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The gravitational lensing signal from the Cosmic Microwave Background is highly valuable to
constrain the growth of the structures in the Universe in a clean and robust manner over a wide
range of redshifts. One of the theoretical systematics for lensing reconstruction is the impact of the
lensing field non-Gaussianities on its estimators. Non-linear matter clustering and post-Born lensing
corrections are known to bias standard quadratic estimators to some extent, most significantly so
in temperature. In this work, we explore the impact of non-Gaussian deflections on Maximum
a Posteriori lensing estimators, which, in contrast to quadratic estimators, are able to provide
optimal measurements of the lensing field. We show that these naturally reduce the induced non-
Gaussian bias and lead to unbiased cosmological constraints in ΛCDM at CMB-S4 noise levels
without the need for explicit modelling. We also test the impact of assuming a non-Gaussian prior
for the reconstruction; this mitigates the effect further slightly, but generally has little impact on the
quality of the reconstruction. This shows that higher-order statistics of the lensing deflections are
not expected to present a major challenge for optimal CMB lensing reconstruction in the foreseeable
future.

I. INTRODUCTION

Gravitational lensing of the cosmic microwave back-
ground (CMB) is one of the leading cosmological probes
of the next generation of CMB polarization surveys such
as Simons Observatory (SO) [1] and CMB-S4 [2]. Maps
of the CMB lensing potential and its summary statistics
can provide clean and robust probes of the large-scale
structure (LSS) in the Universe and allow to constrain
cosmological parameters that govern the LSS growth
and to which CMB anisotropies alone are weakly sen-
sitive (for example neutrino mass, dark energy proper-
ties, curvature) [3–6]. On the other hand, galaxy surveys
in different wavelengths probing the same LSS distribu-
tion (through galaxy clustering, weak lensing or intensity
mapping) are also expected to extract complementary
cosmological information on the LSS growth, or on pri-
mordial non-Gaussianities. Through galaxy-CMB lens-
ing cross-correlations we will be able to marginalize over
some observational systematics (e.g. shear multiplica-
tive bias) [7–9], or modeling uncertainties (e.g. galaxy
bias, magnification bias) [10–12]. Masses of high-redshift
galaxy cluster samples can also be calibrated with the
highest sensitivity through stacking of CMB lensing maps
at location of the clusters. and later used to probe
cosmology through their mass function [13–15]. Addi-
tionally, CMB lensing maps can also be used to pre-
dict and subtract the lensing-generated B-mode signal of
CMB polarization to enhance constraints on inflationary
physics achievable through precise measurements of the
primordial B-mode signal on large angular scales [16, 17]
Given the importance and diversity of the science case

connected to CMB lensing, it is crucial to understand all
the properties and shortcomings of statistical estimators
employed to reconstruct maps of the CMB lensing po-
tential from the observed maps of the CMB anisotropies.
The most commonly employed technique used for this
purpose is the so-called quadratic estimator (QE) [18].
This uses the breaking of statistical isotropy introduced
by the projected matter potential field into the observed
CMB to reconstruct the lensing modes through weighted
couplings between pairs of harmonic modes of the ob-
served CMB itself. Such technique has been used to
derive the most sensitive measurements in the field so
far from the Planck satellite data or ground-based CMB
polarization experiments such as ACTpol, SPTpol, Po-
larbear and BICEP [19–25].

Extensive effort has been recently carried out to eval-
uate the sensitivity to the QE to noise anisotropies, in-
strumental systematics, galactic and extragalactic fore-
grounds, and suitable modification have been proposed
to minimize their impact in the final reconstructed lens-
ing map and power spectrum for future experiments [25–
31]. But for very deep surveys such as CMB-S4, the
QE is expected to be suboptimal since it only accounts
for the lensing coupling at linear order. Several addi-
tional methods that account for the full lensing informa-
tion have been proposed. These advocate either sam-
pling techniques [32–34], iterative maximum likelihood
[35] or Maximum a-Posteriori (MAP) estimates [36] to
reach the lowest possible reconstruction noise for future
measurements of the lensing potential and of its power
spectrum. MAP estimators in particular offer the ad-
vantage of a reduced computational cost compared to
sampling or iterative spectrum reconstruction methods
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and have so far been employed successfully on data cov-
ering large sky fraction. Very deep polarization obser-
vations of Polarbear were used to validate for the first
time the performances of MAP estimates for joint lens-
ing reconstruction and delensing analyses [37]. Similar
results have then been achieved by sampling methods on
the SPTpol data [38]. Recent work also showed how to
achieve unbiased measurements of the CMB lensing spec-
trum from MAP estimates accounting for residual noise,
normalization biases and mean field effects induced by
noise anisotropies and masking, even in presence of mis-
characterization of the data statistical properties [39, 40],
so that it is now possible to start investigating biases
induced by foregrounds and theoretical assumptions em-
ployed in the design of this new class of lensing estimator.
In this work we focus our attention in particular on
the assumption of the Gaussianity of the CMB lensing
field for iterative MAP CMB lensing reconstruction. As
shown in previous work of [41–43], non-Gaussian effects
induced by the non-linear evolution of the LSS and post-
Born lensing corrections due to multiple photon deflec-

tions [44] can bias the QE reconstruction (N
(3/2)
L bias)

and in turn affect the constraints achievable on cosmo-
logical parameters, in particular on the total mass of neu-
trinos [42]. Such bias becomes more important when cor-
relating CMB lensing with external LSS tracers [45].

In Sec. II we review the properties of MAP estima-

tor and N
(3/2)
L for the QE. In Sec. IV we measure the

N
(3/2)
L bias in the MAP estimator, comparing it to the

QE results and assess its importance for future surveys.

In Sec. VI B we evaluate the impact N
(3/2)
L on cosmologi-

cal parameters and cross-correlation science and propose
mitigation strategies.
In the following we use the standard convention and de-
note CMB lensing multipoles (L,M) and CMB multi-
poles with (ℓ,m). We will also mention in the discussion
the CMB lensing convergence κ, defined in function of the
CMB lensing potential ϕ in real and harmonic domains
as

κ(n̂) = −∇2

2
ϕ(n̂) (1)

κLM =
1

2
L(L + 1)ϕLM (2)

II. LENSING RECONSTRUCTION AND
NON-GAUSSIAN DEFLECTIONS

In this section, we provide background information on
the lensing reconstruction methods we employ and offer
a brief recap of the origin of the non-Gaussianity induced
bias in the CMB lensing estimates.

First, we summarize the Maximum A Posteriori
(MAP) CMB lensing estimator. For more details, we re-
fer the reader to [46, 47] for the specific implementation
we use.

A. Lensing reconstruction from the MAP
estimator

To obtain the MAP estimator [46, 48, 49] we will start
by modelling the observed CMB as

Xdat = BDαX + n, (3)

where Dα is the lensing operator mapping the primor-
dial CMB X into the lensed CMB through the deflection
α [48], B a linear response matrix that includes the beam,
and n the noise, that we assume to be uncorrelated with
the CMB; in this work we will ignore foregrounds, and
consider only experimental noise.

The goal of the MAP estimator is to derive a maximum
a posterior estimate of the CMB lensing field, given the
data, by maximising the posterior

p(α|Xdat) ∝ p(Xdat|α)pα(α) , (4)

given the likelihood p(Xdat|α) and a prior pα(α). For
simplicity, due to the monotony of the natural logarithm,
from now own will take the natural logarithm of probabil-
ities, and so maximing it will be equivalent to maximizing
the original quantities.

We will assume a Gaussian log-likelihood for the data
[46]

ln p(Xdat|α) = −1

2
Xdat ·Cov−1

α Xdat− 1

2
det Covα+const

(5)
with a covariance

Covα = ⟨XdatXdat,†⟩ = BDαC
unlD†

αB† + N , (6)

where Cunl and N are the covariance of the unlensed
CMB and that of the noise respectively, and we explicitly
specify that the covariance has a structure that depends
on the realization of the deflection angle α.

For now we will ignore the curl of the deflection field
α, and we consider only its gradient mode. We can
parametrize with κ, such that the final log-posterior for
κ can be written as

−2 ln p(κ|Xdat) = Xdat · Cov−1
α Xdat + det Covα

+
∑

LM

κLMκ†
LM

Cκκ
L

(7)

up to irrelevant constants.
The CMB lensing estimator is then derived by requir-

ing the gradient of the posterior, Eq. (7), to vanish. To
solve for this, we will follow [46] and employ an iterative
scheme starting from the standard quadratic estimator to
finally obtain an estimate of the lensing potential field.
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In particular, the calculation of the gradient of the like-
lihood gives a term that is quadratic in the data, which
we will refer to as gQD, and is given by the product of an
inverse variance weighted field, and a deflected Wiener-
filtered one [46]

gQD(n̂) = −
(
B†Cov−1

α Xdat
)

(n̂) (8)

·
(
DαðCunlD†

αB†Cov−1
α Xdat

)
(n̂) ,

where ð is the spin-raising operator.
The gradient of the likelihood also introduces a mean

field term which, in the absence of other sources of
anisotropies, represents the anisotropy introduced de-
lensing the noise map by the estimated α in the
quadratic gradient [46]. This term predominantly
produces dilations (convergence-like) rather than lo-
cal anisotropies (shear-like) terms, hence generally very
small for polarization-only estimators [47]. However, it is
larger for temperature estimators, possibly contributing
up to 10−20% to the cross-spectrum with the input field.
For further exploration of this impact, a brief discussion
is presented in Appendix A, while a more detailed study
is deferred to further work.

B. Lensing reconstruction from the QE estimator

The standard quadratic estimator (QE) [18] can be
easily obtained from this likelihood perspective. If one
writes the gradient (‘gα’) to linear order in α, and forces
it to vanish, one obtains an estimate α̂ defined by:

gα ≈ gQD
α=0 −Hα=0 α̂ = 0. (9)

In this equation, H (the Hessian) is minus the second
derivative of the log-likelihood function. Taking instead
of the realization-dependent curvature its average of data
realizations, α̂ will be quadratic in the data. This aver-
age is a Fisher matrix calculated at no deflection, and
is identical to the quadratic estimator response function
calculated in the standard manner [18].

In this case, the unnormalized estimate gQD
α=0 of the

CMB lensing field is given by the product of an inverse-
variance-weighted field, and an undeflected Wiener-
filtered one

gQE(n̂) = (10)

−
(
B†Cov−1

α=0X
dat

)
(n̂)

(
ðCunlB†Cov−1

α=0X
dat

)
(n̂) .

(11)

This is similar to the quadratic part of Eq. (8), but for
the absence of all deflections: the gradient part in (8) is
deflected, because the iterative estimate works by cap-
turing the residual lensing at the unlensed position, and
then remapping back to give the estimate at the observed
locations [50].

C. Non-Gaussian deflections effect on the
reconstruction

The autospectrum of an estimated normalized QE
CMB lensing map then results in

Cϕ̂ϕ̂
L ≈ Cϕϕ

L + N
(0)
L + N

(1)
L + N

(3/2)
L + ... , (12)

where the total estimated power spectrum Cϕ̂ϕ̂
L has

contributions from the signal of interest itself Cϕϕ
L ,

from chance Gaussian fluctuations N (0) [3], from addi-
tional secondary lensing contractions N (1) [51], and non-

Gaussian contributions N
(3/2)
L . These are induced by

non-zero higher order statistics in the CMB lensing po-
tential, arising from non-linear growth of structure and
post-Born lensing [44].

The study of these effects on the estimate of the CMB
lensing potential has been thoroughly studied for the
quadratic estimator [41–43, 45]. They mainly arise due to
a non-zero response in the auto-spectrum to the presence
of a bispectrum term of the lensing potential.

For next generation surveys, such as CMB-S4 [2], the

N
(3/2)
L bias, if unaccounted for, can lead to 1-2σ induced

biases in cosmological parameters [42] such as the sum
of neutrino masses, or have a large impact on cross-
correlations with external matter tracers such as galaxy
clustering or lensing [45]. 1 While methods to mitigate
these effects has been proposed, such as using polariza-
tion data only (by excluding temperature information
that often leads to large biases), or alternative quadratic
estimators, such as bias hardened ones [45, 52], these will
not be able to fully harness the statistical power of up-
coming CMB data as the MAP estimator does. Indeed,
for low noise and high resolution experiments, the MAP
will be able to reconstruct the lensing potential to the
highest significance [39, 46], and therefore it is impor-
tant to assess its potential in dealing with known lensing
QE biases.

In this paper, we will focus on the quality of recon-
struction of the MAP estimator, specifically examining
its performance in the presence of non-Gaussian contri-
butions. Our primary focus will be on the lensing auto-
spectrum, which serves as the main observable for CMB
lensing analyses. We additionally present results for the
lensing cross-spectrum with the input lensing potential.
We plan to investigate the effect on cross-correlations for
MAP with large-scale structure surveys in future studies
(as it was done for the QE case [45]).

Finally, we also present simulations results demon-
strating the robustness of the bias hardening technique
[52] to the non-Gaussian bias.

1 See Section VIB for an updated discussion on the bias induced
on the sum of neutrino masses.
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III. MEASUREMENT SETUP

A. Experimental setup

We consider acrudely CMB-S4 wide-field-like exper-
imental setup [2]. The assumed observed sky frac-
tion is 40%, and the noise is modelled for simplicity
as a homogeneous and isotropic white noise, with a
noise level after component separation of NT

lev (NP
lev) =

1(
√

2)µK − arcmin for the temperature T (polarization
P ), and a beam modelled as a Gaussian with full width
at half-maximum of 1 arcmin. Our focus is to assess
the fundamental performance of the MAP to the non-
Gaussianity of CMB lensing, though it is worth noting
that, at the small CMB scales considered here, extra-
galactic foregrounds will play an important role in tem-
perature data.

These will still play a key role for future CMB lens-
ing measurements like Simons Observatory [1], and are
potentially the most sensitive reconstruction channel at
even lower noise levels, provided scales deep enough in
the damping tail of the CMB spectrum can be used,
where the lensing effect is large. Figure 1 shows fore-
casts2 for MAP estimators involving different data com-
binations in our baseline configuration, assuming CMB
modes up to ℓmax = 4000 are used in the reconstruction.
The polarization data on its own can reach a nominal
precision of 0.25% on the spectrum using L ≤ 1500 with
the iterative approach, and provided all sources of fore-
grounds and complications are under control, one can
push to slightly less than 0.2%.

500 1000 1500 2000 2500 3000 3500 4000

L

0

100

200

300

400

500

S
N

R

TT

Pol

MV

FIG. 1. Predictions of the signal to noise ratio, defined in
Equation 50, on the lensing auto spectrum for different lensing
estimators, for our baseline CMB-S4 wide-like configuration,
with ℓmax = 4000. Dashed is the standard QE and solid the
MAP estimator. The temperature-only, polarization-only and
minimum variance estimators are shown in red, orange and
blue respectively.

2 The MAP curves were calculated using 5 iterations, with theoret-
ical reconstruction noise calculated using the plancklens code.

To extract the N
(3/2)
L bias we will consider different

kind of simulations, classified based on the nature of the
input convergence field. To remove unphysical effects
that could come from finite number of particles in the N-
body simulation used in this work, we keep input lensing
modes up to an Lsim = 5120. Given then an input CMB
lensing map, we use lenspyx [53] to generate lensed CMB
maps deflected with α = ∇ϕ.3 Finally, we convolve the
CMB simulation with the beam, and add a noise real-
ization. The total map Xobs = Xcmb + n will be our
observed map.

We now proceed to describe the sets of deflection fields
used to lens the CMB.

B. Simulated data sets

In order to isolate the relevant effects and test the im-
pact of the assumption of the prior on κ for the lensing
reconstruction, we made use of different sets of simula-
tions, summarized below:

• κtot ≡ κLSS+PB, CMB lensing convergence simula-
tions that include the total effect from LSS non-
linearity and post-Born (PB) effects.

• κLSS, CMB lensing convergence simulations that
include only the effect from LSS non-linearity.

• κX,R, with X ∈ {tot,LSS} where we randomize the
phases of the CMB lensing convergence simulations
that include the total effect from LSS non-linearity
and PB effects, or only LSS if X = LSS.

• κG, Gaussian CMB lensing simulations that include
the exact power spectrum of the raw input conver-

gence field CκXκX

L , X ∈ {tot,LSS}. 4

In addition, in Section III B 2 we will also use log-
normal simulations of κ with a custom third moment γ,
and they will be indicated by κlog, and their randomized
version by κlog,R.

Below we provide more details on each type of simula-
tions.

1. Fully non-linear observables

To model the realistic effect of the non-linear LSS clus-
tering of matter and the effect of post-Born corrections on

3 https://github.com/carronj/lenspyx
4 Though we generate Gaussian simulations with CMB lensing
power spectra matching the total and LSS only cases, we note
that the impact of post-Born corrections on Cκκ

L has been proven
to be negligible at the level of accuracy considered in this work,
at the 0.25% level at L = 8000 [44, 54].Therefore one might only
use only Gaussian simulations with LSS only spectra.

https://github.com/carronj/lenspyx
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lensing observables we used the full-sky maps of the CMB
lensing and curl potential of [54]. These were constructed
using a multiple-lens plane raytracing algorithm [55] with
lensing planes constructed from a ΛCDM simulation of
the DEMNUni suite. This was designed to study the im-
pact of massive neutrinos on the universe evolution and
its interplay with different dark energy models [56, 57].
The ΛCDM simulation used a Planck 2013 cosmology
with massless neutrinos

{Ωcdm,Ωb,ΩΛ, ns, σ8, H0,Mν , τ} = (13)

{0.27, 0.05, 0.68, 0.96, 0.83, 67 Km/s/Mpc, 0, 0.0925},

and sampled the matter distribution with 20483 dark
matter particles in a volume of 2Gpc/h between z = 99
and z = 0. The mass resolution of the simulation at
z = 0 is MCDM = 8.27 × 1010M⊙/h. The details of the
full-sky lightcone construction from the finite volume of
the N-body simulation are provided in Refs. [58, 59]. The
output of the lightcone construction consists in 62 surface
mass density planes Σθ(k) including the mass contained in
spherical shells of comoving thickness ∆χ ≈ 150 Mpc/h
that are used to construct k-th CMB lensing potential
convergence plane as

∆
(k)
Σ = Σθ(k)/Σ̄θ(k) − 1. (14)

κ(k)
χCMB

= 4πG
Da(χCMB − χk)

Da(χCMB)

(1 + zk)

Da(χk)
∆

(k)
Σ (15)

where Da is the angular diameter distance and χCMB , χk

are comoving distances to the CMB and to the k-th lens-
ing plane respectively. The simulation neglects the mat-
ter distribution at 99 < z ≤ 1089 without any effec-
tive loss in accuracy. The lensing convergence planes can
then be summed together to obtain the lensing potential
in Born approximation (κLSS) following [60] or used to
propagate the full lensing distortion tensor beyond the
Born approximation as discussed in [54] and obtain also
maps of CMB κtot and lensing rotation ω which arises
from coupling between subsequent lensing events. The
fact that both Born and post-Born lensing maps are de-
rived from the exact same matter distribution allows to
disentangle the impact of each of the specific term as any-
thing depending on κtot − κLSS will isolate the effect of
post-Born corrections alone. The pipeline is general and
can be adopted for lensing planes located at χs different
from the CMB. We refer the reader to [54, 61] for more
technical details of the raytracing procedure used here.

2. Log-normal simulations

The main relevant effect for our study is the bispec-
trum signal introduced in the N-body derived conver-
gence map. For comparison, it will be useful to gener-
ate simpler maps that introduce a connected higher than
two order correlation function, such as log-normal simu-
lations. These are much cheaper to produce and better

understood analytically compared to full N-body simu-
lations, while allowing to tune the skewness of the gen-
erated map to match the value found in the full N-body
simulation.

We follow the methods of [62] to produce our log-
normal simulations.5 We model the CMB lensing with a
shifted lognormal field:

κlog(n̂) = eZ(n̂) − λ (16)

where Z is a Gaussian random field with mean µ and
variance σ2, and λ a shift parameter. These values are
calculated in such a way to match a desired power spec-
trum and skewness calculated from a band-limited map.
We relate the moments of the desired map µκlog , σ2

κlog ,
and γκlog to the parameters µ, σ, and λ to generate the
log-normal simulation (see e.g. [62])

To obtain the desired log-normal field, we first calcu-
late the correlation function of the convergence field, and
obtain from it the correlation function of the Gaussian
field Z according to [62]

ξZ = ln

(
ξκ

α2
+ 1

)
(17)

where α = µκlog + λ > 0. We then generate the zero
mean Gaussian field Z−µ, from the power spectrum CZ

l ,
obtained from ξZ ,6 using Healpy [63, 64].7 Finally, we
go back to real space and obtain

κlog(n̂) = eZ(n̂) − λ, (18)

where eµ = (µκlog + λ)e−σ2/2, with σ2 = ξZ(0) is the
variance of the Gaussian field Z. The generated maps
are saved at the same resolution NSIDE = 4096 of the
N-body convergence simulation, and are then processed
with the same pipeline. In Figure 2 we show on the top
panel an histogram of the non-Gaussian input and log-
normal maps, and on the lower panel the third moment
for the different simulations used in this work. As we
will discuss in detail later in the text, the bulk of non-
Gaussian biases is related, to leading order, to the bis-
pectrum of the lensing field and recent work has shown
that shifted-lognormal simulations like the ones adopted
here can provide a moderately accurate approximation
to weak lensing fields’ higher-order statistics [65].

5 As implemented in https://github.com/Saladino93/fieldgen.
6 We use the package https://cltools.readthedocs.io/flt/ to
perform Legendre transforms to quickly switch from/to correla-
tion functions/angular power spectra.

7 healpy.readthedocs.io/

https://github.com/Saladino93/fieldgen
https://cltools.readthedocs.io/flt/
healpy.readthedocs.io/
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FIG. 2. Upper panel : binned histogram of several input
convergence maps. We can see that the histograms from
the LSS and lognormal convergence maps are slightly skewed
compared to the Gaussian and randomized ones. We do not
plot an histogram of a convergence map including LSS+Post
Born effects, though this will have a reduced skewness com-
pared to the LSS only one [54]. Lower panel : The skewness for
different input convergence maps in function of the FWHM
of a Gaussian smoothing. The lognormal case shown here is
built to match the log-normal parameter λ of the LSS map
at fwhm = 0. The values are calculated considering lensing
modes up to Lsim = 5120 where the CMB lensing modes used
to lens the CMB simulations are cut at.

C. Lensing potential reconstruction setup

Unless indicated otherwise, we reconstruct the lensing
potentials for L ∈ (2, 5120) from the generated simula-
tions, using CMB modes in the range ℓT,CMB ∈ (10, 4000)
for T , E and B.

We use delensalot [47]8 for the MAP or QE recon-
struction of the lensing potentials (the QE reconstruction
of delensalot follows plancklens). Unless stated oth-
erwise, throughout the paper the presented MAP results
performed at least 5 iterations, where we find converged

8 https://github.com/NextGenCMB/delensalot

results, in the sense of negligible changes in the derived
spectra of the reconstructed fields.9

For the MAP estimates, reconstruction of lensing po-
tential and the Wiener filtered CMBs are attempted up
to an ℓunl,max = 5120 at each step. The step size used
in the Netwon-Raphson method to updated the iterative
estimates is λ = 0.5, and the tolerance to check for con-
vergence of the conjugate gradient method used for the
inverse variance operation is set to cg tol = 10−7, run-
ning 7-10 iterations per reconstruction.

We renormalize the reconstructed maps as follows: we
do not employ analytical expressions, but use reconstruc-
tions based on observed CMB simulations lensed with the
Gaussian CMB lensing simulations set (κG), and we cal-
culate a normalization factor given by

Wemp,XY
L =

⟨C ĝXY κ
L ⟩sims

⟨Cκκ
L ⟩sims

,

where ĝXY represents an unnormalized CMB lensing
potential reconstruction, and κ the corresponding input
used to lens the CMB simulation.10

We then use this isotropic factor to normalize the
lensing potential estimates from all simulation sets
(κX , κX,R | X ∈ {LSS,T, log} )

κ̂XY
LM =

ĝXY
LM

Wemp,XY
L

(19)

from which we calculate the raw power spectrum

C κ̂XY κ̂XY

L =
1

2L + 1

∑

M

κ̂LM κ̂†
LM . (20)

Finally, to assess the quality of the reconstructions, it
is useful to define the cross correlation coefficient ρL

11.

ρL =
C κ̂XY κ

L√
C κ̂XY κ̂XY

L Cκκ
L

,

9 In the case of temperature, convergence of the results can be
reached earlier though we still keep a larger number of iterations.

10 We checked that for the QE, we get consistent results both with
this method and by using a response function given by CMB
gradient spectra, following [45].

11 By ‘quality’ of the reconstruction we mean here its information
content on the true lensing potential, irrespective of potential bi-
ases (the cross-correlation coefficient is invariant under arbitrary
multiplicative biases in the reconstructed field (small additive
ones can also be cast as multiplicative biases))

https://github.com/NextGenCMB/delensalot


7

IV. N
(3/2)
L BIAS

With the notation now established, we are ready to
calculate the biases associated with the presence of non-

Gaussianity in our CMB lensing fields. The N
(3/2)
L bi-

ases are determined through simulations, specifically by
cross-correlating the estimated CMB lensing field with
another tracer, such as the input CMB lensing potential
itself, or by examining the CMB lensing auto-correlation.
This methodology, as outlined in ([42, 45]) allows us to
quantitatively assess and account for the impact of non-
Gaussian features in our lensing fields. This is achieved
by calculating the difference from the scenario where no
non-Gaussianity is present.

The biases, denoted as N
(3/2)
L , are computed through

the following expressions:

Total : N
(3/2)
L = ⟨Ĉϕ̂XY ϕext

L [κtot] − Ĉϕ̂XY ϕext

L [κtot,R]⟩CMB

LSS : N
(3/2)
L = ⟨Ĉϕ̂XY ϕext

L [κLSS] − Ĉϕ̂XY ϕext

L [κLSS,R]⟩CMB

PB : N
(3/2)
L = ⟨Ĉϕ̂XY ϕext

L [κtot] − Ĉϕ̂XY ϕext

L [κLSS]⟩CMB .
(21)

We denote ϕext either the input lensing field or the

reconstructed field ϕ̂XY itself. The angle brackets sig-
nify the average over lensed CMB simulations. To gauge
the reliability of our measurements, we will compute the
scatter in the biases from these simulations to obtain the
uncertainty on the mean measurement. Our subtraction
method ensures that simulations which are differentiated
in these equations share identical primordial CMB and
noise, mitigating realization-dependent biases and cosmic
variance effects.

In Figures 3 and 4 we show the N
(3/2)
L bias for the

CMB lensing autospectrum and cross-spectrum with the
input, respectively. The shaded areas are computed from
the scatters on the mean of the simulations, while grey
area represent statistical error bars as calculated from
the diagonal of the covariance matrix

CLL′ =
2δLL′

(2L + 1)fsky

(
Cϕϕ

L + N
(0)
L + N

(1)
L

)2

. (22)

In Figure 3, it is evident that, for the lensing autospec-

trum, the N
(3/2)
L bias of the MAP estimator shows a

lower absolute value compared to the QE estimator for
L ≤ 1800. Specifically, at the scales presented, the LSS

effect in the QE tends to suppress power in the recon-
structed potential. This effect is alleviated in the MAP
for all estimators except on the smallest scales. The sit-
uation is similar, but with the opposite sign, for the PB
bispectrum effect. This results in partial cancellation be-
tween the two effects for the total contribution for both
the QE and MAP. Similar conclusions are achieved with
the cross-spectrum with the input lensing potential as
depicted in Figure 4.

Both MAP and QE estimators share the characteristic
that the total bias effect depends on the combination of
used data. Specifically, in the minimum variance com-
bination, the polarization estimator dominates at lower
modes L ≤ 1500, while the temperature one dominates
at higher L’s.

Finally, a distinct feature is the noticeable steep rise in
the bias of the MAP estimator for the LSS cases, partic-
ularly in the TT and MV combinations, evident in both
the auto and cross spectra. While the specific origin of
this rise remains uncertain, we validated our bias method
by assessing Gaussian simulations with no LSS bias and
randomized ones. We checked that the difference is con-
sistent with zero. Therefore this rise at small scales in the
MAP might be due non-Gaussanities, or from the choice
of normalisation of the maps (obtained from Gaussian
simulations). To investigate the choice of normalisation,
we consider the cross-correlation coefficient of the recon-
structions with their respective inputs

ρX =
⟨C κ̂κ

L ⟩√
⟨C κ̂κ̂

L ⟩⟨Cκκ
L ⟩

(23)

where ⟨.⟩ denotes the average over sims. This quantity
does not require any normalisation, and it is related to
the faithfulness of our reconstruction to the input. We
assume that we can directly take the difference of the
cross-correlation coefficient with the corresponding input
for the LSS non-Gaussian MAP vs the Gaussian MAP
estimates, as shown in Figure 5.

As expected, we can see that on large scales the Gaus-
sian case reconstruction is better correlated with the in-
put, for both the QE and MAP cross-correlation differ-
ences. While on small scales, L > 1500, interestingly we
see a small rise in the difference with the cross-correlation
coefficient of the MAP of the non-Gaussian case. This
might be related to additive terms that we test in Section
IV B 2.

A. Simple theory calculations

Given the complexity of beyond-the-QE reconstruc-
tion, a comprehensive analytic treatment of the theory

curves for the MAP-N
(3/2)
L bias seems out of reach. Nev-

ertheless, we can proceed by analogy with quadratic es-
timator theory to obtain some curves that matches rea-
sonably well our findings.

We will focus on the simpler case of the cross-
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FIG. 3. Fractional N
(3/2)
L bias on the CMB lensing auto-correlation for a CMB-S4 like configuration, as described in the text.

This is calculated by averaging over 64 realization of the input CMB primordial field. We show results for the LSS only,
post-Born (PB) and full cases in blue, green and red, respectively. In grey and light grey we show the statistical error bars for
MAP and QE respectively. We bin the spectra from Lmin = 30 to Lmax = 3000 with a wide binning of around 140.
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FIG. 4. Same as Figure 3 but for the cross-spectrum between the reconstruction and the input lensing potential.

correlation of the reconstructed CMB lensing potential

ϕ̂ with the input lensing potential ϕ on the flat-sky:12

N
(3/2),cross
L = ⟨ϕ̂(L⃗)ϕ∗(L⃗)⟩ − ⟨ϕ(L⃗)ϕ∗(L⃗)⟩, (24)

where we assume the reconstruction ϕ̂(L⃗) is unbiased, in

the sense that ⟨ϕ̂⟩ = ϕ. The difference between these two

12 We focus on the cross-correlation with the input, and not on the
reconstruction auto-spectrum, as the former is easier to predict
with respect to the latter. In particular, we perform all of our
studies using CMB modes up to lmax = 4000. Our baseline per-
turbative analytical model for prediciting the QE auto-spectrum,
based on [41, 45], works well only on the largest scales, where we
get the prediction N(3/2),auto ∼ 2N(3/2),cross. This will require
a more careful treatment for future studies.

terms depends predominantly on the bispectrum of the
observed lensing potential Bϕϕϕ(L, l2, l3), where L stands
for the external tracer (here ϕ itself) multipole and l’s for
the ones entering through the CMB modes used for CMB
lensing reconstruction.

For the standard QE CMB lensing temperature-only
estimator, calculations are given in [41, 45]. We briefly
review the rationale here.

A temperature-based quadratic estimator is of the
form

ϕ̂(L⃗) = ATT
L

∑

l⃗

g(⃗l, L⃗)T dat(L⃗− l⃗)T dat(⃗l). (25)

for some normalization ATT
L and weights g(⃗l, L⃗).



9

500 1000 1500 2000 2500 3000

L

−0.02

−0.01

0.00

0.01

0.02
ρ
X L
−
ρ
G

LSS

Randomized LSS

FIG. 5. Difference in the cross-correlation coefficients between
the LSS non-Gaussian (blue), randomized LSS non-Gaussian
(orange) cases with the Gaussian case, for the TT estimator.
In solid (dashed) we have the MAP (QE). We can see that the
difference with randomized (orange) is consistent with zero.
While as expected, the non-Gaussian case is below zero on
large scales. Nevertheless, for the non-Gaussian MAP (blue
solid line), we can see a small rise after L > 1500.

The lensed CMB may be perturbatively expanded in
a series with respect to the lensing potential, leading to

T = Tu + δTu + δ2Tu + O(ϕ3) , (26)

where Tu is the unlensed CMB, and δnTu depends on
the lensing potential power n [3].

On evaluating the cross-correlation (24),

⟨ϕ̂(L⃗)ϕ(−L⃗)⟩ ∼ ⟨T (L⃗− l⃗)T (⃗l)ϕ(−L⃗)⟩ , (27)

the lensing potential bispectrum will give rise to the

N
(3/2),cross
L ,

N (3/2),cross ∼ ⟨δTuδTuϕ⟩ + 2⟨Tuδ2Tuϕ⟩ . (28)

The full expression for the temperature case, includ-
ing to a good approximation non-perturbative lensing
remapping effects [45], is

N
(3/2),cross
L = ATT

L

∫

l⃗1

Bϕϕϕ(L, l1, |L⃗− l⃗1|)
∫

l⃗2

g(⃗l2, L⃗)

(
−CT∇T

|⃗l1−l⃗2|[(⃗l1 − l⃗2) · l⃗1][(⃗l1 − l⃗2) · (L⃗− l⃗1)]

+ CT∇T
l2 [⃗l2 · l⃗1][⃗l2 · (L⃗− l⃗1)]

)
.

(29)

The spectra CT∇T
l are here the same lensed gradient

spectra that enters the non-perturbative lensing response
functions.

Let’s discuss how we connect the MAP bias to this rep-
resentation. Reference [39] demonstrated through simu-
lations that the converged CMB lensing MAP solution

power spectrum (for polarization at least) can be accu-
rately described as a quadratic estimator with partially
lensed CMB spectra. These spectra can be obtained us-
ing an iterative scheme initially proposed for the EB es-
timator by [17]. Hence, it is natural to test this recipe

for N
3/2
L as well.

In this picture, the lensing potential entering the CMB
legs are now given by the unresolved, residual lensing
map

ϕ̂res
LM ≡ (1 −WL)ϕLM . (30)

We then make use of the same flat-sky prediction
Eq (29), but with the substitution

Bϕϕϕ(L, l1, l3) → Bϕϕϕ(L, l1, l3)(1 −Wl1)(1 −Wl3).

where l⃗3 = L⃗− l⃗1, and W is the Wiener-filter. The nor-
malization ATT

L is the standard quadratic estimator nor-
malization but calculated with partially lensed gradient
spectra, and CT∇T

l are also calculated with the partially
lensed spectra.

In Figure 6 we show the result of this naive calcula-
tion, compared to simulations.13. For simplicity we con-
sider the case of temperature only. On the upper panel
we show the LSS-only case, where N3/2 is stronger than
with the total bispectrum, shown in the lower panel. It
assumes a LSS bispectrum calculated at the tree level
in perturbation theory with corrections coming from [66]
(though an improved version can be found in [67]). The
Post-Born corrections are based on [44]. See the Ap-
pendix of [45] for a short review.

We can see that on a wide range of scales this simple
predictive scheme is able to recover the estimated biases
from simulations, validating the understanding that the
bispectrum of the CMB lensing field correctly describe
the bias also in the case of the iterative estimator. In
the LSS-only case, and on small scales, the prediction
deviates significantly from our findings in simulations. In
Section IV B 2 we check that its origin is not from higher
even CMB lensing connected n-point functions.

B. Consistency and robustness tests

To have a better understanding of our reconstructions
and validate our pipeline, we perform a series of con-
sistency checks to explore possible residuals in our esti-
mates, specifically those of higher order than the bispec-
trum residuals.

1. Joint reconstruction with lensing field rotation

In this section we test the impact of post-Born lensing
rotation on the MAP reconstructions.

13 The code to calculate these biases is based on https://github.

com/Saladino93/lensbiases.

https://github.com/Saladino93/lensbiases
https://github.com/Saladino93/lensbiases
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FIG. 6. Approximate theory calculation for the N
(3/2)
L bias

on the CMB lensing cross-spectrum. In blue, we show results
for the quadratic estimator, and in red for the MAP recon-
struction. The MAP predictions are obtained from the naive
analytic prescription given in the text. This is for our CMB-
S4-like reconstruction from temperature.

The CMB lensing deflection vector field α⃗(n̂) can be
written thanks to the Helmholtz decomposition in flat-
sky notation as

α⃗(n̂) = ∇⃗ϕ(n̂) + ∇⃗ × Ω(n̂) , (31)

On the full-sky, the decomposition is compactly written
using the spin-weight formalism,

1α(n̂) = −ðϕ(n̂) − iðΩ(n̂), (32)

where Ω is the lensing curl potential, and

ω(n̂) = −∇2Ω(n̂)

2

ωLM =
1

2
L(L + 1)ΩLM

(33)

is the lensing field rotation; the angle by which tiny local
images are rotated by lensing. The leading rotation is
induced by post-Born lensing, that couples pair of non-
aligned shearing lenses at different redshifts, producing
in this way a net rotation. For a single deflection or
in the Born approximation the rotation is null. Non-
zero bispectra of the kind κκω or κωω [44, 54] are also
generate at higher perturbative orders. The amplitude of
the rotation field power spectrum is about 3 to 4 orders
of magnitude smaller than the one of κ [35, 44] on the
scales considered here.

The simulations of [45, 54] naturally include the ro-
tation component of CMB lensing. We use this field in
combination with the post-Born convergence map to es-
timate the lensing potentials in the presence of a curl-like
displacement using either a joint ϕ-Ω optimal reconstruc-
tion (the differences to the standard ϕ-only algorithm are
minors and described in [47]), or completely neglecting
Ω in the reconstruction.

We can then estimate the effects in the N
(3/2)
L bias

coming from the mixed-bispectrum terms κκω, κωω as :

Mixed : N
(3/2)
L = ⟨Ĉϕ̂XY ϕext

L [κtot, ω]−Ĉϕ̂XY ϕext

L [κtot]⟩CMB,
(34)

where the first term include the lensing rotation in the
inputs and reconstruction, and the second does not. As
for the biases obtained in previous sections, here we use
64 CMB primordial realizations, and we run the pipeline
up to 10 iterations, though outputs appeared to have
converged starting from the fifth one.

We show in Fig. 7 the N
(3/2)
L biases to the auto and

cross-spectra in the presence of a full deflection field (in-
cluding LSS and post-Born effects in the gradient-like de-
flection component as well as curl-like deflections), com-
pared to a case without curl-like displacement component
in the simulations. We see no statistically significant dif-
ferences.
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FIG. 7. Non-Gaussian N
(3/2)
L lensing biases in the estimated

lensing potential auto-spectra (top panels) or cross-spectrum
to the true lensing (bottom panels), with and without curl-
like deflections in the simulations. In red we show the total
bias that does not include post-Born lensing field rotation
(same as Figure 3), while in orange we show the difference
between the biases obtained including post-Born corrections
for both the gradient and curl component of the deflections
and the red curve. The difference is consistent with zero in
both panels.

2. Sign-flipped κ

At the perturbative level, the N
(3/2)
L bias is propor-

tional to a projected bispectrum on large scales [41]. We
will test this assumption in this section.

Flipping the sign of the lensing potential should flip the
sign of the bias, if it depends the bispectrum that is odd
in the lensing field. For the QE, this argument breaks
down only when using the smallest CMB scales for our
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reconstructions, where perturbative arguments are less
effective (e.g., at ℓmax ∼ 4000 [41]). On the other hand,
the MAP always uses the full likelihood information and,
therefore, higher-order point functions to reconstruct the
lensing field. This also makes the MAP more difficult to
assess analytically compared to the QE. Therefore, we
turn to simulations to check if the MAP bias behaves
significantly differently with respect to the sign of the
input lensing map.

For each of the convergence maps (κG, κLSS, κtot) we
calculate their flipped version

κin,¬
LM = (−1) · κin

LM , (35)

where κin
LM is the reference input CMB convergence

lensing field. We generate then 64 lensed CMB simu-
lations with this flipped lensing potential, and calculate
the half-sum and half-differences

∆XY
± =

〈
1

2

(
N

(3/2)
L [κin

LM] ±N
(3/2)
L [κin,¬

LM ]
)〉

sims

. (36)

for the TT , EE, EE + EB, and MV estimators, and

where the N
(3/2)
L are estimated as explained in Section

IV.
Any contribution from contractions which are even in

the lensing field will appear in the half-sum of the biases,
and similarly for odd terms in the half-differences. Fig-
ure 8 shows these half-sum in blue and half-differences in
orange, for the cross LSS-only reconstruction bias from
temperature. We can see that for MAP and QE re-
constructions we have a small residual in the half-sum
(∼ 0.2%). In particular, the rise at the highest L ob-
served in the previous section is still most likely to an
odd n-point function effect.

To quantify the consistency of these results with a
signal dominated by the bispectrum, we calculate the
probability-to-exceed (PTE) using Welch’s test. This
test compares the means of two simulation sets (κ, sign-
flipped κ) with unequal variances, calculated from sim-
ulation scatters. The input data vector is the average
over simulation measurements for 21 multipole bins over
the range 5 ≤ L ≤ 3000. The results are shown in Ta-
ble I, where the average PTEs over the 21 multipoles
are shown. A test is assumed successful if the PTE is
greater than 0.05. With this definition, the QE MV ,
EB cross-spectrum for PB cases fail, though this is ac-
ceptable given the number of tests performed.

V. ALTERNATIVE CMB LENSING
ESTIMATORS

A. Iterative estimator with a non-Gaussian prior

The conventional iterative estimator for CMB lensing
assumes a Gaussian potential field due to its incorpo-
ration in the prior distribution. However, the observed

FIG. 8. Half-sum and half-differences of N
(3/2)
L biases, built

from a baseline simulation, and a second one flipping the sign
of the input lensing potential, in order to isolate the constri-
butions of even(blue) and odd(orange) n-point functions on
the total bias. The light (dark) colors are the QE (MAP)
reconstructions for ℓmax = 4000, from temperature-only and
LSS bispectrum only.

CMB lensing field exhibits non-Gaussian characteristics
that the standard iterative approach does not directly ad-
dress. In this context, our objective is to accommodate
potential non-Gaussian aspects of the field by proposing
an alternative method for estimating ϕ.

To begin with, we introduce a non-Gaussian prior.
Specifically, we characterize the lensing convergence field
using a log-normal model, as outlined in section III B 2.
This choice establishes the foundation for our new ap-
proach and is motivated by the fact that the log-normal
approximation is a sensible one for moderately non-linear
fields, e.g. [68], [69].

The basic idea is that instead of iteratively solving for
the CMB lensing potential field directly, we iterate over
a posterior that is a function of the Gaussian field whose
exponential gives the CMB lensing convergence field.14

In this case, we will assume a prior on the Gaussianized
field Z, which may be written in harmonic space

−2 ln pZ(Z) =

(
Z2
00 − µ

√
4π

)2

CZ
L=0

+
∑

L≥0,|M |≤L

ZLMZ†
LM

CZ
L

,

(37)
up to irrelevant constants. The un-normalized posterior
can be written as before

p(Z|Xdat) ∝ p(Xdat|Z)p(Z) (38)

14 This allows us to use our baseline MAP pipeline with little mod-
ifications.
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Estimator QE MAP
auto cross auto cross

LSS / TOT / PB LSS / TOT / PB LSS / TOT / PB LSS / TOT / PB
ℓmax = 3000

TT 0.51 / 0.78 / 0.31 0.56 / 0.21 / 0.24 0.89 / 0.51 / 0.98 0.66 / 0.20 / 0.33
EE 0.42 / 0.28 / 0.95 0.44 / 0.63 / 0.56 0.32 / 0.19 / 0.86 0.65 / 0.79 / 0.72
EE + EB 0.11 / 0.17 / 0.69 0.07 / 0.61 / 0.04 0.58 / 0.96 / 0.25 0.10 / 0.28 / 0.10
MV 0.90 / 0.47 / 0.13 0.11 / 0.79 / 0.02 0.20 / 0.10 / 0.94 0.75 / 0.74 / 0.45

ℓmax = 4000
TT 0.97 / 0.87 / 0.88 0.74 / 0.71 / 0.75 0.38 / 0.43 / 0.37 0.25 / 0.09 / 0.36
EE 0.07 / 0.06 / 0.43 0.31 / 0.28 / 0.37 0.52 / 0.29 / 0.74 0.28 / 0.27 / 0.35
EE + EB 0.38 / 0.99 / 0.31 0.15 / 0.44 / 0.14 0.82 / 0.88 / 0.65 0.32 / 0.59 / 0.22
MV 0.42 / 0.96 / 0.14 0.25 / 0.25 / 0.27 0.99 / 0.93 / 0.95 0.77 / 0.73 / 0.79

TABLE I. Averaged over L-bins PTEs for the half-sum tests of the N
(3/2)
L biases. Shown are the temperature, polarization,

their combination, QE and MAP estimators, for N
(3/2)
L auto- and cross spectra.

Subsequently, our objective is to determine the optimal
estimate of Z based on the available data.15

In this case, the total gradient with respect to the
Gaussian field is

gtotZ (n̂) =
δ ln p(Z|Xdat)

δZ(n̂)
= gQD

Z (n̂) − gMF
Z (n̂) + gPR

Z (n̂) ,

(39)
This gradient can be calculated with minimal modifica-
tions to our ϕ-based MAP reconstruction code: using the
chain rule, we have namely

gQD
Z (n̂) − gMF

Z (n̂) =
δ ln p(Xdat|Z)

δZ(n̂)

=

∫
d2n̂′ δκ(n̂′)

δZ(n̂)

δ ln p(Xdat|ϕ)

δκ(n̂′)

= eZ(n̂)
(
gQD
κ (n̂) − gMF

κ (n̂)
)

(40)

We have used in the second line

δκ(n̂′)
δZ(n̂)

= δ
(2)
D (n̂′ − n̂)eZ(n̂), (41)

which follows directly from our definition κ(n̂) = eZ(n̂)−
λ. Finally, the gradients gκ(n̂) are easily obtained in
harmonic space from those of ϕ which the original MAP
reconstruction calculates: from κLM = 1

2L(L + 1)ϕLM

follows for the gradients

gκ(n̂) =

∫
d2n′ δϕ(n̂′)

δκ(n̂)
gϕ(n̂′) (42)

=
∑

LM

2

L(L + 1)
gϕ,LMYLM (n̂). (43)

15 In principle we could also attempt to reconstruct Z jointly with
the parameters µ and λ. This is a complication with no relevance
for what is being tested here however, and we assume fixed fidu-
cial values of µ and λ, and fixed fiducial spectrum CZ

L for the
reconstructions.

Starting from the quadratic estimator solution we then
iterate over estimates of Z in the same manner than the
original code.16

Once the MAP point Ẑ is reconstructed, we apply the
transform to get an unnormalized estimate of the lensing
field,

κ̂log(n̂) ≡ eẐ(n̂) − λ. (44)

which we then normalize in the same way as before, by
rescaling with the inverse averaged cross-spectrum to in-
put Gaussian fields, Eq. (19). We then reconstruct the
biases in the very same way.

The approach we follow (maximizing for Z) does lead
to a slightly different map than if we were maximizing di-
rectly for κ, even if using the same lognormal prior on Z.
This is because the relation between the point-estimates
(44) is nonlinear. Our approach is arguably more natu-
ral than maximizing for κ, and avoids one issue we en-
coutered in preliminary work, which is how to enforce
the lognormality of κ map across iterations: when max-
imizing for κ, one must ensure that κ(n̂) + λ is always
positive at each point, since Z(n̂) is its logarithm.

In Figures 9 we focus on temperature-only reconstruc-
tions, and with the LSS non-linear part of the non-
Gaussianity only, which has the strongest signature.

For each set of curves, the dashed lines show the biases
found in maps with the N-body LSS kappa convergence
map, and the dotted lines the biases found in our sim-
ple lognormal simulated convergence maps with the same
skewness.

In blue and red we have results for the QE and base-
line MAP, respectively, where the reconstruction is done

16 A way to see how the starting point is chosen is the following: if
we take the gradient in Z, gZ , then we require as a first step that:
gZ ≈ gZ0 + FZ0 (Z −Z0) ≈ 0. By exponentiating the expression
that we find for Z we can relate it to κ + λ, and derive that
Ẑ = ln(κ̂+ λ).
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as in the previous section, with a Gaussian prior on κ.
Given the simplicity of the lognormal simulations, it is
remarkable how well they reproduce the N (3/2) bias, par-
ticularly in the MAP case.

In orange, we show the curves obtained from the re-
constructions using the lognormal prior as just discussed.
Again, there are essentially no difference found between
the N-body input (orange dashed) or lognormal input
(orange dotted). Both curves shifts up slightly, reducing
slightly the bias on most signal dominated scales, but
remain qualitatively very similar.

The fact that the lognormal prior improves only mildly
the Gaussian prior is due the fact that we are likeli-
hood dominated, and therefore the MAP reconstruction
is mainly data driven.
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FIG. 9. Comparison of the N
(3/2)
L bias for different variants of

temperature reconstructions. The solid lines use the N -body
LSS map, while the dashed ones a lognormal map with a
similar skewness (at the same input resolution). We show QE
results in blue, MAP results with Gaussian prior in red, and
MAP results with lognormal prior in orange. We see a small
shift upwards between these two choices of priors. The biases
found on lognormal maps match well the ones found on the
LSS input map. The top shows the bias in the auto-spectrum,
and bottom for the cross-spectrum to the true lensing.

B. Bias Hardening

The small-scale CMB temperature is strongly con-
taminated by foregrounds, limiting the use of more
modes to perform CMB lensing reconstruction. Recently,
foreground-mitigating lensing reconstruction methods
have been developed, allowing more robust and power-
ful CMB lensing measurements.

In particular, bias-hardening [52, 70, 71], deprojecting
the response of the CMB lensing QE to a foregrounds
QE, have been used in recent data analyses to extract
cosmological parameters from observations.

At the likelihood level, we can derive the bias-hardened
QE CMB lensing estimator by looking for modulations
in the observed map, going beyond the CMB and noise,
that could be attributed to point sources.

We imagine to model our data in pixel space as

Xdat = BDαX + BS + n , (45)

where S is some source field. From this equation, the
pixel-pixel covariance is

C ≡ ⟨XdXd,†⟩ = Covα⃗,S2 = BDαC
unlD†

αB†+BS2B†+N
(46)

assuming no cross-terms between CMB, the source, or
the noise terms. We can see that at the covariance level
the source term induces a variance that is larger than the
expected one from just experimental noise.

The log-likelihood becomes then

L ≡ lnL(Xdat|α⃗, S2) = −1

2
Xdat·Cov−1

α⃗,S2X
dat−1

2
det Covα⃗,S2 .

(47)
To derive the bias-hardened estimator, we adopt a

method akin to the standard quadratic estimator. We
start by nulling the gradients for both the lensing poten-
tial ϕ and the source term variance S2, expanding around
(ϕ, S2) = (0, 0) using a first-step Newton iteration:

G⃗ϕ,S2 ≈ G⃗0,0+F0,0

[
ϕ
S2

]
≈ 0 →

[
ϕ
S2

]
≈ F−1

0,0 G⃗0,0 , (48)

where the total gradient of the log-likelihood G⃗ =
[∂L∂ϕ ,

∂L
∂S2 ]T is approximated by its value at (ϕ, S2) =

(0, 0), G⃗0,0, and a curvature matrix F0,0. The latter,
encapsulates the responses Rab of the estimator for a to
the presence of b, with a, b ∈ ϕ, S2.

In Figures 10, 11 we show results for the N
(3/2)
L bias

from our simulations using a bias-hardened estimator
against a point source. We can see that, compared to
the QE, the bias hardening estimator mitigates the im-
pact of the non-Gaussian bias, confirming analytical ex-
pectations of [45]. This suggests a bias-hardened MAP-
solution might also be helpful, which just adds a prior to
Equation 47, which is work in progress.

VI. IMPACT OF N
(3/2)
L FOR COSMOLOGICAL

ANALYSES

We now turn to the impact of the bias for parameter
inference.
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FIG. 10. Auto-spectrum N
(3/2)
L biases induced by the non-

Gaussian LSS-only map on several lensing reconstructions; in
dashed we have the QE, in blue, and the bias hardened QE,
in purple. The solid line is the MAP. The QE BH is able
to mitigate the bias on large scales on a similar level to the
MAP estimator, at a small cost in signal to noise compared
to the QE. On the left panel, results with temperature data
only, while and on the right including polarization too.
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FIG. 11. Similar to Figure 10 but for the bias in cross-
correlation to the true lensing. After bias-hardening, the

quadratic estimator also shows a somewhat reduced N
(3/2)
L

bias.

A. Bias in the lensing amplitude

In this subsection we estimate the bias in the ampli-

tude of CMB lensing power spectrum due to N
(3/2)
L . We

assume that the covariance matrix of the CMB lensing
power spectrum is diagonal and is given by

CLL′ =
2δLL′

(2L + 1)fsky

(
Cϕϕ

L + N
(0)
L + N

(1)
L

)2

. (49)

We report the signal to noise ratio of the CMB lensing
power spectrum between multipoles Lmin and Lmax as

SNR =

√√√√
Lmax∑

Lmin

Cϕϕ
L C−1

LL′C
ϕϕ
L′ . (50)

This signal to noise ratio is exactly the square root of
the Fisher information matrix on the amplitude of the
CMB lensing spectrum. The inverse of this SNR thus
gives the expected constraint on the amplitude of the
CMB lensing spectrum if we only vary this parameter.

We show on the upper panel of the Figure 12 the signal
to noise ratio as a function of the maximum lensing scale
considered. We see that for the noise levels considered,
the polarization estimator brings the most information,
but the temperature estimator cannot be neglected. The
MAP estimator performs particularly better than the QE
especially in the polarization channel. We see that for
the polarization, the information gain saturates above the
scale L ∼ 1500, while it still grows up to L ∼ 3000 for the
temperature and minimum variance estimators. This is
an important point as future lensing analyses, including
cross-correlations with large scale structure, will be able
to push the signal to noise to high significances, provided
that systematic and modelling treatments are accurately
handled.

We estimate the bias in the CMB lensing amplitude as
in [72]:

b(AL) =
1

SNR2

Lmax∑

Lmin

∆AL , (51)

with

∆AL = N
(3/2)
L C−1

LL′C
ϕϕ
L′ . (52)

We show in the Table II the bias on the lensing
amplitude for the different estimators with Lmin = 0,
Lmax = 4000, including both the LSS and post-Born ef-

fects in N
(3/2)
L . We see that the MAP seems to be almost

unbiased on temperature and polarization, but has an al-
most 1σ bias on the minimum variance combination.

We show in the lower panel of the Figure 12 the bias
∆AL as a function of scale. As it can be seen from this

figure, the N
(3/2)
L introduce a scale dependent bias. In

some cases, the N
(3/2)
L bias flip signs. This lowers the

sum in Eq. 51, and thus gives a low bias despite a large
absolute value for some given scales. This is the case
for the QE in polarization, which has a negative bias for
L ∈ [300, 1200] and positive outside, and for MAP in
temperature, which is negative for L < 1500 and posi-
tive above. This scale dependent bias, which seems to
be more important for the MAP than for the QE, could
bias the measurements of cosmological parameters that
are sensitive to the shape of the lensing spectrum. How-
ever, as the total bias almost cancels-out, the parameters
combinations sensitive only to the amplitude of the lens-
ing power spectrum should in principle be immune from
shape changing effects.

B. Cosmological parameters

We now estimate the biases on cosmological param-

eters if one does not take into account the N
(3/2)
L bias

in the analysis. We focus on the sum of the neutrino
masses, as this is a key science goal of CMB-S4. We con-
sider the temperature only (TT), the polarization only
(Pol), and the combined (MV) estimators, for both QE
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FIG. 12. Upper panel: Signal to noise ratio on the lensing
power spectrum as a function of the maximum scale consid-
ered. We show the QE in dashed lines and the MAP in plain
lines. The temperature only, polarization only and minimum
variance are respectively in blue, orange and green. Lower
panel: Bias on the lensing power spectrum amplitude as a
function of scale, for the different estimators considered, in-

cluding both the LSS and post-Born effects in N
(3/2)
L .

Bias TT Pol MV
QE −3.7σ 0.07σ −2.13σ
MAP −0.36σ −0.12σ 0.93σ

TABLE II. Bias on the lensing power spectrum amplitude,
estimated from the Fisher matrix, given in terms of number
of sigmas, including both the LSS and post-Born effects in

N
(3/2)
L .

and MAP. Our fiducial cosmology is the Planck FFP10
cosmology17, with one massive neutrino of 0.06 eV.

Our analysis combines the CMB lensing spectra, the
primary (unlensed) CMB spectra and the BAO. We as-
sume that all three sets of observables are independent,
so we can sum their log-likelihood. For the BAO we
consider a DESI configuration, following the recipes of
[73, 74]. For the CMB likelihood, we consider a CMB-

17 The CAMB parameter file used to generate the spectra can
be found in https://github.com/carronj/plancklens/blob/

master/plancklens/data/cls/FFP10_wdipole_params.ini

S4 experiment, with a beam θFWHM = 1 arcmin, a tem-
perature noise ∆T = 1µK-arcmin, a polarization noise
∆P =

√
2µK-arcmin and a sky fraction fsky = 0.4. For

the primary CMB likelihood, we consider unlensed spec-
tra CTT

ℓ , CTE
ℓ and CEE

ℓ , between multipoles 30 and 3000,
and assume that these spectra follow a Gaussian like-
lihood, with Gaussian covariance matrix. We discuss
in Appendix B the impact of using the unlensed CMB
spectra or the lensed CMB spectra. We show there that
the bias on the marginalized cosmological parameters are
similar as long as we correctly model the non-Gaussian
covariance of the lensed CMB and the correlations be-
tween the lensed CMB and the reconstructed lensing po-
tential.

The Gaussian CMB lensing power spectrum likelihood
is

−2 lnL(θ) =
(
Ĉϕϕ

L − Cth
L (θ)

)
C−1

LL′

(
Ĉϕϕ

L′ − Cth
L′(θ)

)
,

(53)
where θ is the set of cosmological parameters being sam-
pled. The covariance matrix is assumed to be diagonal

CLL′ =
2δLL′

(2L + 1)fsky

(
Cϕϕ

L + N
(0)
L + N

(1)
L

)2

, (54)

where Cϕϕ
L , N

(0)
L and N

(1)
L are evaluated in the fiducial

cosmology. We consider lensing multipoles between 10
and 3000, and assume that the lensing field has been re-
constructed with CMB multipoles between 10 and 4000
for both temperature and polarization channels. For the

different estimators and different configurations of N
(3/2)
L

bias (LSS, PB or Total ), we generate mock data vectors.

These mock data vectors assume that the N
(0)
L bias can

be perfectly subtracted, and that the N
(1)
L cosmology de-

pendence is perfectly modelled. Our mock data vectors
are given by

Ĉϕϕ
L = Cϕϕ

L (θfid) + N
(1)
L (θfid) +

Cϕϕ
L (θfid)

Cϕϕ,sim
L

N
(3/2)
L . (55)

where the N
(3/2)
L bias has been estimated from simula-

tions, as described in the previous sections, and the CMB

lensing power spectrum and N
(1)
L bias are taken at the

fiducial cosmology. To cancel part of the realization vari-

ance of the simulation we divide N
(3/2)
L by the lensing

power spectrum of the simulation, bin this ratio in 19
multipole bins between 10 and 3810, and fit a spline to
these points, weighting by the inverse variance of each
bin. We then multiply this spline by our fiducial lensing
spectrum. This also allows to partially take into account
the difference in the cosmology between the simulation

used to estimate the N
(3/2)
L (which do not have massive

neutrinos, see Equation 13), and the Planck FFP10 cos-
mology used to generate the data vector. We assume

that higher order cosmology dependence of N
(3/2)
L can

be neglected.

https://github.com/carronj/plancklens/blob/master/plancklens/data/cls/FFP10_wdipole_params.ini
https://github.com/carronj/plancklens/blob/master/plancklens/data/cls/FFP10_wdipole_params.ini
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To accelerate the computation of the theory vector

Cth
L (θ), we do not re-estimate the N

(1)
L bias for the sam-

pled cosmology. Instead we correct for the variations of

the N
(1)
L bias around the fiducial, at first order in Cϕϕ

L (θ),
following the procedure of [19]. The theory vector is then

Cth
L (θ) = Cϕϕ

L (θ)+N
(1)
L (θfid)+

∂N
(1)
L

∂Cϕϕ
L′

[
Cϕϕ

L′ (θ) − Cϕϕ
L′ (θfid)

]

(56)

where the N
(1)
L correction matrix has been previously

evaluated in the fiducial cosmology. We neglect the cor-
rection due to the variation of the response around the
fiducial. We do not expect that this will impact the re-

sults. Indeed in the Gaussian case (i.e. without N
(3/2)
L

bias) we recover unbiased cosmological parameters.
In this analysis we do not model the reconstruction

bias N
(0)
L in the data vector, we assume it is perfectly

subtracted. In a standard analysis one would use the real-

ization dependent bias estimator RD-N
(0)
L , which makes

the debiasing robust at first order to differences between
the fiducial spectra assumed for the reconstruction, and
the true CMB spectra of the maps. It was showed in

[39, 40] that the realization dependent RD-N
(0)
L allows

for unbiased cosmological parameter estimates, for both
the QE and the MAP estimators. However we note that
this analysis was performed with a Gaussian lensing po-
tential, contrary to the maps we are using here, but we
assume that this will have a negligible impact on the

RD-N
(0)
L estimate.

We sample for seven cosmological parameters, namely
ln(1010As), ns, θMC,Ωch

2,Ωbh
2, τ and

∑
mν . We include

a strong Gaussian prior on τ , the reionisation optical
depth, assuming a cosmic variance limit of στ = 0.002.

We rely on the CAMB cosmological Boltzmann code
[75, 76], and sample the posterior with adaptive, speed-
hierarchy-aware MCMC sampler (adapted from Cos-
moMC) [77, 78]. We explore the posterior using the
Cobaya [79] and GetDist packages [80].

The marginalized posterior distribution on the sum of
the neutrino masses, for our different lensing estimators

and source of N
(3/2)
L bias, is shown in Figure 13. We

show the impact of each term that contributes to the

N
(3/2)
L bias: the large scale structures non-Gaussianities

(LSS) and the post-Born lensing. We confirm that taking
into account only one of the two effects, either LSS or
PB, will bias the neutrino mass estimates with the QE.
We can see that in general, the MAP estimators are less

impacted than the QE. When looking at the total N
(3/2)
L ,

we see that the MAP is unbiased, both for temperature
and for polarization. The QE shows a ∼ 1σ bias with
the temperature reconstruction, while it is unbiased in
the polarization.

We note also that as previously observed in the litera-
ture [39, 81], the marginalized constraints on the sum of
the neutrino mass from the QE is not improved with the
MAP. Indeed, even if, as we showed in the Figure 12, the

∑
mν
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∑
mν
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∑
mν
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mν [eV]

Gaussian TT

Pol

MV

TT

Pol

MV

FIG. 13. marginalized posteriors on the sum of the neutrino
masses. Panels from top to bottom show respectively the im-

pact of N
(3/2)
L when considering the post-Born term only, the

large scale structure term only, both terms together, or with

no N
(3/2)
L bias (fiducial, Gaussian case). The dashed lines are

for the QE and the plain lines are for the MAP. Blue, orange
and green lines show the temperature only, polarization only
or minimum variance estimators. The fiducial cosmology as-
sumes a sum of neutrino masses of 0.06 eV, showed as the
vertical dashed line. We combine here the CMB-S4 likelihood
with DESI-BAO, and we set a cosmic variance Gaussian prior
on the optical depth to reionization.

SNR is increased with the MAP, there are some degen-
eracies between the cosmological parameters that prevent
to reach the full statistical power of the MAP estima-
tor on the marginalized constraints. The marginalized
constraints also do not change much if we use the tem-
perature, polarization or the minimum variance estima-
tors, with a one sigma constraint of about 0.016 eV for
all cases.

Figure 14 shows the posterior distribution for the ns,

Ωch
2 and

∑
mν parameters, for the total N

(3/2)
L bias
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FIG. 14. Posterior distribution for a subset of the sampled
cosmological parameters. We show the reconstruction for the
minimum variance estimator, for both QE (blue) and MAP

(orange), considering the bias due to the total N
(3/2)
L . The

Figure 18 in the Appendix shows the full posterior.

with the minimum variance estimator. We see that even
if the MAP is unbiased on the sum of the neutrino mass,
it shows a slight 0.5σ bias on the ns parameter. This

bias could be sourced by the shape of the N
(3/2)
L bias.

Indeed, we showed in Figure 12 that the N
(3/2)
L creates

a scale dependent bias. In particular, this could tilt the
lensing power spectrum, and thus create a bias on the
ns parameter. In comparison, the amplitude bias for the
minimum variance QE is mostly negative, so it will not
create a strong scale dependent bias, but rather an overall
amplitude shift on the CMB lensing power spectrum.

In Appendix B, we compare our results for the QE with
the previous results from [42]. They obtained a larger
bias on the sum of the neutrino masses. This higher
bias comes from the fact that they consider lensed CMB
spectra in the likelihood but neglect the non-Gaussian
covariance due to lensing and the correlations between
CMB and the QE, as described in [82]. In Appendix B
we show that using lensed CMB spectra with the correct
covariance results in a bias on the sum of the neutrino
mass that is similar to the one obtained when consid-
ering unlensed spectra and neglecting the non diagonal
correlations.

VII. CONCLUSIONS

Future CMB surveys will detect the CMB lensing auto-
spectrum well over 100σ significance, and will enable

powerful cosmological constraints on the structure for-
mation history and on the sum of neutrino masses. Great
care is required before interpreting these measurements
at this high level of sensitivity. Standard quadratic es-
timators are only guaranteed to be unbiased for purely
Gaussian fields and under idealized conditions. When
the Gaussianity assumptions fail, future CMB surveys
such as CMB-S4 can deliver a biased lensing reconstruc-
tion induced by the bispectrum of the lensing potential
which, in turn will affect constraints on the sum of neu-
trino masses [42].

In this work we studied the induced non-Gaussian bi-
ases in the auto-spectrum of the CMB lensing potential
reconstructed through maximum a posteriori estimators.
By using state-of-the art simulations that include non-
Gaussian lensing deflections induced by nonlinear mat-
ter clustering as well as post-Born lensing corrections, we
found that for scales relevant for a CMB-S4 like configu-
ration the non-Gaussian induced bias is mitigated com-
pared to the QE one. When including additional effects
due to the post-Born rotation we do not find a significant
difference.

When performing a ΛCDM cosmological forecast on
the sum of neutrino masses through a full MCMC analy-
sis, we found that contrary to the QE, the MAP estimator

does not suffer from biases even if N
(3/2)
L biases are not

specifically accounted in the fitting of the data vector.
This shows that cosmological analyses using a MAP re-
constructed lensing potential should in principle be more
robust than those based on the standard QE. However, if
not correcting for the bias, caution should still be taken
when investigating extensions to ΛCDM, as the bias has
not fully disappeared, but is only to weak to shift the
maximum posterior point, and this could change in other
models.

We also tested simple modifications to the MAP es-
timator to take into account the non-Gaussian statis-
tics of the deflection field. Using the prior of a log-
normal field instead of a Gaussian field on the input
lensing convergence further mitigates slightly the bias.
We have also found that the bias itself found on our N-
body simulations is reasonably well reproduced by much
simpler lognormal simulations. Generally, differences be-
tween reconstructions using the Gaussian or lognormal
prior are small, and the lensing reconstructions of sim-
ilar quality, both on N -body and lognormal simulated
inputs. Lognormal simulations are effective in replicat-
ing non-Gaussian bias effects from large-scale structure
non-linearity. They could be leveraged to predict and
subtract biases with sufficient accuracy even when ap-
plied to more sophisticated models affecting the full prob-
ability density function of the projected matter distribu-
tion, such as baryonic effects or extended cosmologies.
On the other hand we have found that the lognormal
distribution is not a good approximation when includ-
ing post-Born effects, suggesting that the lognormal ap-
proximation is insufficient for recovering the shape of
the post-Born induced bispectrum (and same would be
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for highly non-linear fields, necessitating alternative ap-
proaches [54, 68, 69]). Nevertheless, using state-of-the art
simulations one could learn realistic probability density
functions of fields using machine learning techniques to
generate new samples or even include alternative priors
in our MAP formulation (e.g. [83]).

Our results allow us to conclude that the non-
Gaussianity of CMB lensing deflections should not
present a major challenge to CMB lensing science in
the near future: the bias, small to start with, is miti-
gated, and the baseline MAP reconstructions with Gaus-
sian prior remain very close to optimal.

In the era of precision-cosmology, additional informa-
tion will come from the combination and cross-correlation
of CMB lensing measurements and multiple large-scale
structure observables, such as cosmic shear and galaxy
clustering, from DESI, Euclid, and Rubin. It is known
that in this case, for QE-based reconstructions, the

N
(3/2)
L bias in the CMB lensing cross-correlations has a

stronger impact depending on the specific tracer and red-
shift considered in the analysis [45]. This is left for future
work.
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Appendix A: Mean field impact

The MAP estimator tries to find the best estimate of
the CMB lensing potential by nulling the total gradient

gtot(ϕ) = gQD(ϕ) + gMF(ϕ) + gPR(ϕ) (A1)

Ignoring the mean field contribution gMF, as we often
do for simplicity, one is effectively nulling instead

gtot,noMF(ϕ̂) = gQD(ϕ̂) + gPR(ϕ̂)
!
= 0 . (A2)

The neglect of this gradient piece is equivalent to maxi-
mizing a slightly different, but still well-defined likelihood
function. Hence the iterative procedure converges with-

out problems. The actual total gradient at this point ϕ̂
is not zero but

gtot(ϕ̂) = gMF(ϕ̂) ̸= 0 . (A3)

Early indications from reconstructions from polariza-
tion suggested this term was small [47]. Physically, this
is because this term accounts for the anisotropies in the
noise maps induced by delensing, and these anisotropies
trace for the most part the magnification part of the lens-
ing signal, rather than the shear-like signal that the most
powerful EB polarized estimator is sensitive to. Delens-
ing affects the local noise levels by changing areas ac-
cording to the local magnification, given by 1 − 2κ to
first order, and the mean-field removes the contribution
of this noise anisotropy to the quadratic gradient piece.

It turns out that that for reconstructions from tem-
perature, that takes substantial contribution from the
magnification-like lensing signals, the mean field contri-
bution is much larger. If the mean-field at the solution
κ̂LM were exactly proportional to κ̂LM as suggested by
the argument above, the mean-field contamination of κ̂
acts simply as a rescaling of the output map. This would
have no impact on the cross-correlation coefficient of the
reconstruction with the input (the ‘quality’ of the recon-
struction), only on its normalization

Wemp
L ≡ Cϕ̂ϕ

L

Cϕϕ
L

(A4)

(the empirical ‘Wiener-filter’ of the reconstruction). The
shift seen on temperature reconstruction for our CMB-
S4-like configuration is shown on Fig. 15, and is sub-
stantial. Not accounting for the mean field lowers the
Wiener-filter curve. This is because the magnification
follows κ but with a minus sign. In Fig. 16 we show that
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FIG. 15. Comparison of the empirical normalization of output
lensing maps, after a few iterations, for our temperature-based
CMB-S4 like reconstructions. In blue we show the case of the
QE estimator, in green for the MAP estimator if ignoring
the mean field contribution, and in orange when including
it, using an estimate from a finite number of Monte-Carlo at
each step.

after applying the empirical normalization, for the case of
mean-field subtraction/no subtraction, we find a power
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spectrum in line with naive expectations,

Cϕ̂ϕ̂
L ∼ Cϕϕ

L + N
(0)
L + N

(1)
L (A5)

where the lensing biases are calculated using the partially
delensed CMB spectra. The change in cross-correlation
coefficient between the two maps is tiny. This gives sup-
port to the idea that the bulk of the effect is only a rescal-
ing. Hence, in this paper we proceed using the empirical
normalization, and neglecting the delensed-noise mean-
field altogether. A more careful study of the mean-field
is ongoing.
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+
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Simulation MF

Cφφ +N (0) +N (1)

FIG. 16. Lensing spectrum from a MAP temperature recon-
struction, after dividing by the empirical normalization of the
lensing map (blue). In red the naive theory prediction, ob-

tained from a iterative N
(0)
L and N

(1)
L calculation. We get a

similar result if we account for the mean field, justifying the
usage of an empirical normalisation when not account for a
mean-field.

Appendix B: About the impact of non-Gaussian
lensing correlations on the cosmological parameter

biases

In the previous study of [42] (herefater Beck18), the
likelihood was neglecting the correlations between the
reconstructed lensing field and the CMB spectra. In the
results we present in the Section VI B above, assume we
can neglect these correlations by using unlensed CMB
spectra un the likelihood. We will now make systematic
study of this assumption, and evaluate the impact of us-
ing the lensed or unlensed CMB spectra, and the impact
of the non-Guassian covariance on the final cosmological
constraints.

We will consider four different likelihood configura-
tions:

1. The Beck18 likelihood

2. The Beck18 likelihood but with unlensed CMB
spectra

3. The likelihood we introduced in Section VI B,
which uses unlensed CMB spectra and assumes no
correlations between the lensing power spectrum
and the CMB fields

4. A complete likelihood including the full non-
Gaussian correlations between the lensed CMB
spectra and the lensing potential, following [82]

The Beck18 CMB likelihood is

−2 logL(θ|Ĉ) =
∑

ℓ

(2ℓ + 1)fsky

(
ln

|Cℓ|
|Ĉℓ|

+ C−1
ℓ Ĉℓ − 3

)

(B1)
where the theoretical covariance matrix C and the data
covariance matrix Ĉ are constructed with the lensed
CMB spectra and are given by

Cℓ =



CTT

ℓ + NTT
ℓ CTE

ℓ CTϕ
ℓ

CTE
ℓ CEE

ℓ + NEE
ℓ 0

CTϕ
ℓ 0 Cϕϕ

ℓ + Nϕϕ
ℓ


 (B2)

For the theoretical covariance Cℓ, the CMB lensing noise

is Nϕϕ
ℓ = N

(0)
ℓ + N

(1)
ℓ . For the mock data covariance we

include the N
(3/2)
L bias estimated from the simulations

as

Nϕϕ
L = N

(0)
L + N

(0)
L +

Cϕϕ,fid
L

Cϕϕ,sim
L

N
(3/2),sim
L . (B3)

In this configuration, and in order to reproduce the re-
sults of Beck18, we do not take into account the cosmo-

logical dependence of the N
(0)
L and N

(1)
L biases, and we

keep them fixed to their fiducial value.
The Beck18 likelihood with unlensed spectra is the

same as above but replaces the lensed CMB spectra by
their unlensed version.

The likelihood which takes into account the non-
Gaussian covariance introduced in [82] has the following
data vector:

Cℓ =
(
CTT

ℓ , CEE
ℓ , CTE

ℓ , Cϕϕ
ℓ + N

(1)
ℓ

)
. (B4)

For the theory vector Cℓ(θ) we vary the theoretical N
(1)
ℓ

at first order in the CMB lensing spectra when sampling
the cosmology, like in Eq. 56. The mock data vector Ĉℓ
includes the N

(3/2)
L bias, which is not modelled by the

theory vector. The full likelihood is then

−2 logL(θ) =
(
Ĉℓ − Cℓ(θ)

)
C−1

ℓℓ′

(
Ĉℓ′ − Cℓ′(θ)

)
(B5)

The covariance matrix Cℓℓ′ includes the non-Gaussian
terms described in [82], such as the correlations between
the CMB spectra due to lensing, and the correlation be-
tween the reconstructed lensing field and the CMB.

In all likelihood scenarios we generate the data vector
using the same cosmology of Beck18, reproduced in Ta-
ble B, contrary to the analysis in the Section VI B where
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Ωbh
2 0.02225± 0.00016

Ωch
2 0.1198± 0.0015

τ 0.058± 0.012
log(1010As) 3.094± 0.034

ns 0.9645± 0.0049
100θMC 1.04077± 0.00032∑
mν [eV] [0, 300]

TABLE III. Fiducial cosmological parameters used in this sec-
tion, following Beck18, together with their 1σ Gaussian prior,
or uniform parameter bound.

we used the FFP10 cosmology. Notably, we now consider
massless neutrinos, instead of the minimal mass normal
hierarchy considered before. Moreover, contrary to the
main analysis, the likelihoods used here do not include
external BAO constraints. We follow again Beck18 and
assume tight Gaussian priors on the parameters, except
for the sum of neutrino mass which assumes a flat prior,
given on Table B.

We perform the MCMC samplings like in the main
analysis, and we now discuss the results obtained for
the QE minimum variance estimator, with the LSS only

term in the N
(3/2)
L bias. We show in the Figure 17

the constraints for three cosmological parameters Ωch
2,

ln(1010As) and
∑

mν . The purple contours are the one
obtained with the likelihood of Beck18, with the lensed
CMB spectra. We retrieve the same results as in Beck18
(see their Figure 11), with a posterior estimate on the
sum of neutrino masses peaking at 0.18 eV. The red con-
tours show the posterior with the Beck18 likelihood with
unlensed CMB spectra in the data and theory vectors.
The blue contours are for our likelihood, using unlensed
CMB spectra, for Beck18 cosmology and priors. In prac-
tice, the main difference here with the Beck18 unlensed
likelihood is that we take into account the variation of
the N

(1)
L bias when sampling the cosmology, while it is

not the case for the Beck18 likelihood. Finally, the green
contours are for the likelihood with lensed CMB spectra
and the [82] non-Gaussian covariance.

It appears that the Beck18 likelihood, with the lensed
CMB spectra, has the largest bias on the sum of the neu-
trino masses and on the amplitude of the matter power
spectrum. We see that when considering unlensed CMB

spectra the Beck18 likelihood obtains similar constraints
as ours, whihc has unlensed spectra as well. We show
that we obtain almost exactly the same posterior, with
a reduced bias, if we use the lensed spectra but correctly
taking into account the correlations due to lensing from
[82]. This reduction of the bias when using the full non-
Gaussian covariance can be understood as lowering the
impact of the bias from the lensing power spectrum, by
avoiding to “double” count the biased lensing power spec-
trum in the analysis. If we include as well the lensed CBB

ℓ
spectrum in the data vector, even if the correlations are
properly taken into account, the bias is not reduced. We
interpret that as the fact that the lensed spectrum is an-
other measurement of Cϕϕ

L , as we can approximate for
ℓ ≪ 1000 [3]

CBB
ℓ ∼ 1

4π

∫
dℓ′

ℓ′
ℓ′4Cϕϕ

ℓ′ ℓ′2CEE,unl
ℓ′ . (B6)

Thus there is a tension between the lensed BB spectrum,

which measures an unbiased Cϕϕ
L , and the estimate lens-

ing power spectrum which is biased by N
(3/2)
L . It ap-

pears that the biased Cϕϕ
L dominates and the likelihood

is leaning towards the biased measurement of the neu-
trino mass. In practice, future surveys might not include
the lensed BB spectrum in the analysis since the BB spec-
trum might be more prone to instrumental systematics
and polarized foregrounds such as point sources. But
comparing the marginalized constraints with or without
the BB spectra in the likelihood could serve as additional
robustness test to assess the presence of biases coming
from non-Gaussian effects.

We do not test the impact of the full non-Gaussian co-
variance for the MAP estimator. In that case, one would
use the partially delensed CMB spectra in the likelihood,
reducing the non-diagonal terms in the covariance ma-
trix. Fisher forecasts using the covariance matrix com-
puted with delensed spectra were published in [93, 94].
We leave for a future work a detailed comparison of our
MAP reconstructed delensed spectra with this delensed
analytical covariance.

We show in the Figure 18 the full posterior of the like-
lihood for the QE and MAP reconstruction, considering

the total N
(3/2)
L bias, and seven cosmological parameters

as described in the Section VI B.
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[66] H. Gil-Maŕın, C. Wagner, F. Fragkoudi, R. Jimenez, and L. Verde, An improved fitting formula for the dark matter
bispectrum, 2012, 047, 1111.4477.

[67] T. Namikawa, B. Bose, F. R. Bouchet, R. Takahashi, and A. Taruya, CMB lensing bi-spectrum: Assessing analytical
predictions against full-sky lensing simulations, 99, 063511, 1812.10635.

[68] S. Das and J. P. Ostriker, Testing a New Analytic Model for Gravitational Lensing Probabilities, Astrophys. J. 645, 1
(2006), arXiv:astro-ph/0512644 [astro-ph].

[69] A. Barthelemy, S. Codis, and F. Bernardeau, Post-Born corrections to the one-point statistics of (CMB) lensing convergence
obtained via large deviation theory, MNRAS 494, 3368 (2020), arXiv:2002.03625 [astro-ph.CO].
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