.TT8b to 
produce the yellow-seeded phenotype. This phenotype could only be 
recovered when both gene forms were mutated indicating the redundant 
roles of the two gene forms. Interestingly, both SOC and protein content 
of edited seed were elevated. In another study, genome-wide association 
mapping of seed coat color in B. napus has shown that 22 single- 
nucleotide polymorphisms distributed on seven chromosomes are 
associated with seed color [198]. The underlying causes for enhanced 
SOC in yellow-seeded appears to be complicated [199]. Because of the 
reduced pigment accumulation in the seed coat of yellow-seeded lines, 
more carbon may be allocated to oil deposition in the zygotic embryo. 
Along with down-regulation of genes related to testa-based pigment 
accumulation in yellow-seeded lines, a large number of genes related to 
FA biosynthesis have been shown to be up-regulated: in addition, genes 
related to β-oxidation were down-regulated [199].

Given the maternal influence of the silique on SOC, comparative 

functional omics-based studies have also been conducted on the devel-
oping silique wall of high- versus low-SOC lines of B. napus 
[111,118,121]. Hua et al. [111] have performed comparative tran-
scriptomics of the developing silique walls of line zy036 (high SOC line) 
and 51,070 (low SOC line), which were mentioned earlier in this section 
of the review. The results implied that genes associated with photo-
synthesis were highly expressed in both total silique wall expressed 
genes and genes that were differentially expressed between the two 
genotypes. Flux control coefficients are given for these processes in 
Section 4. Two other studies, using high- and low-SOC lines, have also 
revealed the up-regulation of genes associated with photosynthesis in 
the developing silique wall [118,121]. Developing silique walls from the 
high-SOC line L192 also exhibited increased expression of genes 
encoding sugar transporters when compared with the low-SOC line 
A260 [118].

Rapeseed SOC is also known to be influenced by environmental 
factors [23,25,200]. The effect of temperature on seed oil accumulation 
in B. napus has been known for a long time [201]. Zhu et al. [202] 
developed two NILs of B. napus (NIL-9 and NIL-1) differing in SOC, with 
NIL-9 exhibiting higher SOC. The difference in SOC between the two 
lines was mainly associated with a QTL region on chromosome C2 when 
seeds were allowed to mature at high temperature. NIL-9 exhibited a 
higher SOC at all temperatures tested, especially higher temperatures. 
Increasing temperature resulted in a decrease in SOC that also involved 
the down-regulation of several genes including genes associated with 
photosynthesis and lipid metabolism. Zhou et al. [203] have explored 
the effect of high night temperature on FA content, FA composition and 
transcriptome of a low- (Jiuer-13) versus high- (Zheyou-50) SOC lines of 
B. napus. Increased night temperatures in both the low- and high-SOC 
lines resulted in decreased SOC, but high night temperatures caused 
less of a relative decrease in SOC than for the low-SOC line. In addition, 
in both lines, high night temperatures resulted in a decrease in the 
proportions of 18:0 and 18:1 and increase in 18:2 and α-18:3. Tran-
scriptomic analysis showed that genes encoding proteins involved in 
gibberellin signaling and FA catabolism were up-regulated at high night 
temperature. The results on the effects of high night temperature on FA 
composition observed by Zhou et al. [203] are in contrast to what was 
previously reported by Canvin [201] where increasing growth temper-
atures resulted in a decrease in PUFA content and an increase in 18:1 
content. SOC was also decreased with growth at higher temperatures. In 
addition, Vuorinen et al. [204] have shown that low temperature (15 ◦C) 
and short days (12h) increased the proportion of α-18:3 in the seed oil of 
B. rapa. The study of Zhou et al. [203], however, focused on changes in 
night temperature.

A high-SOC B. napus line known as H105 was known to exhibit a SOC 
of about 46 %, 54 % and 53 % when grown in Nanjing (altitude 8.9 m), 
Xining (altitude 2261 m) and Lhasa (altitude 3658 m), respectively 
[205]. Transcriptomic analysis of H105 grown at different altitudes 
revealed that 363 genes and 421 genes were changed by two-fold or 
more when H105 was grown in Xining and Lhasa, respectively, 
compared to growth in Nanjing, the lowest altitude. Some genes 
encoding functional proteins involved in sugar metabolism were up- 
regulated. The results suggested possible gene targets for manipulation 
to increase SOC at lower elevations.

Numerous recent studies have combined QTL analysis with other 
omics-based analyses [134,137,173,202,206–214]. In a very recent 
example, Zhang et al. [213] have used high-throughput chromatin 
conformation capture technology to examine the differential three- 
dimensional landscape of genome architecture between two B. napus 
lines differing in SOC (high SOC N53–2 and low SOC Ken–C8). Multi- 
omics analysis showed that SOC-associated genes were strongly corre-
lated with genome structural variations in the QTL/associated genomic 
region (AGR) which encodes the biotin carboxylase subunit of hetero-
meric acetyl-CoA carboxylase (ACCase). A candidate gene identified as 
Bna09g48250D, which encodes the biotin carboxylase subunit of het-
eromeric ACCase, exhibited structural variation in the QTL/AGR region 
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of chrA09. Heteromeric ACCase acts along with the FAS complex in the 
plastid to produce FAs de novo (see Section 2). Over-expression and 
knockout of this candidate gene resulted in significant increases and 
decreases in SOC, respectively, in transgenic lines. Taken together, 
comparative omics analysis of low and high SOC B. napus lines could 
reveal valuable information, but overexpression of the identified genes 
would not necessarily always lead to even higher SOC in the high SOC 
lines, given the constraints that will be presented in Section 4. In addi-
tion, the genes may be exploited for SOC improvement in other cultivars 
not displaying high expression levels of these genes or gene variants.

Omics-based approaches have identified a plethora of DEGs and gene 
products in high versus low oil lines of B. napus. In some cases, selected 
genes were further evaluated in metabolic engineering experiments to 
check if SOC could be increased in Arabidopsis and/or B. napus trans-
genic lines. The results of comparative omics, however, are based on a 
‘guilt-by-association’ approach. Thus, it is possible that many of the 
DEGs identified in the various studies may not result in increases in SOC 
when evaluated further for functionality in transgenic plant systems.

4. Metabolic control analysis of storage lipid biosynthesis

Having discussed genetic and omics approaches for identifying fac-
tors related to increased SOC in BOS, the review now moves onto MCA as 
a means of identifying points of control in biochemical pathways leading 
to seed TAG. A substantial component of this section, however, is 
devoted to explaining MCA theory.

Yield of a metabolic product, such as a seed component, in a plant is 
the integral of the rate (or flux) of the metabolic pathway over the period 
of biosynthesis into the site of deposition. Whereas the overall product 
yield from plants grown in field or greenhouse can be readily measured, 
it is less easy to determine the pathway flux and even more so to quantify 
the effects on it of specific modifications of the metabolic apparatus. 
This is further exacerbated where the product is a mixture of different 
but related compounds such as the TAGs of oilseeds.

As usual in agriculture, most of the past increases in the yield of seed 
oil and changes in composition have come from selective breeding, 
exploiting natural or induced genetic variation, but generally not tar-
geting specific components of metabolism. More recently it has been 
possible to use techniques of genetic manipulation to introduce targeted 
changes in the metabolic pathways from photosynthate to TAG in seed 
oil. That raises the question of which of the many steps of metabolism to 
target. Many decades ago, the conventional response would have been 
to choose the rate-limiting step (RLS) of the target pathway and activate 
or amplify it. This concept still lives on in spite of many contrary ex-
amples, such as the failure of over-expression of the gene encoding 
phosphofructokinase in yeast, the widely cited RLS of glycolysis, to have 
any effect on glycolytic flux [215]. There are, of course, two potential 
modes of failure of such attempts: choosing a step that is not a major 
limitation on the pathway flux, and not succeeding in sufficiently 
increasing the quantity of target enzyme and/or sufficiently activating 
the enzyme in the event that it has allosteric properties.

Deeper understanding of the limitations on a metabolic flux and the 
effects of changing the activity of a component enzyme has come from 
MCA, devised independently but contemporaneously by Kacser and 
Burns [216] and Heinrich and Rapoport [217–219] as a critique of the 
RLS concept and the criteria that were supposed to identify it. The 
starting point for MCA was that the relationship between the pathway 
flux at metabolic steady state and the activity of any one enzyme (at 
constant levels of the others), is typically concave (Fig. 2), even 
approximately rectangular hyperbolic like the Michaelis-Menten equa-
tion, based on evidence from experimental observation, computer 
simulation and mathematical analysis of the kinetics of multistep 
enzyme pathways. In other words, an enzyme's influence on metabolic 
flux is continuously variable and diminishes as the enzyme activity in-
creases. The original specific examples, and many subsequent ones, are 
reviewed in Fell [220]. (See Fig. 3.)

Fig. 2. The concave dependence of metabolic flux on the activity of one 
enzyme, ‘n’, at constant activities of the other enzymes of the pathway. 
Overlaid on the same flux-enzyme curve are the outcomes of hypothetical over- 
expression experiments starting from three different wild type (WT) activities, 
marked by squares, in increasing order 2a to 2c. In each panel, a series of steps 
are shown up to a two-fold amplification over the respective initial 
WT activities.
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The implications of this are illustrated in Fig. 2 for three hypothetical 
cases of experiments to modify the flux of a pathway by doubling the WT 
activity of a single enzyme in a sequence of steps at constant activities of 
the remainder of the enzymes. In each case, the flux correlates with the 
enzyme activity, but the outcomes are significantly different. In the 
example of Fig. 2a, the initial activity is relatively low, and the flux 
almost doubles, in direct proportion to the change in activity. Further-
more, the flux is still only about 30 % of the maximum obtainable so 
there is scope for further increase. In the case of Fig. 2b, flux is no longer 
directly proportional to the enzyme activity and its relative increase 
compared to WT is only about 30 %. In addition, the scope for a further 
increase is much reduced. Finally, as shown in Fig. 2c, doubling of 
enzyme activity changes the flux from about 75 % of maximum to 88 %, 
but it will now be difficult to achieve much further improvement. Hence 
it is apparent that qualitative statements about the limitation of the 
metabolic flux by Enzyme n, though not wrong, do not convey the in-
formation needed to discriminate between three such scenarios, nor to 
predict the response to increased production of enzyme.

To provide a measure that would allow characterisation of these 
different behaviours, both the Kacser and Heinrich groups turned to the 
concepts of sensitivity analysis to provide a numerical measure of the 
enzyme's influence at any point on the curve. This coefficient was later 
renamed as the flux control coefficient, and can be approximately 
regarded as the percentage change in metabolic flux that results from a 
1 % change in enzyme activity. (The technical definitions and earlier 
terminology are reviewed by Mazat [221] Its value at the WT levels 
shown in Fig. 2 are: in 1a, 0.83; in 1b, 0.50, and in 1c, 0.22. Although 
flux control coefficients can be measured experimentally by specific up- 
or down-modulation of an enzyme's activity, a 1 % modulation would 
not permit accurate evaluation, so larger modulations need to be used, 
and appropriate methods have to be used to compute the result to take 
into account that the flux control coefficient itself will change over the 
measurement interval [222,223].

Starting from their mathematical definition of the flux control co-
efficient, the originators of MCA were able to explore its properties in 
relationship to the kinetics and control of metabolic pathways. One 
significant property is that the sum of the flux control coefficients of all 
the steps from the input substrate of a linear pathway to the output 
product is exactly 1. In the case of the example of enzyme n in Fig. 2, this 
means that the sum of the flux control coefficients of the other pathway 

enzymes is 1–0.83 = 0.17 in Fig. 2a, 0.50 in 1b and 0.78 in 1c, even 
though these enzymes did not have their activities modulated. Hence the 
flux control coefficient is not an intrinsic property of the enzyme itself 
but is a context-dependent system property (i.e., dependent on the 
specific environment). Furthermore, as the total available control is 
potentially distributed over the pathway, the more steps there are in the 
pathway, the less likely it is that any one step will have a large flux 
control coefficient. Experimental measurements over the years since 
have verified that this is generally the case (reviewed in [220]).

Further analysis showed that mathematical expressions for the value 
of a flux control coefficient depended on the kinetic attributes of the 
enzyme and reaction, such as maximal velocity, Kms and degree of 
displacement of the reaction from equilibrium, but in combination with 
these same attributes for all the other steps [216,217]. As a result, no 
single measure or property could point to the most rate-limiting enzyme 
(i.e., the one with the largest flux control coefficient). A more recent 
analysis has shown that the degree of displacement of a reaction from 
equilibrium, in relation to the overall displacement of the pathway from 
equilibrium, sets a maximum attainable value for the flux control co-
efficient [224] but that this is not inevitably realised.

There are many ways to measure flux control coefficients. These have 
been reviewed by Fell [220,225] and they will not be detailed here. 
However, the underlying strategies can be divided into two broad areas. 
One, the bottom-up approach, corresponds to the description in Fig. 2., 
where the WT activity of an enzyme is selectively modulated up or 
down, or both, by techniques such as changing genetic expression or the 
action of a specific inhibitor. The change in pathway flux is measured 
when a new steady state is established, thus determining a segment of 
the flux-activity curve in the vicinity of the unperturbed state. Apart 
from the demands on selectivity and precision of measurement, this can 
be laborious for a long pathway.

The second approach is the top-down method [226,227]. Here, the 
pathway is divided into a small number of blocks (typically two or three) 
around a common metabolite whose concentration can be measured. 
The concept depends on the fact that the flux control coefficients of the 
enzymes within a block are additive so there will be an overall flux 
control coefficient for each block. If these are determined, this then gives 
a high-level view of the distribution of control. To determine the flux 
control coefficients of the blocks, the flux in one block is perturbed by 
some means that is selective to that block, such as an inhibitor or genetic 
modulation. Unlike in bottom-up analysis though, it is not necessary to 
know the magnitude of the perturbation. The system will come to a new 
steady state at a changed concentration of the common metabolite, and 
the fluxes through the other blocks are measured. This allows the kinetic 
response of these blocks to the change in concentration of the common 
metabolite to be determined in the form of a coefficient termed the 
elasticity, which like the flux control coefficients approximately repre-
sents the percentage change in the flux through the block for a 1 % 
change in the common metabolite. This is repeated with perturbations in 
the other blocks. Flux control coefficients and elasticities are linked via 
another theorem of MCA, the connectivity theorem, which, together with 
the flux summation theorem allows the flux control coefficients for the 
blocks to be calculated [228,229]. Choosing a different block structure 
with a different common metabolite can allow further dissection of how 
control is distributed. Top-down control analysis (TDCA) is not dissim-
ilar to assigning source and sink strength in plant physiology.

Both bottom-up and top-down approaches have been applied in the 
determination of the control of flux to TAG, as will be detailed later in 
this review. It is also possible to combine results on a given metabolic 
system from both methods to obtain an enhanced view of the distribu-
tion of control (e.g. [108]).

Flux control coefficients are defined for small changes in activity that 
would be of little interest for metabolic engineering purposes, but it can 
be seen from Fig. 2 that they do indicate the scope for obtaining a sig-
nificant increase of flux for a large change in an enzyme activity. The 
relationship between the fold-change in flux, f, obtained for an r-fold 

Fig. 3. Dependence of the response to enzyme over-expression on the enzyme's 
flux control coefficient. 
The three cases of Fig. 2a-c are shown, plus a fourth case for a flux control 
coefficient of 0.1, in the higher range of values measured to date for individual 
enzymes of triacylglycerol accumulation. In this figure, over-expression refers 
to an increase in enzyme abundance.
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change in an enzyme with a flux control coefficient, CJ
E is [222]: 

f =
1

1 − r− 1
r CJ

E
(1) 

Assuming a very large amplification of activity, where r − 1 ≈ r, the 
maximum attainable fold change in flux is f = 1

1− CJ
E
, which gives values of 

5.9, 2.0 and 1.3-fold for the three examples of Fig. 2. The substantial 
differences in the response to enzyme activity over-expression are 
illustrated in Fig. 2 for these three examples, plus a fourth case for a 
coefficient of 0.1, which is closer to the range for some of the measured 
coefficients in TAG accumulation (see later). This illustrates the 
importance of the flux control coefficient in choosing targets for meta-
bolic engineering.

These results may seem rather discouraging for the prospects of 
making substantial changes by metabolic engineering, but MCA theory 
does point to some potential improvements to the outcomes: 

1. The finite change analysis of Small & Kacser [222] shows that if, in a 
linear sequence (or block) of enzymes, each is increased in activity r- 
fold, the gain in flux is governed by the sum of their flux control 
coefficients in Eq. 1, giving synergy in the effects of multiple enzyme 
amplifications. ‘Gene-stacking’ (as it is termed in plant engineering, 
[230,231]) is required to do this, but it is not simple, especially as 
approximately equal increases in enzyme activity are needed to 
avoid undue perturbations of metabolite concentrations.

2. Examination of large metabolic flux changes in living systems in the 
light of the issues pointed to by MCA shows that evolution has 
already discovered solutions. The most obvious examples are the 
operons in bacterial metabolism, which coordinately express adja-
cent enzymes. In eukaryotic metabolism, the mechanisms are not so 
overt, but without the distorted viewpoint of the RLS, it can be seen 
that very large flux changes with smaller changes in metabolite 
concentrations are obtained by ‘multi-site modulation’ [220,232]. 
This enrols various mechanisms, including signaling metabolites that 
are effectors of multiple enzymes, covalent modification cascades, 
signal transduction mechanisms, and transcription factors with 
multiple targets in a metabolic network. In the context of modifying 
TAG metabolism, examples of exploitation include the expression of 
the TF, WRINKLED1 (WRI1), which has extensive effects on central 
metabolism [233], and the antisense-based deactivation of mito-
chondrial pyruvate dehydrogenase complex kinase (PDCK) [231] to 
potentiate amplification of DGAT1.

3. In the specific context of TAG accumulation in B. napus, the growth of 
the zygotic embryo [234] compounds any stimulation of TAG syn-
thesis so that typically the fractional increase in yield by the end of 
seed filling is about 3.5 times the fractional change in flux caused by 
an enzyme activation [234,235].

In addition to its explanatory power in metabolic engineering, MCA 
also has relevance to improvement of metabolic traits by artificial se-
lection. The concave relationship between enzyme activities and meta-
bolic flux underlies and can explain some examples of genetic 
phenomena such as dominance [236], heterosis and epistasis, as 
reviewed by de Vienne et al. [237]. It was also realised early in the 
development of MCA that, given a constraint on the total amount of 
enzyme protein available for a metabolic pathway, there would be an 
optimum distribution of that protein that would give the maximum flux. 
Although the flux control coefficients would not equalise, the variance 
of the flux control coefficients would be at a minimum, thus mitigating 
against a dominant control coefficient [238,239]. Correspondingly, if a 
pathway was not in the optimal state, but was then subject to natural or 
artificial selection, the largest increase in flux would be obtained by 
reassigning protein from enzymes with low flux control coefficients to 
the one with the highest, which is, therefore, under the greatest selection 
pressure. Continued selection will drive towards selective neutrality, 

and the maximum flux state with flux control distributed over the 
pathway [237,240]. Since the wild progenitors of an oilseed crop would 
have undergone selection for a range of attributes ensuring survival, it 
cannot be assumed that their pathway flux to TAG has been optimised. 
Once selection is instituted for SOC, the reassignment of enzyme protein 
will occur, along with reduction in the larger control coefficients so that 
the wild relatives (especially Arabidopsis!) will not be a guide to the 
distribution of control in the crop plant. A different distribution of 
enzyme activities between high- and low-yielding cultivars of B. napus 
has been observed in multi-omics studies previously mentioned in Sec-
tion 3.2 [76,177] The enzymes with higher activities or abundances in 
the high SOC lines are likely to be among those with the higher flux 
control coefficients for TAG synthesis in the low-SOC lines. However, as 
shown in the previous paragraphs, their flux control coefficients are 
likely to be lower in the high-SOC lines, so it cannot be concluded from 
the data that they would be the best targets for achieving further im-
provements in SOC in these plants given that their reduced control 
would have led to increases in control by other enzymes.

5. Selected enzymes and functional proteins as targets for 
increasing seed oil content

The major strategies of engineering oil accumulation in BOS have 
focused on enzymes involved in lipid metabolic pathways. Many re-
searchers have reviewed the genetic factors affecting oil content in 
different kinds of plant tissues which can be briefly divided into three 
categories: (1) increasing fatty acid supply, (2) enhancing the TAG as-
sembly efficiency and (3) reducing TAG degradation (for reviews, 
[24,241–245]). However, regulating a single enzyme in lipid meta-
bolism sometimes does not achieve expected results because its contri-
bution to oil yield is relatively minor, as detailed in Section 4. It is worth 
noting that a multiple gene strategy is usually considered as a sustain-
able and stable way to promote oil accumulation (see Section 4 for de-
tails). With this approach, enzymes, transporters and TFs targeting 
different aspects of lipid metabolism can be manipulated simultaneously 
to enable oil accumulation [246–248]. Some representative studies are 
summarized in Table 4. Although it would have been valuable to 
calculate the flux control coefficients of each of the specific enzymes 
manipulated in order to rank their potential efficacy for increasing SOC, 
these could only be determined from the data provided in a few of these 
studies (Table 4). Nevertheless, the two enzymes with the biggest con-
trol coefficients (G3PDH and LPAAT) are linked with the largest changes 
in SOC. Other areas of metabolism that might accommodate enzymes 
with comparable control are indicated in Fig. 4.

Generally, oil biosynthesis in plants can be divided into three stages 
(see Section 2): the de novo synthesis of FAs, TAG assembly, and OB 
formation [40]. In oilseed crops, FAs are synthesized in the plastids with 
malonyl-ACP as the substrate and non-esterified (free) FAs as products. 
In this pathway, several enzymes and complexes are involved, which has 
attracted the interest of researchers to engineer seed oil accumulation in 
BOS by using them. Many attempts in increase SOC focused on the 
ACCase which is the initiating and a critical enzyme in FA synthesis. In 
plants, there are two forms of ACCase, one is plastidial form which is a 
multi-enzyme complex comprising several subunits, and the other one is 
cytosolic ACCase, a single multifunctional protein [28]. It has been 
widely reported that four subunits of heteromeric ACCase have a posi-
tive correlation with SOC [249–252]. Moreover, seed-specific overex-
pressed homomeric ACCase in B. napus could result in a 5 % increase in 
SOC [253],though the data presented resulted in a computed flux con-
trol coefficient of the order of 0.03 according to Fell et al. [108] (Fig. 4). 
The enzyme has also been used to improve oil accumulation in vegeta-
tive tissues such as potato tubers [254]. In fact, in leaf tissue ACCase has 
been shown to be very important [255]. The lengthening of the acyl 
chain catalysed by the FAS complex is due to several different 
condensing enzymes. Among them, KAS III (sometimes called the short- 
chain condensing enzyme) is the initial one and converts acetyl-CoA to 
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mainly a 4‑carbon product [256]. However, over-expression of KAS III 
led to a decreased rate of FA synthesis which caused lower level SOC in 
B. napus [257,258]. KASI carries out the bulk of the condensation re-
actions, with palmitoyl-ACP as its final product. KASII is used for the 
final condensation [31]. After generation of 16 or 18C acyl-ACP, the last 
step is the fatty-acyl acyl carrier protein thioesterase (FAT) which ca-
talyses acyl-ACP hydrolysis to release a non-esterified fatty acid and 

ACP. Although most studies of FATs focused on the alteration of FA 
composition [259,260], a few results showed that heterologous over- 
expression of fat can increase the FA content in the seeds or leaves 
[261–263] and a fat double-mutant had reduced TAG content without 
affecting other non-polar lipids [264]. Besides, 16C- or 18C-FA, long- 
chain FAs also exist in plants. Elongases, such as long chain acyl-CoA 
synthases (LACSs), extend acyl chains of 12–18 carbon into longer 

Table 4 
Improving seed oil content (SOC) by regulating important enzymes in Brassica oilseed species.

Target gene(s) Source species Target 
species

Increased 
SOC

FCC Comment Ref

BnACC1 B. napus B. napus 5 % »0.03 • Seed-specific over-expression of Homomeric ACCase [253]
SsG3PDH

S.cerevisiae B. napus up to 40 % 0.16–0.27
• Seed-specific over-expression of cytosolic G3P 

DEHYDROGENASE
• No effect seed protein content

[398]

BnLACS2
B. napus B. napus 6 % to 8 %

• Constitutive over-expression of LACS2
• SOC decreased by 3 % to 6 % in BnaLACS2-RNAi lines

[36]

BnLACS9
B. napus B. napus up to 15 %

• Constitutive over-expression of LASC9
• Increased in chlorophyll content, the number of chloroplast 

grana lamellae and galactolipids content
[265]

TmLPAAT2 T. majus B. napus 25 % to 29 % 0.14–0.17 • Constitutive over-expression of LPAAT2 [234]
BnaLPAAT2 and BnaLPAAT5

B. napus B. napus
38.9 % to 
49.4 %

• Constitutive over-expression of LPAAT2 and LPAAT5
• Increased accumulation of oil bodies in the seeds
• Increased content of sugar and protein in lpaat2 and lpaat5 

mutant seeds

[277]

BnaDGAT1 B. napus B. napus up to 14 % 0.076 • Seed-species over-expression of DGAT1 [43]
BnaDGAT1 B. napus B. napus 2.5 % to 7 % 0.036 • Seed-species over-expression of DGAT1 in both greenhouse and 

field conditions
[271]

SsDGAT1
S. sebiferum B. napus

12.3 % to 
14.7 %

• Constitutive over-expression of DGAT1
• Decreased in oleic acid levels and increased in α-18:3 levels. [322]

TmDGAT1 T. majus B. napus 3.5 % to 8.0 % • Seed-specific over-expression of DGAT1 in HEAR canola cultivar [319]
AtDGAT1

A. thaliana B. juncea 4 % to 14 %
• Seed-specific over-expression of DGAT1
• Decreased in oleic and linoleic acid content

[324]

BnaSDP1-KD N/A B. napus up to 8 % • Seed-specific down-regulation of SDP1 by RNAi [64]
AtWRI1 and BjAGPase-KD

A. thaliana B. juncea
7.5 % to 16.9 
%

• Constitutive down-regulation of BjAGPase and the seed-specific 
expression of WRI1

• The starch content exhibited a reduction by about 45 % to 53 %
[399]

BnaGPDH, BnaDGAT, 
BnaGPAT and ScLPAAT

B. napus and S. 
cerevisiae B. napus

13.6 % to 
15.3 % • Seed-specific over-expression of multiple genes

• No effect normal plant growth [325]ScGPDH, BnaDGAT, BnaGPAT 
and ScLPAAT

B. napus and S. 
cerevisiae

B. napus
11.3 % to 
13.8 %

Abbreviations: ACC1, acetyl-CoA carboxylase (ACCase); BjAGPase, endogenous ADP-glucose pyrophosphorylase; DGAT1, diacylglycerol acyltransferase 1; GPAT, sn- 
glycerol-3-phosphate acyltransferase; GPDH, glycerol-3 phosphate dehydrogenases; G3PDH, sn-3 glycerol-3-phosphate dehydrogenase; HEAR, high erucic acid 
rapeseed; LACS, long chain acyl-CoA synthetase; LPAAT, lysophosphatidic acid acyltransferase; SDP1, sugar-dependent 1 lipase; WRI1, wrinkled 1. Flux control 
coefficients are given for those papers that provided the necessary data in [108].

Fig. 4. Indicative distribution of in planta flux control coefficients in silique and embryo metabolism from CO2 to seed triacylglycerol (TAG). 
The figure is based on Fig. 5 of [108] where the data sources and methods of derivation are given. Colored asterisks indicate the methodologies behind the estimates: 
blue, experimental bottom-up Metabolic Control Analysis (MCA) in planta; purple, experimental top-down MCA on Blocks A and B of TAG synthesis in isolated 
embryos; lilac, retrospective MCA calculations on published data; lime green, inferred values to ensure consistency of measurements and MCA principles. Control 
coefficients assigned to specific enzyme activities are subsumed in the overall values for their containing blocks. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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products. There are nine LACSs in plants which showed overlapping 
functions for FA synthesis. Some of these LACSs have been shown to 
increase SOC in over-expression transgenic lines [36,265]. In addition, 
other enzymes in fatty acid modification and transportation, such as 
fatty acid desaturases, can also contribute to SOC (see Section 2 and 
Fig. 1).

In addition to the main pathway of FA synthesis and editing, enzymes 
involved in other pathways (such as starch synthesis) have also been 
recognized as good candidates for increasing FA content [108]. These 
two pathways share common carbon backbones generated via photo-
synthesis. Blocking starch synthesis means enhanced carbon flux into 
FA, which will increase the lipid content [266]. ADP-glucose pyro-
phosphorylase (AGPase) catalyses an important step in starch biosyn-
thesis [267]. In plants, down-regulation of ADP-glucose 
pyrophosphorylase has been shown to result in a significant decrease in 
starch content and increase in SOC [268].

Although FAs are the main precursors for TAG biosynthesis, they are 
also important for the formation of membrane lipids. Therefore, sup-
pressing this competing pathway for TAG assembly could be a promising 
approach to partitioning FAs into TAG synthesis. One noticeable target 
enzyme is monogalactosyldiacylglycerol synthase 1 (MGD1), which 
transfers a galactosyl residue from UDP-galactose to DAG yielding 
monogalactosyl diacylglycerol (MGDG), which is the major component 
of chloroplast thylakoids [269]. Knockdown of MGD1 in tobacco 
significantly reduced the MGDG content and increased oil content in the 
leaves [270]. However, regulation of MGDG content mainly focused on 
vegetative tissues which do not usually contain much oil.

Compared to FA biosynthesis, TAG assembly has a substantial con-
trol over SOC in B. napus [58]. DGAT catalyses the acyl-CoA-dependent 
acylation of DAG to produce TAG and represents an important step in 
the Kennedy pathway. Therefore, manipulating DGAT has been used as a 
common method to increase the flow of acyl chains into TAG biosyn-
thesis. Many groups have demonstrated that over-expression of DGAT in 
oleaginous crops can stimulate oil accumulation in seeds and leaves 
[271–273]; this aspect is extensively reviewed in the next section. In 
addition to DGAT, other acyltransferases, like GPAT [39,274,275,278] 
and LPAAT [234,276,277,282] have also been manipulated to enhance 
SOC. There are ten GPATs in plants, of which one is a soluble GPAT 
localised in the plastid, whereas the others are membrane-bound en-
zymes detected in the ER or mitochondria (for a review, see [263]). 
GPAT9 is considered to be important for TAG biosynthesis [38,39]. Jain 
et al. [274] expressed cDNAs encoding Escherichia coli or safflower 
GPATs in Arabidopsis. They removed the plastidial targeting sequence 
of the safflower GPAT to allow cytosolic production in Arabidopsis and 
reported increases in oil production with either cDNA. On the other 
hand, when Liao et al. [60] studied over-expression of GPAT9 in B. napus 
they found that overexpressing lines had similar lipid biosynthesis rates 
and MALDI-MS distribution characteristics to WT plants. They 
concluded that GPAT does not seem to have a major role in regulating 
SOC in canola varieties of B. napus (see [108]). Recently, Liu et al. [279] 
have reported characteristics of four homologous genes of GPAT9 in 
B. napus seeds. In erucate-containing cultivars, functional divergence of 
the four genes contributes to the erucic acid content.

Compared with GPAT and DGAT, LPAAT has the highest activity in 
developing seeds of B. napus [280]. Over-expression of LPAAT2 and 
LPAAT5 in B. napus increased the SOC of transgenic seeds by 39 % to 49 
% [277]. Interestingly, the results indicated that BnaLPAAT2 and 
BnaLPAAT5 promote SOC accumulation by different mechanisms. 
BnaLPAAT2 increased DAG synthesis to increase total lipid content, 
whereas BnaLPAAT5 promoted PA synthesis more to generate mem-
brane lipids. Previously, Zou et al. [281] reported an increase in the SOC 
of a high-erucate B. napus (cv. Hero) when they expressed a mutated 
gene encoding a yeast LPAAT (sphingolipid compensation mutant; 
SLC1–1). When T4 or T5 generations of cv. Hero were grown in field 
studies, relative increases in SOC of up to 14 % were found [267].

When a cDNA encoding Tropaeolum majus LPAAT was over- 

expressed in B. napus it resulted in a 25–29 % relative increase in TAG 
accumulation, despite its low flux control coefficient. This was explained 
by the exponential nature of lipid accumulation which increased the 
effect of a small flux control coefficient [234]. It is also important to note 
that increased levels of PA may have led to stimulation of DGAT1 [40]. 
Further coverage of this aspect is presented in Section 6. There were also 
changes in the distribution of FAs within lipid classes as revealed by 
MALDI-MS and the authors also reported a new, novel application of flux 
control analysis.

In addition to the enzymes in the Kennedy pathway, other acyl-
transferases have been used to increase SOC. Monoacylglycerol acyl-
transferases (MGATs) catalyse the conversion of monoacylglycerol 
(MAG) to DAG in the animal intestine, but this path does not exist in 
higher plants [283]. The first reported study of using MAG to generate 
DAG in plants is over-expression of mammalian MGAT1 and MGAT2 in 
tobacco. The over-expression lines resulted in an higher leaf TAG con-
tent compared to expressing AtDGAT1 in the same system [284].

Although DGATs are the major contributors for TAG assembly in 
oilseeds, the flux through PC also contributes to oil accumulation. In the 
acyl-CoA-independent reaction of TAG biosynthesis, the acyl chain used 
in the conversion of DAG to TAG, via the catalytic action of PDAT, is 
derived from PC. Because of the difference in substrates between DGAT 
and PDAT, over-expression of these two enzymes leads to a differential 
FA composition in the oil [285]. In addition to this, DGAT1 and PDAT 
seem to have different efficiencies in utilising PC-derived DAG pools 
[286]. Although PDAT has been demonstrated to have a complementary 
function to DGAT in Arabidopsis [56], simple over-expression of PDAT 
did not result in an increase in SOC and may even have caused a slight, 
but not significant, lower oil level [55,59]. Nevertheless, PDAT is still a 
target enzyme to increase SOC in a multiple gene strategy. Introducing 
PDAT1 into a mutant of ADP-glucose pyrophosphorylase has been shown 
to enhance TAG biosynthesis by consuming sugars [287]. As mentioned 
above, PCs can also act as acyl donors, so PC turnover is important for 
TAG synthesis as well. In plants, a mechanism named acyl-editing refers 
to de-acylation and re-acylation of PC. In this cycle, acyl chains in the 
acyl-CoA pool are exchanged with those on PCs, and can contribute to 
the routing of PUFA into TAG [288]. The two major enzymes responsible 
for the hydrolysis and regeneration of PC are phospholipase A (PLA) and 
LPCAT, respectively [28]. Knockout of LPCAT and PLA has been shown 
to decrease TAG content, while over-expression promoted lipid accu-
mulation [289–291].

TAG hydrolysis has been shown to cause a decrease in SOC (see 
Section 2). Protecting TAG by disrupting TAG lipases involved in TAG 
breakdown, such as SDP1, is another approach to increasing SOC 
accumulation. SDP1 can directly catalyse the release of FAs from TAG; 
silencing the gene encoding this enzyme has been shown to significantly 
increase SOC in oilseed crops [64,292,293]. Nevertheless, a recent study 
revealed that rapeseed sdp1 lines had a 2.2–2.4 % absolute increase of 
SOC in field trials, but this slight oil increase was accompanied with 
negative agronomic traits such as reduction in seedling emergence 
[294], indicating that further studies are required for using this gene in 
BOS breeding.

6. Diacylglycerol acyltransferase as a target for increasing seed 
oil content

Numerous metabolic engineering interventions to boost SOC in 
developing seeds of oleaginous plants have focused on the over- 
expression of various DGAT genes [25,40]. Therefore, it seems appro-
priate to devote a major section of this review to this enzyme category. 
Thus, this section deals with the detailed properties of DGATs from BOS, 
examples of DGAT over-expression in B. napus and the use of directed 
evolution to produce high performance variants of B. napus DGAT1. 
Both the knowledge of the detailed properties of DGAT1 and DGAT1 
variants showing increased performance could lead to new strategies for 
increasing SOC in BOS.
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As discussed earlier in this review, MCA analysis of storage lipid 
biosynthesis in rapeseed has validated DGAT as a useful target for 
manipulation of SOC. Even before MCA was used in probing lipid 
biosynthesis, there were already hints in the literature that DGAT may 
be a suitable target. Indeed, in the 1990s, research demonstrated that 
the DGAT-catalysed reaction exhibited a substantial effect on flow of 
carbon into TAG [94,95,280]. Next to TAG, DAG was shown to be the 
next prevalent metabolite in the Kennedy pathway. In addition, DGAT 
activity was the lowest of the four enzymes of the Kennedy pathway; 
these observations implied that an increase in DGAT activity could 
potentially lead to increased SOC. Also in the 1990s, it was demon-
strated that DGAT activity reached a maximum in developing seeds of 
B. napus during the active phase of oil formation implying the important 
contribution of this enzyme activity in the oil formation process 
[70,295]. Moreover, over-expression of DGAT1 in B. napus increased oil 
accumulation [43,271]. More recently, Chen et al. [296] have reported 
that among six lines of canola-type B. napus, middle to high SOC lines 
exhibited increased PAP and DGAT activities. Thus, there was a positive 
association between increased SOC and DGAT activity. In addition, in a 
study involving 34 B. napus inbred lines, a higher expression of 
BnaDGAT1 genes was associated with higher SOC [297].

In plants, various gene families encoding proteins with DGAT ac-
tivity have been identified [40]. DGAT1 and DGAT2, which share no 
homology and are ER-bound enzymes, have been the most extensively 
studied. B. napus has been shown to have four highly homologous gene 
forms (homeologous genes) of DGAT1 and DGAT2 [297–302]. Partial 
length and full-length cDNAs encoding one of the DGAT1 gene forms 
were first cloned from microspore-derived cell suspension cultures of 
B. napus L. cv Jet Neuf [303–305]. This gene form was later categorized 
as BnaA.DGAT1.b [301]. The truncated version of BnaA.DGAT1.b orig-
inally reported by [304] may represent a mutation generated via a 
duplication event which occurred over numerous years of sub-culturing 
[303]. Transcriptome analysis during seed development in B. napus has 
shown that expressed sequence tags representing DGAT1 are more 
abundant than those corresponding to DGAT2 [80].

An intricate network of TFs is operative during seed development in 
oleaginous plants [86]. In a comparative study of gene expression in two 
NILs of B. napus differing in SOC, a number of TF-genes were up- 
regulated in the high SOC line, including ABSCISIC ACID INSENSITIVE 
(ABI) 4, ABI5 and FUSCA3 [179]. FUSCA3 is a master regulator of seed 
development [306]. DGAT1 and DGAT2 were also up-regulated. As 
mentioned previously, a TF (BnaZFP1) has been shown to interact with 
the promoter region of BnaDGAT1 [88]. In addition, the TF WAX 
INDUCER1/SHINE1 has been shown to interact with the promoter re-
gion of a BnaDGAT2 [307]. Modulating TF action may represent a way 
of increasing DGAT expression thus providing another avenue to in-
crease SOC.

Unlike DGAT1 and DGAT2, DGAT3 is a soluble enzyme 
[40,308–310]. During Arabidopsis seed development, DGAT3 has been 
shown to exhibit a similar expression pattern to DGAT1 but with higher 
expression at later stages of seed maturation [84]. Recently, two DGAT3 
genes were identified and cloned from B. napus ZS11 [302]. Rani et al. 
[311] have also reported on another soluble protein with DGAT activity 
in Arabidopsis encoded by the gene known as DEFECTIVE CUTICULAR 
RIDGES (DCR). The investigators hypothesized that DCR was involved in 
the transient formation of a hydroxy-TAG precursor in support of cutin 
biosynthesis.

The bifunctional wax synthase-diacylglycerol acyltransferase (WSD) 
is yet another protein category exhibiting DGAT activity. WSD-related 
proteins were first identified in bacteria and Arabidopsis [312,313] 
with further identification in numerous other plant species [310,314]. 
Recombinant Arabidopsis WSD1 was shown to exhibit a 10-fold lower 
level of DGAT activity than wax synthase activity [313]. In the same 
study, sub-cellular localisation experiments indicated that WSD1 was 
associated with the ER in leaf epidermal cells. Despite having some 
DGAT activity, the physiological role of WSD1 appears to be in 

catalysing wax ester synthesis. Recently, Yang et al. [315] identified two 
splice variants of WSD1 from turnip (B. rapa L. var. rapa). The 
recombinantly-produced variant WSD1-X2 was more effective in syn-
thesising wax esters than WSD-X1 and may be important in stem wax 
synthesis during drought stress.

Over-expression of selected DGAT genes has been shown to increase 
SOC in numerous oil-producing crops [40]. As discussed earlier, seed- 
specific over-expression of DGAT1 during seed development in 
B. napus was shown to reduce the control exerted by the TAG assembly 
block of storage lipid biosynthesis. Seed-specific over-expression of 
BnaA.DGAT1.b in B. napus L. cv Westar resulted in a relative increase in 
SOC of about 12 % when plants were grown under greenhouse condi-
tions [43,316]. Analysis of developing seeds obtained four weeks after 
flowering revealed a four-fold increase in DGAT specific activity and a 
substantial decrease in the DAG:TAG ratio when seed from the trans-
genic line was compared to the WT. In a field study, seed-specific over- 
expression of Arabidopsis DGAT1 in B. napus L. cv Quantum was also 
shown to reduce the penalty on SOC caused by drought [43]. Further 
investigations with over-expression of Arabidopsis DGAT1 in cv Quan-
tum and BnaA.DGAT1.b in B. napus double haploid line DH12075, under 
both greenhouse and field conditions, resulted in SOC increases ranging 
from 2.5 % to 7 % on an absolute basis [271]. Analysis of the tran-
scriptome of developing seeds of transgenic Quantum over-expressing 
Arabidopsis DGAT1 revealed transcriptional changes that were not 
limited to storage lipid biosynthesis, thus indicating unintended side 
effects [317]. In addition, antisense suppression of DGAT1 in line 
DH12075 resulted in a decrease in SOC along with severe development 
abnormalities and reduced seed yield [318]. Therefore, DGAT1 also 
appears to be important in normal seed development in B. napus. The 
seed oil from the antisense line also exhibited a significant decrease in 
α-18:3 content and significant increase in 16:0 content. An increase in 
18:1 content and decrease in 18:2 content was also observed in the 
antisense line, but the changes were not significant.

Seed-specific over-expression of DGAT1 from garden nasturtium 
(Tropaeolum majus) in a HEAR line has also been shown to increase SOC 
[319]. In the same study, the performance of TmDGAT1 was enhanced 
through site-directed mutagenesis to convert serine-197 to an alanine 
residue. Serine-197 represented a putative phosphorylation target of 
sucrose non-fermenting-1-related kinase (SnRK1). It was hypothesized 
that phosphorylation of serine-197 kept the enzyme in a down-regulated 
state. SnRK1 kinases are thought to play a role in the global regulation of 
carbon metabolism in plants [320,321]. Over-expression of the mutated 
gene encoding the altered TmDGAT1 (S197A) in Arabidopsis resulted in 
relative increases in SOC ranging from 20 % to 50 % on a per seed basis 
[319]. In another study, DGAT1 from the woody oil tree Sapium sebife-
rum was over-expressed in B. napus L. W10 under the control of the 
constitutive CaMV 35S promoter resulting in relative SOC increases 
ranging from 12.3 % to 14.7 % when transgenic lines were compared to 
the WT [322]. Heterologous expression of SsDGAT1 also resulted in 
decreased 18:1 content and increased α-18:3 content. In addition, 
DGAT1 from the microalga Chlorella ellipsoidea was expressed in Ara-
bidopsis and B. napus L. cv Westar under the control of a NOPALINE 
SYNTHASE promoter [323]. Net relative increases in 1000-seed total 
lipid content ranged from 25 % to 50 % in both transgenic Arabidopsis 
and B. napus when compared to the WT. The FA composition of the seed 
oil, however, was not affected. Seed-specific over-expression of Arabi-
dopsis DGAT1 in Indian mustard (B. juncea) under the control of an 
Arabidopsis OLEOSIN promoter has also been shown to increase both 
SOC and seed weight, but the increase in SOC was accompanied by a 
large decrease in 18:1 content [324]. The changes in FA composition 
associated with heterologous over-expression of DGAT1 may be related 
to the substrate selectivity properties of the newly introduced DGAT. 
BnaDGAT1 has also been over-expressed in B. napus in combination with 
three other genes encoding enzymes involved in TAG assembly resulting 
in a synergistic effect in increasing SOC to levels beyond what could be 
achieved with individual over-expressors [325].
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Learning about structure/function relationships in B. napus DGATs 
could lead to the development of additional strategies for increasing 
SOC. Among the four isoforms of Bna.DGAT1 identified in B. napus line 
DH12075 (BnaA.DGAT1.a, BnaC.DGAT1.a, BnaA.DGAT1.b, BnaC. 
DGAT1.b), BnaC.DGAT1.a was the most highly produced in a yeast line 
(H1246) devoid of TAG synthesis [301]. The Saccharomyces cerevisiae 
mutant strain H1246 has four genes encoding enzymes with DGAT ac-
tivity knocked out and thus represents an excellent host system for 
introducing various DGAT genes for functional characterisation experi-
ments [326].

Recombinant BnaC.DGAT1.a has been solubilized from yeast mi-
crosomes and highly purified [327]. This was the first report on the 
purification of a DGAT1 in active form to apparent homogeneity. A 
number of recent studies involving purified recombinant BnaC.DGAT1. 
a, yeast microsomes containing recombinant BnaC.DGAT1.a and various 
recombinant truncations of the enzyme have vastly contributed to our 
understanding of structure/function in this enzyme [40,301,327–333]. 
Earlier insight into the biochemical properties of the BnaDGAT1 family 
were based on a study of the purified cytosolic hydrophilic N-terminal 
domain (NTD) of BnaA.DGAT1.b with C-terminal poly-histidine tail 
attached (BnaA.DGAT1.b(1− 113)His6) [334,335]. Unlike members of the 
DGAT2 family, members of the DGAT1 family feature a polypeptide 
with a hydrophilic NTD followed by several transmembrane domains 
(TMDs) [40]. The poly-histidine-tagged BnaA.DGAT1.b hydrophilic 
NTD was recombinantly produced using a bacterial expression system, 
purified and shown to interact with acyl-CoA in a positive cooperative 
fashion and to self-associate into dimers and tetramers [334]. Both 
cross-linking experiments and size-exclusion chromatography provided 
evidence to support self-association of the hydrophilic NTD. These ob-
servations suggested that BnaA.DGAT1.b was an allosteric enzyme. 
Later, dimeric and tetrameric forms of solubilized full-length isoform 
BnaC.DGAT1.a were also demonstrated using size-exclusion chroma-
tography [327] thereby corroborating the earlier observations on self- 
association of the NTD of BnaA.DGAT1.b. Further investigation, using 
recombinant BnaC.DGAT1.a and its truncations, revealed that the hy-
drophilic NTD (common to all isoforms of BnaDGAT1) contained both 
an intrinsically disordered region and a folded segment that could 
interact with acyl-CoA and CoA [329]. The intrinsically disordered re-
gion had an autoinhibitory function and served as a dimerization 
interface to mediate cooperativity. As cellular acyl-CoA concentration 
increases, the non-catalytic site in the NTD facilitates homotropic allo-
steric activation. Under limiting cellular acyl-CoA concentration, how-
ever, CoA acts as a non-competitive feedback inhibitor which 
contributes to promoting a less active form of the enzyme. In addition, at 
higher concentrations of acyl-CoA, beyond 5 μM, the enzyme became 
less active suggesting yet another mechanism for down-regulating the 
enzyme [329,333]. In essence, the NTD of the BnaDGAT1 family 
members acts as a sensor for cellular acyl-CoA/CoA status to regulate 
enzyme activity accordingly.

Further investigation of the biochemical properties of BnaC.DGAT1.a 
has shown that the enzyme is also feed-forward activated by PA [328]. 
PA action was associated with a direct interaction with the hydrophilic 
NTD which resulted in decrease in the autoinhibition of the enzyme by 
the NTD. PA action shifted the response to increasing acyl-CoA con-
centration from a sigmoidal response to a response that was more hy-
perbolic. In addition, the apparent maximum velocity of the enzyme 
increased about 7-fold in the presence of PA and the enzyme was 
desensitised to inhibition at higher concentrations of acyl-CoA beyond 5 
μM. A yeast two-hybrid assay was used to demonstrate a direct inter-
action between BnaLPAAT2 and BnaC.DGAT1.a suggesting that co- 
localisation of the two Kennedy pathway enzymes facilitated channel-
ling of the PA product of the LPAAT-catalysed reaction to the activation 
site on BnaC.DGAT1.a.

In addition, hydrolysis of PA by PAP generates the other substrate of 
DGAT1, DAG, whose increase will also stimulate its activity [328]. Thus, 
LPAAT has two feed-forward activation routes that ensure BnaDGAT1 

adjusts its activity to the incoming flow of carbon within the Kennedy 
pathway whilst reducing the individual changes in DAG and acyl-CoA 
required to achieve this. Just as MCA has shown that feed-back inhibi-
tion lowers an enzyme's potential flux control coefficient, so feed- 
forward activation should act to increase the flux control coefficient of 
LPAAT at the expense of that of DGAT1. Indeed, measurement of 
LPAAT's flux control coefficient via the increase in B. napus SOC on 
raising its activity through over-expression of T. majus LPAAT [234] 
yielded an in planta value of 0.15 compared with an estimated value 
[108] of 0.076 for DGAT1 (Fig. 4) derived from measurements by 
Weselake et al. [43,336] and Taylor et al. [271]. Fell et al. [108] also 
calculated that parallel increases in the activity of LPAAT and DGAT1 
would increase SOC by more than either separately. As mentioned 
previously in Section 4, joint increases of the enzyme activities should 
minimise changes in the concentrations of the intermediates between 
them, PA and DAG, which would thereby limit the disturbance to other 
parts of lipid metabolism, in relation to OB, with which they are 
involved.

Interestingly, Arabidopsis CTP:phosphocholine cytidylyltransferase 
(CCT) 1 has also been shown to have an autoinhibitory region that in-
teracts with PA resulting in enzyme activation [337]. CCT is a key reg-
ulatory enzyme in PC biosynthesis which catalyses the formation of 
CDP-choline for use by CPT in the conversion of DAG to PC [338]. 
Therefore, co-activation of DGAT1 and CCT1 may ensure that synthesis 
of nitrogenous phospholipids keeps pace with TAG and OB formation in 
the developing zygotic embryo. Therefore, it would be of interest to 
over-express both DGAT1 and CCT1 as a possible means of further 
increasing SOC.

As discussed previously, T. majus DGAT1 was shown to have a pu-
tative site for SnRK1-catalysed phosphorylation [319]. Caldo et al. 
[328] directly demonstrated that BnaC.DGAT1.a was a substrate of 
SnRKI, which catalyses the phosphorylation of the enzyme, resulting in a 
less active form. Presumably, an unknown phosphatase is responsible for 
catalysing the removal of phosphate from phosphorylated DGAT1 to up- 
regulate the enzyme under appropriate cellular conditions. Therefore, 
along with its role as an energy sensor of the cell, SnRKI also appears to 
regulate the production of TAG. The observations on the effects of PA 
and SnRK1 action on BnaC.DGAT1.a were used to further refine the 
model proposed for the allosteric regulation of BnaC.DGAT1.a. Inter-
estingly, Caldo et al. [339] have also reported that Arabidopsis CCT1 is 
down-regulated by SnRK1-mediated phosphorylation. Thus, co- 
phosphorylation of B. napus DGAT1 and CCT1, catalysed by SnRK1 
might represent a post-translational-based mechanism for modulating 
TAG biosynthesis in relation of OB formation.

When designing metabolic engineering experiments involving the 
introduction of a selected DGAT, it is also important to take into 
consideration the substrate preferences of the newly introduced enzyme. 
For example, it would be inappropriate to introduce a DGAT1 isoform 
with a very low preference for 18:1-CoA into a LEAR line given that 18:1 
is the dominant FA in LEAR seed oil. The term acyl-CoA specificity is 
often used when assessing a range of different molecular species of acyl- 
CoA in separate reactions and then ranking the enzyme's preferences for 
the different molecular species of acyl-CoA based on increasing enzyme 
activity. Only one molecular species of acceptor substrate (DAG) is used. 
Conversely, DAG specificity can be examined using different molecular 
species of DAG in different reactions with one molecular species of acyl- 
CoA. In the developing zygotic embryo of B. napus, however, DGAT is 
presented with a mixture of different molecular species of acyl donors 
and acceptors present in different molar ratios (see [298]). Under these 
conditions, the substrate selectivity properties of the enzyme come into 
play; i.e., what is the order of molecular species of substrate preference 
in a situation where a choice of molecular species of substrate is pre-
sented to the enzyme? Under these conditions, one can envision possible 
scenarios involving competition of different molecular species of acyl- 
CoA for the active site and/or possible allosteric effects of certain mo-
lecular species of acyl-CoA which alter the activity of the enzyme thus 
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affecting its operation with other molecular species of acyl-CoA. Earlier 
studies of TAG biosynthetic enzymes, however, used microsomes pre-
pared from developing seeds or embryos as a source of enzymes 
[42,336] and, subsequently, insights into substrate molecular species 
preferences were likely the result of the action of different isoenzyme 
families and even different isoforms within these families. In the meta-
bolic engineering of B. napus, choosing a DGAT with inappropriate 
substrate selectivity properties may even further reduce the flux control 
coefficient of the TAG assembly block.

Fortunately, the four microsomal recombinant BnaDGAT1 isoforms 
(produced in H1246 yeast) from canola-type LEAR effectively utilised a 
wide range of molecular species of acyl-CoA representing FAs typically 
found in seed TAG (i.e., 16:0, 18:0, 18:1, 18:2 and α-18:3) [340]. A 
similar acyl-CoA specificity profile was previously reported in assays 
with solubilized and highly purified BnaC.DGAT1.a [327]. Despite being 
able to use a range of molecular species of acyl-CoA, the most effective 
acyl donor was α-18:3-CoA. In this case, dioleoyl-sn-1,2-glycerol served 
as the acyl acceptor. Greer et al. [301] have categorized the four re-
combinant BnaDGAT1 isoforms, produced in H1246 yeast, into two 
clades, with BnaA.DGAT1.a and BnaC.DGAT1.a representing clade I and 
BnaA.DGAT1.b and BnaC.DGAT1.b representing clade II. Therefore, 
both the A and C genomes of B. napus make contributions to TAG for-
mation. The clade I enzymes, however, exhibited considerably higher 
enzyme activity than clade II enzymes [340]. Interestingly, Aznar- 
Moreno et al. [298] reported that clade I BnaDGAT1 transcripts were 
also produced at a higher level than clade II transcripts during seed 
development. All four BnaDGAT1 isoforms have also been shown to 
exhibit enhanced specificity for 16:0-CoA over 18:1-CoA despite 18:1 
being the major FA in seed TAG of LEAR [298,340]. The main difference 
between clade I and clade II BnaDGAT1s, however, was that clade II 
enzymes displayed a significantly enhanced preference for 18:2-CoA 
[340]. Clade I BnaC.DGAT1.a versus clade II BnaA.DGAT1.b were also 
assessed for acyl-CoA selectivity using an equimolar mixture of 18:2- 
CoA and α-18:3-CoA [340]. Use of clade II enzyme in this competitive 
scenario resulted in a significantly higher ratio of 18:2 to α-18:3 in TAG 
than for the clade I enzyme alone. Since the amino acid residue se-
quences among the four BnaDGAT1 isoforms were outside of the motifs 
suggested to be involved in catalysis, it was hypothesized that other 
regions are involved in governing substrate preferences [340].

Aznar-Moreno et al. [298] further examined the selectivity proper-
ties of the four forms of BnaDGAT1 using concentrations of 18:1-CoA 
and 16:0-CoA that reflected the in vivo ratio of 18:1-CoA to 16:0-CoA 
during seed development, which was 3:1. Under these in vitro condi-
tions, despite the higher specificities of the BnaDGAT1s for 16:0-CoA, 
the four isoforms incorporated 18:1 in amounts two- to five-fold 
higher into TAG than 16:0, thus contributing to the production of seed 
oil with enhanced 18:1 content. Therefore, the nature of both the in vivo 
acyl-CoA and DAG pools are also important factors in determining the 
outcomes of DGAT action.

The situation is even more complicated for HEAR lines. Demski et al. 
[300] have studied BnaDGATs from a LEAR line (MONOLIT) and a 
HEAR line (MAPLUS). Microsomes from developing seeds of MAPLUS 
exhibited 6- to 14-fold higher DGAT activity with 22:1-CoA than mi-
crosomes from MONOLIT suggesting that DGAT isoforms with different 
acyl-CoA selectivities are differentially active in the two cultivars. Re-
sults of BnaDGAT transcript analysis suggested that expression patterns 
for BnaDGAT1 and BnaDGAT2 isoforms may differ among B. napus 
cultivars. Further experiments were conducted with recombinant forms 
of BnaDGAT1 and BnaDGAT2 isoforms produced in H1246 yeast. It was, 
however, necessary to codon optimise BnaDGAT2 cDNAs in order to 
achieve effective enzyme production in yeast. This aspect was previ-
ously demonstrated for Arabidopsis DGAT2 cDNA by Aymé et al. [341]. 
In agreement with previous results [340], the BnaDGAT1 isoforms dis-
played a broad acyl-CoA specificity. Two of the BnaDGAT2 isoforms, 
operative in MAPLUS, however, exhibited enhanced acyl donor speci-
ficity for 22:1-CoA while all four isoforms could still effectively utilise 

α-18:3-CoA. Although the low 22:1 content of LEAR lines is generally 
linked to a defect in the elongation of 18:1-CoA to 22:1-CoA [7], the 
study of Demski et al. [300] suggested that during the breeding process 
HEAR lines may have also acquired mutated BnaDGAT2 genes encoding 
DGAT2 forms with enhanced 22:1-CoA selectivity. In a follow-up study, 
involving a range of chimeric enzymes produced from parts of a 22:1- 
CoA-specific BnaDGAT2 isoform, a region containing two predicted 
TMDs was revealed which affected 22:1-CoA specificity [342]. Subse-
quently, the section of a peptide associated with enhanced 22:1-CoA 
specificity was installed into Arabidopsis DGAT2, thus converting the 
enzyme into a DGAT with enhanced specificity for 22:1-CoA.

It is interesting to note that the earlier acyl-CoA-binding experiments 
with BnaA.DGAT1.b(1–113)His6 indicated a dissociation constants of 
about 17 μM and 2 μM, respectively, for interactions of the hydrophilic 
NTD fragment with 18:1-CoA and 22:1-CoA [334]. Therefore, acyl-CoA 
ligand selectivity may also be involved in the allosteric modulation of 
BnaDGAT1 activity. This aspect would add yet another level of 
complexity. Given the relatively high 18:1 content of the seed TAG of 
LEAR lines, it is possible that increasing the affinity of the non-catalytic 
site for 18:1-CoA may result in a BnaDGAT1 that is more responsive to 
lower concentrations of 18:1-CoA. Perhaps, this could represent yet 
another strategy to increase SOC.

There are additional questions regarding the physiological relevance 
of the different isoforms of BnaDGAT1 and BnaDGAT2. Does having 
more than one isoform within a family serve as a mechanism to protect 
against possible future deleterious mutations that may de-activate one of 
the homeologous genes? In other words, is this a protective mechanism 
to ensure that TAG biosynthesis and normal seed development continue 
to occur if one of the homeologous genes is knocked out? Do the various 
isoforms within each DGAT family self-associate to form hybrid dimers 
and tetramers?

In addition to communication with LPAAT via PA production [328], 
plant DGAT1 action also appears to involve other processes in lipid 
biosynthesis. For example, in a study with recombinant acyltransferases 
from flax, enhancement of the PUFA content of TAG was shown to be 
linked to biochemical coupling of the LPCAT1-catalysed reverse reaction 
to the DGAT1-catalysed forward reaction [343]. Recently, in vivo 
binding data have revealed that flax DGAT1 and DGAT2 are part of a 
larger transferase interactome which is operative in channelling PUFA 
from PC into TAG via various mechanisms [344]. A similar PUFA- 
enrichment system may also be operative during seed development in 
B. napus.

High performance variants of BnaDGAT1, generated through 
directed evolution, may also prove useful in the development of B. napus 
lines with increased SOC [40,333,345,346]. In addition, these enzyme 
variants allow the investigator to link specific amino acid residue sub-
stitutions to aspects of function. The high-throughput directed evolution 
system to produce BnaDGAT1 variants with enhanced performance was 
based on the use of error-prone polymerase chain reactions to introduce 
mutations into BnaDGAT1 cDNA and large-scale screening of yeast 
transformed with mutated BnaDGAT1 cDNA for TAG production using 
Nile red [346–348]. A mutated cDNA encoding an active recombinant 
DGAT1 variant complemented TAG biosynthesis and restored growth of 
S. cerevisiae H1246 in the presence of oleic acid [348]. In the absence of 
an active DGAT, the oleic acid was toxic and inhibited growth of the 
yeast. Characterisation of several BnaC.DGAT1.a variants indicated that 
TAG production in yeast was affected by different mechanisms, 
including enhanced enzyme activity, increased DGAT1 variant poly-
peptide accumulation and possibly reduced substrate inhibition by high 
cellular concentrations of acyl-CoA [333]. One of the variants (I447F), 
where I447 represents the native enzyme, was introduced into tobacco 
(Nicotiana benthamiana) leaf tissue using a transient expression system 
involving co-expression of Arabidopsis WRI1 [330]. Over-expression of 
the cDNA encoding variant I447 led to a significant relative increase in 
leaf TAG content of about 33 %. The FA composition of TAG produced 
using the I447 variant was similar to the FA composition of TAG from 
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the control. Site saturation mutagenesis [349] at position I447 resulted 
in a collection of 19 variants representing the effects of 19 other amino 
acid residues at this position [330]. In addition to I447F, the variants 
I447L and I447V resulted in substantially increased TAG accumulation 
in H1246 yeast in comparison to the native form of the enzyme (I447) 
indicating that the hydrophobicity of the amino acid side chains was 
critical in contributing to higher enzyme activity. Analysis of the 
apparent kinetic parameters of a few of the BnaC.DGAT1.a variants 
indicated substantial increases in the apparent maximum velocity and a 
shift from a sigmoidal response to increasing acyl-CoA concentration to 
a more hyperbolic response [333]. Although variant I447F did not 
exhibit a marked change in apparent maximum velocity, kinetic analysis 
revealed a loss of substrate inhibition at higher concentrations of acyl- 
CoA (beyond 5 μM) when compared to the native enzyme (I447). 
Thus, variant I447F may prove useful for increasing seed TAG content 
under physiological conditions where acyl-CoA concentrations are 
increased. The structure of BnaC.DGAT1.a has been modeled based on 
the 3D structure of human DGAT1 and the functional relevance of amino 
acid residue substitutions of several BnaC.DGAT1.a variants were ana-
lysed based on the 3D model [40]. Within this context, residue I447F 
was shown to point directly into a hydrophobic central cavity suggesting 
that the substitution of an isoleucine residue with a phenylalanine res-
idue increased the affinity of the enzyme for lipid substrates in the re-
action center.

7. Other modifications of seed oil production in Brassica oilseed 
species

7.1. Transcription factors

In the previous section, it was discussed briefly how certain TFs can 
interact with the promoter regions of B. napus DGAT genes. Over- 
expression of genes encoding TFs represents another way of manipu-
lating SOC and both knockout and over-expression studies have been 
made to confirm which TFs can be useful for controlling lipid accumu-
lation [350]. Most of these studies have been made using Arabidopsis, 
which is useful since it is closely related to rapeseed. Nevertheless, it 
should always be borne in mind that they are not identical and impor-
tant differences in lipid metabolism between the two species have been 
noted [177].

Among the TFs, some are known as master regulators because they 
alter the functions of other TFs. The encoding genes include ABI3, LEAF 
COTYLEDON (LEC1, LEC2) and FUSCA3. They control various aspects of 
seed development. ABI3, LEC2 and FUSCA3 are related proteins con-
taining a common ‘B3’ DNA-binding domain [351]. Details of the action 
of these TFs in Arabidopsis are given in [25].

One of the most studied TFs is encoded by the Arabidopsis WRINKLED 
1 (WRI1) gene. Loss-of-function mutations in WRI1 caused an 80 % 
reduction in SOC [352]. Examination of gene expression of WT type 
versus mutant wri1 seeds confirmed that the TF was involved in seed oil 
production [353]. Cernac and Benning [354] gave further details of 
WRI1 action which was due to it being a target for LEC2 and, therefore, 
of the latter's regulation of FA metabolism [355]. In B. napus, two 
BnaWRI1 genes were identified and sequenced. Over-expression of 
BnaWRI1 in Arabidopsis gave up to 40 % relative increase in SOC as well 
as enlarged seed size and weight [356]. Because of the increase in SOC 
by WRI1, this TF is often used as part of a multiple gene over-expression 
technique to boost seed oil accumulation. Thus, for example, van Erp 
et al. [357] over-expressed WRI1 and DGAT1 in Arabidopsis while 
reducing expression of SDP1 gene. Plants expressing all three constructs 
had significantly greater SOC than WT or when each gene was changed 
on its own. In addition, Vanhercke et al. [246] co-expressed Arabidopsis 
WRI1 and DGAT1 in tobacco where the expression showed a synergistic 
effect. A more recent paper by the same group discussed step changes for 
increasing oil production which they labeled ‘push-pull-package-pro-
tect’ [358]. Similar studies have been made by others in Arabidopsis 

[359]. Such techniques could, obviously, be applied (and have been) to 
increasing SOC in BOS.

Mechanisms controlling the activity of WRI1 have been studied in 
some detail (see [360]) and by Shanklin's group. Phosphorylation by 
KIN 10 (the major sucrose non-fermentation 1-related kinase), acting as 
a post-translational regulator, causes its proteosomal degradation [361]. 
Moreover, WRI1 regulates biotin attachment domain-containing 
(BADC) proteins [362]. BADC proteins were first discovered when 
Thelen's group [363] identified a novel family of proteins in Arabidopsis 
following co-precipitation analyses. These proteins were found to 
interact with the biotin-carboxyl carrier protein (BCCP) component of 
the heteromeric ACCase. In fact, BADCs resembled BCCP but were not 
biotinylated and were suggested to be ancestral BCCPs. BADC proteins 
significantly inhibit ACCase activity [363,364]. Moreover, gene 
silencing of the BADC isoform 1 in Arabidopsis increased seed oil con-
tent by up to 11 % on a dry weight basis or by up to 25 % on a per seed 
basis [363]. The importance of ACCase for de novo FA biosynthesis and 
the identification of BADC orthologs in many oil crops stresses the 
possible use of BADCs in genetic engineering [363].

Another possible way of increasing FA production involves carbox-
yltransferase interactors (CTIs). These are small plastidial proteins in the 
envelope membrane that interact with the α-carboxyltransferase unit of 
heteromeric ACCase [365]. Knockouts of CTI show high rates of FA 
biosynthesis and a marked increase in leaf TAG (4-fold). Furthermore, 
WRI1 regulates CTI1 expression by direct binding to its promoter. The 
‘docking’ of ACCase to the envelope membrane is an important regu-
latory mechanism in leaves [365] and could possibly be used to promote 
lipid accumulation in BOS.

Other B. napus genes shown to be associated with increased SOC are 
SHOOTMERISTEMLESS [366] and GRF2-LIKE [178]. Over-expression of 
SHOOTMERISTEMLESS in B. napus plants increased SOC without 
affecting total protein levels. The over-expression was accompanied by 
induction of genes encoding BnaLEC1, BnaLEC2 and BnaWRI1 as well as 
a decrease in seed glucosinolate [366]. The effect on BnaGRF2a 
expression on increasing SOC in B. napus was covered previously in 
Section 3.2. In further regard to BnaGRF2a expression, photosynthesis 
was increased and it was concluded that cell number as well as photo-
synthesis contributed to increased seed weight and oil content [178].

7.2. Carbon partitioning into lipid accumulation

Although oil crops, in general, show a preference for oil production 
rather than starch deposition in their seeds, there have been several 
studies on carbohydrate metabolism that are relevant to SOC. In fact, 
our knowledge of the interactions between lipid and carbohydrate 
metabolism in oil crops is still rather lacking [367].

For B. napus, photosynthesis in the silique wall is the main source of 
carbon during seed development [111,122]. As expected, Rubisco ac-
tivity is critical [111] and gives a control coefficient of 0.15 for oil 
accumulation [108]. Moreover, activities of Rubisco in siliques (but not 
in leaves) showed a positive correlation with SOC in different B. napus 
lines [111]. In addition to a key role for silique photosynthesis in 
providing carbon for lipid accumulation, other reactions of carbohy-
drate metabolism have been estimated to provide about half of the 
control of TAG accumulation in B. napus plants [108].

Some specific enzymes have been investigated in more detail. 
Tomlinson et al. [368] examined sucrose catabolism (involving inver-
tase or hexokinase) in developing tobacco seeds. These two enzymes 
were over-expressed singly or in combination but neither manipulation 
had any effect on seed oil levels.

Starch branching enzymes (SBEs) are one of important enzyme 
groups that are used for starch biosynthesis. SBEs have been studied in 
some detail in B. napus where there are six BnaSBE genes [369]. When 
endogenous gene forms of SBE were substituted with endosperm- 
expressed maize SBEs, increased branching was seen which resulted in 
greater silique numbers. This caused a doubling of TAG production per 
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plant [370]: the authors are trying to apply this unexpected (and 
promising) result to canola-type B. napus.

The importance of WRI1 for seed oil accumulation was mentioned in 
Section 7.1. and Zhai et al. [371] noted that trehalose 6-phosphate 
increased FA synthesis by stabilizing this TF. More recently, this posi-
tive effect was confirmed when trehalose 6-phosphate synthase was up- 
regulated in developing silique walls of B. napus. Various genes encoding 
enzymes involved in oil accumulation were increased in expression and 
seed oil production was enhanced [372].

Linkage of glycolysis to the TCA cycle is provided by mitochondrial 
pyruvate dehydrogenase complex. PDCK down-regulates pyruvate de-
hydrogenase activity in this complex and seed-specific anti-sense 
repression has been shown to result in increased SOC and seed weight in 
Arabidopsis [181,373] and B. napus [25]. Radiolabeling experiments 
using [3-14C]pyruvate showed that there was an increased supply of 
acetyl-CoA from mitochondria [181]. In agreement, Li et al. [177] found 
that the gene encoding mitochondrial PDCK was one of the genes down- 
regulated in B. napus lines with high SOC. Other papers detailing the 
effects of repressing expression of the gene encoding mitochondrial 
PDCK on growth and productivity in Arabidopsis are Leonardos et al. 
[374] and Weraduwage et al. [375].

Co-expression of DGAT1 with repression of PDCK has been used to 
provide both ‘push’ and ‘pull’ for seed oil synthesis in B. napus [231]. 
The experiments included B. napus, Arabidopsis and T. majus DGATs and 
Arabidopsis or B. napus mitochondrial PDCK as well as a mutated 
T. majus DGAT1 encoding a DGAT1 variant with enhanced activity. The 
napin gene promoter was usually employed to drive seed-specific 
expression. In general, single expression of DGAT gave 6–11 % rela-
tive increase in SOC while silencing mitochondrial PDCK gave relative 
increases in the range of 12–16 %. For lines with stacked genes, a 
relative increase of around 24 % in SOC was found, demonstrating 
clearly the advantage of this strategy for enhancing seed oil production 
in B. napus.

Glycolysis takes place in both the cytosol and the plastid in plants. 
Pyruvate kinase is important for pyruvate production and Baud et al. 
[376] showed that mutations in genes encoding the Arabidopsis plas-
tidial enzyme depleted SOC. In addition, disruption of the gene encoding 
the beta1 subunit of the enzyme in Arabidopsis caused a 60 % relative 
reduction in SOC. The oil levels were restored by expression of a cDNA 
encoding the beta1 subunit [377]. Moreover, the importance of pyruvate 
kinase was confirmed when [177] found that B. napus lines with high 
SOC had increased enzyme levels.

Provision of reducing power (NADPH) for FA biosynthesis can come 
from the catalytic action of glucose 6-phosphate dehydrogenase in the 
OPPP. Single or double mutants of the two cytosolic forms of this 
enzyme led to an increase in carbon substrates for oil accumulation and, 
for the double mutant, higher SOC [378].

Stable isotope studies by Schwender and his coworkers have already 
been referred to in Section 2 of this review. Papers that describe data 
into the carbon flux in photosynthetic embryos of B, napus are particu-
larly relevant ([96–98,115,379], see also [25], for a summary).

Inactivation of ADP-glucose pyrophosphorylase gives rise to the 
starchless phenotype in Arabidopsis. PDAT 1 over-expression in leaves of 
such mutants enabled an increase in TAG accumulation. It diverts FA 
flux from membrane lipids to TAG, enabling the latter to act as a source 
of energy rather than sugars [287]. These and other studies from the 
same group addressed the general question of diversion of carbon from 
carbohydrate metabolism to FA and TAG biosynthesis [287,361].

Apart from carbohydrate metabolism, amino acid metabolism and 
protein synthesis may influence oil production in the Brassicaceae. In an 
Arabidopsis mutant showing reduced de novo FA synthesis, there was 
increased storage protein and amino acid synthesis [380]. In addition, 
when seed oil accumulation is reduced by silencing of DGAT1 in 
B. napus, there was a reciprocal increase in protein and sugar content 
[318]. Indeed, in a meta-analysis of the effects of heat and drought on 
canola-type cultivars of B. napus, Secchi et al. [381] highlighted trade- 

offs between seed oil and protein. Nevertheless, the trade-offs were 
not always quantitatively reciprocal. This was partly due to the variable 
effects at different development stages and partly due to oil accumula-
tion in seeds following a sigmoid pattern, whereas protein increased in a 
substantially linear fashion [69].

7.3. Modification of fatty composition

In the previous sections, this review has concentrated mainly on 
describing ways in which total SOC can be manipulated in BOS. As 
discussed in Section 6, the over-expression of specific DGAT genes in 
various BOS can also lead to changes in the FA composition of seed TAG. 
Given this, there have been numerous studies where the main intent has 
been to modify FA composition (see [13]). These studies have involved 
changing the proportions of both saturated and unsaturated FAs, and 
also generating FAs which are not naturally produced in the target BOS.

Different ways of increasing saturated FAs in B. napus have been 
reviewed by Stoll et al. [15]. This could have applications for both in-
dustrial or edible uses [16]. Increasing 18:0 in B. napus seed oil by down- 
regulating expression of the gene encoding stearoyl-ACP desaturase [14] 
or by the introduction of a modified acyl-ACP thioesterase [382] are two 
contrasting methods. More recently, Sun et al. [16] used artificial 
microRNAs to increase saturated FA levels.

B. napus has also been engineered to accumulate medium-chain FAs 
which are usually sourced from tropical crops such as coconut or oil 
palm [11]. Thus, seed-specific engineering of LEAR varieties gave pro-
duction of oils with 11 % caprylic (8:0) and 27 % capric acid (10:0) [17]. 
By introducing an unusual acyl-ACP (12:0-ACP) thioesterase from Cal-
ifornia bay laurel, Voelker et al. [18] obtained over 50 % laurate (12:0) 
in the seed oil. However, further increases were limited by competing 
beta-oxidation and glyoxylate cycle activity [383]. Nevertheless, intro-
duction of a lauryl-CoA-preferring LPAAT (from coconut) did augment 
the 12:0 content of B. napus seed oil to 60 % [18].

In contrast, ways of lowering saturated FA levels in canola-type 
B. napus have been discussed which include the manipulation of desa-
turase activity [13,384]. Canola varieties of B. napus already contain 60 
% oleate in their oil, which is considered a good attribute for an edible 
oil, particularly when combined with its favorable 18:2/α-18:3 ratio. 
The oleate content can be increased further by using reduced expression 
of FAD2 [21,22]. Other manipulations have included mutated FAD3 
genes in B. oleracea [385] or suggestions for manipulating genes 
encoding other lipid synthetic enzymes [13].

The use of gene stacking has already been referred to with regard to 
the over-expression of other genes in combination with WRI1. Indeed, 
stacked traits are important features of many commercial biotech crops 
[386,387]. For improvements in oil crops, including rapeseed, there are 
many examples (see [388]). In canola-type B. napus, stacking of DELTA6 
and DELTA12 DESATURASE genes from Mortierella alpina gave over 40 
% γ-linolenic acid [389] while stearidonic acid (18:4Δ6cis,9cis,12cis,15cis) 
accumulated at up to 23 % when the same M. alpina desaturases were 
stacked with the B. napus FAD3 gene [390].

Multiple genes have been stacked to allow long chain (20 or 22C) 
PUFAs to be formed in Brassicaceae. Transgenic B. carinata was engi-
neered to allow production of up to 25 % eicosapentaenoic acid (EPA; 
20:5Δ5cis,8cis,11cis,14cis,17cis) [391]. More recently, Arabidopsis has been 
engineered to synthesize up to 12 % DHA in its seed oil [284,392]. 
Exploitation of this research has resulted in the marketing of commercial 
B. napus oil with useful levels of DHA (‘Aquaterra’ oil).

8. Closing comments and future perspectives

Conventional plant breeding has resulted in a steady incremental 
increase in the SOC of LEAR cultivars since their introduction several 
decades ago [385]. More recently, breeding efforts have been further 
enhanced through the incorporation of molecular techniques such as 
marker-assisted selection and identification of QTL associated with 
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increased SOC. Comparative omics approaches have also been useful in 
identifying functional proteins associated with high SOC lines when 
compared to low SOC lines. Comparative omics essentially represents a 
‘guilt by association’ approach. Nonetheless, several functional proteins 
identified using comparative omics approaches have led to some suc-
cessful genetic interventions for further enhancing SOC in various BOS. 
Several biochemical reactions which represent potential targets for 
increasing SOC in B. napus are apparent from MCA of storage lipid 
biosynthesis and other aspects of metabolism (outlined in Fig. 4). It 
should be noted, however, that many genetic interventions to increase 
SOC in BOS have been made in the absence of robust MCA data, using 
comparative omics data (as previously indicated) and other types of 
biochemical data. In other words, other lines of evidence have suggested 
some useful targets.

Going forward, we suggest that investigators who are interested in 
increasing SOC in BOS (and other oil crops) consider performing MCA 
prior to selecting the most promising target genes for increasing SOC. 
Thus, MCA would act as a guide to metabolic engineering. The DGAT1- 
catalysed reaction already represents a key target which has been vali-
dated via TDCA of B. napus over-expressing DGAT1 versus the WT 
[43,58,316]. Bottom-up MCA has also identified LPAAT as an enzyme 
with control over SOC [234]. Thus far, it is important to note that MCA 
has only been directly applied to LEAR cultivars [43,59,234] and not 
HEAR cultivars which represent the predecessors to LEAR cultivars [7]. 
Nevertheless, we were recently able to retrospectively analyse some 
published experimental results on increasing SOC (including some cited 
earlier in this review) to infer indicative flux control coefficients for 
G3PDH, ACCase, silique wall photosynthetic rate and silique wall 
Rubisco [108], and these have been included in Fig.4. These estimates 
have their limitations, having been culled from experiments in different 
laboratories and on various cultivars, but they do demonstrate that 
similar targeted experiments within a cultivar could be performed to 
refine the estimates.

Further knowledge of the detailed structure/function properties of 
BnaDGAT1 (including the four isoforms) should in turn result in new 
strategies involving DGAT1 to further increase SOC. For example, acti-
vation of BnaDGAT1 by PA [328] has suggested that over-expression of 
T. majus LPAAT to increase SOC in a LEAR B. napus may involve 
enhanced production of PA for activation of BnaDGAT1 [40]. Directed 
evolution has been used to generate high performance variants of 
BnaDGAT1 with many of the variants exhibiting increased apparent 
maximum velocity [330,333]. Interestingly, one of these variants 
(L441P) still exhibited high activity at higher concentrations of acyl-CoA 
(> 5 μM), whereas the WT enzyme was inhibited, suggesting that variant 
L441P may prove useful in further increasing TAG content under con-
ditions where endogenous acyl-CoA concentrations are relatively high. 
This strategy may be particularly effective where the developing seed 
has been engineered to produce higher local concentrations of acyl-CoA 
[333]; a possible acyl-CoA enrichment strategy has been investigated in 
Arabidopsis by Yurchenko et al. [393]. Other functional proteins shown 
to increase SOC in BOS, via metabolic engineering, may also benefit 
from further improvement by directed evolution. Indeed, improved 
Arabidopsis LACS9 variants have been generated using a directed evo-
lution approach based on the method for generating high performance 
variants of BnaDGAT1 [394].

There have also been examples where DGAT manipulation has been 
combined with another intervention(s). One notable example was the 
over-expression of DGAT1 in combination with the partial suppression 
of mitochondrial PDCK which represented a synergistic approach to 
increasing SOC in B. napus [231]. The increased co-expression of DGAT1 
and CCT1 (encoding CCT1 involved in PC synthesis) has already been 
proposed by Caldo et al. [328]. Under these conditions, it was envi-
sioned that PA produced in the Kennedy pathway would serve to co- 
activate both DGAT1 and CCT1. Thereby, OB production could effec-
tively keep pace with TAG accumulation and the availability of a half- 
unit membrane required for structural integrity of OBs. In turn, if this 

strategy was combined with over-expression of LPAAT, there would be 
more PA available as a substrate for PAP and as an activator for both 
DGAT1 and CCT1, possibly resulting even in more OBs. Gene editing 
technologies would be of further use in the introduction of amino acid 
residue substitutions in DGAT1 known to produce a more active enzyme 
variant based on the results of directed evolution. Further studies on the 
soluble [2Fe–2S] DGAT3, recently investigated in Arabidopsis by Aymé 
et al. [308], would also be worthwhile pursuing in relation to strategies 
for increasing SOC in BOS. With respect to the further improvement of 
HEAR cultivars to enhance SOC containing higher levels of 22:1, it 
would be important to explore the use of BnaDGAT2, which has been 
shown to display enhanced specificity for 22:1-CoA [300,342]. Similar 
strategies would also be applied in the modification of other enzymes in 
seed oil biosynthesis and accumulation.

Recent reports on a TAG remodeling process in P. fendleri [61,62] 
suggest that it may be worthwhile exploring if anything of this nature is 
operative in BOS. Certainly, from a metabolic engineering perspective, 
the introduction of such systems into BOS may represent another way of 
altering the FA composition of the seed oil.

Other interventions, applied outside of storage lipid biosynthesis, for 
increasing SOC and overall oil content are also possible. One such 
possible genetic intervention would be to increase Rubisco activity in 
the zygotic embryo in the situation where Rubisco operates outside of 
the Calvin cycle to provide 20 % more acetyl-CoA for FA synthesis 
combined with a 40 % reduction in carbon loss as carbon dioxide [115]. 
This review has mainly focused on methods for increasing SOC at an 
essentially fixed size and amounts of seed per plant. Other approaches to 
increase overall seed oil yield per plant in BOS could come from studies 
on increasing seed yield such as size/weight (e.g. [324,395]) and the 
number of siliques per plant (e.g. [396]). Thus, a myriad of approaches 
to increase oil accumulation in BOS, such as B. napus, are available. 
Many of these approaches may also be applicable to increasing SOC in 
other Brassicaceae such as B. carinata, camelina (Camelina sativa) and 
pennycress (Thlaspi arvense). They promise that future constraints on 
vegetable oil production due to limited agricultural land, may be alle-
viated substantially by such methods.
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[341] Aymé L, Baud S, Dubreucq B, Joffre F, Chardot T. Function and localisation of the 
Arabidopsis thaliana diacylglycerol acyltransferase DGAT2 expressed in yeast. 
PLoS One 2014;9:e92237. https://doi.org/10.1371/journal.pone.0092237.

[342] Jeppson S, Mattisson H, Demski K, Lager I. A predicted transmembrane region in 
plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain 
acyl-CoAs. J Biol Chem 2020;295:15398–406. https://doi.org/10.1074/jbc. 
RA120.013755.

[343] Pan X, Chen G, Kazachkov M, Greer MS, Caldo KMP, Zou J, et al. In vivo and in 
vitro evidence for biochemical coupling of reactions catalysed by 
lysophosphatidylcholine acyltransferase and diacylglycerol acyltransferase. J Biol 
Chem 2015;290:18068–78. https://doi.org/10.1074/jbc.M115.654798.

R.J. Weselake et al.                                                                                                                                                                                                                            Progress in Lipid Research 96 (2024) 101306 

26 

https://doi.org/10.1093/jxb/erv363
https://doi.org/10.1093/jxb/erv363
https://doi.org/10.1186/1756-0500-4-249
https://doi.org/10.1186/1756-0500-4-249
https://doi.org/10.1104/pp.19.01129
https://doi.org/10.1104/pp.19.01129
https://doi.org/10.1007/s00253-014-6284-4
https://doi.org/10.3390/plants11091156
https://doi.org/10.1016/S1388-1981(01)00200-1
https://doi.org/10.1016/S1388-1981(01)00200-1
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1520
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1520
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1520
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1520
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1525
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1525
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1525
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1525
https://doi.org/10.1046/j.1365-313x.1998.00259.x
https://doi.org/10.3390/ijms20184435
https://doi.org/10.3390/ijms20184435
https://doi.org/10.1038/s41598-018-35545-7
https://doi.org/10.1104/pp.106.082198
https://doi.org/10.1590/1678-4685-GMB-2016-0024
https://doi.org/10.1074/jbc.M110.133116
https://doi.org/10.1074/jbc.M210533200
https://doi.org/10.1074/jbc.M210533200
https://doi.org/10.1104/pp.108.123471
https://doi.org/10.1016/j.plantsci.2018.07.011
https://doi.org/10.1021/acs.jafc.9b04069
https://doi.org/10.1021/acs.jafc.9b04069
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1580
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1580
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1580
https://doi.org/10.1186/1471-2164-9-619
https://doi.org/10.1111/j.1399-3054.2009.01258.x
https://doi.org/10.1111/j.1399-3054.2009.01258.x
https://doi.org/10.1111/j.1467-7652.2008.00358.x
https://doi.org/10.1111/j.1467-7652.2008.00358.x
https://doi.org/10.1093/jxb/erw416
https://doi.org/10.1093/jxb/erg038
https://doi.org/10.1007/s11032-016-0543-2
https://doi.org/10.1186/s12870-017-0995-5
https://doi.org/10.1186/s12870-017-0995-5
https://doi.org/10.1139/cjb-2015-0218
https://doi.org/10.1139/cjb-2015-0218
https://doi.org/10.1016/j.gene.2014.12.029
https://doi.org/10.1074/jbc.M109109200
https://doi.org/10.1016/j.febslet.2015.02.008
https://doi.org/10.1111/tpj.14029
https://doi.org/10.1111/tpj.14029
https://doi.org/10.1104/pp.17.00934
https://doi.org/10.1104/pp.17.00934
https://doi.org/10.1111/tpj.13652
https://doi.org/10.1007/s11745-014-3921-8
https://doi.org/10.1007/s11745-014-3921-8
https://doi.org/10.1038/s41598-018-34339-1
https://doi.org/10.1038/s41598-018-34339-1
https://doi.org/10.1074/jbc.M117.811489
https://doi.org/10.1186/1471-2091-7-24
https://doi.org/10.1042/bst0280684
https://doi.org/10.1042/bst0280684
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1680
http://refhub.elsevier.com/S0163-7827(24)00039-0/rf1680
https://doi.org/10.1105/tpc.15.00037
https://doi.org/10.1105/tpc.15.00037
https://doi.org/10.1016/j.bbalip.2012.09.009
https://doi.org/10.1074/jbc.RA119.008047
https://doi.org/10.1007/s11745-016-4158-5
https://doi.org/10.1371/journal.pone.0092237
https://doi.org/10.1074/jbc.RA120.013755
https://doi.org/10.1074/jbc.RA120.013755
https://doi.org/10.1074/jbc.M115.654798


[344] Xu Y, Caldo KMP, Jayawardhane K, Ozga JA, Weselake RJ, Chen G. A transferase 
interactome that may facilitate channeling of polyunsaturated fatty acid moieties 
from phosphatidylcholine to triacylglycerol. J Biol Chem 2019;294:14838–44. 
https://doi.org/10.1074/jbc.AC119.010601.

[345] McCormick S. Directed evolution of DGAT1 to increase triacylglycerol content. 
Plant J 2017;92:165–6. https://doi.org/10.1111/tpj.13707.

[346] Siloto RMP, Truksa M, Brownfield D, Good AG, Weselake RJ. Directed evolution 
of acyl-CoA:diacylglycerol acyltransferase: development and characterisation of 
Brassica napus DGAT1 mutagenized libraries. Plant Physiol Biochem 2009;47: 
456–61. https://doi.org/10.1016/j.plaphy.2008.12.019.

[347] Siloto RM, Weselake RJ. High-throughput approaches to investigate neutral lipid 
biosynthesis. Int J High Throughput Screen 2010;1:29–38. https://doi.org/ 
10.2147/IJHTS.S9763.

[348] Siloto RMP, Truksa M, He X, McKeon T, Weselake RJ. Simple methods to detect 
triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids 2009;44: 
963–73. https://doi.org/10.1007/s11745-009-3336-0.

[349] Siloto RMP, Weselake RJ. Site saturation mutagenesis: methods and applications 
in protein engineering. Biocatal Agric Biotechnol 2012;1:181–9. https://doi.org/ 
10.1016/j.bcab.2012.03.010.

[350] Zhang JZ. Overexpression analysis of plant transcription factors. Curr Opin Plant 
Biol 2003;6:430–40. https://doi.org/10.1016/s1369-5266(03)00081-5.

[351] Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. 
Deciphering gene regulatory networks that control seed development and 
maturation in Arabidopsis. Plant J 2008;54:608–20. https://doi.org/10.1111/ 
j.1365-313X.2008.03461.x.

[352] Focks N, Benning C. Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with 
a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant 
Physiol 1998;118:91–101. https://doi.org/10.1104/pp.118.1.91.

[353] Ruuska SA, Girke T, Benning C, Ohlrogge JB. Contrapuntal networks of gene 
expression during Arabidopsis seed filling. Plant Cell 2002;14:1191–206. https:// 
doi.org/10.1105/tpc.000877.

[354] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein 
involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 
2004;40:575–85. https://doi.org/10.1111/j.1365-313X.2004.02235.x.

[355] Baud S, Wuillème S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, et al. 
Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J 
2007;52:405–19. https://doi.org/10.1111/j.1365-313X.2007.03232.x.

[356] Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, et al. Increasing seed mass and oil 
content in transgenic Arabidopsis by the overexpression of wri1-like gene from 
Brassica napus. Plant Physiol Biochem 2010;48:9–15. https://doi.org/10.1016/j. 
plaphy.2009.09.007.

[357] van Erp H, Kelly AA, Menard G, Eastmond PJ. Multigene engineering of 
triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol 
2014;165:30–6. https://doi.org/10.1104/pp.114.236430.

[358] Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, et al. Step 
changes in leaf oil accumulation via iterative metabolic engineering. Metab Eng 
2017;39:237–46. https://doi.org/10.1016/j.ymben.2016.12.007.

[359] Zhai Z, Liu H, Xu C, Shanklin J. Sugar potentiation of fatty acid and 
triacylglycerol accumulation. Plant Physiol 2017;175:696–707. https://doi.org/ 
10.1104/pp.17.00828.

[360] Qiao Z, Kong Q, Tee WT, Lim ARQ, Teo MX, Olieric V, et al. Molecular basis of the 
key regulator WRINKLED1 in plant oil biosynthesis. Sci Adv 2022;8:eabq1211. 
https://doi.org/10.1126/sciadv.abq1211.

[361] Zhai Z, Liu H, Shanklin J. Phosphorylation of wrinkled1 by KIN10 results in its 
proteasomal degradation, providing a link between energy homeostasis and lipid 
biosynthesis. Plant Cell 2017;29:871–89. https://doi.org/10.1105/tpc.17.00019.

[362] Liu H, Zhai Z, Kuczynski K, Keereetaweep J, Schwender J, Shanklin J. Wrinkled1 
regulates biotin attachment domain-containing proteins that inhibit fatty acid 
synthesis. Plant Physiol 2019;181:55–62. https://doi.org/10.1104/pp.19.00587.

[363] Salie MJ, Zhang N, Lancikova V, Xu D, Thelen JJ. A family of negative regulators 
targets the committed step of de novo fatty acid biosynthesis. Plant Cell 2016;28: 
2312–25. https://doi.org/10.1105/tpc.16.00317.

[364] Keereetaweep J, Liu H, Zhai Z, Shanklin J. Biotin attachment domain-containing 
proteins irreversibly inhibit acetyl CoA carboxylase. Plant Physiol 2018;177: 
208–15. https://doi.org/10.1104/pp.18.00216.

[365] Ye Y, Nikovics K, To A, Lepiniec L, Fedosejevs ET, Van Doren SR, et al. Docking of 
acetyl-CoA carboxylase to the plastid envelope membrane attenuates fatty acid 
production in plants. Nat Commun 2020;11:6191. https://doi.org/10.1038/ 
s41467-020-20014-5.

[366] Elhiti M, Yang C, Chan A, Durnin DC, Belmonte MF, Ayele BT, et al. Altered seed 
oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus 
SHOOTMERISTEMLESS gene. J Exp Bot 2012;63:4447–61. https://doi.org/ 
10.1093/jxb/ers125.

[367] Lin Y, Ulanov AV, Lozovaya V, Widholm J, Zhang G, Guo J, et al. Genetic and 
transgenic perturbations of carbon reserve production in Arabidopsis seeds reveal 
metabolic interactions of biochemical pathways. Planta 2006;225:153–64. 
https://doi.org/10.1007/s00425-006-0337-6.

[368] Tomlinson KL, McHugh S, Labbe H, Grainger JL, James LE, Pomeroy KM, et al. 
Evidence that the hexose-to-sucrose ratio does not control the switch to storage 
product accumulation in oilseeds: analysis of tobacco seed development and 
effects of overexpressing apoplastic invertase. J Exp Bot 2004;55:2291–303. 
https://doi.org/10.1093/jxb/erh251.

[369] Wang L, Wang Y, Makhmoudova A, Nitschke F, Tetlow IJ, Emes MJ. 
CRISPR–Cas9-mediated editing of starch branching enzymes results in altered 
starch structure in Brassica napus. Plant Physiol 2022;188:1866–86. https://doi. 
org/10.1093/plphys/kiab535.

[370] Liu F, Zhao Q, Mano N, Ahmed Z, Nitschke F, Cai Y, et al. Modification of starch 
metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples 
oilseed production. Plant Biotechnol J 2016;14:976–85. https://doi.org/ 
10.1111/pbi.12453.

[371] Zhai Z, Keereetaweep J, Liu H, Feil R, Lunn JE, Shanklin J. Trehalose 6-phosphate 
positively regulates fatty acid synthesis by stabilizing wrinkled1. Plant Cell 2018; 
30:2616–27. https://doi.org/10.1105/tpc.18.00521.

[372] Yuan P, Zhou G, Yu M, Hammond JP, Liu H, Hong D, et al. Trehalose-6-phosphate 
synthase 8 increases photosynthesis and seed yield in Brassica napus. Plant J 2024; 
118:437–56. https://doi.org/10.1111/tpj.16617.

[373] Zou J, Qi Q, Katavic V, Marillia EF, Taylor DC. Effects of antisense repression of 
an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development. 
Plant Mol Biol 1999;41:837–49. https://doi.org/10.1023/a:1006393726018.

[374] Leonardos ED, Rauf SA, Weraduwage SM, Marillia EF, Taylor DC, Micallef BJ, 
et al. Photosynthetic capacity of the inflorescence is a major contributor to daily- 
C-gain and the responsiveness of growth to elevated CO2 in Arabidopsis thaliana 
with repressed expression of mitochondrial-pyruvate-dehydrogenase-kinase. 
Environ Exp Bot 2014;107:84–97. https://doi.org/10.1016/j. 
envexpbot.2014.05.007.

[375] Weraduwage SM, Micallef MC, Marillia EF, Taylor DC, Grodzinski B, Micallef BJ. 
Increased mtPDH activity through antisense inhibition of mitochondrial pyruvate 
dehydrogenase kinase enhances inflorescence initiation, and inflorescence growth 
and harvest index at elevated CO2 in Arabidopsis thaliana. Front Plant Sci 2016;7: 
95. https://doi.org/10.3389/fpls.2016.00095.

[376] Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B. Wrinkled1 
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