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H I G H L I G H T S

• A methodology is presented to quantify thermal demand for common UK dwellings.
• A comprehensive range of U-values is considered to model UK houses of diverse ages.
• A model is introduced to estimate thermal load for varying thermostat settings.
• Individual and combined effects of design parameters on thermal load are assessed.
• Scarcely available cooling demand data of UK houses can be derived with the method.
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A B S T R A C T

According to the 2020 UN emissions report an increase by 3 ◦C of the average global temperature compared to
pre-industrial levels is to be expected if no corrective measures are implemented. Alongside this, the UK
Meteorological Office predicts that the UK will see a surge in both the recurrence and severity of heatwaves
during summers—leading to an increased demand for space cooling. Although commercial infrastructures are
likely to incorporate cooling provisions, residential properties are generally at a nascent stage to facilitate indoor
cooling. Upgrading the cooling capabilities of residential dwellings would require a clear understanding of
cooling demand. To this end, this paper presents a methodology to quantify cooling demand for typical UK
dwellings. Following an in-depth literature review of the current UK housing stock to retrieve physical building
data, a physics-based model was created using commercial building envelope modelling software. This consid-
ered building construction methods, ages, and layouts. To provide confidence in the approach, the model was
verified with real data taken from a semi-detached dwelling in Loughborough, UK, and subsequently, thermal
models for the most common type of dwellings were developed. Results highlight how cooling demand varies for
differing dwelling types, orientations, locations, and constructions. For instance, for a typical design year, corner
flats on the top floor of a 3-storey building in Cardiff, UK, with an orientation of 0◦ (north-facing) have the
highest monthly cooling demand of 27.21 kWh and the bottom floor mid-flats have the lowest demand of 17.36
kWh. The presented methodology provides an initial framework to generate residential cooling demand data,
which could be used to inform building developers, utilities, and local authorities on cooling demand peaks,
overheating risks, and energy efficiency of typical UK dwellings in a warming world.

1. Introduction

The climate in the UK has mostly been temperate in the past with
little demand for space cooling. However, in present times, the issue of
overheating has risen to the forefront. As per the UK Meteorological
Office, the UK will face warmer summers with an increase in both the
recurrence and the severity of heatwaves [1]. The UK Health and

Security Agency released the Heat Mortality Monitoring Report: 2022,
which found that in summer 2022 there were an estimated 2985 deaths
associated with heat episodes, which was the highest number in any
given year [2].

From the year 1965, several phases of Building Regulations have
been introduced by the UK Government to improve the thermal effi-
ciency of buildings. These measures have been beneficial in winters
when retaining heat is important. However, heat retention negatively
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affects dwellings during summer. For example, during the heatwave in
2022, where the ambient temperature reached over 40 ◦C for the first
time in recorded history [3], several newly built flats in London reached
internal temperatures of over 30 ◦C before midday [4].

As residents start to purchase and implement active mechanical
cooling systems to combat overheating in dwellings, the increased
electricity demand by such systems may have a knock-on effect on the
distribution networks [5]. The largest energy transmission and distri-
bution company in the UK, National Grid, conducted a study on cooling
demand and released a report estimating that by 2050, cooling demand
across the country will place an additional peak load of 39 GW on the
network on a typical summer day [6]. Presently, the UK has a spare
capacity of 76.6 GW available [7]. Therefore, under normal conditions,
the increased cooling demand will occupy more than half of the current
headroom. This does not include atypical days such as those during
heatwaves, which could place an even larger peak load upon the net-
works when cooling demand would be highest.

It is worth noting that there are effective passive cooling measures
that can be incorporated in dwellings to reduce their cooling demand.
From [8] it was found that effective night purging techniques could
reduce peak internal room temperatures in newly built houses by up to
5 ◦C. However, the impact of night purging in older dwellings is much
less effective. In a similar note, the effect of covering the external win-
dows, for instance with foil, may have a positive impact on reducing
cooling demand. The correct adoption of passive cooling strategies may
indeed lead to a significant reduction of internal temperatures, but these
measures are only effective in the newer dwellings and the effect may be
more muted depending on geographical location. For example, although
passive cooling may be sufficient to achieve thermal comfort within
dwellings located at the north of the UK even under a heatwave period,
this may not be sufficient in the south of the country. In longer and more
intense heatwaves, leading to significant overheating of dwellings,
simple passive measures may not be sufficient to bring temperature
down to safe levels.

The UK Government recently introduced Part O of the Building
Regulations in 2022 [9]. The aim of this statutory guidance is to ensure
that new buildings comply with the overheating risk assessment as
defined by the Chartered Institute of Building Services Engineers
(CIBSE) in their standard TM59 [10]. This standard, in turn, directs both

architects and engineers in the UK to introduce passive cooling strategies
in the design stage of a building to reduce the overheating risk. This
ensures that passive measures are economically incentivised, as stan-
dard TM59 requires active cooling to be installed if simulations indicate
that a building will overheat.

Whilst encouraging, the latest iteration of Building Regulations does
not cover the vast majority of the existing UK housing stock. As per
estimates released by the Department for Levelling Up, Housing and
Communities in May 2023, there were 25.2 million dwellings in the UK
as of March 2022 [11]. Combined with the annual housing supply sta-
tistics published in November 2023, 212,570 new dwellings were con-
structed in 2022 [12]. Assuming a similar number of new dwellings had
been also developed in 2023, ~425,000 homes fall within the Building
Regulations Part O. This implies that only ~1–2 % of the current UK
housing stock would have factored overheating into their design.

A report in 2021 from the UK Department for Business, Energy &
Industrial Strategy (BEIS) highlighted the most complete cooling de-
mand dataset for commercial buildings available at the time [13]. While
such resource is of great relevance, understanding how households and
domestic buildings respond to extreme heat and how this might create
greater demand for space cooling is still limited and deserves attention
[14].

To bridge this gap and to combat the lack of thermal energy demand
data available for the residential sector, this paper aims to provide a
robust and repeatable methodology that can produce a yearly thermal
energy demand dataset for different dwelling typologies within the UK
as temperatures increase. Using the presented framework, custom
heating and cooling scenarios can be subsequently investigated for any
location, weather condition, and dwelling construction. This, in turn,
may then be used to research the various effects of using differing
technologies to meet cooling demand and, by combining it with long
term weather forecast data, estimate the future cooling demand in any
household.

Using the methodology presented in this paper, the residential
cooling demand of any dwelling within the UK (or any other country)
can be calculated with limited building information. This cooling de-
mand data can then be used for a wide variety of purposes. For instance,
building developers may use the information to estimate peak heating
and cooling demand to size equipment to meet such demands, while
utility companies could identify houses (or even pockets of dwellings)
with excess energy usage to highlight potential concerns—for instance,
potential overloading of distribution transformers. With the under-
standing that residents will begin to install active cooling devices when
temperatures in homes exceed a certain threshold for extended lengths
of time, the additional load on the electricity network may be estimated
by considering the efficiencies of the different devices installed in
households. Local authorities could also use the information to assess
houses with vulnerable people at risk of overheating or community level
demand during heatwaves to ensure the local energy networks can
handle increased loads.

The modelling framework presented in the paper is supported by a
thorough literature review on the UK housing stock, construction
methods used over the last 100 years, and building plans for the most
common dwelling types in the UK. The data aggregated from the review
were used as inputs to develop and simulate dynamic thermal models
using IES VE [15]. As a commercially licensed software widely used
within the construction industry, IES VE has been validated against
worldwide standards such as those from ASHRAE and CIBSE. The
models were verified using real data recorded for a semi-detached house
available in the existing literature [16]. This established a high degree of
confidence in the modelling approach taken—leading in turn to an
effective calculation of cooling demand.

2. Literature review: UK housing stock and building modelling

This section covers the literature review carried out into the relevant

Nomenclature

Abbreviations
ACH Air changes per hour
EPW Energy Plus Weather
MAE Mean absolute error
TMY Typical meteorological year
PSO Particle swarm optimisation
RMSE Root mean squared error

Symbols
A Area (m2)
ki Thermal conductivity (W/m-K)
Q Heat transfer rate (W)
n Number of data points
R Thermal resistance (K/W)
R2 Coefficient of determination
ti Thickness (m)
ΔT Temperature difference (K)
U U-value (W/m2-K)
y Mean value (W)
yi Measured or observed value (W)
ŷi Predicted value (W)
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information required for the paper. Starting with an in-depth review of
the current UK housing stock, the paper researches the age of dwellings,
the historical U-values of each construction, and the most common
dwelling types in the UK. The section then looks at the different
modelling methodologies that can be used to help quantify the cooling
demand in dwellings and the software available to simulate the demand,
highlighting why physics-based modelling and the IES VE software were
selected for the research.

2.1. UK housing stock

The age of most dwellings in the UK (still in regular use) spans over
100 years. Throughout this time, construction methods have been
updated consistently, resulting in differing thermal efficiencies of
dwellings. Fig. 1 shows results of an English housing survey conducted
in 2020 by the Department for Levelling Up, Housing and Communi-
ties—indicating the age of buildings [17].

As shown in Fig. 1, most houses in the UK were constructed before
1965. This is important to note as the Building Regulations were put in
place in the UK in 1965 to ensure health and safety standards of
dwellings. These regulations established performance benchmarks for
fire protection, egress, and building thermal efficiency [18].

The Building Regulations introduced thermal transmittance values,
or U-values, which quantify the thermal efficiency of materials using a
standardised methodology that allows for comparisons between
different material compositions. They indicate the rate at which heat is
transferred through a given material (which can be composite) [18], and
the lower the U-value is, the better the insulating performance of the
material will be. Conversely, a high U-value indicates a fast rate of heat
transfer through the material making up the construction. Such material
could be a wall, window, roof, or foundation. Interested readers are
referred to [19], which provides an in-depth description of the U-value
and how it is calculated. Due to maximum allowed U-values for each
surface being defined in the Building Regulations, U-values of con-
structions can be extracted from each iteration of these documents from
1965 onwards.

Table 1 summarises the U-values for building construction compo-
nents throughout the years considered in this paper. Relevant aspects
around the data in the table are discussed in the next subsections.

The methodology for quantifying cooling demand presented in Sec-
tion 3 of this paper does not account for the varying effects of different
material compositions and, for simplicity, focuses solely upon the U-
value. This is because an overall U-value provides a good metric for the
heat transferred through walls and other surfaces. A detailed examina-
tion of the wall composition and its impact on the thermal demand for a
building is out of the scope of this work.

2.1.1. Foundations
Pre-1965 U-values for building foundations, obtained from the

Building Act of 1878, implied that a 9-in. (225 mm) thick concrete
foundation should be placed on the ground unless the sub-soil is gravel
or rock [20]. Based on this, pre-1930s buildings should have a founda-
tion slab of 225 mm thick concrete.

Methods such as strip foundations were popularised in the 1940s.
However, these foundations retained a concrete slab on top and do not
have a large impact on the insulation properties of the material as they
are used for more structural properties. The first iteration of the Building
Regulations in 1965 mandated a minimum U-value for floors [18] and
this has been continuously updated in subsequent years, as shown in
Table 1.

2.1.2. Walls
The minimum thickness required to resist rainwater penetration in

temperate climates is 315 mm for stone/brick walls [21]. Any wall that
is not waterproof will have had post-processing work carried out to
ensure compliance with modern Building Regulations. Therefore, the
minimum thickness of walls for pre-1920s constructions is 315 mm.

After World War 1, the UK Government introduced the ‘Homes for
Heroes’ scheme (also known as the Addison Act) to improve the living
standards of the working class who took part in the war [22]. One of the
key requirements was the introduction of cavity walls, which are more
effective in keeping out wind and rain when compared to single-layered
walls [21]. There were no significant modifications of this method until
the introduction of the Building Regulations in 1965, which mandated
uninsulated cavity walls and then the introduction of insulation in the
1980s. This led to improved thermal efficiency of walls throughout the
years, as evidenced by the reduced U-values in Table 1 as time has
passed.

2.1.3. Windows and doors
As specified in [23], new windows should last between 15 and 20

years. With many companies offering warranties for up to 25 years, most
households would not have any windows older than 30–35 years. Doors
also have an expected life span of 20 to 25 years for unplasticised PVC
doors and 30 years for composite and timber doors [24]. Therefore,
similar to windows, doors should not be older than 30–35 years.

The Building Regulations classify windows and doors in the same
category for the maximum allowed U-values [18]. It is evident that the
introduction of double glazing and argon-based insulation has improved
the thermal efficiency of windows, as shown in Table 1.

2.1.4. Roofs
The UK Government provides grants such as the Great British

Fig. 1. Age of dwellings in England in 2020 [17].
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Insulation Scheme [25] to upgrade loft insulation in homes, free of
charge, to reduce energy wastage. Furthermore, previous schemes such
as the Green Deal [26] and other similar initiatives have been imple-
mented. With the ease of installation and the availability of grants, most
households would have upgraded their loft insulation within the last 30
years. As the Building Regulations have been in place since 1965, the
vast majority of homes in the current UK housing stock will fall within
this bracket.

As with other construction elements, roof insulation has improved
throughout the years, leading to lower U-values for the most recent
dwellings—as shown in Table 1.

2.1.5. Dwelling design selection
According to the housing survey reported in [17], which determined

the percentage of dwelling types by tenure, the most common dwelling
types are terraced, semi-detached, detached, bungalows, and flats. Using
this information with publicly available floor plans such as those in [27],
it is possible to create models of each of the aforementioned dwelling
types.

2.2. Modelling approaches

There are three main approaches to modelling and calculating
building thermal demand: physics-based modelling, data-driven
modelling, and a combination of the two. These are briefly discussed
in the following subsections.

2.2.1. Physics-based modelling
A physics-based model is a representation of the governing laws of

nature that innately embeds the concepts of time, space, causality and
generalisability. These laws of nature define how physical, chemical,
biological and geological processes evolve [28]. With all the known
inputs, a physics-based model enables obtaining energy demand using a
well-defined set of equations. In turn, there are different alternatives for
simulating building energy demand within physics-based modelling.
These range from lumped parameter models based on resistance-
capacitance (RC) representations to more calculation-intensive options
such as the finite element method (FEM).

An RC model simplifies the building model as an electrical network
analogue. This simplification enables quantifying an approximate ther-
mal demand using simple calculations. RC models vary from basic 1R1C
representations (i.e. 1 resistance and 1 capacitance) to more complex
scenarios, such as the 3R2C model—amenable to a more accurate tem-
perature calculation and thus thermal demand quantification. For

instance, a 3R2C model was adopted in [29] to conduct simulations for
11 dwellings over an 8-week period while reducing the root mean
squared error (RMSE) to 1.03 ◦C between simulation results and
measured values of internal temperature. An in-depth analysis of various
RC models was carried out in [30] considering 8 dwellings in Exeter, UK.
It was found that 2R1C models provided good estimations of heat de-
mand for all dwellings without an increase in calculation times.

Most three-dimensional (3D) modelling software makes use of finite
element analysis including FEM. For instance, FEM was used in [31] to
estimate the heating and cooling demand of a residential building. The
benefit of using FEM is the incorporation of more complex surface
shapes within the model without overly complicating the equations
required to calculate thermal demand. To achieve this, FEM splits a
surface into a mesh with each node relating to a coordinate in the x, y,
and z directions. The finer the mesh, the more accurate the model is but
doing so also increases the computational requirement. Each node
within the model is assigned a temperature and a heat flux vector. Using
a set of differential equations and assuming each surface is unidirec-
tional and the thermo-physical properties within each layer are uniform,
heat transfer over time is calculated for each node including the heat
flux vector at each node. More detailed information on how commercial
software uses FEM to calculate the heat transfer into a building is
available in [32].

Due to the lack of cooling demand data in residential buildings,
physics-based modelling represents the most suitable approach to be
adopted. The approach is widely used today within the construction
industry as buildings in the design stages do not have any historical data.

2.2.2. Data-driven modelling
Data-driven modelling is used when there is limited or no physical

data available on the building itself (only energy usage data). It utilises
machine and statistical learning algorithms to build models that output
the desired results [33]. In the context of this paper, historical electrical
usage data, boiler information, and any other relevant information that
can be obtained could be used to forecast future heating or cooling
demands.

Considerable research into data-driven approaches is being carried
out nowadays due to the importance of energy efficiency in buildings
and the more widespread availability of sensor equipment. For instance,
reference [34] reviews different data-driven models to improve energy
management in buildings, such as data-driven model predictive control
(MPC) and its variants.

Alternatively, work carried out in [35] used publicly available en-
ergy performance certificates (EPCs) for dwellings in the UK to estimate

Table 1
Summarised construction data.

Year U-value (W/m2-K)

Foundations Walls Windows/Doors Roofs

Pre-1920 225 mm concrete slab (≈3.25) Single layered brick /stone 315 mm (≈
1.84)

N/A N/A

1920 – Uninsulated cavity walls (≈1.6) N/A N/A
1930 300 mm concrete slab (≈2.94) – N/A N/A
1965 Thermal insulation on slab

(1.2)
Uninsulated cavity walls (1.7) N/A Insulated roofs (1.6)

1970 – – Single glazed window (4.8) –
1980 – Insulated cavity walls (1) – Insulated roofs

(0.68)
1990 – Insulated cavity walls (0.6) – Insulated roofs (0.4)
2000 Thermal insulation on slab

(0.51)
Insulated cavity walls (0.45) Double glazed window (3.1) Insulated roofs

(0.35)
2010 Thermal insulation on slab

(0.22)
Insulated cavity walls (0.3) Low emissivity double glazed window (2.0) Insulated roofs

(0.22)
2016 Thermal insulation on slab

(0.13)
Insulated cavity walls (0.18) Double glazed low emissivity window with Argon gas filler

(1.4)
Insulated roofs
(0.13)

2021
onwards

Thermal insulation on slab
(0.13)

Insulated cavity walls (0.18) Double glazed low emissivity window with Argon gas filler
(1.2)

Insulated roofs
(0.11)
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the annual heating demand of local communities. This information was
then used to study the impact of different heating technologies—with
the aim to support policy-making decisions for the UK Government to
reach its decarbonisation goals in the residential heating sector and to
meet the country’s net-zero target.

As cooling in the UK has been largely considered superfluous, most
homes have no installed active cooling measures such as air condition-
ing. Due to this, there is lack of available historical data that can be used,
for instance, to feed a machine learning algorithm to generate a future
forecast of the cooling demand in the UK. A short discussion on the
adoption of forecasting methods using artificial intelligence (AI) algo-
rithms to support cooling demand estimation is provided in Section 5.

2.2.3. Combination of data-driven and physics-based modelling
The third methodology is a combination of the approaches discussed

in Sections 2.2.1 and 2.2.2. Also known as grey box models, these use
historical data to calibrate simplified physical models [36].

Work reported in [37] adopted a physics-based model to calculate
the energy demand in a block of residential flats. The outputs from this
model were then used to train a data-driven MPC model to optimise heat
use in a block of residential flats. This combined modelling approach
proved effective in optimising the existing load.

Additional work carried out in [38] provides a critical review of
different grey box models, with a focus upon RC models. The main task
in obtaining such models is determining resistance and capacitance
values either by adopting a forward approach (white box modelling) or
an inverse approach. The forward approach makes use of physics-based
calculations that are calibrated/fine tuned using historical data. In
contrast, the inverse approach utilises historical data to provide inputs
to help create a physics-based model. Methods such as the ‘in-use heat
balance method’ [39] adopt weather data, internal gains, and heating/
cooling loads to estimate the RC values of a dwelling. Using these data to
then create an RC model that predicts future cooling demand is an
example of an inverse approach grey box model.

The main limitation with grey box modelling is the lack of historical
cooling data, thus restricting the applicability of the modelling
approach. As a result, this methodology has not been applied for this
work.

2.3. Modelling tools

There are well-known tools for calculating thermal demand of
dwellings such as HAP, TRACE, ESP-r and IES VE [15,40–42]. However,
all these software engines follow slightly differing methodologies to
conduct simulations.

In general, to ensure the validity of simulation results, there are
various global standards that each software package must conform to
such as ASHRAE 140& 90.1, CIBSE TM33, or ISO 5200 [43]. Depending
on the standard being conformed to, the equations used to calculate
thermal energy demand may vary slightly. Such variations may result in
small differences between calculated outputs.

2.3.1. HAP [40]
HAP stands for Hourly Analysis Program and is a building thermal

modelling software designed by the company Carrier. In the later soft-
ware releases it allows 3D modelling of dwellings from floor plans to
calculate the thermal demand in dwellings. It conforms to ASHRAE
standards 140 and 90.1, but it does not comply with CIBSE standards. Its
focus is upon HVAC load calculations and has an ‘easy to learn’
interface.

2.3.2. TRACE [41]
TRACE, developed by HVAC equipment manufacturer Trane, utilises

a command line style system where each dwelling surface is inputted
manually. However, as of writing this paper, TRACE is phasing out this
approach for 3D modelling. Like HAP, TRACE has a very streamlined

approach to HVAC modelling.

2.3.3. ESP-r [42]
ESP-r, developed by the University of Strathclyde and commonly

used for research, is a programming-based tool geared towards Linux
based on simple line-drawing. It is a free open-source software that
provides high accuracy but requires an in-depth understanding of
building physics to get the best results. Of all the mentioned software, it
arguably has the steepest learning curve due to its complexity.

2.3.4. IES VE [15]
IES VE is widely adopted commercially in the construction industry.

The software is used to calculate the thermal demand in dwellings
starting from the early design stage through to the completed design. IES
VE conforms to standards such as ASHRAE 140 and CIBSE TM33 [43].
This ensures a high level of confidence in both the reliability and ac-
curacy of simulation results.

As IES VE focusses only on building modelling, it is not as heavily
specified in one particular area as either HAP or TRACE. IES VE also has
broader features such as more advanced modules (e.g. solar gains and
thermal comfort analysis) and it is geared towards commercial use. Due
to the previous attributes, the ability to create complex 3D models, and
compliance with CIBSE, ASHRAE, and ISO standards, IES VE was
adopted for the methodology presented in this paper.

2.4. Modelling

IES VE enables creating 3D models of all the most common house
types in the UK mentioned in Section 2.1.5. An example of such a model
for a terraced house developed using the software is shown in Fig. 2.
Provided weather conditions are available, the model would enable
quantifying the thermal demand of the dwelling.

The dwelling example in Fig. 2 shows that terraced houses have two
configurations that will have differing thermal demand due to the
exposed external elements. Thus, the location of the house within the
terraces (middle, highlighted with a blue shading, or end, highlighted
with a pink shading) needs to be accommodated within the simulations.
This scenario also applies to flats, whereby the floor the flat is on (e.g.
ground, middle, top) and the location within the floor (e.g. middle or
end) will impact energy demand.

3. Methodology for quantifying cooling demand

3.1. Overall modelling framework

Fig. 3 provides a graphical summary of the overall modelling
framework used to calculate thermal demand in buildings. Different
aspects around the key steps are discussed next. The methodology begins
with obtaining floor plans and images of the dwelling to be assessed.
This information is then used to create 3D models of the dwelling in a
suitable software. (IES VE or any other building modelling software can
be adopted, as outlined in Section 2.3.) With the created model, the
location of the dwelling, its orientation, and weather data are imported
into the model. Corresponding U-values for each type of construction
element are then incorporated into the model.

Simulations are then carried out while ensuring all variations of
possible U-values are accounted for. A results file for each simulation is
then created and assigned a dwelling code. Further information on how
the dwelling code is created is provided in Section 3.3 (see Table 2). The
file is saved and the remaining simulations are carried out. Relevant
results are then extracted from the software and the saved within mul-
tiple CSV files for each dwelling, orientation, and location. This enables
the results to be read easily by third party software such as Python or
even read directly by the end user within MS Excel.
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3.2. Dwelling data

3.2.1. Geographical location and building orientation
Fig. 4 shows the variability in the photovoltaic power potential

across the UK [44]. The solar power directly impacts the solar radiation
able to enter a dwelling, which will vary with location. Based on this,
five places were selected to investigate the impact of geographical
location and photovoltaic power potential on thermal demand: Cardiff,
Glasgow, London, Plymouth, and Manchester. Out of the five locations
considered, Plymouth has the highest photovoltaic power potential and
Glasgow has the least potential.

Building orientation also impacts thermal demand. In countries
within the northern hemisphere such as the UK, south-facing surfaces
receive a much higher degree of solar gain than north-facing surfaces.
Within IES VE, dwelling orientation is designated using a global rotation
value in degrees. A north-facing dwelling is defined with an orientation
of 0◦. Dwellings facing east, south, and west are respectively designated
with orientations of 90◦, 180◦, and 270◦.

3.2.2. Weather data
Typical meteorological year (TMY) weather files are commonly used

for buildings’ weather files. These are created following the ISO 15927-

4:2005 methodology [45]. A TMY file is generated using a minimum of
10 years of data, although more years are preferred. The weather files
are divided into months and the daily mean is calculated using each year
for the following variables: dry-bulb temperature, solar radiation, and
humidity, with wind speed as a secondary parameter. Following the
methodology defined in the standard, each month’s variables are then
ranked to determine which is the best month to use in the weather file.
The selected best months are then combined into a single year. To ensure
a smooth transition between each month the hourly values are then
modified.

The weather files used for this paper were obtained directly from
Climate One Building [46]—which provides a repository created using
the methodology in [45] for thousands of global locations.

3.2.3. Thermostat controls
Indoor thermal conditions vary from household to household with

the influence of diverse factors such as income levels, personal comfort
levels, and geographical location. As per CIBSE Guide A, households in
the UK should be designed to maintain an indoor temperature of 21 ◦C to
25 ◦C depending upon the room [19], with CIBSE TM59 requiring pre-
ventive measures such as opening windows when temperatures go above
22 ◦C [10]. However, warmer climate countries such as the United Arab

Fig. 2. Three-dimensional model of a terraced house produced in IES VE using a layout obtained from [27]. The blue shading represents the dwelling under
investigation and the pink shading the adjacent buildings. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Emirates recommend maintaining indoor temperatures to 24 ◦C ±

1.5 ◦C [47]. Such stark differences show how thermal conditions may
vary depending on the country.

In this paper, the internal temperature was set to 21 ◦C as per UK
building design. However, it is possible to assess personal preference and
its effect on energy demand for the modelled dwellings. This idea is
illustrated in Section 3.3.

3.3. Modelling assumptions

Table 1 summarises the construction data for the UK housing stock
according to Building Regulations. From the table, there are 6 founda-
tion types, 8 wall types, 5 window types, and 7 roof types. This implies
there are 1680 possible combinations for a dwelling considering these
construction elements. As highlighted in Section 2.1.5, 5 types of
dwellings are considered in this paper: bungalows, detached houses,
flats, semi-detached houses, and terraced houses. Considering 4
different orientations for each location as discussed in Section 3.2.1
(north-facing -0◦-, east-facing -90◦-, south-facing -180◦-, and west-facing
-270◦-), this accounts for a total of 6720 building configurations per
geographical location (i.e. Cardiff, Glasgow, London, Plymouth, and
Manchester) and 184,800 overall for all type of dwellings and their
variations (e.g. terraced houses and flats).

Quantifying thermal demand for any configuration would require a
computational simulation taking ~1 min to run without considering
pre- and post-processing times. This is equivalent to 112 h of total
simulation time for a single dwelling and geographical location. Com-
bined with all the dwellings and locations, the simulations would take
over a year to complete, which is not practical. It is desirable to elimi-
nate the least likely scenarios to reduce computation time. The process
for achieving this is explained next.

As per the housing surveys report 2021–2022, 87 % of homes in
England have installed double-glazed windows [17]—leaving 13 % of
homes with single glazing. However, as shown in Table 1, single-glazed
windows could not be installed in new homes or have been replaced in
older buildings since 2000. Alternative solutions to double glazing are
available such as secondary glazing, which consists of installing a
separate discrete window between the external window and the room.
This provision allows listed buildings with single glazing to meet energy
performance requirements for UK households. A study into the thermal
performance of secondary glazing was conducted in [48], where it was
concluded that secondary glazing provides the same level of thermal
resistance as double-glazed windows. Thus, single-glazed windows may
be removed from the modelling process as they can no longer be
installed.

Grants such as the Green Deal Home Improvement Fund, Home
Upgrade Grant in England, Nest in Wales, and Warmer Homes in Scot-
land offered monetary support to improve loft insulation in UK house-
holds [26,49]. These schemes have been consolidated with the Great
British Insulation Scheme, which provides funding for the insulation of
roofs and other surfaces within dwellings (e.g. floors and walls) [25]. It
can be thus assumed that most dwellings will have had their loft insu-
lation upgraded within the last 20 years and older loft insulation values
may be removed.

Furthermore, for dwellings constructed in the 1920s, U-values for
uninsulated cavity walls were approximated to be 1.6 W/m2-K. With the
introduction of the Building Regulations in 1965, the maximum allowed
U-value was 1.7 W/m2-K [18]. As the 1965 standard provides a higher
and thus more conservative value, it can be adopted for modelling
purposes.

Using the previous considerations the amount of required simula-
tions was reduced. To provide clarity into the simulation cases and their
results, a unique building code was assigned for each possible dwelling.
For example, building code ‘1111’ refers to a dwelling constructed using
the most thermally efficient walls, foundations, roofs, and windows—in
that specific order. The lowest U-values in Table 1 correspond to this

Fig. 3. Modelling framework outlining the methodology used within the paper
to obtain the thermal demand of typical dwellings.

Table 2
Assigning U-values to each type of dwelling construction.

X— -X– –X- —X

Walls Foundations Roof Windows

1 0.18 0.13 0.11 1.2
2 0.3 0.22 0.13 1.4
3 0.45 0.51 0.22 2
4 0.6 1.2 0.35 3.1
5 1 2.94 0.4 –
6 1.7 3.25 – –
7 1.84 – – –
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example. Following the same approach for other entries in Table 1,
unique building codes indicating the surface U-values for each con-
struction are shown in Table 2.

For simplicity, semi-detached houses, terraced houses, and flats,
which have a shared surface with an adjacent dwelling will assume that
the adjacent dwelling will be an unconditioned space.

Note: For this paper, the internal heat gains (including building
occupancy) have been so far ignored and set to zero. This was done
because all internal gains are considered as positive and, thus, can be
added after conducting any simulation. This simplified approach
enabled providing a baseline for cooling demand estimation where other
relevant aspects not depending on the building fabric or weather con-
ditions can be easily integrated, such as personal preferences. To
showcase the validity of incorporating internal heat gains to simulation
results and assess their effect on the cooling demand of a dwelling, an
additional case study was conducted. This is showcased in Section 4.6.

3.4. Cooling demand calculation considering thermostat preference

As highlighted in Section 3.2.3, it is possible to assess personal
thermostat preference and its effect on energy demand. This was done in
this paper by considering the change in energy demand as a constant
value for each house typology shown in Table 2 (i.e. a dwelling with its
own unique set of constructions as outlined earlier). Subtracting a set
value from the energy demand would simulate a reduction in the in-
ternal temperature settings and adding the same value would represent
an increase in the thermostat temperature.

The previous idea is illustrated in Fig. 5, which shows the behaviour
of an insulated detached house with varying thermostat temperatures
enabled by 4 different simulations. The house is north-facing (orienta-
tion of 0◦), located in Cardiff, with a building code ‘3244’ as per Table 2.
Results are shown for a one-week period of a typical design year, where
thermal demand refers to the energy required to maintain the internal
temperature at 21 ◦C. Positive values represent heat demand and

Fig. 4. Photovoltaic power potential in the UK [44].
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negative values cooling demand. It is apparent that a change in ther-
mostat temperature induces a constant change in hourly energy de-
mand. For this case, the increase or decrease in hourly energy demand is
by approximately 160 W/◦C. This value is scalable: a rise in temperature
by 0.1 ◦C increases heating demand hourly by ~16 W in winter and
reduces the cooling demand in summer by the same amount. Similarly, a
reduction of 0.1 ◦C decreases the heating demand in winter and in-
creases the cooling demand in summer hourly by ~16 W.

The difference in hourly energy demand shown by the example in
Fig. 5, however, is unique for any two temperature set points. Obtaining
this difference from a reference scenario (e.g. for 21 ◦C) with respect to a
different thermostat setting would require duplicating the computa-
tional effort, as additional simulations must be performed again with a
new temperature set point. To illustrate this idea, a range of building
constructions for a detached house was simulated in IES VE for two
different thermostat settings (in this case 21 ◦C and 22 ◦C for simplicity).
The selected construction combinations were randomised to cover an
even distribution of the overall U-values, including the best and worst-
case thermal efficiency scenarios as per the unique reference building
codes provided in Table 2 (codes ‘1111’ and ‘7654’). The difference
between the energy demands was then calculated, with results shown in
Table 3. It is evident that the energy efficiency of a building, in this case
for a detached house, has a profound effect on the difference in energy
demand between two thermostat settings, which increases when the U-
values are larger.

An alternative method was developed to assess the impact of varying
thermostat set points on the difference in thermal demand without
having to conduct a simulation for each set point temperature. To this
end, it was assumed that the U-value for each external surface has a
similar effect on the overall demand, but its surface area adjusts the

weighting of the effect. For example, since windows have the smallest
surface area for most dwellings, they thus have the lowest impact on the
overall demand.

A correlation coefficient of the data points comparing the weighted
U-values to the calculated energy demand due to a change in the ther-
mostat setting by 1 ◦C was first obtained. To achieve the desired output
result, in this case a correlation coefficient value of 1, particle swarm
optimisation (PSO) was used to heuristically adjust the U-value’s
weighting for each relevant surface. Interested readers are referred to
[50] for additional details on PSO. With this approach, the following
linear equation was obtained:

y = 81.27x+ 43.82 (1)

where y represents the change in hourly thermal demand [W] due to a
change in thermostat settings by 1 ◦C and x represents the total weighted
U-value. Eq. (1) is useful to predict the effect of changing the thermostat
temperature on the difference in energy demand between set points.

For each dwelling, its U-values were given a unique weight deter-
mined using PSO. For instance, the optimised weights for a detached
house were obtained as 1.19 for walls, 0.54 for foundations, 0.62 for
roofs, and 0.21 for windows. From Table 2, considering the U-values for
the window, wall, foundation, and roof with the best thermal efficiency,
the adjusted U-value is calculated as

x = (0.18× 1.19)+ (0.13×0.54)+ (0.11×0.62)+ (1.2× 0.21)

= 0.60 W
/
m2 − K (2)

Substituting x = 0.60 W/m2-K into (1), the change in hourly energy
demand due to adjusting the thermostat temperature by 1 ◦C for a de-
tached house is obtained as

y = 81.27(0.60)+43.82 = 92.6 W (3)

The result given by (3), when compared to the difference in hourly
energy demand for a detached house in Table 3 (92 W), shows that the
approximation method exemplified by (1)–(3) can be used as a predic-
tion tool as it leads to a value within an acceptable range. This (constant)
change in energy demand can be thus easily determined for each sce-
nario without conducting several simulations.

Determining the minimum number of simulations for achieving an
accurate change in energy demand involved conducting multiple sim-
ulations across a range of different overall building U-values. For the
examples in Table 3, the approximation method was initially applied to
2 simulation scenarios for the detached house (using U-values for the
best and worst scenarios, with dwelling codes ‘1111’ and ‘7654’ in

Fig. 5. Comparison of hourly thermal demand with different thermostat temperatures for a typical design year. Detached house in Cardiff at orientation 0◦ (i.e.
north-facing) with a building code ‘3244’.

Table 3
Effect of thermostat changes by 1 ◦C in energy demand for detached
constructions.

Dwelling code Difference in hourly energy demand (W)

1111 92
2122 108
3244 161
4124 167
4612 293
5433 237
5643 342
6534 402
7212 259
7654 431
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Table 2). The number of simulations was increased by one at a time to
find an acceptable degree of accuracy. The overall percentage error
dropped to 1.79 % with 10 simulations, which provided a maximum
error of 18 W. The simulated results plotted alongside the predicted
results are shown in Fig. 6.

As shown by Fig. 6, the presented methodology provides a linear
relationship to predict the energy demand of a building at varying
thermostat temperature set points. To test the prediction performance, a
random detached construction was selected (dwelling code ‘6534’). The
predictive model determined that the constant hourly energy demand
increase (or decrease) would be 403 W, which was close to the simulated
difference of 402 W using IES VE (see Table 3).

The energy demand for a dwelling will be affected by additional heat
gains from equipment loads (e.g. TVs, cookers, laptops), occupants, and
lighting. In addition, the energy from these heat sources may fluctuate
considerably between dwellings. Creating a standard internal thermal
load for each case is thus not practical. However, these loads will always
be positive and can be defined at a later stage to be applied to the
simulated data. This way, it is possible to assess custom scenarios to
account for varying schedules (e.g. indoor activities in the evening or
night hours).

3.5. Verification of the modelling approach

Results provided in reference [16] were borrowed to verify the
modelling methodology presented in the previous sections. In the
reference, a pair of semi-detached households (termed East and West
houses for simplicity), shown in Fig. 7, was investigated. Alongside
building properties and plans, internal temperatures and external
weather conditions were measured and recorded over a 3-week period.
Internal gains were induced electrically using a heating fan on a set
schedule to mimic occupancy in the dwellings. With windows in the
control dwelling (East house) kept closed at all times, internal and
external temperatures were monitored at 1-min intervals.

IES VE was used to develop 3D models of the buildings in [16] and
their surrounding area following the plans and the detailed construction
properties given. A screenshot of the dwellings modelled in IES VE is
shown in Fig. 8. Using the data recorded by the weather station for the
period of time investigated in the reference, the weather files were
manually updated to match the external prevailing conditions.

IES VE can read multiple weather file types, with Energy Plus
Weather (EPW) being the most standardised format. EPW files are
widely available online and can be easily customised as needed by
converting them to CSV files. Using the recorded data, the CSV files were
modified (adjusting the solar radiation, temperature, wind,

precipitation, cloud cover, and humidity values) before being recon-
verted back to EPW files.

The thermal mass of furniture may have a significant impact on the
local indoor humidity and thermal comfort of dwellings [51]. This is
because the furniture absorbs heat from the air and solar radiation (if
near a window) and slowly releases the heat back into the room much
slower than compared to the air. Whilst the dwellings in [16] were
considered mostly empty, it is unknown how much furniture was there.
Therefore, using IES VE’s Furniture Mass Factor (set to 1), a thermal
mass was assigned within the rooms and accounted for the effects of the
additional thermal mass.

Internal gains from sources such as the occupant, equipment, and
lighting loads were replicated using a heating element with a scheduled
control system. This way, IES VE was able to incorporate the loads
matching the installed system.

In [16], a blower door test was carried out to determine the venti-
lation rates. The external openings (windows, doors, and fireplaces)
were sealed to prevent the leakage of air and a fan was placed at the
entrance. By inducing a pressure difference of 50 Pa (either by blowing
air in or out of the building), the air flow rate on the fan required to
maintain the pressure difference between the external air and indoors
was thus the ventilation rate at a pressure of 50 Pa. This was converted
to air changes per hour (ACH) by dividing it by the volume of the
dwelling.

Following the test, the ACH at 50 Pa was 15.3 for the West house and
15.6 for the East house. However, as stated in [52], the pressure dif-
ferential between outdoors and indoors is closer to 7.3 Pa. Since the
measured ACHs in [16] were much higher than the natural ventilation
rates, these values had to be scaled down for model verification in IES
VE. The commonly accepted method to scale ACH is by dividing the
measured value by values between 10 and 30. Using the East house as a
reference, simulations were carried out in IES VE using different values,
starting with 0.78 ACH (15.6/20), 0.52 ACH (15.6/30), and a lower
value of 0.35 ACH. From these simulations, it was found that the lowest
value (0.35 ACH) provided the most accurate results. This is consistent
with the UK Building Regulations Part F [53], which states that less
airtight dwellings can be assumed to have an infiltration rate of 0.15
ACH. As the buildings under investigation in [16] were constructed in
the 1930s, an ACH of 0.35, higher than the less airtight dwellings from
nowadays, was used for simulations.

Whilst both dwellings were simulated in IES VE, only the control
house (East house) was used in the verification as the opening and
closing of windows were not simulated. The simulated indoor temper-
atures, alongside the measured temperatures in [16] for the rooms that
were monitored, are shown in Fig. 9.

Fig. 6. Variation of hourly thermal demand for a detached house in Cardiff at orientation 0◦ (i.e. north-facing) for different weighted total U-values.
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As shown in Fig. 9, the results obtained with IES VE closely resemble
the measured data in [16]. To further confirm this, three calculations
were carried out to determine the accuracy of the model, namely coef-
ficient of determination (R2), RMSE, and mean absolute error (MAE).
For a more detailed description on their calculation methods and defi-
nitions, the interested readers are referred to [54]. The results for these
metrics are shown in Table 4.

An average R2 value of 0.87 for the house was obtained, which in-
dicates a reasonable agreement of the simulated results with the
experimental data. The average MAE between the simulated and
experimental results was 1.34 ◦C and the RMSE was 1.62 ◦C.

Due to the limitations in both the model and the measured data, an
exact match was not expected. For example, the amount of furniture in
the dwelling was not stated and was therefore assumed. The ventilation
rates provided in [16] were not accurate due to the adopted estimation
of ACH. In addition, a time-step size of 10 min was used in IES VE, while
the reporting interval for results presented in [16] was hourly. Due to
the discrepancies in the simulated and measured data, along with the
metrics in Table 4 and the visual representation in Fig. 9 showing
reasonable agreement, IES VE was considered a suitable tool for calcu-
lating thermal demand in buildings.

4. Results and discussion

Using the methodology presented in Section 3, the thermal demand
for the five different dwellings (i.e. bungalows, detached houses, flats,

semi-detached houses, and terraced houses) across the five considered
geographical locations (i.e. Cardiff, Glasgow, London, Plymouth, and
Manchester) was obtained for a typical design year. A simulation time-
step of 1 h was used in IES VE to quantify the hourly energy demand.

The most relevant results are discussed in the next subsections. Un-
less indicated otherwise, positive values of thermal demand represent
heat demand and negative values cooling demand. To support the dis-
cussion, Fig. 10(a) shows the external temperature for each location
during a week of June of the design year, while Fig. 10(b) does this for
the whole month of June.

4.1. Cooling demand variations of different property types at a similar
location

To assess how cooling demand changes for a fixed location
depending on the type of dwelling, thermal demand was quantified for
the investigated dwelling types in Cardiff while keeping other key at-
tributes the same. For a more insightful comparison, a week in June of
the design year was chosen (blue trace in Fig. 10(a)). All dwellings were
considered to have the highest thermal efficiency (i.e. building code
‘1111’) and an orientation of 0◦ (north-facing). Results are shown in
Fig. 11.

As shown by the traces in Fig. 11, the detached house (solid red
trace) consistently exhibits both the highest cooling demand and highest
heat demand throughout the week. This can be attributed to this type of
dwelling having the largest external wall surface area among all house

Fig. 7. Houses adopted from [16] to verify the numerical model in IES VE: (a) front view; (b) rear view.

Fig. 8. Houses in [16] modelled in IES VE.
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Fig. 9. Comparison of internal room temperatures using IES VE with measured values reported in [16]: (a) kitchen; (b) rear bedroom; (c) living room; (d)
front bedroom.
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types. In contrast, the flat has the smallest external wall surface area,
leading to the lowest heating and cooling demands (green trace).
However, the location of a flat within a building may impact its cooling
demand, so this type of dwelling is explored separately and in more
detail in Section 4.2.

Indoor heat gain due to conduction through walls has a higher
impact on cooling demand than heat gains through windows. This is
evidenced by the bungalow, which has the second largest external wall
area and second smallest total window area, leading to the second
highest cooling demand (blue trace in Fig. 11) of all types of dwellings
during the week under assessment.

4.2. Cooling demand variations for flats

As highlighted in Section 4.1, the position of a flat within a building
has an impact on its cooling demand. This is shown in Fig. 12, where the
total monthly cooling demand in June for flats located in Cardiff is

shown. Fig. 12(a) shows results for flats with the highest thermal effi-
ciency (building code ‘1111’), while Fig. 12(b) for the lowest energy
efficiency (building code ‘7654’). As in Section 4.1, it was assumed that
the external wall is north-facing (orientation of 0◦).

For either the highest or lowest thermal efficiency, the flat with the
lowest cooling requirement is the ground floor (bottom) flat within the
centre of the building (dark blue bar, both figures). This is due to a
ground cooling effect applied to the foundations, where the model uses a
ground temperature of 13 ◦C year-round [32]. When the indoor air
temperature rises above this level, the ground cools the building.

The corner flat at the ground floor similarly retains the cooling effect
but has a larger external wall area, which therefore increases its cooling
demand (red bar, both figures). Without the cooling effect, for the
newest and most efficient buildings, shown in Fig. 12(a), the middle-
floor (green and purple bars) and top-floor flats (orange and teal bars)
exhibit higher levels of cooling demand. However, the difference be-
tween the top and middle floors is minimal as the thermal efficiency of

Table 4
Accuracy metrics for the simulated and measured results.

East house

Living room Kitchen Front bedroom Rear bedroom Single bedroom

R2 0.87 0.84 0.90 0.91 0.85
MAE [◦C] 1.68 1.99 1.10 0.73 1.22
RMSE [◦C] 2.01 2.37 1.32 0.90 1.49

Fig. 10. External dry bulb temperature for the geographical locations under investigation: (a) Week in June; (b) whole month of June.
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the roof prevents additional heat from entering the flats. In contrast, for
the least thermal efficient flats, shown in Fig. 12(b), the difference be-
tween cooling demand between flats at top and middle floors is more
pronounced.

When modifying the flat orientation so that the external wall is east-
facing (orientation of 90◦), there are significant effects on the total
monthly cooling demand. This is shown in Fig. 13 for the most and least

thermally efficient constructions. The first notable difference is the
overall increase in cooling demand across all flat variations. This is
attributed to solar radiation directly impacting windows throughout the
day. Compared to Fig. 12, when windows are on the north-facing wall,
there is no direct sunlight on them. Furthermore, for the more efficient
flats (code ‘1111’, Fig. 13(a)), the position of the flat within the building
has a negligible effect on the total cooling demand. This was expected, as

Fig. 11. Hourly cooling demand for each dwelling type in Cardiff with the highest thermal efficiency (building code ‘1111’) and orientation of 0◦.

Fig. 12. Total monthly cooling demand in June for all flat types (north-facing external wall, orientation of 0◦). Flats with: (a) highest thermal efficiency (building
code ‘1111’), (b) lowest efficiency (building code ‘7654’).
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the solar gain has the largest effect on the thermal demand of the
dwelling.

4.3. Cooling demand variation based on orientation

Orientation is another attribute which may affect cooling demand.
Since flats located at an intermediate storey within a building have a
single external wall/window facing one direction, the orientation of this
type of the dwelling has the starkest impact on the cooling demand.

To explore this in more detail, Fig. 14 shows the thermal demand for
a middle-floor flat in Cardiff during a week of June of the design year.
Results are shown for dwellings with the highest thermal efficiency
(building code ‘1111’) in Fig. 14(a) and for the lowest thermal efficiency
(building code ‘7654’) in Fig. 14(b).

As observed in both subfigures, orientation of the dwelling has a
large impact on the peak cooling demand alongside the time in which
the peak occurs—regardless of the flat’s overall thermal efficiency. For
example, east-facing flats (orientation of 90◦) experience peak demand
in the morning, but west-facing flats (270◦) in the evening instead.
However, the south-facing flats (180◦) exhibit peak demand at midday
due to the consistent level of solar gains throughout the day. Further-
more, thermal efficiency, whilst having a significant effect on the
magnitude of the cooling demand, does not affect the just discussed
pattern. This is consistent in both Figs. 14(a) and 14(b).

4.4. Detached houses

The overall thermal efficiency of a dwelling has a significant impact
on both its heating and cooling demands. From the different types of
dwellings under consideration, a detached house represents the worst
case scenario given the amount of surfaces exposed to the environment.

Fig. 15 shows the thermal demand for a detached house in Cardiff
during a week of June of the design year. Results for a range of thermal
efficiencies of the construction materials are shown.

Fig. 15 shows that heat demand for less efficient detached houses
(building codes ‘7654’ and ‘5553’, purple and green traces) is much
higher than for newer builds (building codes ‘1111’ and ‘3332’, blue and
red traces). There are multiple days with a cooling demand of approxi-
mately 1000 W for newer dwellings with building codes ‘1111’ (blue
trace) and ‘3332’ (red trace), but no cooling demand at all for older
dwellings with building codes ‘5553’ (green trace) and ‘7654’ (purple
trace).

Although cooling demand tends to be lower for the least efficient
dwellings, these exhibit pronounced peak demands. This is a relevant
result, as on hotter days, cooling demand for the least efficient dwellings
will outstrip the most efficient ones—indicating that older constructions
will be more severely affected during heatwaves when outdoor tem-
peratures substantially increase.

For a detached house, modifying windows may have a larger impact
on heating demand than cooling demand. This effect is explored in
Fig. 16. In this case, the construction materials for walls, foundation, and
roof for a detached house in Cardiff (north-facing) were assumed highly

Fig. 13. Total monthly cooling demand in June for all flat types (east-facing external wall, orientation of 90◦). Flats with: (a) highest thermal efficiency (building
code ‘1111’), (b) lowest efficiency (building code ‘7654’).
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thermally efficient but the type of window was varied.
As observed in Fig. 16, the pronounced effect on heat demand may be

attributed to the lower thermal efficiency of the windows at night. Since
solar gains are zero during night time, heat escapes the building faster.
From the figure, windows with a low thermal efficiency (e.g. older
double-glazed windows, building code ‘1114’) will reduce cooling
demand—except for clear days where solar gains are higher. Thus,

radiation entering the detached house adds more heat than is lost
through windows with low thermal efficiency.

However, because there are windows on multiple sides of a detached
house, the effects of orientation are more muted when compared to
those on flats having windows only on a single wall (which are examined
in Section 4.3, Fig. 14). To examine this in more detail, Fig. 17 shows the
effect of orientation on a detached house in Cardiff during a week in

Fig. 14. Effects of external wall orientation on the hourly cooling demand for a middle-floor flat in Cardiff. Flat with the (a) highest thermal efficiency (building code
‘1111’), (b) lowest thermal efficiency (building code ‘7654’).

Fig. 15. Effects of thermal efficiency on the hourly cooling demand for a detached house in Cardiff oriented at 0◦ (north-facing).
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June of the design year. Fig. 17(a) shows results for construction ele-
ments with the highest thermal efficiency (building code ‘1111’), while
Fig. 17(b) for the lowest thermal efficiency (building code ‘7654’).

As observed in Fig. 17(a), whilst there is an impact on cooling de-
mand peaks and times due to orientation, similar to those previously
discussed for flats, these peaks are not as sharp—although the magni-
tudes are significantly higher for the detached house. However, as

shown in Fig. 17(b), the impact of orientation decreases for detached
houses with low overall thermal efficiency. This could be due to the
increased heat gains entering the building through the other surfaces
diluting the effects of solar gains entering the dwelling through the
windows.

Fig. 16. Effects of window construction on the hourly cooling demand for a detached house in Cardiff oriented at 0◦ (north-facing).

Fig. 17. Effects of orientation on the hourly cooling demand for a detached house in Cardiff. Dwelling with the (a) highest thermal efficiency (building code ‘1111’);
(b) lowest thermal efficiency (building code ‘7654’).
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4.5. Cooling demand variation based on geographical location

As inferred from Fig. 4, cooling demand for a given property will be
heavily influenced by geographical location. To examine this in more
detail, the annual cooling demand for the design year was quantified for
a highly thermally efficient north-facing detached house in the five
geographical locations being assessed. Since the heating season is
considered to occur between October to March/April [55], it was
assumed in this paper that the cooling season lasts from May to
September. (Cooling demand outside these limits could be potentially
met with passive measures such as opening windows, but this is not
further explored in this paper.) Results are shown in Fig. 18.

Cooling demand for the detached house in the southern locations is
higher than for a dwelling in the northern cities, which was anticipated.
However, a higher cooling demand for the house in Plymouth compared
to that in London would have been expected (and similarly for Man-
chester and Glasgow) based on the photovoltaic power potential map
shown in Fig. 4. This is explained by differences in the data to create the
weather files for each location (see Section 3.2.2 for further details on
how the weather files are created). For instance, the design year weather
files created for Glasgow and Manchester indicate that on average
Glasgow is warmer than Manchester based on the years selected to
create the files. This is supported by Table 5, which shows the mean
outdoor temperature for the cooling season for the weather file of each
location. The values shown in Table 5 are consistent with the results
shown in Fig. 18.

From the results presented so far in this section, it can be concluded
that the conduction gains outweigh the effects of solar gains. However,
reducing the thermal efficiency of a dwelling may have a significant
effect on the yearly cooling demand. Fig. 19 shows the annual cooling
demand for a detached house as in Fig. 18, but now with the least effi-
cient construction materials (building code ‘7654’). The significant
difference in temperature between London and Plymouth increases the
cooling demand from one location to the other. Cooling demand for
Manchester in this case is higher than for Glasgow—showing that the
relationship between cooling demand and solar radiation is sensitive to
the thermal efficiency of the dwelling. In other words, the effect of solar
radiation on cooling demand reduces as the thermal efficiency of the
dwelling increases.

When comparing Figs. 18 and 19, whilst the other locations all see a
decrease in yearly cooling demand when thermal efficiency is reduced
(i.e. from building code ‘1111’ to ‘7654’), cooling demand in London
shows a marked increase. This could be caused by the higher tempera-
tures not allowing the building to purge the excess heat in the evenings/

nights and, therefore, maintaining a more consistent cooling demand
over the cooling season. To verify this, further studies into sustained
heatwave scenarios could be conducted to determine if this effect ap-
plies across all the different dwellings and cities—however, carrying out
these studies falls out of the scope of this paper.

Other dwelling types (i.e. bungalows, semi-detached, and terraced
houses) exhibit similar results as those presented so far in this section.
Therefore, these have not been included in the paper.

4.6. A study on the effects of internal gains on cooling demand

A simple case study was carried out using a ground floor flat as this
represents the simplest household model. The dwelling is located in
Cardiff, with a building code ‘1111’ (highest efficiency) and a 0◦ orien-
tation. Simulations were carried out when no internal heat gains are
considered and once internal gains are incorporated. The internal gains
consist of 2 people producing 90 W of heat between 8 am and 6 pm, and
a continuous lighting load of 2 W/m2. (Note: Cooling demand for
different types of flats with a building code ‘1111’ located in Cardiff and
0◦ orientation, including a ground floor flat without considering internal
heat gains, was assessed in Section 4.2. In those results, shown in Fig. 11
(a), only the total monthly cooling demand was presented.) The
considered internal heat gains for the flat are shown in Fig. 20.

As shown in Fig. 20, all heat gains are positive as there are no ele-
ments removing heat from within the dwelling, The occupancy gains
(shown with a red trace) are only active when scheduled and the lighting
load (blue trace) is a constant value. The total internal gains (green
trace) is the sum total of the two loads. This load profile can be either
integrated directly into the simulation or, alternatively, can be added to
the simulation results for empty dwellings to obtain the total cooling
demand for the building. The internal load profile has been simplified as,
in reality, heat gains may be highly variable depending on activity levels
of the occupants, differing equipment, and lighting schedules. This
simplification has been done to demonstrate in a simple way the effect of
internal gains in cooling demand without overcomplicating the analysis,

Fig. 18. Total yearly cooling demand for a north-facing (orientation of 0◦), highly thermally efficient (building code ‘1111’) detached house at different locations in
the UK.

Table 5
Mean outdoor air temperature for each weather file.

Location Mean outdoor air temperature (◦C)

Cardiff 16.7
Glasgow 15.5
London 20.2
Manchester 14.6
Plymouth 17.8
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thus restricting computational burden.
Simulation results are shown in Fig. 21. The blue trace shows the

baseline thermal demand in the dwelling without any internal
loads—equivalent to the existing load profiles shown in previous results
in Section 4. The red trace instead shows the simulation results once the
internal loads are incorporated into the model. The green trace shows
results when the internal gains are incorporated via post processing
(adding the total internal heat gains to the results shown with the blue
trace). This exercise was conducted to show that either approach for
assessing the effect of internal heat gains on cooling demand as dis-
cussed in the previous paragraph renders similar results.

Based on the results presented in Fig. 21, whilst not matching
perfectly, adding all the internal gains after running the simulations
shows negligible difference when compared to incorporating internal
loads into the model before running the simulations. Due to the high
efficiency of the flat, whilst empty there are very few external gains
either exiting or entering the building (see blue trace). Therefore, the
internal gains, which are based on the number of people and equipment
in the dwelling, have a large impact on the cooling demand as they are
applied directly to the internal atmosphere and not muted by highly
efficient materials. Repeating the same simulation for a less thermally

efficient flat (building code ‘7654’) in the same location and with a same
orientation leads to the results shown in Fig. 22.

As shown in Fig. 22, and compared to the results shown in Fig. 21,
the internal heat gains have less of an impact on the thermal demand in
older dwellings. For both simulation cases though, either considering
the additional thermal loads as part of the simulation (red trace) or
adding them as a separate load profile following simulations of an
‘empty’ dwelling (green trace) provides very similar results.

Following the same methodology but with 2 W/m2 for the lighting
load and this time using 5 people at 90 W each for a fixed period of time
to cater for occupancy heat gains, additional simulations were con-
ducted for a detached house in Cardiff, north-facing. Results for both a
new dwelling (building code ‘1111’) and an old one (building code
‘7654’) are shown in Fig. 23.

Compared to the results presented in Section 4.4 which did not ac-
count for internal heat gains, internal loads for the highly thermally
efficient detached house, shown in Fig. 23(b), have less of an overall
impact on the thermal demand than those in the highly thermally effi-
cient dwelling, as shown in Fig. 23(a). This could be because the addi-
tional sources of heat gains from other sources (solar gains, conduction
gains) dilute the impact of the smaller internal heat gains used. The blue

Fig. 19. Total yearly cooling demand for a north-facing (orientation of 0◦), lowly thermally efficient (building code ‘7654’) detached house at different locations in
the UK.

Fig. 20. Internal heat gains for a ground floor flat.
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traces, corresponding to the case without considering heat gains, are
similar to those presented in Fig. 15 also with a blue trace for the highest
thermal efficiency house and with a purple trace for the least thermal
efficient house. Similar conclusions can be also drawn for different types
of dwellings, although this is not explicitly shown in the paper with
additional simulation results to prevent it from becoming too long.

With the presented approach in this section, it is possible to assess the
potential cooling demand in a dwelling considering buildings’ usage,
number of people living in the dwelling, or equipment installed in the
premises.

5. Discussion on the limitations of the methodology

Whilst the methodology presented in this paper provides an accurate
estimation of cooling demand in UK households, there are some limi-
tations within the scope of the work.

Although an overall U-value provides a good metric for heat transfer
through walls (and other surfaces) in a dwelling, the wall composition

will have an impact on its thermal demand. In [56], the effects of
thermal mass on building energy consumption were investigated. It was
reported that thermal mass is not only poorly quantified in the existing
literature, but also that a higher thermal mass is less desired in dwellings
located at warmer climates and thus exhibiting considerable cooling
demand. The thermal mass of the materials that make up the wall can
absorb heat and release it slowly into the building, reducing peak de-
mand in a building for both heating and cooling. As highlighted by the
beginning of Section 2.1, a comprehensive assessment of wall compo-
sition and how this affects thermal demand is not accounted by the
methodology here presented.

The thermal load on dwellings may be realistically met by adopting
passive strategies which have not been considered by the methodology.
During heatwaves, for instance, various methods such as closing blinds,
opening windows at night to purge the heat, and implementing shading
on the windows to block solar radiation can reduce cooling demand.
However, when active cooling measures are being implemented, the
likelihood of passive methods being used is decreased.

Fig. 21. Effect of internal heat gains in the cooling demand of a ground floor flat in Cardiff with the highest thermal efficiency (building code ‘1111’) and orientation
of 0◦.

Fig. 22. Effect of internal heat gains in the cooling demand of a ground floor flat in Cardiff with the lowest thermal efficiency (building code ‘7654’) and orientation
of 0◦.
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Energy management in homes has not been incorporated within the
scope of work either. With the introduction of smart controllers, resi-
dents will only activate heating and cooling as needed or on set sched-
ules. This will have a large impact on the thermal load, but this has not
been considered in this paper.

Furthermore, although the knock-on implications that increasing
cooling demand may have upon the local electricity networks has been
mentioned, a detailed study on those effects falls out of the scope of work
for this paper. Potential future work can be done in a number of fronts to
get a better understanding of the impact of increasing cooling demand
on electrical power systems, such as: a) looking into the varying effects
of different electricity-driven technologies to meet the demand for local
communities; b) assess the extent of which supplying cooling will affect
peak electricity demand and its implication on network reinforcements;
c) detailed network analysis to assess the impacts of cooling demand on
distribution and primary substations; d) investigating the potential for
flexibility provision to the electrical power system by integrating passive
and active cooling techniques and thermal energy storage.

With regards to the software adopted to model the different dwell-
ings, IES VE implements a fixed ventilation rate. In practice, ventilation
rates vary constantly based on the weather conditions and the effect of
users opening and closing doors and windows. Whilst their impact on

thermal demand may not be significant, ventilation rates will likely have
an effect. This aspect requires further investigation.

Additionally, the insulation among older buildings may degrade over
the years due to water damage or other types of damage. This is not
factored into the methodology. However, it is possible to simulate a
degraded insulation by using more conservative U-values than would be
expected from the building age.

The methodology assumes there is no degradation of the surfaces and
buildings are constructed to the standards of the time. However, some
constructed dwellings do not reach the set standards and this cannot be
incorporated into the model. Therefore, whilst accounting for surface
degradation or lack of standard compliance falls beyond the scope of
work, choosing a higher U-value setting for buildings that do not meet
the expected standards could be done to cater for such uncertainties.

By simplifying the methodology to not include any internal heat
gains and reducing the complexity of the model, simulation times are
reduced drastically (as mentioned in Section 3.3). Using this approach,
post-processing can be done in a simple and quick way depending upon
the required scenarios. Having said that, as shown in Section 4.6,
incorporating internal heat gains into the simulation scenarios can be
done in an effective way.

As mentioned previously in the paper, the use of AI and machine

Fig. 23. Effect of internal heat gains in the cooling demand of a detached house in Cardiff oriented at 0◦ with: (a) the highest thermal efficiency (building code
‘1111’); (b) the lowest thermal efficiency (building code ‘7654’).
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learning has not been considered in this work due to the lack of cooling
demand data available for residential dwellings in the UK. However,
advancements in computational power and AI research have led many
researchers to integrate AI, machine learning, and deep learning to
various applications. This is something that falls out of the scope of this
paper, but application examples from other fields of research, such as in
[57], can be incorporated into the methodology here presented to look
into predicting future cooling demand using forecast data.

Integrating lessons learnt from load forecasting in electrical power
systems can also be explored within the context of cooling demand
forecasting. For instance, reference [58] adopted convolutional neural
networks (CNN) and support vector regression to forecast short term
future electricity demand based on weather forecast data. Reference
[59] applied a hybrid CNN-based long short-term memory (LSTM)
model to predict the hourly heating load for a district heating plant over
48-h and 72-h periods. A similar approach was followed in [60], where
transfer learning was incorporated to estimate room temperatures using
smart thermostat data.

While deep learning requires historical data, the insights gained from
research reported in the references discussed in the previous paragraph
demonstrate the potential that CNNs and other machine learning
methods have, combined with weather forecast data, to effectively es-
timate the thermal demand for buildings.

6. Conclusions

This paper provides a methodology to quantify cooling demand for
the most common dwelling types in the UK housing stock. To ensure
coverage of the majority of existing buildings, an in-depth literature
review was carried out to find the ages, typical dwelling types, and
construction methods used throughout the previous century.

The methodology enables determining the thermal demand of any
building with only minimal knowledge (e.g. when any renovations were
last carried out and the current age of the building). It also accounts for
the impact on energy demand due to variable thermostat settings
through a regression model developed on the simulation outputs. This
allows adopting preferred settings of users whilst showcasing the impact
of the set points on household energy expenses. The methodology is
comprehensive as differing dwelling types, orientations, locations, and
constructions may be accounted for when quantifying thermal demand.

The approach was deployed in a case study involving dwellings
located in five cities in the UK that experience distinct weather condi-
tions. Results suggest that dwellings in northern locations have a much
lower cooling demand than those in the southern locations, as expected.
For example, considering the most thermally efficient walls, founda-
tions, roofs, and windows (i.e. building code ‘1111’), a detached house
in Glasgow has a yearly cooling demand of 1458 KWh, while a similar
home in Plymouth exhibits a cooling demand of 2230 kWh. This dif-
ference in cooling demand for the same type of dwelling is accentuated
upon lower thermal efficiencies in the building fabric (e.g. building code
‘7654’), where the cooler climates and lower outdoor temperatures
decrease cooling demand significantly (Glasgow, 479 kWh) but only
slightly in the warmer climates (Plymouth, 2035 kWh).

Overall, the results presented in the paper demonstrate the utility of
the modelling methodology in identifying and quantifying the variations
in cooling demand across different UK dwelling types and locations and
for different times of the year within the same dwelling. This is of value
for various end-users. For example, developers and urban planners may
use the estimated heating and cooling demand to determine the impact
this demand has in a local area and ensure that local networks can
handle it. Utility companies can use the data to get an estimated thermal
demand for any dwelling within their network and use that to identify
any anomalous energy usage. Local authorities can benefit from the
modelling methodology to help highlight potential at risk locations for
vulnerable people where active cooling may be needed. In a similar
manner, policy makers may use key results obtained with the modelling
tool to estimate when users could potentially install active cooling
measures, alongside studying the the impact of varying technologies
used to meet the thermal demand on the electrical network, and intro-
duce restrictions on the most environmentally harmful or inefficient
technologies.

The methodology presented in this paper constitutes a tool which
could be expanded to consider other geographical locations beyond the
UK to understand cooling demand peaks, overheating risks, and energy
efficiency of typical dwellings in a warming world.
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Appendix A – IES VE settings

This appendix highlights some relevant IES VE settings used in the modelling. This is to provide a glimpse of the software simulation platform and
support the interested readers in replicating the modelling work carried out in the paper.

As shown in Fig. A1, each of the rooms within the dwelling has been assigned both a space type and sub-type. This consists in assigning a ‘Building
Space’ room type which simply states that the room needs to be incorporated into the simulation. Assigning other variables such as the ‘Adjacent
Building’ space type does not run any of the room thermal calculations and only retains the geometry in the 3D model to provide shading for the rooms
being modelled. Space sub-types have been set to ‘void’ for the roof space which implies that there is no heating or cooling applied to the room. The
‘Room’ sub-types ensure that any settings for the thermostat temperatures and internal gains are incorporated into the model for the rooms.
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Fig. A1. Screenshot showing the space and subspace settings for each room in a given dwelling.

Fig. A2 illustrates the basic simulation settings used to run the simulations. The ‘Results file’ is the name of the output file. Enabling the SunCast
link runs the model using the variable solar radiation data incorporating the shading effect of surrounding dwellings, forestry, and walls. ‘MacroFlo’,
‘ApacheHVAC’ and ‘RadianceIES’ are additional modules that can be incorporated into the model. Lastly the ‘Simulation’ box shown on the right-hand
side sets the time period the simulation runs for, the desired time-steps for the simulation, and the reporting interval (i.e. the output time steps for the
information). The preconditioning period accounts for the heat storage capacity of the dwelling.

Fig. A3 shows the detailed simulation settings for each room. For this specific example shown, as additional detailed information is not required for
any of the rooms, none are selected. As a result, the basic simulations are run for each room. If more information such as the specific solar radiation
data or surface temperatures is required, the room should be highlighted and the relevant outputs must be selected.

Fig. A2. Screenshot of the simulation settings used to run the model.
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Fig. A3. Screenshot showing the detailed simulation settings for each room within a dwelling.

Data availability

Data will be made available on request.
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